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Abstract—Stochastic optimization is a widely used ap-
proach for optimization under uncertainty, where uncer-
tain input parameters are modeled by random variables.
Exact or approximation algorithms have been obtained
for several fundamental problems in this area. However,
a significant limitation of this approach is that it requires
full knowledge of the underlying probability distributions.
Can we still get good (approximation) algorithms if these
distributions are unknown, and the algorithm needs to learn
them through repeated interactions? In this paper, we resolve
this question for a large class of “monotone” stochastic
problems, by providing a generic online learning algorithm
with

√
T log T regret relative to the best approximation

algorithm (under known distributions). Importantly, our
online algorithm works in a semi-bandit setting, where in
each period, the algorithm only observes samples from the
random variables that were actually probed. Our frame-
work applies to several fundamental problems in stochastic
optimization such as prophet inequality, Pandora’s box,
stochastic knapsack, stochastic matchings and stochastic
submodular optimization.

Index Terms—online learning, online-to-offline, adaptiv-
ity gaps

I. INTRODUCTION

Stochastic optimization problems have been a sub-
ject of intense investigation, as they offer a powerful
lens through which we can handle uncertain inputs. In
stochastic problems, uncertain input parameters are mod-
eled by random variables, which are usually indepen-
dent. Solutions (or policies) to a stochastic problem are
sequential decision processes, where the next decision
depends on all previously observed information. This
approach has been applied to many domains: optimal
stopping (Pandora’s box [1], [2] and prophet inequal-
ity [3]–[5]), stochastic submodular optimization [6]–[8],
stochastic probing [9]–[11] and various other stochas-
tic combinatorial optimization problems (e.g., knap-
sack [12], [13] and matching [14], [15]). A fundamental
assumption in all these results is that the underlying
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probability distributions are known to the algorithm.
While the known-distributions assumption holds in some
settings, it is not satisfied in many practical applications,
e.g., in the absence of historical data. Our main goal
in this paper is to relax this assumption and handle
stochastic problems with unknown distributions. We start
by providing some concrete examples.

Series testing. There is a system with n components,
where each component i is “working” independently
with some probability pi. All n components must be
working for the system to be functional. Moreover, it
costs ci to test component i and determine whether/not
it is working. The goal is to test components sequentially
to determine whether/not the system is functional, at the
minimum expected cost. Clearly, testing will continue
until some component is found to be not working, or
we have tested all components and found them to be
working. In the standard setting, where the probabilities
{pi}ni=1 are known upfront, the greedy policy that tests
components in decreasing order of 1−pi

ci
is optimal [16].

Pandora’s box. There are n items, where each item
i has an independent random value Xi with a known
distribution Di. The realized value of Xi can be re-
vealed by inspecting item i, which incurs cost ci.
The goal is to inspect a subset S of the items
(possibly adaptively) to maximize the expected utility
E
[
maxi∈S Xi −

∑
i∈S ci

]
. We emphasize that a solution

to this problem can be quite complex: the choice of the
next item to inspect may depend on the realizations of all
previous items. Nevertheless, there is an elegant optimal
solution to this problem when the distributions {Di}ni=1

are known [1].

Stochastic covering knapsack. There are n items: each
item i has a (deterministic) cost ci and independent ran-
dom reward Ri with known distribution Di. The realized
value of Ri is only known when item i is selected.
Given a target Q, the goal is to select items sequentially
(and adaptively) until the total reward is at least Q. The
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objective is to minimize the expected cost of selected
items. Although the deterministic knapsack problem is
already NP-hard, there is an elegant 3-approximation
algorithm for stochastic covering knapsack [12] with
known distributions.

In each of the above problems, what if the underlying
probabilities/distributions are unknown? Is it still possi-
ble to obtain good performance guarantees? In order to
address this question formally, we utilize the framework
of online learning. Here, the algorithm interacts with
an unknown-but-fixed input distribution D over multiple
time periods.1 In each period t = 1, · · ·T , the online
algorithm comes up with a solution/policy σt to the
stochastic problem and receives some feedback based on
the performance of σt on the (unknown) distribution D.

The type of feedback received is a crucial component
in this learning-based framework. The simplest setting is
full feedback, where the algorithm receives one sample
from every random variable (r.v.). However, this is
unrealistic for stochastic problems because the policy
σt in period t only observes the r.v.s corresponding
to some subset of the items. For example, in series
testing, σt tests the n components in some order until
the first non-working component is found: if the first
k − 1 components are working and the kth component
is not working then we would only observe the out-
comes/samples of the first k r.v.s (and the remaining
n−k r.v.s are unobserved). In this paper we consider the
more natural setting of semi-bandit feedback, where in
each period t, the algorithm only receives samples from
the r.v.s that the policy σt actually observed.

Our goal is to minimize the expected regret of the
online algorithm, which is the difference between the
total T -period objective of our algorithm and the opti-
mum (which knows the distribution D). Obtaining o(T )
regret dependence with respect to T means that our
online algorithm, which doesn’t know D, asymptotically
approaches the optimum. An additional difficulty arises
from the fact that many problems that we consider are
NP-hard (e.g., knapsack and submodular optimization).
In such cases, we cannot hope to approach the optimum
(via a polynomial algorithm). Here, we use the notion of
α-regret, where the online algorithm approaches the α
approximately optimal value. We ask: can we transform
any offline (approximation) algorithm for a stochastic
problem into an online learning algorithm that has low-
regret with respect to this offline algorithm?

Our main result is an affirmative answer to this
question. We give a general method for transforming any
offline α-approximation algorithm (with known distribu-

1In the single period setting, it is easy to construct examples that
rule out any reasonable performance bound for these problems with
unknown distributions.

tions) to an online learning algorithm with α-regret of
Õ(
√
T ). It is well-known that the

√
T regret bound can-

not be improved, even in very special cases. Our method
works for a wide range of stochastic problems that
satisfy a natural monotonicity condition. This includes
several fundamental problems in stochastic optimization
such as prophet inequality, Pandora’s box, stochastic
knapsack, stochastic matching, stochastic submodular
maximization and stochastic submodular cover.

A. Problem Setup

We first set-up notation for stochastic optimization
problems in the known distribution setting.

a) Stochastic Optimization: Consider a stochastic
problem P where the input consists of n items with
an independent real-valued random variable (r.v.) Xi

associated with each item i ∈ [n] = {1, 2, · · ·n}. There
is a known probability distribution Di for Xi; that is,
Xi ∼ Di. We assume that each Di has finite support, and
denote the set of outcomes of all r.v.s by O. (We relax
the discrete-distribution assumption in §II-B.) In order
to determine the realization of any r.v. Xi, we need to
probe item i.

A solution or policy for P is given by a decision tree
σ, where each node is labeled by an item to probe next,
and the branches out of a node correspond to the random
realization of the probed item. Each node in decision
tree σ also corresponds to the current “state” of the
policy, which is given by the sequence of previously-
probed items along with their realizations; we will refer
to nodes and states of the policy interchangeably. The
root node of σ is the starting state of the policy, at which
point no item has been probed. Leaf nodes in σ are
also called terminal nodes/states. The policy execution
under any realization x = (x1, . . . , xn) corresponds to
a root-leaf path σx in the decision tree σ, where at
any node labeled by item i, path σx follows the branch
corresponding to outcome xi. Note that running policy
σ under x corresponds to traversing path σx. We also
define S(σ,x) as the sequence of items probed by policy
σ under realization x.

The cost of policy σ depends on the realization x, and
we use f(σ,x) ≥ 0 to denote the cost of policy σ under
realization x. Specifically, f(σ,x) depends only on the
sequence of probed items S(σ,x) and their realizations.
We assume that cost is accrued only at terminal/leaf
nodes: this is without loss of generality as every policy
execution ends at a leaf node.2 We make no assumptions
about the cost function f beyond boundedness: it does
not have to be linear, submodular etc. Our goal is

2In some problems, it is natural to accrue cost at each state that the
policy goes through. We can easily convert such a cost structure to our
setting by placing all the cost accrued from a policy execution at its
terminal state.
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to find a policy σ that minimizes the expected cost
f(σ) := Ex[f(σ,x)]. We also allow for constraints in
problem P , which must be satisfied under all realizations
(i.e., with probability 1). Let C denote the set of feasible
policies (that satisfy the constraints in P). Sometimes,
we work with randomized policies, where each node in
the decision tree corresponds to a probability distribution
over items (rather than a single item). Randomized
policies are not any stronger than deterministic ones:
there is always an optimal deterministic policy for this
class of problems. Succinctly, the stochastic problem
P is as follows (maximization problems are defined
similarly).

minimize f(σ) = Ex [f(σ,x)] subject to σ ∈ C.

Observe that the number of nodes in policy σ may be
exponential. So, we are interested in “efficient” policies
that can be implemented in polynomial-time for any
realization x. For some stochastic problems like series
systems and Pandora’s box, efficient optimal policies are
known. On the other hand, there are many problems
like stochastic knapsack, matching and set-cover, where
optimal policies may not be efficient: in these cases, we
will focus on (efficient) approximately optimal policies.
We use σ∗ to denote an optimal policy, and denote its
expected cost by OPT. An α-approximation algorithm for
a stochastic problem P takes as input the probability dis-
tributions {Di}ni=1 (along with any objective/constraint
parameters) and returns a policy that has expected cost at
most α·OPT. We use the convention that for minimization
problems, the approximation ratio α ≥ 1, whereas for
maximization problems α ≤ 1.

b) The Online Semi-Bandit Setting: In this set-
ting, the distributions D1, . . . ,Dn are unknown (other
parameters such as the cost function and constraints
are known). Moreover, we have to repeatedly solve the
stochastic problem P over T time periods. We assume
throughout the paper that T ≥ n. The distributions
{Di}ni=1 remain the same across all T periods. The goal
is to simultaneously learn the distributions and converge
to a good policy over time. At time t ≤ T , we use all
prior observations to present policy σt. The policies σt

may be different for each time t ∈ [T ]. We measure our
learning algorithm in terms of expected total regret. For
minimization problems, we define it as follows.

R(T ) = Ex1,...,xT

[
T∑

t=1

(
f(σt,xt)− f(σ∗,xt)

)]

= Ex1,...,xT

[
T∑

t=1

f(σt,xt)

]
− T · OPT. (1)

Here xt represents the realization at time t. For
conciseness, we use ht−1 to denote the history until time

t; that is, ht−1 = (x1, . . . ,xt−1). Note that policy σt is
itself random because it depends on prior observations,
i.e., on the history ht−1. The algorithm’s cost at time t is
f(σt,xt), which depends additionally on the realizations
xt at time t. We can also re-write (1) as follows.

R(T ) =
T∑

t=1

Eht−1

[
Ext

[
f(σt,xt)− f(σ∗,xt)

]]
=

T∑
t=1

Eht−1Ext

[
f(σt,xt)

]
− T · OPT. (2)

Note that many of the stochastic optimization prob-
lems are known to be NP-hard, even when the distribu-
tions are known. Thus, we do not expect to learn policies
that approach OPT. To get around this issue, we define
the notion of α-regret as follows.

α-R(T ) =
T∑

t=1

Eht−1

[
Ext

[
f(σt,xt)

]]
−α·T ·OPT. (3)

An important component in this learning setup is
what type of feedback is received by the algorithm in
each round. In the full feedback setting, the algorithm
gets to know the entire sample xt = (xt

1, . . . , x
t
n),

which could be used to update beliefs regarding all the
distributions D1, . . . ,Dn. However, as mentioned earlier,
this is unrealistic in our setting because in each period,
the policy only observes a subset of r.v.s. So, we consider
semi-bandit feedback, where the algorithm only observes
the realizations of items that it probes. That is, at time t,
the algorithm only observes (Xt

i : i ∈ S(σt,xt)) where
S(σt,xt) is the set of items probed by policy σt before
it terminates.

B. Results and Techniques

For any stochastic problem instance I and distribution
D = {Di}ni=1, let OPTI(D) denote the optimal cost
of instance I with r.v.s having distribution D. We first
define a monotonicity condition for a stochastic problem
P which will be used in our main result.

Definition I.1 (Monotonicity). A stochastic problem P is
up-monotone if for any instance I and probability distri-
butions D and E where E stochastically dominates D,
we have OPTI(E) ≤ OPTI(D). Similarly, the problem
is said to be down-monotone if for any instance I and
probability distributions D and E where E stochastically
dominates D, we have OPTI(E) ≥ OPTI(D).

Theorem I.1. Suppose that a stochastic problem P
has an α-approximation algorithm, and it is either
up-monotone or down-monotone. Then, there is a
polynomial time semi-bandit learning algorithm for
P (with unknown distributions) that has α-regret
O(nkfmax

√
T log(kT )). Here, n is the number of items,
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k is the maximum support size of any distribution, fmax

is the maximal value of the objective function f (over
all realizations) and T is the number of time periods.

We note that the dependence on the support-size k
can be replaced by the maximum number of “thresh-
olds” used at any node of the stochastic policy (which
corresponds to the number of branches out of any node).
For most of our applications, we have approximate
policies with O(1) thresholds: so the regret bound is just
O(nfmax

√
T log T ). See Theorem II.4 for the formal

statement, which also handles continuous r.v.s.
Consequently, we get polynomial time online learn-

ing algorithms for a number of stochastic optimization
problems. We list a few of them next, highlighting the
dependence on n and T (see §III for further details and
the full version for more applications).
• Pandora’s box: 1-regret O

(
n
√
T log T

)
• Prophet inequality: 1-regret O

(
n
√
T log T

)
• Matroid Prophet inequality [17]: 1

2 -regret
O
(
n
√
T log T

)
• Stochastic (maximization) knapsack [13], [18]: 1

2 -
regret O

(
n
√
T log T

)
• Stochastic covering knapsack [12]: 3-regret

O
(
n
√
T log T

)
The first two results improve over the regret bounds of

O
(
n3
√
T log(T )

)
and O

(
n4.5
√
T log(T )

)
for prophet

inequality and Pandora’s box from [19]. To the best of
our knowledge, our results for all other applications are
the first α-regret bounds of

√
T . We note that the result

of [19] for Pandora’s box and Prophet inequality holds
under the more restrictive bandit feedback model (only
the objective value is observed). However, it is limited
to these two problems, whereas our approach for semi-
bandit feedback provides

√
T regret for a much broader

class of problems. Prior work (based on sample com-
plexity) only implies T 2/3 regret for these problems [20]
(see §A for details).

The regret bound in Theorem I.1 is nearly optimal in
the following sense. There is an Ω(

√
T ) lower bound on

the regret even in the much simpler setting of multi-
armed-bandits [21]. Furthermore, if we move beyond
our setting of independent-identically-distributed (i.i.d.)
distributions across periods, to the “adversarial” setting
with different distributions for each period, then there
is a linear Ω(T ) lower-bound on regret for prophet
inequality [19], which shows that sublinear regret is not
possible for our class of problems in the adversarial case.

Technical Overview. At a high-level, our algorithm
is based on the principle of optimism in the face of
uncertainty which is well-studied in the multi-armed
bandits literature: see e.g., the UCB algorithm [22].
Given observations from previous rounds, our algo-
rithm first constructs a modified empirical distribution

E = {Ei}ni=1 which stochastically dominates the true
distribution D. It then executes policy σ given by the
offline (approximation) algorithm under distribution E.

We now discuss how to bound the regret of the policy
σ under the true distribution D. To keep things simple
here, we assume that α = 1. We also assume that
the problem is up-monotone and has a minimization
objective (our analysis for down-monotonicity and/or
maximization objective is identical). The difficulty in
our setting is that the decision to probe/observe an
item is random: it depends on the choice of policy σ
and the underlying distribution D of items. In contrast,
the classical multi-armed bandits setting allows direct
control to the algorithm on which item to probe: so
the UCB algorithm can control the rate of exploration
of individual items and bound the regret of individual
items in terms of this rate. How do we bound the rate of
exploration of different items when we do not have direct
control on which items are probed? Moreover, how do
we bound the regret contribution of individual items in
terms of their rate of exploration?

The key insight in our analysis is the following “sta-
bility” bound, which answers the above questions. Given
product distributions D and E, where E stochastically
dominates D, we show3

f(σ|D)− f(σ∗|D) ≤ f(σ|D)− f(σ|E)

≤ fmax

n∑
i=1

Qi(σ) · ϵi,

where σ∗ (resp. σ) is an optimal policy under D (resp.
E), Qi(σ) is the probability that policy σ probes item i,
and ϵi is the total-variation distance between Ei and Di.
The first inequality above follows from the monotone
property. The second inequality requires analyzing the
decision tree of σ carefully and is a key technical
contribution of this paper (see §II-A).

The above stability bound can be interpreted as fol-
lows: the contribution of item i in the total regret is the
probability that it is probed times the total variation error
in estimating Di. The dependence on the probability of
probing is crucial here. This allows us to analyze the
regret using a charging argument where we charge item
i for regret in a pay-per-use manner. The paths in the
execution tree of the online algorithm that probe i will
pay for the error in estimation of Di, but then ϵi will also
reduce along these paths. Moreover, we can bound the
overall regret irrespective of the policy σ that is used
at periods. The error ϵi ≈

√
1/m when i has been

probed m times in the past, which gives a total regret
contribution of

∑T
m=1

√
1/m = O(

√
T ) for any item.

Finally, we lose an extra logarithmic factor to ensure that

3For policy σ and distribution D, f(σ|D) is the expected objective
of σ when the r.v.s have distribution D.
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our empirical distribution E stochastically dominates D
with high probability.

Let us contrast our algorithm (and stability bound)
with another algorithm that balances the explore-
exploit trade-off in a different manner: the explore-then-
commit algorithm. This algorithm will explore each item
O(T 2/3) times (say, by probing it first in policy σ)
and then commit to a policy based on these O(nT 2/3)
observations. Using the sample complexity bound of [20]
it is easy to show that this algorithm achieves O(T 2/3)
regret; see §A for details. However, each item is explored
an equal number of times regardless of its cost and we
might end up exploring some high-cost spurious items
too many times. Our stability bound highlights a crucial
difference between our algorithm and this algorithm:
we only explore items that are needed in the policy.
If there are items which are rarely used in the policy,
they will only be explored infrequently and will not
contribute to the regret as well. This also explains why
our approach achieves a near-optimal

√
T log T regret

bound compared to the T 2/3 bound of the sampling-
based approach.

C. Related Work

As mentioned earlier, stochastic optimization prob-
lems (under known distributions) have been studied
extensively. Several papers have extended the classic
prophet inequality [3] and Pandora’s box [1] results
to more complex settings, e.g., [2], [4], [5], [23]–
[25]. Moreover, good approximation bounds have been
achieved for stochastic versions of various combinatorial
optimization problems [7]–[9], [11]–[15], [18], [26],
[27].

There has also been extensive work in online learn-
ing, where one considers unknown distributions (in the
stochastic learning setting), see e.g. books [28]–[30].
All our stochastic problems can be modeled as Markov
decision processes (MDPs) with unknown transition
probabilities, and there have been some works on achiev-
ing sublinear regret in this setting [31]–[33]. However,
the regret bounds from these works have a polynomial
dependence on the “state space” of the MDP, which in
our setting, is exponential in n (the number of r.v.s). It
is also known that any online algorithm for arbitrarty
MDPs incurs an Ω(

√
S · T ) regret, where S = exp(n)

is the size of the state space [34], [35]. In contrast, we
obtain regret bounds that depend polynomially on n.

Although both stochastic optimization and online
learning have been subjects of comprehensive research,
there has been relatively limited work at the intersection
of these two domains. For instance, [36] studied a
special case of adaptive submodular maximization [7]
in the semi-bandit setting. Some recent papers [37],
[38] considered online learning for Pandora’s box in

a correlated setting, which is much harder than the
independent case: one needs to resort to weaker “par-
tially adaptive” benchmarks here. [39] also considered
a different “multi armed” Pandora’s box problem, and
obtained a 1

2 -competitive ratio relative to a suitable
benchmark. Drawing closer to our work is [19], which
explores Pandora’s box and prophet inequality within the
online learning framework with bandit feedback, which
is even more restrictive than our semi-bandit feedback. In
bandit feedback, the algorithm only observes the realized
objective value of its policy σ. [19] gave algorithms with
1-regret O

(
n3
√
T log(T )

)
and O

(
n4.5
√
T log(T )

)
for

Pandora’s box and prophet inequality respectively. While
our feedback model is more relaxed than [19], we think
that semi-bandit feedback already captures the issue of
partial observations in policies. Moreover, under semi-
bandit feedback we obtain a general framework that
applies to several stochastic optimization problems.

There have also been several works studying sample
complexity bounds for stochastic optimization problems.
The goal in these works is to understand how much
data is necessary and sufficient to guarantee near-optimal
algorithms. Such results have been obtained for single-
parameter revenue maximization [40], [41] and prophet
inequality [42]. Recent work [20] gives optimal sample
complexity bounds for stochastic optimization problems
that exhibit strong monotonicity, which is a slightly
stronger condition than our monotonicity definition.
These results imply

√
T regret under the full-feedback

model, but only T 2/3 regret under the semi-bandit feed-
back model considered in this paper (see Appendix A).

Another relevant line of work is on combinatorial
multi-armed bandits (CMAB), which also involves semi-
bandit feedback [43]–[46]. Here, there are n base arms
that produce stochastic outcomes drawn from an un-
known fixed distribution. There is also a collection
F ⊆ 2[n] of allowed “super arms”. In each period t,
the algorithm selects a super-arm St ∈ F and observes
the realizations of all arms i ∈ St. The result closest
to ours is by [46], which considers a class of non-
linear objectives satisfying a “monotone” condition and
obtains a UCB-type algorithm achieving α-regret of
O(n
√
T log T ) where α is the approximation ratio for

the offline problem. Our setting is much more general
because we need to select policies (not static subsets).
When we select a policy, we do not know which arms
will actually be observed. So, we only have an indirect
control on what arms will be observed in each round.
While our algorithm can be seen as a natural extension
of [46], our analysis requires new ideas: in particular in
proving the stability Lemma II.3 and its use in bounding
overall regret.

There are also some online-to-offline reductions that
work in the adversarial setting (which is harder than
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our stochastic setting). In particular, [47] considered
combinatorial optimization with linear objective func-
tions, and obtained 1-regret of O(n

√
T ) under full-

feedback (assuming an exact offline algorithm). Then,
[48] extended this result to linear problems with only
an α-approximation algorithm, and obtained α-regret
of O(n

√
T ) under full-feedback and O(nT 2/3) under

bandit-feedback. Recent work of [49], [50] considers
certain combinatorial optimization problems with non-
linear objectives, assuming an α-approximation via a
greedy-type algorithm. For such problems, [49] obtained√
T regret under full-feedback and T 2/3 regret under

bandit-feedback. While these results work in the harder
adversarial online setting, our result handles a much
wider class of problems: we learn policies (rather than
just subsets) and handle arbitrary objectives. As noted
before, there is an Ω(T ) regret lower-bound for some of
our applications in the adversarial setting.

D. Preliminaries

We present some preliminaries that are required in our
algorithm and proofs.

Definition I.2 (Stochastic Dominance). A probability
distribution E (over R) stochastically dominates another
distribution D if, for all a ∈ R, we have: PX←E(X ≥
a) ≥ PY←D(Y ≥ a).

We use D ⪯SD E to denote that distribution E
stochastically dominates D. For product distributions
D = {Di}ni=1 and E = {Ei}ni=1, we say that E
stochastically dominates D if Ei stochastically dominates
Di for all i ∈ [n]; we also denote this by D ⪯SD E.

Let TV(D, E) denote the total variation distance be-
tween discrete distributions D and E . The total variation
distance is half of the ℓ1 distance between the two
distributions, i.e., TV(D, E) = 1

2 · ||D − E||1. The fol-
lowing standard result (see, for example, Lemma B.8 in
[51]) bounds the total variation distance between product
distributions.

Lemma I.2. Given product distributions D = {Di}ni=1

and E = {Ei}ni=1 over n r.v.s, we have

TV(D,E) ≤
∑
i∈[n]

TV(Di, Ei).

Consider independent r.v.s X1, . . . ,Xn where Ti de-
notes the domain of Xi. Let h be a function from
T = T1×· · ·×Tn to [0, U ]; that is, h is a function on the
outcomes of the random variables that is bounded by U .
Thus, for any x ∈ T, h(x) denotes the value of h on the
outcome x = (x1, . . . xn). Given a product distribution
P over the r.v.s, define h(P) := Ex∼P [h(x)]. The
following useful fact bounds the difference in function
value at two different distributions.

Lemma I.3. Given discrete distributions D and E over
n random variables X1, . . . ,Xn, and a [0, U ] bounded
function h on the outcomes of these r.v.s (as above), we
have

|h(D)− h(E)| ≤ U · TV(D,E).

II. THE ONLINE FRAMEWORK

In this section we present our main algorithm. We
will assume access to an α-approximation algorithm
ALG for the stochastic problem P . For concreteness, we
assume that P is a minimization problem. Thus, given
an instance of P (with a probability distribution for each
item), ALG finds a policy of expected cost at most α times
the optimum. We also assume that P is up-monotone; see
Definition I.1. The online framework for down-monotone
problems and maximization problems is almost identical:
the changes are explained in the full version [52].

Our online algorithm is based on the principle of opti-
mism in the face of uncertainty, and is very simple to de-
scribe. At each time step t, we construct an “optimistic”
empirical distribution Et that stochastically dominates
the true (unknown) distribution D. Then, we run the
offline algorithm ALG on this empirical distribution Et

to obtain policy σt, which is the online policy at time t.
Given i.i.d. samples of any random variable, we show

that it is possible to compute a stochastically dominating
empirical distribution that has a small total-variation
distance from the true distribution.

Theorem II.1. There is an algorithm EmpStocDom that,
given m i.i.d. samples from a distribution D with finite
support-size k, and parameter δ > 0, computes a
distribution E that satisfies the following properties with
probability at least 1− δ:
• E stochastically dominates D, and
• the total-variation distance TV(E ,D) <

k
√

log(2k/δ)
2m .

The algorithm EmpStocDom and proof of this result
are deferred to the full version of the paper [52]. The
main idea is to “shift” some probability mass in the
usual empirical distribution from low to high values.
Algorithm 1 describes our online framework, which uses
algorithm EmpStocDom.

Algorithm 1 ONLINE-TO-OFFLINE framework

1: for t = 1, . . . T do
2: for each item i ∈ [n], obtain distribution Eti by

running EmpStocDom with δ = 2
(nT )3 on all samples

of r.v. Xi observed so far.
3: obtain policy σt by running the offline algorithm

ALG on distribution Et = {Eti }
n
i=1.

4: run policy σt on realization xt and observe the
probed items S(σt,xt).
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We now analyze Algorithm 1, and prove Theorem I.1.
The basic idea in the analysis is that as we get more
and more samples with increasing t, the total variation
distance between Et and D reduces, and the policy
ALG(Et) will become closer and closer to the optimal
policy.

We will assume, without loss of generality, that we
have observed at least one sample from each random
variable. This can be ensured by adding n special time
periods and choosing for each time i ∈ [n], a policy
σi that first probes item i; note that this contributes
at most n · fmax to the total regret. Let N t

j be the
number of times r.v. Xj has been sampled before time
t. By our assumption, N1

j = 1 for all j ∈ [n].
Note that N t

j is a random variable and depends on
the history ht−1 =

(
x1, · · ·xt−1). When needed, we

will use N t
j (h

t−1) to make this dependence explicit.
The following result follows directly from Theorem II.1
(proof deferred to the full version).

Lemma II.2. With probability at least 1− 1
nT , we have

Etj stochastically dominates Dj and

TV
(
Etj ,Dj

)
< k ·

√
3 log(knT )

2N t
j

,

for all j ∈ [n] and t ∈ [T ].

Let G denote the “good” event corresponding to the
condition in Lemma II.2 holding for all j and t. First,
we complete the proof assuming that G holds (this
assumption is removed later).

We now state a crucial “stability” property for the
stochastic problem P .

Lemma II.3 (Stability lemma). Consider a stochastic
problem that is up-monotone. Suppose that E = {Ei}ni=1

and D = {Di}ni=1 are product distributions such that
D ⪯SD E and TV(Ei,Di) ≤ ϵi for each i ∈ [n]. If σ
is the policy returned by ALG(E) and σ∗ is an optimal
policy under D, then:

f(σ)− α · f(σ∗) = Ex∼D [f(σ,x)− α · f(σ∗,x)]

≤ fmax

n∑
i=1

Qi(σ) · ϵi , (4)

where Qi(σ) denotes the probability that item i is
probed by policy σ under distribution D.

This lemma relies on the monotonicity assumption,
and is proved in §II-A. We now complete the proof of
Theorem I.1 using Lemma II.3.

Bounding the regret as sum over time t. To bound
the overall regret, it suffices to bound the regret at each
time t ∈ [T ], defined as:

Rt(ht−1) := Ext

[
f(σt,xt)− α · f(σ∗,xt)

]

= f(σt)− α · f(σ∗),

where ht−1 is the history at time t, policy σt = ALG(Et)
and policy σ∗ is the optimal policy for the stochastic
problem instance (under the true distribution D), and
policy σt is the policy used by our online algorithm
at time t. By (3), the overall regret is α-R(T ) =∑T

t=1 Eht−1

[
Rt(ht−1)

]
. For each time t ∈ [T ] and

history ht−1, we apply Lemma II.3 with distributions
Et(ht−1) and D, and parameters ϵti(h

t−1) = k ·√
3 log(knT )
2Nt

i (h
t−1)

for all i ∈ [n]. Note that TV(E ti ,Di) ≤
ϵti(h

t−1) and Di ⪯SD Ei for each i ∈ [n] because we
assumed the good event G. Hence, Lemma II.3 implies
that:

Rt(ht−1) ≤ fmax

n∑
i=1

Qi(σ
t) · ϵti(ht−1). (5)

We note that Rt, σt, N t and ϵt all depend on the history
ht−1; to keep notation simple, we drop the explicit
dependence on ht−1. Using the regret definition and (5),

α-R(T ) ≤ fmax

T∑
t=1

Eht−1

[
n∑

i=1

Qi(σ
t) · ϵti

]

= kfmax

√
1.5 log(knT ) ·

T∑
t=1

Eht−1

[
n∑

i=1

Qi(σ
t)√

N t
i

]
.

It now suffices to show
T∑

t=1

n∑
i=1

Eht−1

[
Qi(σ

t)√
N t

i

]
≤ 2n

√
T . (6)

Indeed, combining (6) with the above bound on regret,
we get α-R(T ) ≤ knfmax

√
6T log(knT ), which com-

pletes the proof of Theorem I.1 (assuming event G).
Proving (6) as sum over decision paths. We refer to
the full history hT =

(
x1, · · · ,xT

)
of the algorithm as

its decision path. The main idea in this proof is to view
the left-hand-side in (6) as a sum over decision paths
rather than a sum over time. To this end, define, for all
i ∈ [n]:

Zi(h
T ) :=

T∑
t=1

I
[
item i probed by σt(ht−1)

]√
N t

i (h
t−1)

. (7)

Above, I is the indicator function. Also, let Z(hT ) :=∑n
i=1 Zi(h

T ). By linearity of expectation,

EhT

[
Zi(h

T )
]
=

T∑
t=1

EhT

[
I
[
i probed by σt(ht−1)

]√
N t

i (h
t−1)

]

=
T∑

t=1

Eht−1,xt

[
I
[
i probed by σt(ht−1)

]√
N t

i (h
t−1)

]

=
T∑

t=1

Eht−1

[
1√
N t

i

·Pxt [i probed by σt]

]
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=
T∑

t=1

Eht−1

[
Qi(σ

t)√
N t

i

]
, (8)

where the second equality uses the fact that event {i
probed by σt} only depends on ht = (ht−1,xt), the
third equality uses the fact that N t

i only depends on ht−1

and that xt is independent of ht−1, and the last equality
is by the definition of Qi(σ

t) and the fact that xt ∼ D.
Using (8) and adding over i ∈ [n], we get

T∑
t=1

n∑
i=1

Eht−1

[
Qi(σ

t)√
N t

i

]
=

n∑
i=1

EhT

[
Zi(h

T )
]

= EhT [Z(hT )].

Therefore, proving (6) is equivalent to:

EhT [Z(hT )] =
n∑

i=1

EhT [Zi(h
T )] ≤ 2n

√
T (9)

We now prove (9) by showing that EhT [Zi(h
T )] ≤ 2

√
T

for each i ∈ [n]. Indeed,

Zi(h
T ) =

T∑
t=1

I
[
i probed by σt(ht−1)

]√
N t

i (h
t−1)

≤
T∑

t=1

1√
t
≤ 2
√
T .

The first inequality uses the fact that N t
i (h

t−1) equals
the number of probes of item i in the first t − 1 time
steps: so N t+1

i = N t
i + 1 whenever item i is probed by

σt(ht−1). This completes the proof of (9) and hence (6).
Removing the “good” event assumption. In the anal-
ysis above, we assumed that event G holds in (5). We
now modify (5) as follows (which holds irrespective of
G).

Rt(ht−1) ≤ kfmax

n∑
i=1

Qi(σ
t) · ϵti(ht−1) + fmax · I[G].

We used the fact that the maximum 1-step regret is fmax.
Combined with the previous analysis (which handles the
first term), we have

α-R(T ) =
T∑

t=1

E[Rt(ht−1)]

≤ knfmax

√
6T log(knT ) + Tfmax ·P[G]

≤ knfmax

√
6T log(knT ) + fmax.

The last inequality uses Lemma II.2. This completes
the proof of Theorem I.1.

A. Proving the Stability Lemma

We now prove Lemma II.3. Recall that there are two
product distributions E = {Ei}ni=1 and D = {Di}ni=1

with D ⪯SD E and TV(Ei,Di) ≤ ϵi for each i ∈ [n].

Let σ = ALG(E) be the policy returned by the (offline)
α-approximation algorithm, and σ∗ be an optimal policy
under distribution D. We want to upper bound f(σ) −
α · f(σ∗). Let C denote the set of all feasible policies to
the given instance. Then,

OPT(D) = min
τ∈C

Ex∼D[f(τ,x)], and

OPT(E) = min
τ∈C

Ex∼E[f(τ,x)].

We use f(τ |U) := Ex∼U[f(τ,x)] to denote the ex-
pected cost of any policy τ when the r.v.s have product
distribution U. Note that f(τ) = f(τ |D) where D is
the true distribution. We now have:

f(σ)− α · f(σ∗) = f(σ|D)− α · f(σ∗|D)

= f(σ|D)− f(σ|E) + f(σ|E)− α · f(σ∗|D)

≤ f(σ|D)− f(σ|E) + α · (OPT(E)− f(σ∗|D)) (10)
= f(σ|D)− f(σ|E) + α · (OPT(E)− OPT(D))

≤ f(σ|D)− f(σ|E). (11)

Inequality (10) uses the fact that σ is an α-approximate
policy to the instance with distribution E. In (11), the
equality uses the fact that σ∗ is an optimal policy for the
instance with distribution D, and the final inequality is
by up-monotonicity (Definition I.1) and D ⪯SD E.

a) Equivalent view of adaptive policy σ: Let N
denote the number of nodes in decision tree σ (this may
be exponential, but it is only used in the analysis). Note
that there is a partial ordering of the nodes of σ based on
ancestor-descendent relationships in the tree. We index
the nodes in σ from 1 to N according to this partial
order, so that u < v for any node v that is a child
of node u. Recall that each node v ∈ σ is labeled by
one of the n items. Note that the same item i ∈ [n]
may label multiple nodes of σ; however, in any policy
execution (i.e., root-leaf path in σ) we will encounter
at most one node labeled by item i. Hence, we can
equivalently view policy σ as having an item Xv with
independent distribution Dv at each node v ∈ σ. (This
involves making several independent copies of each item,
which does not affect the policy execution as at most one
copy of each item is seen on any root-leaf path.)

b) Bounding |f(σ|D) − f(σ|E)|: Based on the
above view of σ, we use Dv (resp. Ev) to denote the
independent distribution at each node v ∈ σ under
the joint distribution D (resp. E). Using the above
indexing of the nodes in σ, we define the following
hybrid product distributions: for each v ∈ [N ] let
Hv = D1 × · · · × Dv × Ev+1 × · · · × EN . Observe that
f(σ | HN ) = f(σ | D) and f(σ | H0) = f(σ | E).
Using a telescoping sum, we can write:

f(σ | D)− f(σ | E) =
N∑

v=1

f(σ | Hv)− f(σ | Hv−1).

1267

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 29,2025 at 16:57:59 UTC from IEEE Xplore.  Restrictions apply. 



Crucially, we now show that for every node v ∈ [N ],

| f(σ | Hv)−f(σ | Hv−1) | ≤ fmax ·Qv(σ) ·ϵv, (12)

where Qv(σ) is the probability that σ reaches node v
under distribution D and ϵv = TV(Dv, Ev). We first
complete the proof of the lemma using (12). Note that
for any node v labeled by item i ∈ [n], we have
ϵv = TV(Di, Ei) ≤ ϵi. We get

|f(σ | D)− f(σ | E)|

≤
N∑

v=1

|f(σ | Hv)− f(σ | Hv−1)|

≤ fmax ·
N∑

v=1

Qv(σ) · ϵv

= fmax ·
n∑

i=1

ϵi
∑

v∈[N ]: labeled i

Qv(σ)

= fmax ·
n∑

i=1

ϵi ·Qi(σ). (13)

The last equality uses the fact that the probability Qi(σ)
of probing i equals the probability of reaching some node
v ∈ [N ] labeled i.

Towards proving (12), we introduce the following
notation. Let Qv(σ | U) denote the probability that σ
reaches node v under any distribution U. Note that the
event “σ reaches node v” only depends on the random
realizations at the ancestor nodes of v, which are all
contained in {u ∈ [N ] : u < v} (by our indexing of
nodes). Hence,

Qv(σ | Hv) = Qv(σ | Hv−1)

= Qv(σ | D) = Qv(σ), (14)

because each node {u ∈ [N ] : u < v} has the same
distribution (Du) under D, Hv and Hv−1.

Below, let Rv denote the event that σ reaches node
v. Using the fact that each node w ∈ [N ] \ {v} has the
same distribution (either Dw or Ew) under both Hv and
Hv−1, we get:

Ex∼Hv [f(σ,x) | ¬Rv]−Ex∼Hv−1 [f(σ,x) | ¬Rv] = 0.
(15)

We now bound the difference in expectation con-
ditional on event Rv . Let ρ denote the subtree of σ
rooted at v (including v itself). We also use ρ to denote
the set of nodes in this subtree. Let L denote all leaf
nodes in subtree ρ, and for each ℓ ∈ L let fℓ be the
function value accrued at leaf node ℓ. For any realization
{xw : w ∈ ρ}, we use ℓ({xw : w ∈ ρ}) to denote the
(unique) leaf that is reached when subtree ρ is executed
under this realization: this corresponds to following the
branch labeled xw out of each node w ∈ ρ (starting

from node v). We now define function h that maps any
realization {xw : w ∈ ρ} to the function value fk at
the leaf k = ℓ({xw : w ∈ ρ}). By our assumption
on the objective function of the stochastic problem, h
is bounded between 0 and fmax. We now define two
product distributions on nodes of ρ:

V1 = ⟨Dv, {Ew : w ∈ ρ \ v}⟩ and
V2 = ⟨Ev, {Ew : w ∈ ρ \ v}⟩.

Note that

h(V1) = Ex∼Hv [f(σ,x) | Rv] and
h(V2) = Ex∼Hv−1 [f(σ,x) | Rv]

Applying Lemma I.3 to function h and product distri-
butions V1 and V2,∣∣∣∣Ex∼Hv [f(σ,x) | Rv]− Ex∼Hv−1 [f(σ,x) | Rv]

∣∣∣∣
≤ fmax · TV(V1,V2) ≤ fmax · TV(Dv, Ev). (16)

The last inequality is by Lemma I.2 and the fact that V1

and V2 only differ at node v.
We now combine the conditional expectations from

(15) and (16). Using (14), the probability of event Rv

under both distributions Hv−1 and Hv is the same,
which equals Qv(σ). So,

| f(σ | Hv)− f(σ | Hv−1) |

=

∣∣∣∣Ex∼Hv [f(σ,x)]− Ex∼Hv−1 [f(σ,x)]

∣∣∣∣
= Qv(σ) ·

∣∣∣∣EHv [f(σ,x) | Rv]− EHv−1 [f(σ,x) | Rv]

∣∣∣∣
≤ Qv(σ) · fmax · TV(Dv, Ev) = fmax ·Qv(σ) · ϵv.

This completes the proof of (12) and Lemma II.3.
The algorithmic framework described so far assumed

that the stochastic problem has a minimization objective
and is up-monotone. The changes required to handle
down-monotone problems and problems with a maxi-
mization objective are described in the full version.

B. Framework for Continuous Distributions

The algorithmic framework described above assumed
that the random variables are discrete. Here, we show
how to handle stochastic problems with arbitrary (con-
tinuous or discrete) r.v.s as long as the policies are based
on a finite number of thresholds. We first define a natural
discretization of continuous r.v.s.

Definition II.1 (Thresholded r.v.). For any [0, U ]-
bounded r.v. X (possibly continuous) and list b =
⟨b1, · · · , bk−1⟩ of increasing threshold values, let θ(X,b)
be the r.v. such that

θ(X,b) = i if bi−1 ≤ X < bi, ∀i ∈ [k],
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where we use b0 := 0 and bk := U . This corresponds to
thresholding X according to b.

Note that θ(X,b) is a discrete random variable with
support size k, even if X is continuous. We will assume
that the α-approximation algorithm ALG for the stochas-
tic problem P always finds a k-threshold policy, defined
as follows. Such a policy is given by a decision tree
σ, where each node is labeled by an item j to probe
and list b = ⟨b1, · · · , bk−1⟩ of thresholds, such that
branch i ∈ {1, · · · k} is followed when Xj ∈ [bi−1, bi).
This limits the number of branches out of each node
to at most k, whereas an arbitrary policy may have an
unbounded number of branches (corresponding to each
possible outcome). We emphasize that the thresholds at
different nodes may be completely different. This restric-
tion allows us to analyze policies involving continuous
r.v.s in the same manner as before (for discrete r.v.s).
In particular, all other definitions related to the policy
(terminal/leaf nodes, policy execution, cost etc) remain
the same as for discrete r.v.s. Moreover, for problems like
Prophet inequality and Pandora’s Box, there are optimal
1-threshold policies: so this restriction is without loss of
generality for these problems.

Our main result is the following (the details are left
to the full version).

Theorem II.4. Suppose that stochastic problem P has
an α-approximation algorithm via k-threshold policies,
and P is either up-monotone or down-monotone. Then,
there is a polynomial-time semi-bandit learning algo-
rithm for P with α-regret O(knfmax

√
T log(knT )).

Here, n is the number of items, fmax is the maximal
value of the objective function and T is the number of
periods.

III. APPLICATIONS

In this section, we show that several stochastic op-
timization problems are covered by our framework,
resulting in

√
T log T regret online learning algorithm

for all these problems. In each of these problems, the
distributions of the random parameters are unknown to
the online algorithm; all other (deterministic) parameters
are known.

a) Series Testing: We start with a simple problem:
there are n components, where each component i is
“working” independently with some known probability
pi. To determine if any component i ∈ [n] is working, we
need to perform a test, which costs ci. All n components
must be working for the system to be functional. The
goal is to test components sequentially to determine
whether/not the system is functional, at the minimum
expected cost. Note that testing stops once a failed com-
ponent is found: so we do not observe all the outcomes
and only have semi-bandit feedback. It is easy to show

that this problem is up-monotone. It is well-known that
the natural greedy policy achieves the optimal cost [16].
So, using Theorem I.1 with k = 2 (all r.v.s are binary),
we obtain a polynomial time online learning algorithm
for series testing having 1-regret O(nC

√
T log T ) where

C =
∑n

i=1 ci is the total cost.
b) Prophet Inequality: The Prophet Inequality [3],

[53] is a fundamental problem in optimal stopping,
which has also been used extensively in algorithmic
game theory. The input consists of n rewards which
arrive in a given fixed sequence, say X1, · · ·Xn. Each
reward Xi is drawn independently from a known dis-
tribution Di. We are interested in online policies, that
upon observing each reward, selects or discards it imme-
diately. The policy can select at most one reward, and it
terminates right after making a selection (without observ-
ing any future reward). Note that we have semi-bandit
feedback because only some of the rewards are observed
in any policy execution. The goal is to maximize the
expected selected reward. The classical results obtain
a 1

2 -approximate policy relative to the “clairvoyant”
optimal value E[maxni=1 Xi]; there are also instances
where no policy can achieve a better approximation
to this benchmark. Here, we will compare to a more
realistic non-clairvoyant benchmark: the optimal policy
which is also constrained to make selection decisions
in the given order (same as an algorithm). It is known
that there is an optimal threshold-based policy: given
thresholds {τi}ni=1, the policy selects i if and only
if Xi > τi. This is a 1-threshold policy, as defined
in §II-B. Moreover, the prophet inequality problem is
strongly monotone (see Lemma 28 in [20]), which
implies that it is down-monotone. Using Theorem II.4,
we get a polynomial time online learning algorithm
for the the prophet inequality problem with unknown
distributions that has 1-regret O(nU

√
T log T ) where

all r.v.s are [0, U ] bounded. This improves upon the
O(n3U

√
T log T ) bound from [19], although the previ-

ous result holds in the stronger bandit-feedback model.
We note that there are other learning-based results [54],
[55] based on limited number of samples, that imply
1
2 -regret algorithms by comparing to the clairvoyant
benchmark. Note that our guarantee and that of [19] are
stronger because they do not incur any multiplicative
approximation factor.

c) Combinatorial Prophet Inequalities: The basic
prophet inequality concept has also been extended to
settings where there is some combinatorial feasibility
constraint on the selected items. Here, we have n items
with reward Xi ∼ Di for each i ∈ [n]. In addition,
there is a downward-closed4 set family F ⊆ 2[n] that
represents a generic feasibility constraint; the selected

4Set family F is downward-closed if, for any S ∈ F we have
S′ ∈ F for every S′ ⊆ S.
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subset must be in F . The n items arrive in a given
fixed sequence. When item i arrives, if S ∪ {i} ̸∈ F
where S is the set of previously selected items then
item i is not considered for selection (and we do not
observe Xi); otherwise, the policy observes the value
of Xi and selects/discards item i. Again, note that we
only have semi-bandit feedback because only a subset
of items is observed by the policy. The performance of
an online policy is compared to the clairvoyant optimum
OPT∗ = E

[
maxS∈F

∑
i∈S Xi

]
. Many specific problems

can be modeled in this manner:
• When F = {S : |S|≤ 1}, we get the classic prophet

inequality, which has a 1
2 approximation.

• When F = {S : |S|≤ k}, there is a 1 − 1√
k+3

approximation [56], [57].
• When F corresponds to independent sets in a

matroid, we obtain the matroid prophet inequality
where again a 1

2 approximation is known [17].
• When F is given by the intersection of p matroids,

a 1
e(p+1) approximation is known [5].

• When F is given by matchings in a graph, a 0.337
approximation is known [58].

The online policies in all these results are 1-threshold
policies (as in §II-B). For the monotone property, note
that we are comparing to the clairvoyant optimum OPT∗

(not the optimal policy). So, it suffices to prove down-
monotonicity for OPT∗, which is immediate by stochastic
dominance. Therefore, using Theorem II.4, we obtain α-
regret O(nU

√
T log T ) for all the above combinatorial

prophet inequalities where α is the best (offline) approxi-
mation ratio; we assume that the r.v.s are [0, U ] bounded.

Some approximate regret bounds can also be ob-
tained from previous work on single-sample prophet
inequalitites [54], [55], [59]. While the regret bounds
via this approach are better (just O(n)), they need to
compare to approximation ratios that are often much
worse than the usual (known distribution) setting. For
example, no constant-factor approximation is known for
single-sample matroid prophet inequality, whereas our
results imply 1

2 -regret of
√
T log T for general matroids,

matching the approximation ratio from [17].
d) Pandora’s Box.: In this problem [1], we are

given distributions D1, . . . ,Dn such that r.v. Xi ∼ Di.
The realization of Xi can be ascertained by paying a
known inspection cost ci. Now, the goal is to find a
policy to (adaptively) inspect a subset S ⊆ [n] of the ran-
dom variables to maximize E

[
maxi∈S Xi −

∑
i∈S ci

]
.

Note that any policy only inspects a subset of items
and we only receive feedback from these items, which
corresponds to semi-bandit feedback. [1] obtained an
optimal policy based on the “reservation value” for each
item and probing items according to this value until the
reward for an item exceeds all remaining reservation
values. The reservation value ri for an item i is such

that E[(Xi−ri)+] = ci. We note that this optimal policy
is 1-threshold, according to the definition in §II-B.

For the online setting, we assume that the r.v.s Xi

are [0, U ] bounded; the distributions may be discrete or
continuous. It was shown in [20] (see Lemma 31 in
that paper) that the Pandora’s box problem is strongly
monotone, which implies that it is down-monotone.
Combined with Theorem II.4, we get a polynomial
time online learning algorithm for the Pandora’s box
problem with unknown distributions that has 1-regret
O(n(C+U)

√
T log T ) where C =

∑
i∈[n] ci is the total

cost. Our regret bound improves upon the O(n4.5(C +
U)
√
T log T ) bound from [19], although the previous

result holds in the stronger bandit-feedback model.
e) Variants of Pandora’s Box.: Our framework also

applies to more general versions of Pandora’s problem
that have been studied in prior work. We mention two
such variants here.

In Pandora’s box with order constraints, in addition
to the n r.v.s, there are precedence constraints that
enforce that any r.v. Xi may be selected only after
all its predecessors have been selected. Although the
original policy [1] does not apply to this extension, [25]
obtained a different optimal policy when the precedence
constraints form a directed tree: this policy is also
a 1-threshold policy. Hence, Theorem II.4 implies an
online learning algorithm for Pandora’s box with tree
order constraints having 1-regret O(n(C+U)

√
T log T ),

where C =
∑

i∈[n] ci is the total cost and U is the bound
on the r.v.s.

In the matroid Pandora’s box problem [2], [24], in
addition to the n r.v.s {Xi}ni=1, there is a matroid M
with groundset [n]. The goal is to inspect a subset
S ⊆ [n] of r.v.s and select a subset B ⊆ S such
that B is independent in matroid M. The objective
is to maximize E

[∑
j∈B Xj −

∑
i∈S ci

]
, the difference

between the total selected value and inspection cost. We
recover the original Pandora’s box problem whenM is a
rank-1 uniform matroid. There is an optimal 1-threshold
policy known for this variant [2]. This policy is also
non-adaptive. So, by Theorem II.4, we obtain an online
learning algorithm for matroid Pandora’s box having 1-
regret O(n(C + U)

√
T log T ), where C =

∑
i∈[n] ci is

the total cost and U is the bound on the r.v.s.
f) Stochastic Knapsack: This is a classic problem

in stochastic optimization, which was introduced in [13]
and has been studied extensively [18], [60], [61]. There
are n items with deterministic rewards {ri}ni=1 and
random costs {Ci ∼ Di}ni=1. The realized cost Ci of
item i is only known after selecting it. Given a knapsack
budget B, a policy selects items sequentially until the
total cost exceeds B. The objective is to maximize the
expected total reward from items that fit in the knapsack.
(If there is an item that overflows the budget then it does
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not contribute to the objective.) Note that only some
subset of items is selected by a policy, and we only
observe those costs as feedback. In Lemma III.1 below,
we show that this problem is down-monotone (assuming
that the costs are discrete r.v.s).

There is a non-adaptive 1
4 -approximation algorithm

for stochastic knapsack [13], which probes items in a
fixed sequence until the budget is exhausted; so it is a 1-
threshold policy. Theorem II.4 then implies a polynomial
time online learning algorithm for stochastic knapsack
having 1

4 -regret of O(nR
√
T log T ) where R =

∑n
i=1 ri

is the total reward. There is also a better adaptive
algorithm for stochastic knapsack, which is a ( 12 − ϵ)
approximation (for any constant ϵ > 0) [18]. Theorem I.1
then implies an online learning algorithm with ( 12 − ϵ)-
regret of O(nkR

√
T log(kT )) where k is the maximum

support size.
Our results also apply to the more general stochastic

orienteering problem, where items are located at vertices
in a metric space and we want to find a path with
budget B on the total distance (from the edges in the
path) plus cost (of the visited items). There is a non-
adaptive Ω( 1

log logB ) approximation algorithm for this
problem [26], which is a 1-threshold policy. Here, we
obtain Ω( 1

log logB )-regret of O(nR
√
T log T ).

Lemma III.1. The stochastic (maximum) knapsack
problem is up-monotone.

We defer the proof of this lemma to the full version
of the paper.

g) Stochastic Matching and Probing: In the
stochastic matching problem [14], [15], there is an undi-
rected graph G = (V,E) with edge-weights {we}e∈E ,
edge-probabilities {pe}e∈E , and vertex bounds {tv}v∈V .
Each edge e is active independently with probability e.
However, the status (active/inactive) of an edge can only
be determined by probing it. There is also a constraint
on the set of probed edges: for any vertex v, the number
of probed edges incident to v must be at most tv .
A solution/policy needs to to probe a subset of edges
and select a matching M consisting of active edges.
The objective is to maximize the expected weight of
M . Finally, there is a “query commit” requirement that
any probed edge which is active must be included in
the selected matching M . Observe that in any policy
execution, we only see the status of some subset of
edges, which corresponds to semi-bandit feedback. This
problem has been extensively studied, see e.g. [14], [15],
[62], [63]. The current best approximation ratio is 0.5 for
the unweighted case [62] and 0.382 for the weighted case
[63]. We show in Lemma III.2 below (see full version for
the proof) that the stochastic matching problem is down-
monotone. So, Theorem I.1 with k = 2 (as all r.v.s are
binary) implies an online learning algorithm for stochas-

tic matching having 0.382-regret of O(nW
√
T log T )

where W =
∑

e∈E we is the total weight.
In fact, our result applies to the much more general

stochastic probing problem, as defined in [9]. Here, we
have a set E of stochastic items with weights {we}e∈E
and probabilities {pe}e∈E . Each item is active indepen-
dently with probability e, and this status can only be
determined by probing e. We now have two downward-
closed constraints: an inner constraint Fin and an outer
constraint Fout. We want to probe a set Q of items
subject to the outer constraint (i.e. Q ∈ Fout) and select
a subset S ⊆ Q of active (probed) items satisfying
the inner constraint (i.e. S ∈ Fin). The objective is to
maximize the expected weight of the selected items S.
We again have the query-commit requirement that any
active probed item must be selected into the solution
S. When both inner/outer constraints are kin and kout
systems (see [9] for the definition of k-systems), there is
a 1

kin+kout
approximation for the unweighted case and an

Ω( 1
(kin+kout)2

) approximation for the weighted case [9].
When the k-systems are intersections of matroids, [10]
gave an improved adaptive algorithm with approximation
ratio 1

kin+kout
, even for the weighted case.

Lemma III.2. The stochastic probing problem is down-
monotone.

APPENDIX A
SAMPLING-BASED ALGORITHMS

A stronger monotonicity condition is that of strong
monotonicity [20], defined next.

Definition A.1 (Strong Monotonicity). A stochastic
problem is strongly up-monotone if for any instance I
and probability distributions D and E with D ⪯SD E,
we have Ex∼E[f(σD,x)] ≤ OPTI(D), where σD is
the optimal policy for instance I under distribution D.
The problem is said to be strongly down-monotone if
Ex∼E[f(σD,x)] ≥ OPTI(D) under the same conditions
as above.

We note that strong monotonicity implies monotonic-
ity. In prior work, [20] gave optimal sample complexity
bounds for stochastic optimization problems that exhibit
the strong monotonicity condition. They also proved this
property for problems including Prophet inequality and
Pandora’s box. We make use of this property in §III,
when we apply our result to these problems.

Below, we assume that fmax = 1 by scaling. The
sample-complexity result in [20] is:

Theorem A.1 (Theorem 17 [20]). For any strongly
monotone stochastic problem, suppose the number of
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samples is at least:

C · n
ϵ2

log
(n
ϵ

)
log

(
nT

ϵ

)
where C > 1 is a sufficiently large constant. Then, there
is an algorithm that gets an ϵ-additive approximation to
the optimum with probability at least 1− 1

T 2 .

Below, we discuss what regret bounds can be achieved
via this sampling-based approach, in order to compare to
our results. In the full-feedback model, one can obtain
regret bounds of

√
nT log T , which is nearly optimal.

However, for semi-bandit feedback that we consider (and
for bandit feedback), such a “reduction” from sample-
complexity bounds only provides a sub-optimal Õ(T 2/3)
regret. Therefore, we need new ideas to get the optimal
Õ(
√
T ) regret bound in the semi-bandit model, which

we do in this paper.

Full-feedback. Recall that, in the full-feedback model,
we get one sample from each r.v. in every time-step. We
now describe the algorithm. The algorithm is straight-
forward: for each t = 1, 2, . . . T , we use estimates from
the prior t−1 time steps to obtain a policy to use for the
tth time-step. See Algorithm 2 for a formal description.

Algorithm 2 EXPLOIT

1: Input: one sample x = (x1, · · · , xn) ∼ D,
2: for t = 1, 2, . . . , T do
3: let D̂t ← frequentist estimate from previous t−1

time-steps
4: run policy OPT(D̂t) for the tth time-step

As a consequence of Theorem A.1, with probability
at least 1− 1

T 2 , we have that OPT(D̂t) is an ϵt-additive

approximation to OPT(D) where ϵt ≤
√

Cn log(nT )
t . (To

keep calculation simple, we ignore the log 1
ϵ dependence

in Theorem A.1; so we are actually assuming a slightly
stronger sample-complexity bound.) By union bound,
this is true for all t = 1, . . . , T with probability at least
1 − 1

T . We consider this to be a good event, G. Under
this event, the total regret, say RT , can be bounded as
follows.

E[RT | G] ≤
T∑

t=1

√
Cn log (nT )

t
= O

(√
nT log(nT )

)
.

By law of total expectation we have

E[RT ] ≤ E[RT | G] ·P(G) + E[RT | G] ·P(G)

≤ O
(√

nT log(nT )
)
+ T · 1

T

= O
(√

nT log(nT )
)
.

Semi-bandit feedback. A significant challenge in the

semi-bandit feedback model arises from our lack of
control over the r.v.s from which we get samples. One
potential strategy to address this issue is to artificially
generate samples for an item i by probing item i first
in the algorithm’s policy for that period. However, this
approach comes with an inherent drawback – probing
item i first may result in a poor policy, and so we suffer
a high regret in such periods. The standard explore-then-
exploit algorithm that first gets T 2/3 samples for each
r.v., and then plays the optimal policy (for the empirical
distribution) for the remaining time steps only achieves
regret Õ(T 2/3).

In the hope of obtaining improved regret guarantees,
we consider a different algorithm where we pair periods
of exploration with some periods of exploitation, wherein
we leverage the learned distribution. To do this, we
divide the time horizon T into meta periods, each of
length n+ βn (we optimize β later). In meta-period h,
we first gather n samples (one for each r.v.) and then
use policy OPT(D̂h) for βn time-steps. Here D̂h denotes
the frequentist distribution obtained from the h samples
(until meta-period h) of D. Note that we have no control
over the r.v.s probed by OPT(D̂h), and thus cannot use
these samples in our analysis.

By Theorem A.1, with probability at least 1− 1
T 2 , we

have that OPT(D̂h) is an ϵh-additive approximation to

OPT(D) where ϵh ≤
√

Cn log(nT )
h . By union bound, this

is true for all meta-periods h = 0, 1, . . . , with probability
at least 1 − 1

T (since h ≤ T ). As before, we consider
this to be a good event, G. Under this event, the regret

in meta-period h is at most n + βn ·
√

Cn log(nT )
h , and

the total regret under G is at most

nH + Cβn3/2
√
log(nT )

H∑
h=1

√
1

h

= nH + Cβn3/2
√
H log(nT )

where H = T
(1+β)n . The optimal choice for β =

O

((
T

n2 log T

)1/3
)

, and so we again end up with a

regret of O
(
(nT )2/3(log T )1/3

)
. To summarize, we are

not aware of any generic approach that reduces sample-
complexity bounds to regret minimization in the semi-
bandit have o(T 2/3) regret.

Remark 1. The sampling approach for semi-bandit
feedback also applies to many problems (e.g., prophet
inequality, Pandora’s box and series testing) in the bandit
feedback model. Basically, for each item i we need a
policy where its objective corresponds to the value of
r.v. Xi. So, we can directly get Õ(T 2/3) regret for these
problems even with bandit feedback.
Remark 2. We note that [20] also give (slightly worse)
sample complexity bounds for a broader class of prob-
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lems that need not satisfy any monotonicity property, but
have a finite support-size k. Using the approaches de-
scribed above, we can convert these sample-complexity
guarantees to obtain O

(√
nkT log(nT )

)
regret under

full-feedback and O
(
(nkT )2/3(log T )1/3

)
regret under

semi-bandit (and bandit) feedback.
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