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ABSTRACT—Understanding clinical trajectories of sepsis patients is crucial for prognostication, resource planning, and to in-
form digital twin models of critical iliness. This study aims to identify common clinical trajectories based on dynamic assessment
of cardiorespiratory support using a validated electronic health record data that covers retrospective cohort of 19,177 patients
with sepsis admitted to intensive care units (ICUs) of Mayo Clinic Hospitals over 8-year period. Patient trajectories were modeled
from ICU admission up to 14 days using an unsupervised machine learning two-stage clustering method based on cardiorespi-
ratory support in ICU and hospital discharge status. Of 19,177 patients, 42% were female with a median age of 65 (interquartile
range [IQR], 55-76) years, The Acute Physiology, Age, and Chronic Health Evaluation Il score of 70 (IQR, 56—87), hospital
length of stay (LOS) of 7 (IQR, 4-12) days, and ICU LOS of 2 (IQR, 1-4) days. Four distinct trajectories were identified: fast re-
covery (27% with a mortality rate of 3.5% and median hospital LOS of 3 (IQR, 2—15) days), slow recovery (62% with a mortality
rate of 3.6% and hospital LOS of 8 (IQR, 6—13) days), fast decline (4% with a mortality rate of 99.7% and hospital LOS of 1 (IQR,
0-1) day), and delayed decline (7% with a mortality rate of 97.9% and hospital LOS of 5 (IQR, 3-8) days). Distinct trajectories
remained robust and were distinguished by Charlson Comorbidity Index, The Acute Physiology, Age, and Chronic Health Eval-
uation Il scores, as well as day 1 and day 3 SOFA (P < 0.001 ANOVA). These findings provide a foundation for developing pre-
diction models and digital twin decision support tools, improving both shared decision making and resource planning.

KEYWORDS—Sepsis; longitudinal clustering; clinical trajectory; cardiorespiratory failure

ABBREVIATIONS—IQR — interquartile range; LOS — length of stay; EHR — electronic health records; SOFA — Sequential
Organ Failure Assessment; DTW — dynamic time warping; CClI — Charlson Comorbidity Index; SD — standard deviation

INTRODUCTION

Sepsis is a life-threatening condition caused by an extreme re-
sponse to an infection, which can lead to tissue damage, organ
failure, and death. In the United States, sepsis contributes to
35% of hospital deaths, with hospital costs for sepsis care exceed-
ing $62 billion annually (1). The 30-day septic shock mortality
rate is around 33.7% (2). The extent of organ dysfunction and re-
quirements for organ support are pivotal in determining the sever-
ity and prognosis of sepsis. Specifically, cardiorespiratory failure
is the most prevalent organ dysfunctions in sepsis and contributes
significantly to the cascade of events leading to other organ fail-
ures and overall outcome: respiratory failure occurs in 82.6% of
patients during their intensive care unit (ICU) stay, followed by
cardiovascular failure in 45.5% of patients (3,4).

Given the clinical heterogeneity of sepsis, it is crucial to have a
nuanced understanding of variability, including the degree of
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organ failure and need for organ support. Trajectory clustering,
which groups patients based on the evolution of their clinical sta-
tus over time, offers a powerful tool to dissect this variability. Al-
though sepsis phenotypes have previously been discussed in the
literature and have commonly been seen in clinical practice
(5-7), our work focuses on presenting the trajectory of patients
with sepsis akin to the phenotypes, which could provide the bed-
side clinicians with prognostic enrichment on patients’ clinical
progress and healthcare system needs. This is closely related to
an emerging initiative to create digital twins of critically ill pa-
tients and the care delivery system (i.e., the patient-level digital
twin and the ICU level digital twin environment) to enhance med-
ical education, in silico research, and clinical decision support by
using models informed by statistical and machine learning
methods (8—11). The prototypical models of patients with sepsis
in such digital twins considered patients as a homogeneous pop-
ulation. By clustering patient trajectories, subphenotypes of sep-
sis that share common progression patterns can be identified,
and incorporating these phenotypes into the digital twins could
enhance the fidelity of the models, facilitating the delivery of in-
dividualized therapeutic interventions. This approach can further
facilitate goals of care discussions when communicating with
caregivers, as specific trajectories may inform likely outcomes
and treatment pathways. Additionally, trajectory clustering aids
in resource management by predicting the expected course of
care, allowing for more efficient allocation of healthcare re-
sources and better planning for intensive care unit needs (11).
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Many advancements in clustering techniques have enabled the
identification of sepsis subclasses or subphenotypes (12). Sub-
class identification has been based mostly on static data, includ-
ing clinical, genomic, or transcriptomic profiles. Genomic and
transcriptomic-based clustering provides biological insights and
robust risk stratification and reveals underlying mechanisms
(13—15), while clinical data focuses on demographic variables
and the most abnormal values of vital signs, laboratory results,
and organ dysfunctions (5). Additionally, sepsis is a dynamic pro-
cess, and static snapshots of clinical data capture its evolving na-
ture with limited granularity and accuracy. Recent research has
utilized longitudinal data leveraging electronic health records
(EHR) to capture this dynamic nature by identifying trajectories
based on vital signs (6,7,16—18) and Sequential Organ Failure
Assessment (SOFA) scores (19). However, these studies have
primarily focused on short time windows, ranging from 8§
(18) h, 12 h (16), to 72 h (6,7,17,19) after admission, which ig-
nored condition changes after that especially for patients with
prolonged ICU stay. In addition, organ dysfunction was not fully
explored in clustering studies for patients with sepsis. The
existing study used the SOFA score to depict the level of organ
dysfunction, which assumes equal importance for the six organ
systems, and it is calculated at a low time resolution of 6 h (19).

To date, there is a lack of research depicting the comprehensive
clinical trajectory of patients with sepsis from the time of admission
until discharge or death with high time resolution, delineating the fluc-
tuations in cardiorespiratory failure and required organ support during
their ICU stay and hospital discharge status. Our study addressed this
gap using granular EHR data to create clinical trajectories with a high
time resolution of 1 h, allowing for close tracking of the clinical pro-
gression in patients with sepsis. Additionally, we chose a 14-day ob-
servation period, allowing us to capture a significant trajectory that
could contribute to a loss of independence or poor quality of life (even
after the survival from critical illness) as patients have protracted hos-
pital stays. Our objective was to delineate clinical trajectories for pa-
tients with sepsis throughout the hospital stay and categorize them into
clinically relevant clusters. Using two-stage clustering combining lon-
gitudinal K-means clustering and dynamic time warping (DTW), this
study identified four major clinically relevant trajectories of patients
with sepsis based on the cardiorespiratory failure and discharge status.
Combined with prognostic enrichment, this work is valuable in clini-
cal settings for shared decision making, resource utilization planning,
and discussions regarding care goals.

MATERIALS AND METHODS

Study population

This study was approved by the institutional review board of the Mayo Clinic
(18-000831), ensuring compliance with ethical standards and the protection of pa-
tient data. The study used EHR data from Mayo Clinic on 19,177 ICU patients with
sepsis from 2011 to 2018. Patients with sepsis were identified if they met the
criteria aligned with Sepsis-3 guidelines (20,21). The exclusion criteria for this
study include 1) patients who did not provide research authorization required by
Minnesota state, 2) below the age of 18, and 3) those with more than 24 h of
pre-ICU care or was readmitted to ICU, as we want to focus on early sepsis cases.
Our goal was to ensure that the cohort comprised patients who were admitted into
ICU and confirmed to have sepsis in its early stages, without the influence of com-
plications arising from an extended hospital stay prior to ICU admission. This ap-
proach allowed us to examine the natural trajectory of early sepsis more accurately,
obviating being confounded by factors related to prolonged pre-ICU hospitalization.
Approximately, 33.1% of the patient population was removed due to this criterion.
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Despite the exclusions, the distribution of major demographic and socioeconomic
factors (age, gender, race, CCI, etc.) remained consistent with the full dataset, as
shown in Supplemental Digital Content Table 1, http://links.lww.com/SHK/C380,
confirming that these exclusions did not introduce significant bias.

Definition of clinical states and trajectory

To cluster patients, we first defined the following patient-centered states to cap-
ture a patient’s clinical status during their ICU and hospital stay hourly. First, the
clinical states were labeled based on admission and discharge status, with which
we identified the following three states as: “discharge from hospital,” denoting
the patients have recovered and were discharged; “discharge from ICU,” denoting
the patients have improved and were transferred to a general hospital ward; and
“death,” denoting the patients who have succumbed to sepsis. Next, we further de-
fined three states when patients were in the ICU: “In ICU,” denoting the patients
have been admitted into ICU but had no cardiovascular or respiratory dysfunction;
“In ICU with single organ dysfunction,” denoting the patients were in ICU with ei-
ther cardiovascular or respiratory dysfunction; and “In ICU with both organ dys-
functions,” denoting the patients were in ICU with both cardiovascular and respi-
ratory dysfunctions.

Respiratory and cardiovascular dysfunctions were identified using real-time
data on ventilation methods (high flow nasal cannula, noninvasive ventilation, in-
vasive ventilation) and vasoactive medications (dobutamine, dopamine, epineph-
rine, norepinephrine, phenylephrine, and vasopressin), which were the most rele-
vant variables available in our dataset. Other organ dysfunctions were excluded
due to the low resolution of temporal data.

The first 2 weeks are crucial for monitoring sepsis progression and manage-
ment, capturing peak organ dysfunction and intervention impacts. In our cohort,
81% of the patients were either discharged from hospital or deceased by 14 days.
Therefore, we tagged data up to 14 days from the point of ICU admission. Because
of data curation limitations, the EHR data for labeling organ dysfunctions in the
ICU was limited to 7 days from admission. However, 89% of the patients were
discharged from the ICU or deceased within 7 days and the ICU readmission rate
is less than 10%, ensuring that no critical information regarding clinical states was
missing for most patients. Overall, this high-resolution labeling provides a detailed
view of the fluctuations in patient states and the interventions during this critical
period.

Two-stage clustering method

In this study, clustering, an unsupervised machine learning approach, was ap-
plied to identify natural groupings within patient trajectories based on their clinical
states over time. Clustering organizes data points into groups, or clusters, such that
points within the same cluster are more similar to each other than to those in differ-
ent clusters. This is particularly useful in clinical settings for discovering patterns
without predefined labels, as it reveals inherent structures within the data.

Specifically, we employed a two-stage modeling approach. In the first stage,
we used longitudinal K-means for initial broad clustering that captures overall tem-
poral patterns due to its computational efficiency. In the second stage, DTW is used
to refine these initial clusters by precisely aligning and identifying similar trends or
shapes that may occur at different time points. This approach also allows us to ac-
count for both temporal (using K-means) and shape similarities (using DTW),
thereby offering a comprehensive evaluation of similarity across individual time
series. Additionally, validating clusters based on clinical expertise ensures that
the identified patterns are meaningful in real-world healthcare settings. Moreover,
our two-stage approach enhances the depth of analysis by allowing us to drill down
into each of the four final clusters and examine finer subclusters within them. This
detailed stratification reveals variations within the broader clusters, uncovering nu-
ances that could be missed with a coarser analysis.

This approach leveraged the strengths of both methods, providing a compre-
hensive analysis of longitudinal data. The R packages kml and dtwclust were used.
We also examined the association between identified clusters and baseline vari-
ables available at admission and during ICU stay, including demographics, SOFA
score, APACHE III score, and Charlson Comorbidity Index (CCI). Data are pre-
sented as mean (standard deviation [SD]) or median (interquartile range [IQR]).
Race is assessed using Fisher’s exact test, gender using chi-square tests, and the re-
maining variables using ANOVA test. We initially tested across all identified clus-
ters and then performed pairwise comparison with Bonferroni correction to control
for false discovery. A significance level of 0.05 is used for assessment.

Segmented approach

As patients naturally have different lengths of stay, with 52% discharged from
the hospital or deceased by day 3, their clinical trajectories exhibit unequal lengths.
While padding is a common solution to address this issue in longitudinal K-means
clustering, it may introduce bias, as clustering is based on distances measured
across the entire 14-day trajectory. Therefore, we adopted a segmented approach
in the longitudinal K-means clustering, segmenting patients based on their length
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of hospital stay: 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, and 7 or more days, as
clinical states became relatively stable from day 7 to day 14. This segmentation ap-
proach reduces the potential bias introduced by padding and allows for more accu-
rate clustering based on the actual clinical trajectories.

Clustering metrics

For longitudinal K-means, an adaptation of the Calinski-Harabasz Index (22)
proposed by Genolini ez al. was used to select the best number of clusters, which
is particularly applied in the context of longitudinal data clustering (23,24). For
DTW), the silhouette index (25) was used to determine the optimal number of clus-
ters to be selected. Clinical relevance was also considered when choosing the num-
ber of clusters for both longitudinal K-means and DTW. This ensures that the
resulting clusters are statistically sound and meaningful in a clinical context.

RESULTS

Of 19,177 patients, 42% were female with a median age of 65
(IQR, 55-76) years, median APACHE III score of 70 (IQR,
56—87), hospital LOS of 7 (IQR, 4—12) days, and ICU LOS of
2 (IQR, 1-4) days. With the clinical states labeled, we examined
the population flow from admission to day 14 by analyzing the
state distribution at hour 0 (admission), hour 6, hour 12, hour
24, hour 72, day 7, day 10, and day 14, as shown in the Sankey
plot in Figure 1. The first 6 h are the most critical for cardiorespi-
ratory failure intervention, consistent with existing studies (26).
By day 3, 62% of patients were discharged from the ICU. After
7 days, most patients were either discharged from the hospital
or at least from the ICU, with much less frequent population
change between states, indicating a steady state of patient flow.

Separate longitudinal K-means clustering models were applied
to subpopulations segmented by their length of hospital stay,
identifying 39 trajectories. These were further grouped using
DTW based on similarities in local trends and patterns, identify-
ing 7 clusters. Clinical expertise then consolidated these into four
final clusters, requiring the combined clusters to share the same
end point, that is, death or discharge alive, and allowing a range
of days to be considered as delayed or slow progression, as shown
in Figure 2. The study team then assigned the following clinically
informed cluster names: fast recovery, slow recovery, fast decline,
and delayed decline. Clinical states initially declined for all clus-
ters in the first 6 h, indicated by a growing recipient of respiratory
or cardiovascular interventions. Fast recovery, representing 27%
of the population with a 3.5% death rate and a median hospital
LOS of 3 (IQR, 2—15) days, typically showed immediate im-
provement after 6 h and a quick discharge within 3 days. In con-
trast, slow recovery, covering 62% of the population with a 3.6%
death rate and a median hospital LOS of 8 (IQR, 6—13) days, ex-
hibited an initial decline often followed by gradual improvement.

CLINICAL TRAJECTORIES IN PATIENTS WITH SEPSIS 575
Unlike fast recovery, the recovery trajectory for the slow recovery
population is flatter and involves prolonged ICU stay. Fast de-
cline, comprising 3% of the population with a 99.7% death rate
and a median hospital LOS of 1 (IQR, 0—1) day, showed imme-
diate deterioration shortly after admission. In contrast, delayed
decline, representing 7% of the population with a 97.9% death
rate and a median hospital LOS of 5 (IQR, 3—8) days, initially sta-
bilized for a period of time before quickly deteriorating. Unlike
the fast decline population, which showed no improvement after
intervention and progressed directly to death, the delayed decline
group had a brief period of stabilization or even some improve-
ments before their condition worsened. The period before deteri-
oration varies depending on the ICU LOS, but shows similar
shape in clinical trajectory.

Table 1 summarizes the distributions for demographics, CCI,
SOFA scores, and APACHE 111 score across the identified clus-
ters. Major determinants for different clinical trajectories included
CClI, 24-h SOFA scores, day 3 SOFA scores, and APACHE III
scores, which aligns with the observed differences in mortality
and hospital and ICU LOS across clusters. Median 24-h SOFA
score was highest in the “fast decline” cluster (11) and lowest in
the “fast recovery” cluster (5). Similar patterns were observed
for day 2 and day 3 SOFA scores. Median 24-h APACHE III
score was highest in the “fast decline” cluster (109) and lowest
in the “fast recovery” cluster (63). Age and BMI were significant
demographic factors. Median age was highest in the “delayed de-
cline” cluster (70 years) and lowest in the “fast recovery” cluster
(64 years). While gender and race were initially significant at the
0.05 level when tested across the four clusters, further pairwise
tests (i.e., comparing each pair of categories of the cluster, for in-
stance, slow recovery versus fast recovery, as one pair) indicated
no significant differences in race or gender between clusters, sug-
gesting that the initial significance may be due to the large sample
size rather than actual differences.

The additional comparison results related to comorbidities are
summarized in Table 2, http://links.lww.com/SHK/C380 in the
supplemental material.

DISCUSSION

Clinically meaningful cluster discovery

Using an unsupervised machine learning two-stage clustering
approach, we successfully identified four distinct clinical trajecto-
ries among patients with sepsis during their hospital stay, with a
focus on cardiorespiratory failure and a high time resolution of
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Fic. 1. Sankey plot illustrating the population flow between clinical states from admission (hour 0) to 14 days. The states are defined as follows: 1 —
Discharge from hospital, 2 — Discharge from ICU, 3 — In ICU without cardiovascular or respiratory dysfunction, 4 — In ICU with either cardiovascular or respiratory
dysfunction, 5 — In ICU with both cardiovascular and respiratory dysfunction, 6 — Death. The link represents the number of changes between adjacent time points.

The width of the flow represents the population size leaving that state.
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Fic. 2. Four clusters including delayed decline (upper panel), fast recovery (middle panel), fast decline and slow recovery (lower panel) are identified.
The Y-axis represents the clinical states that are z-normalized by trajectory to highlight the direction and magnitude of the change instead of the specific shifts between
different states. A higher value indicates a worse clinical state, while a flat line indicates the absorbative states like decease or discharge alive. The X-axis represents
the hours since ICU admission (hour 0) up to 14 days. Each subplot corresponds to a cluster identified by DTW. Colored lines within each subplot represent trajectories
identified by longitudinal K-means clustering. Dashed line indicates the overall trajectory identified by DTW within each cluster based on the centroids calculated. DTW,

dynamic time warping; ICU, intensive care unit.

1 h. This work is the first that looks into extended hospital stay for
up to 14 days. While this work focused on the critically ill patients
with sepsis, once validated, this can be utilized for other disease
states commonly seen in the intensive care units such as gastroin-
testinal bleeding and acute respiratory distress syndrome among
others.

Existing research on trajectory clustering has typically focused
on short-duration longitudinal data, ranging from 8 to 72 h (19).
However, for sepsis, the first 6 h often involve intensive interven-
tions to stabilize the patient’s vitals and overall condition. Conse-
quently, the trajectories based on vitals or organ dysfunctions are
heavily influenced by these interventions, masking the underly-
ing differences crucial for accurate phenotyping. Even extending

the observation window to 72 h may not be sufficient, as a signif-
icant proportion of patients (32% in our cohort) remain in the ICU
beyond this period. These patients exhibit vastly different clinical
trajectories after 72 h, as shown in our results. For instance, both
the slow recovery and delayed decline groups have patients
staying in the ICU for more than 72 h. While the slow recovery
group gradually improves, the delayed decline group could rap-
idly deteriorate afterwards. Without extending the observation
window to a longer time frame, for example, 14 days, distinguish-
ing between these two groups would be challenging. Nonethe-
less, identifying the delayed decline group is crucial for clinical
practice to find potential solutions to prevent deterioration after
stabilization. Our method, with an extended observation period

TasLE 1. Summary statistics by clusters, with median (IQR) for continuous variables and distribution for categorical variables

Fast
decline Fast recovery Slow recovery Delayed decline P
n (%) 665 (3. 5%) 5,156 (26.9%) 11,973 (62.4%) 1,383 (7.2%)

Mortality (%)
Hospital LOS, median (IQR)

(

1(0,
ICU LOS, median (IQR) 1(0,1)
CCl, median (IQR) 7 (4,9)
24-h SOFA score, median (IQR) 11 (8. 14)
Day 2 SOFA score, median (IQR) 8 (4, 11)
Day 3 SOFA score, median (IQR) 8 (4.11)
24-Hour APACHE llI, median (IQR) 109 (87, 135)
Age, median (IQR) 69 (58, 81)
BMI, median (IQR) 27 (23, 33)
Gender
Female (%) 298 (45%)
Male (%) 367 (55%)
Race
American Indian/Hawaiian Native/Pacific Islander (%) 2 (0.3%)
Asian (%) 9 (1.4%)
Black/African (%) 8 (1.2%)
Other (%) 39 (5.9%)
White (%) 607 (91.3%)

181 (3.5%) 431 (3.6%) 1,354 (97.9%)
3(2, 15) 8 (6, 13) 5(3, 8)
1(1.2) 3(1,5) 3(2,6)
6(4,9) 6(4,9) 7(4,9) <0.001
5(3,7) 6(4,9) 8 (6, 11) <0.001
2(1,4) 4(2,7) 74, 11) <0.001
2(1,4) 3(1,6) 7 (4,10) <0.001
63 (51, 77) 70 (57, 86) 88 (72, 108) <0.001
64 (53, 74) 66 (55, 76) 70 (58, 80) <0.001
28 (24, 33) 29 (24, 34) 27 (23,33) <0.001
0.04
2083 (40%) 5,052 (42%) 561 (41%)
3,073 (60%) 6,921 (58%) 822 (59%)
0.02
45 (0.9%) 81 (0.7%) 9 (0.7%)
77 (1.5%) 187 (1.6%) 15 (1.1%)
123 (2.4%) 236 (2.0%) 20 (1.5%)
261 (5.1%) 508 (4.2%) 74 (5.4%)
4,650 (90.2%) 10,961 (91.5%) 1,265 (91.5%)

For Pvalues, race is assessed using Fisher's exact test, gender using chi-square tests, and the remaining variables using ANOVA test.
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of'up to 14 days, provides a comprehensive and dynamic view of
sepsis progression, capturing the intricacies of cardiorespiratory
failure and hospital discharge status.

While mortality and LOS are critical outcomes, they provide a
limited view of the complex and dynamic progression of sepsis,
and focusing solely on mortality or LOS ignores the intermediate
states that patients go through, which are critical for understand-
ing the progression and management of sepsis. Some studies clus-
tered patients with sepsis using SOFA score (19) which derived
similar concepts; however, the quantitative statistics of these four
clusters are different from ours. In addition, the time resolution is
crude and the SOFA score alone cannot fully reflect the interme-
diate states, including periods of stabilization, temporary im-
provements, and setbacks that can provide valuable insights into
the effectiveness of interventions and the patient’s response to
treatment. Understanding these stages is essential for developing
targeted therapies and identifying actionable time points in the
clinical trajectories that could alter and hopefully improve patient
outcomes. This study’s approach offers a holistic and dynamic
view of patient progression and management, capturing the full
spectrum of clinical changes from ICU admission to discharge
or death.

Methodological strengths (innovative advanced clustering
approach)

Comparing to existing studies, our study is featured by the use
of high-resolution EHR data to create detailed clinical trajecto-
ries, providing a granular view of patient progression. Existing
studies have explored K-Means clustering, latent class analysis,
latent profile analysis. DTW, and group-based trajectory models
(5-7,12,16,17,19,27,28). The methodological strength of this
study lies in its two-stage clustering approach. This method is
more scalable than DTW alone and captures local trends or
shapes that longitudinal K-Means alone cannot. By combining
these methods, we achieved a balance of computational effi-
ciency and detailed pattern recognition, providing a robust frame-
work for analyzing complex longitudinal data. High-resolution,
multistage clustering analysis performed in our study offers a
more comprehensive and actionable understanding of sepsis
progression.

Foundation for digital twin development

The clinical trajectories derived can be used to enhance the fi-
delity of patient modeling and further inform digital twin devel-
opment of the ICU system for operational management. Virtual
patients can be created to mirror the recovery patterns using the
clinical trajectories identified in this study, allowing for the con-
ceptualization of complex patient conditions into simplified,
easy-to-interpret models. As a first-step analysis, we explored
what phenotypes exist in the patient population. Then, different
models, based on patients’ specific phenotype, can be derived.
As an example, multistate models based on the clinical states
(i.e., death, discharge, ICU no organ dysfunction, single organ
dysfunction, multiple organ dysfunction) that define the four tra-
jectories can be developed (29). These models can predict the clin-
ical state of a patient at a moment during their ICU stay. By incor-
porating these patient models in the ICU digital twin, we can
enhance our ability to predict ICU census, and further investigate
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the ICU clinician workload based on patients’ organ system dys-
function states. Current ICU simulation typically ignores the
patient-specific characteristics and limits its capability to explore
specific potential scenarios. By mapping each trajectory to differ-
ent levels of care needs, we will be able to evaluate various sce-
narios, such as a shift in the volume and composition of patients
following different trajectories. For instance, during the COVID
pandemic, the percentage of patients following the rapid decline
trajectory will increase, whereas the population of the low-risk
monitoring patients might decrease. The impact of this change
on ICU census and clinician utilization can be evaluated accord-
ingly. This method is not only valuable for sepsis management
but is also transferable to other domains, enabling personalized
care and more efficient hospital operations across a wide range
of medical conditions.

Limitations

This is a single center study using data exclusively from Mayo
Clinic collected during 2011-2018. However, multiple ICUs, in-
cluding medical, surgical, multispecialty and transplant, cardio-
vascular medicine and surgery ICU data were included to en-
hance the generalizability of the results. To suggest or prove
any external generalizability the model will have to be prospec-
tively and externally validated. In addition, this work serves as
a model development and derivation. This methodology can be
generalized to other institutions and other patient populations.
The study is limited by the availability of detailed organ dysfunc-
tion data only for the first 7 days of ICU stay. In addition, this
study only included cardiorespiratory dysfunction for the trajec-
tory tagging. However, the clinical management for patents with
sepsis has remained fairly unchanged during this period. Addi-
tionally, clustering approaches, including ours, are inherently
heuristic and can be influenced by factors such as initialization
methods, randomness, normalization methods, distance mea-
sures, or data splits. Despite these variations, our analysis showed
that the core qualitative structure of the four identified clusters—
fast recovery, slow recovery, fast decline, and delayed decline—
remained stable, confirming the reliability of our clustering ap-
proach. This consistency suggests that the overarching patterns
are robust, even though individual cluster assignments may shift
due to methodological choices.

Future work

Future studies may include other organ dysfunctions to further
refine clinical trajectory. Further validation on larger and more di-
verse cohorts will ensure the external validity and generalizability
of the findings. Moreover, the clinical trajectories were derived
based on the aggregated organ dysfunction states. This level of
abstraction is sufficient for supporting strategic or tactic level
ICU management decisions. The model’s clinical utility could
be enhanced by incorporating a broader range of real-time phys-
iological parameters. This would be ideal for the patient-level
modeling for clinical decisions. For instance, the digital twin built
upon this framework can simulate different treatments that possi-
bly alter patient clinical trajectories to support informed decision
making. Lastly, the likelihood that the patient belongs to a spe-
cific trajectory is in part determined by the baseline chronic health
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status and specific comorbidities. Further study is required to bet-
ter understand the mechanisms of these associations.

CONCLUSIONS

This study comprehensively depicts sepsis progression through de-
tailed clinical trajectories, offering valuable insights to facilitate more
robust prediction models and digital twin decision support tools for
both shared decision making and resource planning. By identifying
distinct clinical trajectories through clustering, these models provide
a nuanced understanding of patient progression, moving beyond static
assessments toward dynamic, real-time analyses. Specifically, the
clustering results serve as the foundation for creating digital twin
models that mirror patient-specific disease evolution, allowing clini-
cians to better anticipate patient needs, manage patient communica-
tions, allocate resources effectively, and improve overall care quality
for patients with sepsis.
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