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1. Introduction

Let d > 1. Given a bounded measurable function m : R2¢ — C, we consider the
associated bilinear multiplier operator defined as

To(f,g)(x) = / F©amym(E, e =€ dedy, x € RY, (1)
R2d

for all f, g € C§°(R?).
We say a bilinear multiplier m : R?¢ — C has a-admissible decay up to order k, k > 0,
if m € C*(R??) and there is a > £ such that

1

o“ <o ———————,
% m{& M e e

(2)
for all multi-indices o = (o, ..., azq) with |a] < k.

In the case where m = /i where p is a compactly supported finite measure on R2¢
satisfying

1

U T
&S T T e

(3)



T. Borges et al. / Journal of Functional Analysis 288 (2025) 110694 3

with a > %, we will simply say that [i is a-admissible.

As observed in [39], if 4 is a compactly supported finite measure on R?? satisfying
the decay estimate (3), then for any multi-index o € Z2% one also has [0%(2)(&,7)| Sa
(1+ €]+ |n])~®. Hence, if fi is a-admissible of order 0, it is automatically a-admissible
up to order k for any k € N.

Multipliers like m defined above are sometimes referred to as multipliers of limited
decay in literature. For instance, a class of such bilinear multipliers has been studied by
Grafakos—He-Honzik in [23] where an L? x L? — L' bound of its multi-scale maximal
function is obtained for a-admissible multipliers up to order Lg] + 2 with ¢ > % + 1.
These operators are natural bilinear analogues of a class of linear operators studied by
Rubio de Francia [39] that includes the spherical maximal functions (whose boundedness
have been obtained by Stein [45] and Bourgain [7]) as a special case. Note that, even
though the assumption a > % in our definition of admissible is necessary for the proof
strategies in this paper, it is unclear whether it is necessary for the results to hold true.

In this paper, we study boundedness properties of single-scale maximal functions of
such bilinear multiplier operators over a fractal dilation set, as well as their corresponding
multi-scale maximal functions. In addition to LP bounds, we also obtain Sobolev norm
bounds and sparse bounds, which in turn imply vector valued estimates and weighted
norm inequalities with respect to the Muckenhoupt A, weights for such operators. We
give the definition of these operators below after discussing a few motivating examples
of the multiplier m.

One important class of bilinear multiplier operators with admissible multipliers as
defined above is given by bilinear averaging operators over smooth compact surfaces.
Let S C R?? be a (2d — 1)-dimensional compact smooth hypersurface without boundary
such that k of the (2d — 1) principal curvatures do not vanish, where k > d. Let ug be
the normalized natural surface measure on S and define the (scale 1) averaging operator

Ao 1 (f9)(@) = / f(@ — v)gx — =) dus (v, ). (4)
S

Then it is easy to see that A1 is a bilinear multiplier operator T, associated to
m(&,n) = ps(€,n) as defined above. It is well known [34] that in that case all the
derivatives of jig satisfy

0% (as)(€,m)] < C !

aW7 for all |a| > 0, 5)

hence the multiplier jig is g—admissible. Similarly, after fixing a scale ¢t € [1,2], one can

define the (scale t) averaging operator

Apeo(frg)(@) = / f&—ty)g(z — t2) dps (v, 2), (6)
S
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which is obviously an operator of the form T, with %—admissible multiplier my(&,n) =
ﬂS (tgv t77) :

As a particular case, when d > 2 and pug = 024_1, the normalized spherical measure
on the unit sphere S?¢=1 c R2, then for every t > 0, my(£,1) = Gog_1(t€,tn) is an

a-admissible multiplier with a = MT_l > g and we introduce the notation

A, 9)(2) = Aoy, o(fo9) (@) = / f(x — ty)g(x — t2) dosg_1(y,2), =€ R%

S2d—1

Here, A, is usually referred to as the bilinear spherical averaging operator at scale ¢ > 0.
This operator and its associated maximal functions were first studied by Oberlin [36] and
Geba—Greenleaf-Tosevich—Palsson—Sawyer [21] respectively. They have received a great
amount of attention since then; see e.g. [6,23,28] and the references therein. The sharp
range of LP x LY — L" bounds for its associated full maximal function has only recently
been obtained, by Jeong—Lee [30] in d > 2 and Christ—Zhou [18] and Dosidis—Ramos [19]
independently in d = 1 (see also [18] and [4] for the corresponding sharp result in the
lacunary case). The sharp LP x L? — L" boundedness region for A; itself remains an
open question.

Another important bilinear averaging operator we will be interested in is the triangle
averaging operator of radius ¢ > 0, namely,

Ti(f.9)(x) = / f(x = ty)g(x — t2) dp(y, =), (7)
T

where p is the natural normalized surface measure on the submanifold of R2? given by
I={(y,2) eR*: [yl =zl =|y—2|=1}, d=>2. (8)

This operator is closely related to the three-point configuration problems (e.g. of the
Falconer distance type) and has been studied recently in [26,14,29,37,38]. This situation
requires a more delicate analysis, as the submanifold 7 is codimension 3 rather than codi-
mension 1, and the Fourier transform of the surface measure has worse decay properties.
For instance, it was proved in [38] that for any multi-indices «, 8

10202 A&, m)| < Cays (1+minJg], [nf}sin6]) ™% (1+|(€,m))~ "7, (9)

where 6 denotes the angle between £ and n. If one tries to bound this independently
of 6, the best one can say is that the right hand-side of (9) is bounded above by (1 +
[(&, n)\)’%. Since 952 < £, /i does not fall in our class of admissible multipliers and
our general theorems later do not apply to it. To get decay bounds for the single-scale
triangle averaging operators we will need a more careful analysis than the one for the

decay bounds for single-scale maximal operators associated to admissible multipliers
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since we have to take into account the dependence in # in the decay of the multiplier.
We resolve this issue by applying an additional angular decomposition of the multiplier,
and we extend our main boundedness results to such triangle averaging operators.

With these examples in mind, we are ready to introduce one of the main objects of
the study in this paper: a class of general single-scale bilinear maximal operators defined
as

Am.e(f,9)(x) = sup | Tom, (f, 9) ()], (10)

where m(€,m) = m(t€,tn), and E C [1,2] is a nonempty fractal set of dilation scales. Our
first goal is to understand its boundedness region on the Lebesgue spaces LP x LY — L”
and similarly establish bounds for the associated multi-scale maximal operator

Mo g(f,9)(x) :=supsup T, , (f, 9)(x)]. (11)
leZ tekE

Note that the operator A,, g is local in ¢, it is hence not scaling invariant and is ex-
pected to satisfy Lebesgue space bounds outside the Holder range. Such bounds are often
referred to as the LP improving bounds.

In the case that £ = {t}, we oftentimes write A, (s = Am, for short, similarly
va{t} = M, +. In the case that m = 624_1, these become the more familiar bilinear
spherical maximal functions and we adopt the notation Ag := As,, ,. g and Mg =
Ma‘zdeE'

When m = [ for p being the natural normalized surface measure on the triangle
manifold Z, for the sake of clarity and being in line with existing literature, we denote
these operators as

Te(f,9)(x) = sup I T:(f,9)(2)] (12)
and
Te(f;9)(x) := supsup |Te (f, 9) ()], (13)
l€Z teE
respectively.

Obtaining the sharp bounds of A, g and 7g for general E is a very challenging
question, and even in some special cases, our knowledge is far from complete. For the
particular case that m = &94_1 and E = [1,2], the study of L? improving bounds
outside the Holder range for M = Asya_1,1,2) Was initiated in [30] for d > 2 and has
been improved very recently in [3]. In d = 1, nothing outside the Hoélder range is known
(see [18,19] for some Holder bounds of A, |1 9) followed as a consequence of the same
bounds for the full bilinear circular maximal function). The only other case of F that
partial results are known is E = {1}, see [29,4,15] and the references therein for some
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boundedness results when m = 6941, d > 2 and [44,36,9] for the case m = 61, d = 1.
The recent estimates in [15] also extend to the case m = fig where S C R?? is a compact
smooth surface with £ > d nonvanishing principal curvatures. Even in these special cases,
very few sharp bounds are known for E = {1} beyond the Holder range (e.g. the sharp
LP improving range for A; into L', obtained in [29]).

In this paper, we initiate the study of this question for a general dilation set £ C [1,2]
and obtain a partial description of the boundedness region. Even in the case m = 694_1,
the sharp L? improving region for A, g is still unknown, as is the case for 7z as well.
We use Sobolev smoothing estimates for A,, g at L? x L? — L? as a key tool in proving
the sufficient conditions. For the case m = 694_1, we will also provide some necessary
conditions for the parameters p, g, r for which As,, , g: LP x LY — L" is bounded for a
general E C [1,2]. These necessary conditions match the necessary conditions given in
[30,5] for the case E = [1,2].

In the linear setting, similar questions have been investigated by a large group of
authors over the decades. The model operators there are the spherical maximal function
over a fractal dilation set, defined as

AE,linearf(x) ‘= sup / f(l. - ty) do—dfl(y) P

telE

and its corresponding multi-scale maximal function similarly as defined in (11). In the
particular case that F = {1}, the multi-scale maximal function becomes the classical
(linear) lacunary spherical maximal function whose boundedness on L?, 1 < p < oo
is well known (see [11,17]). While in the case that E = [1,2], its multi-scale maximal
function is the famous (linear) spherical maximal function, whose L? bound was obtained
by Stein [45] in d > 3 and Bourgain [7] in d = 2. The sharp LP improving region for
A{1}.linear follows from a classical result in [35,46], and the case A 2] jinear are obtained
in [42,43]. For the general dilation set case, the systematic study of this class of linear
operators began in the 1990s, see [48,20,49,47] for the L? — LP boundedness of Ag jinear
and some refinement. It was only a few years ago that an almost complete understanding
of its sharp LP improving region was finally achieved, see [1,40]. As it turned out, this
region is closely related to various notions of dimension of the dilation set E. In this
paper, we explore in the bilinear setting a similar relation between the boundedness
region of the averaging operator and the dimension of the dilation set E, which seems
to be the first result of its kind for bilinear operators. In many results that we prove
below, there is an explicit relation between the allowed class of multipliers, more precisely
the allowed admissibility of the multipliers (given by the decay parameter a), and the
dimension of the dilation set E. Such a phenomenon also showed up in the linear setting,
see [20].

Our second goal is to establish sparse bounds for M,,, g and to link the L? improving
bounds L? x LY — L" of A,, g with r > 1 to sparse bounds of M,,, . To this end, a ma-
chinery that resolves this problem is successfully developed in this paper. More precisely,
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we will prove Sobolev smoothing estimates for the single-scale operator A,, g, getting
as corollaries continuity estimates for A,, g at the exponent (2, 2,2) (to be made precise
below, see Theorem 1.1 and Corollary 3.7), which, via previously developed methods
(see [37,5]), will imply a sparse bound (p, q,7’) for M,,, g at the same exponent (p, g, )
where the Lebesgue space bound of A, g holds true.

Sparse domination has been a rich and rapidly growing area in harmonic analysis
since its birth less than ten years ago. It was originally developed for the study of the Ao
conjecture on sharp weighted norm inequalities for Calder6n-Zygmund operators [33,31],
but has shown to be a powerful tool in deriving many more properties of different types
of operators. As it is impossible to exhaust the list of important prior works in the the-
ory, here we only mention a few that are most closely related to the subject matter of
our article, and refer the interested reader to the great amount of references listed there
for further results on sparse domination. In [32], sharp sparse bounds for the linear full
and lacunary spherical maximal functions were derived, as a consequence of continuity
estimates of their corresponding single-scale operator A1} jinear and A1 2) 1inear T€SPEC-
tively. This then motivated many followup sparse domination results for other Radon
type operators in the linear setting, see for instance [16,8,10], and in particular for the
multi-scale maximal operator associated to Ag jineqr Obtained in [1].

In the bilinear setting, only a few sparse domination results are known for operators in
or related to the class of operators that we are interested in here. More precisely, sparse
bounds for the full and lacunary bilinear spherical maximal functions were obtained in
[5,37], see also [41] for a similar operator but with a product structure, and [37] for the
triangle maximal operators. A common framework all these works follow is a machinery
(adapted from [32] to the bilinear setting) that turns continuity estimates for single-
scale operators to sparse bounds for multi-scale maximal functions. This is also the
framework we will follow in this paper, which, as mentioned above, reduces the matter
to obtaining satisfactory single-scale estimates. We refer to Section 2 for the precise
definitions of sparse family and sparse domination and to Corollary 1.7 below for the
precise statement of one of our sparse domination theorems for M,, g. It is also well
known that sparse bounds have many applications. For example, they imply immediately
quantitative weighted norm inequalities (with respect to multilinear Muckenhoupt A,
weights in our case, and include the Lebesgue space bounds as a special case), endpoint
estimates, and vector valued estimates. We do not explore the sharp consequences in
these directions, see for instance [12,41,37] for some of these applications.

The sparse bounds for M,,, g that we obtain have close connections and applications
to the aforementioned first goal of the paper, i.e. obtaining Lebesgue space bounds for
A g and My, g. As was already briefly mentioned above, a key feature of our machinery
is that it reduces the understanding of the sparse bounds for M,, g to that of the sharp
LP x L9 x L" boundedness region of A, g. Indeed, as mentioned above, a key step in our
proof of the sparse bounds for M, g is obtaining continuity estimates for A,, g. Once
such a continuity estimate (at some exponent) is obtained, the framework becomes very
flexible: any improvement in the known boundedness region of A,, g would translate
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to improvement in known continuity estimates by using multilinear interpolation, hence
leads to improvement in the range of known sparse bounds as well as the implied Lebesgue
or weighted norm estimates. Our paper is the first effort to prove continuity estimates
for multilinear operators associated with a general dilation set E. In the special case
m = 6941 and E = {1} or E = [1,2], continuity estimates have been studied before
simultaneously in [37] and [5]. In [37] they prove continuity estimates for E = {1} and
E = [1,2] for all except some low dimensional cases, namely for d > 2 for E = {1} and
for d > 4 for E = [1,2]. In [5], continuity estimates are obtained for Ms,, , 119 for
any dimension d > 2 and for Ms,, | (1} in d = 1. The proof of continuity estimates in
[37] uses the L? x L? — L? boundedness criteria developed in [25] and it relies heavily
on the decay of the multiplier 6941, but only leads to continuity estimates for M in
sufficient large dimensions d > 4 (also see Remark 3.9 for more details on how that
strategy compares to the one in this paper). The continuity estimates for M, | 11,9 in
[5] do not use the decay of 624_1 as directly, but in turn rely on the slicing technique
developed in [30] for the sphere so it seems harder to generalize to the setting that we
are aiming for in this work.

Moreover, by applying our sparse bounds and exploiting some other techniques such
as Sobolev embedding, we obtain a wide range of Lebesgue bounds for M, g, which
includes the particular case L? x L? — L' (see Theorem 1.8). Such bounds in such
generality seem to be the first of their kind, except for the special cases Ms,, | (1 and
M, 11,2, for which better estimates were already known ([30,18,4]). In the bilinear
setting, obtaining the L?x L? — L' (and other Lebesgue bounds) is in general much more
challenging compared to obtaining the natural L? — L? bound for linear operators, which
oftentimes follows from Plancherel. They are also of intrinsic interest, since they imply
among many other things almost everywhere convergence results. For example, suppose
m = fis and E = [1, 2], then our Lebesgue bound of M, (1 o) (included as a special case
of Theorem 1.8 below) implies immediately the convergence of A4 +(f, g)(x) to f(x)g(z),
for almost all z as t — 0, for f,g € L?. In this sense, our work naturally extends the
line of investigation (e.g. [23]) of Lebesgue bounds of bilinear analogues of classical linear
operators of averaging type studied by Stein [45], Bourgain [7], Rubio de Francia [39], and
others (see also [20] for an extension to the fractal dilation set setting of [39] in the linear
case). And our boundedness results, which improve previously best known estimates in
many directions (see Remark 1.9 below for a more detailed discussion), further confirms
the strength and versatility of the sparse domination technique.

It turns out that in order for the argument deducing sparse bounds from the continuity
estimates to work, we will need the extra assumption that m is given by the Fourier
transform of a compactly supported finite measure g in R?¢. In that case the bilinear
multiplier operator T;,, becomes a bilinear average over a compact set, namely

T (£9)(@) = [ £l = (o~ t2) duly, ). (149
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The motivating example A, ; as defined in (6) obviously falls into this category, but
the theory is more general than that as p is not necessarily given as a surface measure
at all.

We also extend the continuity estimates and sparse bounds to the triangle averaging
operator Tr and its maximal function 75, partially resolving an issue that showed up in
[37] and improving the previously best known results in this direction; see Remark 5.5
for more details.

In addition, we extend the aforementioned estimates regarding A,, g and M,, g to
their slightly larger biparameter analogues, which were even less understood in literature
before. We obtain interesting sufficient and necessary conditions for their boundedness
regions. Given two dilation sets E7, Fy C [1,2], define

2
AR L (F9)@) = sup (T, (F9)(@)],
Y t1€E,ta€Ey

where

Ty o (fog)(x) = / FOamym(tre, tam)® =€ dedy,
R2d

(2)

We are interested in the boundedness of .Am B,

g, and its multi-scale maximal function
defined as sup;cz SUpP;, e g, 1,e 1, |Tm21t112lt2 |

In the case that Fy = FEy = [1,2] and m = 94-1, the slicing technique developed
in [30] applies equally well to these biparameter operators and implies that they sat-
isfy LP improving bounds (as well as continuity estimates and sparse bounds, if one
follows a similar strategy as in [5]). However, once one considers the general case of
E4, E5, such slicing becomes significantly less effective even when m = &54_1, making
the study of these biparameter bilinear operators very different from their one-parameter
counterparts. We will show how our one-parameter arguments can be extended to the
biparameter setting in Section 4.

Moreover, we obtain sparse domination for the multi-scale maximal function of
AEﬁ?Eh g, Lhis may come as a surprise since it is well known that sparse domination
techniques usually do not work well in the multiparameter setting (see for instance [2]
for a counterexample to sparse bound of the multiparameter strong maximal function).
However, our situation here is in fact slightly different. Since both F;, Fs are localized
at roughly the same scale, the multi-scale maximal function in some sense only exhibits
one-parameter behavior when it comes to sparse domination. Hence, the key step in
the proof of the sparse bound is the continuity estimate for the single-scale operator

Ag?EL By We defer the statements of these results to Section 4.
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Main results of the article

We will be looking for Sobolev smoothing bounds with decay for the pieces of the
single-scale operator A, g, which in turn will lead to continuity estimates at the expo-
nent (2,2,2), that is, bounds of the form

[Am.2(f = Th [ 9 = Tha @)l 2 S [P (B2 ([ £ 2|9l 22,

where |h1], |h2| < 1, 71,72 > 0 and 7,(f)(z) = f(x — h), whose corollaries include sparse
domination results for M,, g.

Sobolev smoothing bounds for bilinear single-scale Radon type operators are not only
interesting in their own right but also are particularly useful for deriving continuity
estimates. In our previous work [5], a different Sobolev bound H~° x L? — L' was
obtained for A, 1 in the d = 1 case, which played a key role in obtaining continuity
estimates of it and then sparse bound for its corresponding multi-scale maximal operator
there. However, the proof of that Sobolev bound required strong machinery (a trilinear
smoothing estimate from [18]) and the passage from it to continuity estimates was also
quite involved. In contrast, the Sobolev estimates obtained in this paper (for example
Theorem 1.1 and 1.3) are of the form H~%' x H~*2 — L2. An advantage of this type
of result is that it enables us to have a much simplified derivation of the continuity
estimates and allows for general dilation sets E and general bilinear multipliers (with
admissible decay) in the theory. For comparison, the slicing method applied in [5] relies
heavily on the geometry of the sphere and the dilation set [1,2], and does not seem to
yield a natural extension to the more general situations.

Our first theorem concerns the Sobolev norm bound of the single-scale maximal opera-
tor A, g associated to a fractal subset E C [1, 2]. Here and throughout this paper for s >
0, H™* consists of functions f : R% — C for which || f|| = := [|(1+]£[2)™*/2F(€)|| 12 < oo.

Theorem 1.1 (Sobolev smoothing bounds for A, g). Let d > 1 and E C [1,2] with upper

Minkowski dimension dimp;(E) = 8. Let m be an a-admissible bilinear multiplier up to
order 1, and assume 2a > d + (3. Given s1,82 > 0, with s1 + s9 < W, then

[Am.2(f, DIz S Nf -

|9l -2 (15)
In particular, Am g : L? x L? — L2.

2a—d—p
2

and assume the weaker condition that m is an admissible multiplier of order 0. See

Remark 1.2. For the case E = {1} one can actually include the endpoint s;+s2 =
Proposition 3.1.

In the case of the single-scale bilinear maximal operators associated to triangle aver-
ages Tg, the Sobolev smoothing estimates for 7z can be stated as follows.
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Theorem 1.3 (Sobolev smoothing bounds for Tg). Let E C [1,2] with upper Minkowski
dimension dimy(E) = B, and assume that d > 4+ 5. Given s1, 82 > 0, with s1 + s2 <
d—4—8
=+, then

2 ’

ITe(f; Dll2 S N la-ollgla--- (16)

Remark 1.4. Observe that in the result above since d is integer, the restriction d > 4+ (8
becomes d > 5 for § € [0,1), and d > 6 for 5 = 1.

The Sobolev smoothing theorem for A, g (Theorem 1.1) easily implies continuity
estimates for A, g which we state and prove in Corollary 3.7. Similarly, Theorem 1.3
implies continuity estimates for Tz (see Corollary 3.11). For the case m = [ig where S
is a (2d — 1)-dimensional compact smooth hypersurface without boundary in R2? with
k non-vanishing principal curvatures, Theorem 1.1 combined with the decay bounds in
inequality (5) immediately implies the following corollary.

Corollary 1.5 (Consequences for the surface averaging operator A;g g). Let d > 2 and
E C [1,2] with upper Minkowski dimension dimy (E) = f5.

(1) For m(&,m) = 624—1, if d > 14+ B (which is always the case for d > 3), then, one
has that

lAE(f 9l S [ f L=

|9l 772 (17)

for any s1,s2 > 0 with s1 + s2 < #. Moreover, continuity estimates like (40)
and (41) hold true for any d > 2 and B € [0, 1], except possibly for (d,B) = (2,1).

(2) For a (2d —1)-dimensional compact smooth surface S in R?? without boundary such
that k of the (2d — 1) principal curvatures do not vanish, and k > d + 3, one has
that

1Aas.2(f, Dz S f -

for any s1,s2 > 0 with s1 + 2 < k_g_ﬁ, Moreover, continuity estimates like (40)

and (41) hold true for any d > 2 and k > d + .

|9l 22 (18)

Remark 1.6. Observe that in the second part of Corollary 1.5, since k is an integer the
assumption k > d+ 3 can be described as k > d+1for 8 € [0,1),and k > d+2if 3 = 1.

In the particular case that m = i where p is a compactly supported finite measure in
R24, the continuity estimates given by Corollary 3.7 will imply sparse bound corollaries
for multi-scale bilinear maximal functions M, g which we state below.

For such a given measure i, consider the LP improving boundedness region of A; g,
namely
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R, E):={(11/p,1/q,1/r): 1 <p,qg<o0,r>0,1/p+1/qg>1/r 19)
and Ay g : LP x LY — L' is bounded}.

Corollary 1.7 (Sparse bounds for My g). Let E C [1,2] with upper Minkowski dimen-
sion 3 and let p be a compactly supported finite Borel measure in R2?. Suppose fi is
an a-admissible bilinear multiplier, with 2a > d + B. Then, for any (1/p,1/q,1/r) €
int(R(u, E)), with r > 1 and p,q < r, one has sparse domination for My g with pa-
rameters (p,q,r'). That is, for any f,g,h € C$°(R?), there exists a sparse family S such
that

(M p(f,9) ] S 3 (Deslo)aalblerQl (20)

QES

These sparse bounds have interesting weighted bounds consequences. In particular,
we can get the following Lebesgue bounds for M, g, by combining these consequences
in the Lebesgue measure case and some further techniques.

Theorem 1.8 (Lebesgue bounds for My g). Let E C [1,2] be a subset with upper
Minkowski dimension B and [i, the Fourier transform of a compactly supported finite
Borel measure in R?? that is a-admissible. Suppose 2a > d + B. Let R(B3,a) C [0,1]? be
the interior of the convex closure of the points

1 2a— 2a—B 1
(1,0), (0,0), (0,1), <§,a2—d’6>, and (az—d’g,ﬁ).

Let Ly be the open segment connecting (1,0) to (0,0), and Lo be the open segment
connecting (0,0) to (0,1). Then for any (1/p,1/q) € R(B,a)UL;ULyU{(0,0)}, we have

Mﬂ,E:LpXLq%LT

for r given by the Holder relation 1/r =1/p+1/q (see Fig. 1).

Remark 1.9. Even though the study of Lebesgue bounds usually precedes that of the
sparse bounds for many operators, in our case, Theorem 1.8 in fact seems to be the first in
literature about Lebesgue bounds of such bilinear averaging operators for general dilation
set £ and improves many previously best known results for special cases of M, g. For
example, in the case of My 1), Theorem 1.8 implies that it maps I?2x I? - L' as
long as 2a > d + 1. This improves [23, Theorem 1.1], where the same bound is proved
under the stronger assumption 2a > d + 2. (Note that the result in [23] does have the
advantage that it applies to general multipliers m rather than only m = [i. Hence our
bound is not fully comparable to theirs. Similar pair of results, where one applies to
more general multipliers while the other has stronger bound, exist in the linear setting
as well, see [39].)
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Fig. 1. Region of pairs (1/p,1/q) for which Theorem 1.8 guarantees ||[Mg gl|lrxre—rr < oo for 1/r =
1/p+1/q.

For the case where i = ug, the normalized surface measure in a smooth compact
surface with k& non-vanishing principal curvatures, one can check that

e Theorem 1.8 implies

Mo 1.9)(f.9)(x) = sup / fx — ty)g(x — t2) dus(y, 2)
t>0 5

is bounded from L? x L? — L', for k > d + 2. This improves a result from [13,
Theorem 2] where they proved M, 1 o : L? x L? — L' for k > d+ 3.

o For F C [1,2] with upper Minkowski dimension § € [0, 1), as long as k > d + 1, one
has M, g : L? x L* — L'. In the particular case E = {1}, this was already known
as a consequence of [24, Theorem 1.4].

We defer the statements of the necessary conditions for boundedness of A, g, the
Sobolev smoothing estimates, continuity estimates, and sparse domination for the bipa-
rameter analogues of A,, g, My, g to later sections.

Outline of the article

In Section 2, we collect various fundamental facts about Minkowski and Assouad
dimension, as these are the right notion of size for the dilation set in this setting. We
also recall the definition of sparse domination of a bilinear operator. We start Section 3 by
studying Sobolev smoothing estimates for A, g, single-scale bilinear Fourier multipliers
with admissible decay that are associated with a general fractal dilation set E C [1, 2],
giving a proof of Theorem 1.1. In our setting, the amount of smoothing depends on the
geometry of the hypersurface, since having more non-vanishing principal curvatures gives
better decay for the Fourier transform of the surface measure. We then extend this to
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the case of the single-scale triangle operator Tg, proving Theorem 1.3. As a corollary,
these yield continuity estimates for A,, g and T which will later be a key ingredient in
proving sparse bounds for their associated multi-scale operators. In Section 4, we make
a digression to the even more general biparameter setting, where each argument of the
operator has its own associated dilation set. In Section 5, we interpolate our previous
continuity estimates with known bounds to get a larger range of continuity estimates,
allowing us to deduce sparse bounds (such as Corollary 1.7) for M, g and its biparameter
analogue, and the triangle maximal operator 77 by appealing to standard techniques. In
Section 6, we explore various Lebesgue bounds including Theorem 1.8 for single-scale and
multi-scale maximal operators; many arguments in this section are robust enough to also
deduce bounds for the biparameter variants, as well. Finally, in Section 7, we consider
several examples to get necessary conditions for our single-scale maximal operators.
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2. Some notation and preliminaries
2.1. Notions of dimension for fractal sets

Given E C [1,2], we denote by N(F,J) the minimal number of closed intervals of size
0 that one needs to cover the set . The upper Minkowski dimension of E is given by

. . log(N(E,0))
dimay (B) = limsup = =A==

Equivalently, if the upper Minkowski dimension of F is dimys(E) = 3, then § is the

(21)

smallest nonnegative number for which it holds that
N(E, ) < C.6-P*9) forall § <1ande > 0.

Note that to show dimp;(E) < dimu/(FE’), it is enough to show that there exists a
universal constant C' > 0 such that N(E,d) < CN(E’,§) holds. In our special setting,
we can establish some lemmas about how certain algebraic operations affect the upper
Minkowski dimension.

Lemma 2.1. Let E C [1/2,2]. Then the upper Minkowski dimension of E, E?,\/E and
1/E all agree, where f(E) for a function f denotes

f(E)={f@):t € E}.
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Proof. These all follow immediately from the invariance of upper Minkowski dimension
under bi-Lipschitz maps. O

Understanding how the upper Minkowski dimension can change is more compli-
cated for binary operations on sets. We do have the following well-known bounds for
a Minkowski sum of two sets.

Lemma 2.2. Let Eq, E> be bounded subsets of R. Then
max{dimps (E1), dimps (Eq)} < dimps (Fy + E2) < dimps (E7) 4 dimps (Es).

Proof. The lower bound is trivial since for any fixed ¢; € F;, we have that t; + Ey C
E; + E5 and dimp(t; + E2) = dimps(E») by translation invariance, so dimys(Es) <
dimps (E7 + E») and then argue symmetrically. The upper bound can be seen by taking
d-covers of E7, Ey of the form {Ig(agk))}fi(lE’“’é) for k = 1,2 where I5(a) stands for a
closed interval of length § centered at a and getting a cover of Ey + Es via intervals of
the form {Igg(agi) + ag ))}ﬁfi’”}"”. Since Euclidean space is doubling, we can cover this

by a collection of d-intervals with cardinality at most CN(Ey,0)N(E3,0). O

The equality case for the upper bound is achieved when taking (for instance) F; =
{1-n"':neN}and B, ={1-n"2:neN}.

There is another notion of dimension that is useful in the theory of the linear spherical
maximal operators (see [1,40]). The upper Assouad dimension of F is given by

. e log(N(EN1,96))
dim4(F) = inf limsu su —_—, 22
AB) = e o s To(ITI/o) 22)

where T is a subinterval of [1,2]. Equivalently, we say the upper Assouad dimension is -y
if v is the smallest nonnegative number such that there exists §g > 0 and C¢ > 0 for all
€ > 0 such that for any 6 < dp and interval I whose length satisfies § < |I| < g, we have

N(ENT1,8) < C(3/|T)) .

In fact, more generally, one can study the Assouad spectrum dimy ¢(E) for 0 < 6 < 1
which is given by

dima ¢(E) = limsup sup log(N(EN1,4))

50 I.|I|=6° log(|1]/9) (23)

We direct the reader to the paper [1,40], which discusses all of these concepts and their
role in understanding linear spherical maximal functions with fractal dilation sets. We
will make use of the notion of an Assouad regular set, which is a set E where dimy g £ =

dimAEforalll>9>l—‘;iir§11Zg.
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In [1, Theorem 2| they show that if E C [1,2] is Assouad regular with dimy, (E) = 3
and dim 4 (F) = ~, then for

Ap(f = sup
teE

/fx—tyda Y|,

a necessary condition (and also sufficient up to some boundary pieces as shown in [1],
[40]) for the boundedness of Ag : LP — L™ is that (l/p, 1/r) € Q(B,7), the closed convex
hull of the pOintS Ql = (070)7 Q2(ﬁ) = (dlelrﬁv d— 1+5) QS(B) = (%7 ﬁ) and

Qa(y) = ( d‘jﬁr‘; 1_)1, d2i;«}—1)' This region has the following precise description:

05, ={ (3.1) € 0.1 such that } <1 < @rfin)} @1

for

Miinear (da T, Ba rY)

o fd=1 1-8 Bd-1) (d—B)2y—(d—-1)B1 d
_mm{ d + dr ’ﬁ(d—1)+2fy+ Bd—1)+ 27 ;,;}

In particular, for Assouad regular sets there is an interesting connection between the nec-
essary conditions we get in Proposition 7.6 with the sharp (up to boundary) boundedness
region of Ag in the linear case.

2.2. Sparse families and sparse bounds

Let S denote a (possibly infinite) collection of cubes in Euclidean space. We say that
it is n-sparse (for some 0 < n < 1) if for each @ € S there exists a subset E¢ such that
|Eg| > n|@| and the Eg’s are pairwise disjoint. We say that a bilinear or bisublinear
operator B has a (p, g, r) trilinear sparse domination if for all functions f, g, h € C§°(R4),
there exists an n-sparse family S such that

[(B(f,9): 0] S D 1R ew(@aah)o.r (25)

QeS

On the left side of the equation, the brackets denote the standard L? inner product, and
on the right side, we are using the notation

1/p

1 P g
(Nas=|1g ! @)
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3. Sobolev estimates and continuity estimates at L? x L? — L2

This section focuses on proving Sobolev smoothing estimates of the form H ™%t x
H=% — L[? s, s5 > 0 for single-scale maximal bilinear operators of the form A,, g,
associated to an admissible multiplier m and a fractal subset E C [1,2], and similar
bounds for the maximal bilinear averaging operator 7 associated to triangle averages.
First we deal with the special case E = {1} because the argument is simpler and the result
is slightly stronger. We then move to the study for general E' with (upper) Minkowski
dimension S by passing through the proof of decay bounds for pieces of A,, . We then
adapt the methods to the study of triangle averaging operators Tz by a more careful use
of the decay of the associated multiplier.

3.1. Single-scale bilinear operators associated to admissible multipliers: case E = {1}

We start by proving Sobolev type bounds of the form H % x H—** — L? with
s1,82 > 0 for the bilinear multiplier operator T, defined in (1) and we show how that
implies continuity estimates for it. This corresponds to the special case that the dilation
set £ = {1}. Note that in this special case, we do not need to assume that Vm has any
decay, all we need is enough decay for m.

From the definition (1), for any ¢ € S, one has

/nAﬂmwwumI:/f@mwwgmw&+nmwn
R2d

Rd

N / / (& =ma(mm(€ —n,m)p(€) dédn.

R4 R4

Hence, the Fourier transform of T, (f, g)(x) is given by

A

fﬂhﬁﬂ»@%:/f@—mm@—HWMMMM~ (26)

Rd

We first have the following Sobolev estimate.

Proposition 3.1 (Sobolev bounds for T,,). Assume d > 1 and that m is an a-admissible

multiplier up to order 0, for some a > d/2. Then, for any s1, so > 0 satisfying s1 + s2 <

%, one has

1T (fs )2 S N f o2 gl 1z (27)

In particular, it follows that T), : L? x L? — L2.
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Proof of Proposition 3.1. From the inequality | f|z-s < ||fllg-« if 8 < s, once we
know the proposition for s; + so = % we actually get Ty, : H™%1 x H=%2 — L? for
all 51,89 > 0 with s1 4+ 59 < 2“2—751. So let us assume s + so = %;d. In this case, s1
and s2 can not both be zero, so we can also assume by symmetry that s; > 0. Using
Plancherel’s Theorem, followed by Minkowski’s and Holder’s inequality, we get

1T (fs D)2 =[1F(Ton(f; 9))l 2

H/f& mg(m)m(& —n,n) dn

2
L&

< [ a1 |[fc —wmic =],

1/2
= [ latw (/|f §n|2d§> d
. 1/2
30n) P
<[ wime (/ T+ 6] + [P df) i

1/2
<(/ AT ) <// TR 251+dd"d€> |

where the second to last step in the above follows from the decay assumption on the

symbol m. We observe that for any ¢ € R9,

/ 1 in < 1
Rd (L[] 4 )zt 70 (14 [g])>

Indeed, using polar coordinates,

o0

1
/(1+§|+|n i O Cd/ 1+|€|+ 281+ddr
R4

0

1 d—1 —251—1
§7(1+|£|)231+d / r¢tdr + / r—1 T dy
0

S+ e

Coming back to our estimate,

R 1 1/2
(e S ol ([ 1OF g ) S lallas .
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In the case that T, is a bilinear averaging operator over smooth compact surfaces,
using the known decay estimate for m = fig, i.e. & = 0 in inequality (5), we immediately
derive the following results.

Corollary 3.2. Let d > 2, and m(§,n) = G24—1. Then, for any s1,s2 > 0 with s1 + s <
d—1

5=, one has

1AL (F )z SN F e

|9l -2 - (28)

More generally, let d > 2, for a (2d — 1)-dimensional compact smooth surface S in R?4
without boundary such that k of the (2d — 1) principal curvatures do not vanish, and
k > d, one has that

[Aps 1 (f; e S I f =1 lgll -+, (29)
for any s1,s9 > 0 with s1 + s < k—gd.
Remark 3.3. For the particular case F = {1} and m = &94_1, the corollary above

was obtained independently in [22], even though they stated it slightly differently in
terms of what it implies for the pieces of the operator A;. Their result can recover

AL, Olle S N f -

lla Tor 51, 322 0 and s+, < 950

Back to the general bilinear operator T,, and recall the notation 7,,(f)(x) = f(z — h)
for any h € R¢. Proposition 3.1 can be used to deduce the following continuity estimate
for T,,, which plays a key role in deriving the sparse bound for its corresponding multi-
scale maximal operator.

Corollary 3.4 (Continuity estimates for T, ). Assume d > 1 and that m is an a-admissible
multiplier up to order O for some a > d/2. Then there exists v > 0 such that

1T (f = S D> + 1 Tn(fr 9 = Tag)ll2 S IR fllz2llgllze,  VIRI < 1. (30)
Moreover, under the same hypothesis there exist 1,72 > 0 such that

[T (f = 7hi fr9 = Tha9) |22 S e[ TR (1 fll 2 llgllz2s VIPa| < 1, [hof < 1. (31)

2a—d
2

R 1 — e—2mih-€|2 1/2
ol = ([P e d€) ol

Proof of Corollary 3.4. From Proposition 3.1, with s =0 and s; = , we have

1T (f =70 9)l2 S = T f -

Let v = %min(2a —d,2) > 0. Then,
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| (i) _ (D™ o
et ) g = (i jepeee ~ M RIS

1 2a—d ~ 1 a— .
(1+ 1)) e S e if €] >

1]

<|h?, for all |h| < 1.

Similarly, one can get continuity estimates with the translation in the second input func-
tion. The proof of (31) follows from a simple adaptation of this argument by applying
Proposition 3.1 with s; = so = % for example. Alternatively, by applying the conti-
nuity estimate in each separate input, we know there exists 1, y2 > 0 such that

1T (f = This g = Tho@)ll2 S T 1 F Nl llg = Thoglize S TRal™ 1 F Nl 22Nl gll>
and
1T (f = This g = Tho@)llz2 S Th2? (1 f 1|22 llgll >
Multiplying these two inequalities we get
T (f = iy 9 = T )T S 1l a2 | 1172119112
leading to the desired bound. O

Remark 3.5. The L? x L? — L? approach generalizes easily to the multilinear setting.
Let ¢ > 2 and assume that

Im(©)] < (L +[¢)~*

where £ = (&,& -+, &) € R If 2a > (¢ — 1)d, then

T f1,. -, fo)(z) = / A& fa(&) -+ fe(€e)m(g)emim (Erteat£0) ge

Std—1

satisfies
[T (frs foo o fllee S NAN 2a—ona [ fallzz - [l fell 22
. —s —s 2 . Y4 2a—(£—1)d
More generally, Ty, : H™% X -+« x H™% — L? for all s; > 0 with },_; s; < =—5—=.

3.2. Single-scale bilinear maximal operators associated to admissible multipliers and
general dilation sets E C [1,2]

In this section, given F C [1,2], with a certain (upper) Minkowski dimension
dim, (F), we are interested in proving Sobolev smoothing bounds and continuity es-
timates for the more general single-scale bilinear maximal operators
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where m(&,n) = m(t€, tn). When m = 241 we might simply write Ag = A, &.
Similarly to what is done in [28,4], we start with choosing a radial function ¢ € S(R?)
such that

SO R I ¥
w(f)_{Q if|¢] > 2. (33)

Let 1(€) = (&) — ¢(2€), which is supported in {1/2 < |¢| < 2}. Then

Z g =1. (34)

For all ¢,j > 1 and ¢ € [1, 2], define
T (f / F©a(mym(te, tn)h (27 )rp(277n)e™ &) dedn
(35)
=T, ([ ¢7)(2)

where fi(€) := f(&)h(27€). If i = 0, replace D(27€) by @(£) in the expression above,
and similarly if j = 0. Then one has

mt f’ Z TZJ

4,7>0

Let us consider the pieces of the operator A,, g given by

W et 9)(@ )—?gp|T 2 (F.9) (@) = Amp(f' 7). (36)
Obviously,
AmE’ fa Z AZJ )
4,520

Recall from Section 2 that N(F,d) denotes the minimal number of closed intervals of
size ¢ that one needs to cover the set E, and that if dimy, (F) = 3, then

N(E,0) < C.6¥+9) forall § <1 and e > 0.

Theorem 3.6 (Decay estimates for the pieces of Ay, g). Let d > 1, and let E C [1,2] with
B = dimpy E. Let m be an a-admissible bilinear multiplier up to order 1. If 2a > d + 3,
then for any i, j > 0 one has
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AL L(fo )l S N (B, 27 maxtiadyzg-max{iagmin{ia} 3| £l 1o gl 2. (37)

m,
In particular,

2a—d—fB—¢ )|

1AL o (f, )2 Se2m maxlid (35

m

|Fllz=llgllz2- (38)

Before proving Theorem 3.6, let us discuss how it implies Sobolev smoothing estimates
and continuity estimates for A,, g (stated in Theorem 1.1 and Corollary 3.7 respectively).

Proof of Theorem 1.1 assuming Theorem 3.6. From Theorem 3.6 we know that for all
i,j >0,

IAZ o (F, 9)llze Se 27 U= ) a6 e,
where fi(€) = f(€)d(277€), i > 1, and fO(€) = f(€)@(€). Then,

Mo e (£ )2 S Y 1 Ame(f 972

4,j >0
i _s(2a—d—fB—¢ -
S M2 D> 2T g ke (39)
i>0 >i
+ ST e T g e = T+ 11
i>0 j<i

Observe that by Holder’s inequality (first in the sum in j and later in the sum in ),

TS F e 3o 2 a5 g g

>0 G>i
1/2
S e gl | S0 27902500
=0 j>i
Slgll—e 2700 | f1 o2 20
i>0
Sl Flliren llgll s

because 2a > d + 2s1 + 2s9 + 5. Similarly, by reversing the roles of ¢ and j,

. _sr2a—d—2s1—B—e\ . .
ISy M) 27 227 Fllpe S fllr-on

5>0 i>j

|91l £+

because 2a > d 4+ 2s1 +2so + 5. O
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Corollary 3.7 (Continuity estimates for A, g). Let d > 1 and E C [1,2] with upper
Minkowski dimension dimy(E) = (. Let m be an a-admissible bilinear multiplier up to
order 1, and assume that 2a > d + 3. Then, there exists v > 0 such that

[Am.2(f =1 f; 92 + [Am.6(f,9 = mng)lle> S A fllz2llgllz2, VIRl < 1. (40)

Moreover, under the same hypothesis there exist ~vi,v2 > 0 such that
[Am.2(f = 7h fr9 = Tha9)llL2 S 1ha " a2 fllz2llglle,  VIbal < 1 fho| < 1. (41)

Proof of Corollary 3.7 assuming Theorem 1.1. Since we are assuming 2a > d + [, one

can take s; € (0, 2‘17;75) and s = 0 in Theorem 1.1 to say that
[Am,e(f =70 f 9Lz SIf = mnfll == llgll L2
27rzh§ A
<\
|G o)) ot < U

for v = min{s;,1} > 0. To bound || A, £(f,9 — Thg)||2 one can apply Theorem 1.1 with
s1 = 0 and sy € (0, w) and for the bound for || A g(f — Th, f,9 — Th,9)l2 it is
enough to take s1,s9 > 0 with s1 + s9 < M O
Remark 3.8. The continuity estimates (40) and (41) for the particular case of m = 6241
were already known for any d > 2 and 8 € [0,1] as a consequence of the continuity
estimates for M = Ms, L[,2] in d > 2 at the exponent L? x L? — L' proved in [5].
As already observed in there, interpolation leads to continuity estimates at any point
in the interior of the boundedness region of M, and from the partial description of the
boundedness region for M given by [30], one could check that the point (1/2,1/2,1/2)
lives in the interior of the boundedness region for M. Therefore, Corollary 3.7 (which,
when m = 624-1, holds in all cases of (d, 3) except (2,1)) recovers, as a special case, all
previously known continuity estimates for M when d > 3.

Remark 3.9. When 3 > 0, the use of the L? x L? — L? decay bounds for the pieces
seems more effective for obtaining continuity estimates than using the L? x L? — L!
boundedness criteria from [25], since using that one the decay bounds look more like

— max{1,j — max{%,j}ao(i+j) 2
A (1)l SN (B, 27 P = mas(i 1o s g

(42)
(2a—d—28—2¢)
P 1122 llgll L2

682_ max{i,j
Since 2a —d — B > 2a — d — 20, it is easier to have a negative power of 2m2x{%:7} with
our L? x L? — L? strategy. That explains why in the case m = 6241 and E = [1,2], in
[37] they needed the assumption d > 4 to get continuity estimates for M.
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Proof of Theorem 3.6. Let us look at the case i > j. The case j > i is analogous.
We start with the case E = {¢}, with ¢ ~ 1. Then |m(¢¢, tn)

< 1
S (I+Igl+Inhe
From the proof of Proposition 3.1 it follows that

1/2
. £0eY|2
ol s [ ao | [ G|
|2 g~ (43)
S2elfl [ 190 dn S 2022 gl

In|~27

and for this bound one does not even need to assume 2a > d.
For each v € Z<y, let Z,, = Z,,(E) be the family of all binary intervals [n2”, (n+1)2"),
n € N, that contains a point in E. Then one has #Z_; < N(E,27%), Vi > 0.

Take a non-negative function oo € C°(R), such that o = 1 in |¢| < 1/2 and supp(a) C
(=1,1). For I € Z,,, say I = [c; — 2"}, ¢; +2¥71), define

ar = a27V(t —cr)).
Notice that a; = 1 on I and supp(a;) C 2 =: I, the concentric dilation of I with length

2|1
One has that

A B (7, )(%)IZ=§upITJ;;Z'(J“,Q)(@“)I2
<> bHPIT” Fa)@P < Y suplar()T3(f 9) (@)

ezt rez_,; €1

By the Fundamental theorem of calculus,

t

sup oz ()T (f, 9)(x)[* = sup / i|041(8)Ti’j(f’g)(%)|2ds
tel tel

< 1/\TW |2dt+/yTw ‘ f.o)(@)] d

d
< 1/\T” P |/|T” ]2 Lrsis.g)a)| d

—1

Putting all together and using inequality (43),

/|Am )(z)|? da
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;d
5 3 fIma@ls ae+ J[HT o)
IeI s Ll
—2a1 7 _i d
< S Lozt g, + ][IIT S 0@z |2 LT )|
IeT_; Lz

We claim that [|277 757 (f, 9)(@)]| o S 275275 || £ 12 |lgl| 2, for all ¢ € [L,2]. As-

suming this claim is true, then the theorem follows because

/ AL L (f) @) de S 57 272099 f112, |glf2e S (HT-0)27 20277 £]|2. |92,

IeT_;
which implies

1A 5 (f,9)(@)l[72 SN (B, 2727227 f 7292
=N (B, 27 maxtiah)gmmaxugyRagmintiddd|| £ 2, | g7

since we are assuming ¢ > j.
Now let us check the claim. Since

Tt / mte, tn)p (2 )b In) F(E)a(m)e i €+ dedn,

one has

H9)) = [ Gl )BT I Osmem = ddn,

Rd

Observe that since ¢ ~ 1, i, (£, 1) := jt (m(t€, tn)) satisfies

[ (&, m)| =[Vm(t€, i) - (€, 1)
~A+E wlL In[)e=t

Therefore, from the same argument as in estimate (43) one has

=T, (f', 9722

L2

2a—2

<27

id
V2% |l 2 gl 2
2

=2127"C) 2% || f|| 2 |lgll 2. O
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3.8. Single-scale maximal operators associated to triangle averages and general dilation
sets E C [1,2]

The goal of this subsection is to prove decay estimates for single-scale maximal bilinear
operator associated with the triangle averages 7;. Recall from the introduction that the
multiplier associated with the triangle average is not admissible, hence results from the
previous section does not apply. In addition to the techniques already mentioned, we
need to consider a more refined angular decomposition of the multiplier here.

Here are the details. Assume for now that ¢t = 1. We follow the decomposition from
[38] and use the notation from [4]. We break 77 into pieces via

T @) = 3 [ 75 (f)@) | = S0 ST () (@),

i>0 >0 \ k>0 i>0 >0

where the Fourier transform of a piece of the triangle operator is given by

—
PN

Tk (£, )(€) = /f(g — ) (n)ymi (€ —n,m) di.

Rd

Here, the ¢ index denotes localization in &, the j index denotes localization in n and the
k index denotes localization in sinf where 6 is the angle between &,7n. The multiplier
m; .k is the piece of the multiplier with the above localizations. More precisely,

m i k(€,m) = AEMY2TED2In)pr(E,m),

where 7,2 is the same as in the previous subsection, and py, are smooth functions satisfying
Y k>0 Pk(§,m) =1 except at the origin and

supp(pr) C {(&n): 2771 < [sin(0)| < 2771} if k> 1;

(44)
supp(po) C {(&,n): [sin(9)[ = 1/2}.

We estimate the L? norm using Plancherel identity and Minkowski inequality:

1T (o) 2 < /Iﬁ(n)\llf(- —n)mi k(- —n,n)z2 dn.

We change variables £ —n +— & and apply Cauchy-Schwarz to further bound this by

. R 1/2
1T (£, Iz < llglle ( J |f(§)|2mi,j,k(f,n)Iand€> .

Now, we appeal to the results on the size and support of the truncated multiplier; from
the decay bounds recalled in inequality (9) we have that
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‘mi,j,k(fan” 5 (1 + 2min{i,j}2—k)—(d—2)/2(1 + 2max(i,j))—(d—2)/2

and that for fixed £, the support in the 7 variable has measure at most 2792=%(d=1) Tet’s
assume ¢ > j for simplicity. In order to get the most decay possible from the multiplier
there are two cases for k to consider.

2-(-R 432 9=i(“3%) if0 < k < j;

9

mg g, 57 SJ A

If 0 <k < j we get the estimate on the last factor

</ Jor (/ 'mz:j,km)ﬁdn) d£)1/2

) . 12
< ( [ 1@ supp(m (e, ) ds)

1/2
< </ |f(§)|22*(d*2)(iﬂ‘*k‘)gi’dgfk(d*l) d{)
S”fHL22_i(d_2)/2+j2_k/2'

Adding over 0 < k < j we get

SONTPR(fo gl S 27722203 27k 2 o lgll 2 S 27 702 £l L2lg e

k=0 k=0

Alternatively, for each k such that k > j, the decay of the multiplier is instead
Imi k(€M S (1+ zmax{m})—(d—z)/z
so we get instead
ITH7*(F.9)2 S llgllpe | fll 22~ (@D —idrkd=1)/2

and we have

DITEEL 9 S IFllellgll a2 22427072
h=j

S22 |2 gl e

Putting all together, for any i > j

1T (fo gl S DT e S7E32 427D 2) £ 2] g] e
k=0

S22 Iz llgl e,
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and more generally for any 7,j > 0,
1T (fog)lle S 27 I @02 | 2 g o

This argument works for any ¢ € [1, 2]. Indeed, let

mi st (6,m) = A€, )P (27 ) (277 n) pi(€,m),

SO
=N N TR 9)(@)
i>0 j>0 k>0
where
T (F.9)(a) = [ FOdmmesael€me™™ € dedn,
Observe that
T (f,g /f£ MM j kst (§ —1,m)3(n) dn,

and

T (£.9)(@) = (1. ") (@) = 3 T, ) ().

k>0

It is immediate from the proof of inequality (45) that for any ¢ € [1,2],

17 (f, 92 S 27 T2 £ 2 g .

(47)

Next we will use these decay bounds for pieces of T; to take of the more general

dilation set E C [1,2].

Theorem 3.10 (Decay estimates for the pieces of Tg). Let E C [1,2] with § = dimy E.

If d > 4+ B, then for any i, j > 0 one has

7 i — max{%,j}\ % 9— max{i,j — 7 ]
I Te(f g7z S N(E, 27 mextiddyzgmmaxtii @072 1) 1, | g7 12

<. 9N B=0 2 | g e

(48)

With the same argument as the one used in Subsection 3.2 for A, g, the proof of The-
orem 1.3 and Corollary 3.11 below (Sobolev smoothing bounds and continuity estimates

for Tg respectively) will follow once we prove Theorem 3.10.
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Corollary 3.11 (Continuity estimates for Tg). Let E C [1,2] with upper Minkowski di-
mension dimy(E) = B, and assume that d > 4 + 8. Then, there exists v > 0 such
that

ITe(f = nf, 9l + | Te(f, 9 — o)z S A ([fllz2llgllze, VIRl <1.  (49)
Moreover, under the same hypothesis there exist 1,72 > 0 such that
ITe(f = T fr9 = Tho9)llL2 S 1hal" a2 fll2llgllzz, VIkal <1,]he| <1. (50)

Proof of Theorem 3.10. This proof is an adaptation of Theorem 3.6. We sketch the ar-
gument. Assume we are in the case i > j. Following the same notation of Theorem 3.6,

I Te(f', 97) () =sup ITe(f", ) () ?

< 3 ST @ < Y suplas (T ) @)

rez; ! rer_; '€!
Forany I € Z_,,

t

suplas(OT () o) =swp| [ Sl T o) @) ds

tel tel
1—2v

s [ dt*m/'T \2 AT @) at
I

Observe that
Lrr @) = [ S(atte. m)i&)d; () F©atn)e™ € dea
at 't , g )\x) = dtﬂ’n i i (n g(n)e n

which is a bilinear multiplier operator whose multiplier m(&,n) = %(ﬂ(ti ,tn)) satisfies
for [ ~ 2¢, [n| ~ 27,

(&)l = [VAE, tn) - (€ n)] S 2°(1 + 20 [sin(9)]) (@22 (1 4 2mextidh) (@22,

The same strategy that lead to estimate (47) gives us

< 9-it

L2

i d i g
|2 s o) 2 flzellglze.

This is enough since it will imply for ¢ > j
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/ To(f, o) (@)]? da

][HT )2 dt + ][ 1T ) (@) 2|2
IeT_ 7

SN(E,2”')27"(”[*4)HfIIQLzllgHiz- a

. d o
g dt
dtﬁ(f,g )HLi

4. Bilinear biparameter-like maximal operators with dilation sets F;, E2 C [1, 2]

Since we are working in the bilinear setting, it is also natural to investigate bound-
edness properties of biparameter analogues of the operator A,, g or its associated
multi-scale maximal operator M,,, . Namely, let m be a bilinear multiplier in R¢ x R¢
and let Eq, Ey C [1,2] be two dilation sets. We define

AP o (f9)@) = sup [T, (f9)@)], (51)
t1€E,ta€F,

where

2mix-(E+
Tpn. .. (f.9) / FOa(mym(ti€, tam)e™= €0 gedy, (52)

and its associated multi-scale maximal operator

MP o (9@ =sup  sup [T (fog)(@)]. (53)

I€Z t1€FE,to€FE>

We observe that in the particular case where m(&,n) = [i(€,n), for a compactly
supported finite Borel measure y in R, then

Toe. o (fr9)(@) = / F(@ = t19)g(x — ta2) dpy, 2).

In this case the biparameter multi-scale maximal operator we are interested in takes the

form

(54)

/ flo — 2tyy)g(e — 2't02) duly, 2)|

2
My 5 (f.9)(x) =sup  sup
I€Z t1€E1,t2€E>

Note that for Ml(f)El B, (f,g) the two averaging parameters for f and g are not the same

but they vary at the same dyadic scale 2'. It would also be interesting to study the
following larger bilinear biparameter operator given by

)

/ f(x — 2tiy)g(x — 2ty2) dpu(y, 2)

bi
Mgl,%l,Ez(fa g9)(x) := sup sup
kJ€Z t1€E1,t2€FE,
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in which the averaging parameter for f and ¢ can be any pair in 22E; x 22 F,. For the
particular case when E; = E3 = [1, 2], these two different biparameter operators become

/ Fl@ — ty)g(x — 52) dp(y, 2)

Mu[lZ 12](fa g)(z) =sup  sup

l€Z t,s€[2!,21+1]

and

M g (F9)(@) = sup

t1,t2>0

/ f(@ — try)g(x — ta2) du(y, 2)|

Inspired from our earlier approach, we would be interested in understanding the decay

properties of the pieces (Ag?Eh ,)"7 of this operator, defined as

(A gy 2) " (F,9) (@) == AL g, g, (', 97) (@)

for 4,5 > 0, where f?, ¢/ are defined as in Subsection 3.2. Our goal in this section is to
derive Sobolev smoothing estimates and continuity estimates for Afj?Eh £,» analogously
as for the one-parameter operators. In the next bection, such results will be applied to
derive sparse bound for the multi-scale operator M i E B A key difference between the

two biparameter operators Mm B,.E, and Mo (.E1 By 18 that the sparse theory for the
former is essentially one parameter. Once one has a good understanding of the bipa-
rameter behavior of its corresponding single-scale operator Au F1 Eao the sparse bound
would follow via a similar argument as in the one-parameter case.

The theorem below can be seen as a biparameter version of Theorem 3.6.
Theorem 4.1 (Decay bounds for pieces of AP B,)- Let Ev and Ey be two subsets of
[1, 2] with upper Minkowski dimension dimpr(E;) = B;, i = 1,2. Let m be an a-admissible

mE1

bilinear multiplier up to order 2, and assume that 2a > d + 81 + B2. Then,

|, S N(B 27N (B, 279 b mextiadaguinlia | £ s g o

<, 9~ s max{ig}(2a=d=1=P2=) || £|| o1l 12

Proof of Theorem 4.1. For v < 0, let I,Ek)(E) be the family of all binary intervals
[n2Y, (n + 1)2¥*T1) that intersect Ey, k = 1,2. Then we know that

#IP S N(Ey,2Y) S 277 F9) ) k=12,

One has
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|Am JEq, Eg(fi gj)(l.)‘2 S Z Z sup Tmtl,f,2 (fl’g])|2

ti€ltaed
(1) (2) ’
rez) jez®

=3 Y sw kel ()T, ., (9

t1€l,to€J

(55)

W yer®@
1ez®) jez®)

with ay as defined in the proof of Theorem 3.6.
By the Fundamental Theorem of Calculus and the fact that supp(ay) C 21 = [¢; —

27% cr +27%), we have for any t; € I and to € J,

a%(tl)a?](t2)|Tmt1t2 (fzv g])(fl})|2

/1 /2 {2@1(31)0/1(81)2aJ(82)a17(52)|Tm51,52(f’g)($)|2

+ 2001 (s1) s (s1) % (52) sy (| T, ., (2 9) (@)]?)
+ af(s1)2a(s2)ay(52)0s, (| Tom,, ., (f, 9)(2)[?)

)
+ a3 (51)03 (52)0ss 2 (1T, ., (£ 9) (0)2) | dsds.
Hence,

sup |az(t)as(t2) T, . (f' ¢7)(@)]?
t1€l,t2€J

s [ [ L @)
I Jj

+ 7T, oy (F, 9)@)10s, T (F 9) ()]
+ 7T, L, 9)(w)llaslesl,S2 (f,9)(=)|

Ty (F: 9 (@105 5, (T, (5 )(x))l}d51d52

Sf FATn D@ 5 B (£ 0)@N270, T (F0))
I

J

Ty oy (9 @275, T, (F9) ()]
Ty oy () @)127279 04 (Do, (F,9) ()] | dsds

Taking integrals in inequality (55), and by Fubini and Holder’s inequality,

[ 1A, ) @) ds

SY Y [ s jartas )T, , () @) ds

1ez) jez® neltel
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> S {0l

1e7Y) jez®7 5
Ty oy (F197) (@) - 27705, T, L, (F97) (@) 1
Ty oy (£ 97 ) (@) - 27005, T, (5 97) (@) 1

+||Tm81,52(fi7gj)(x) 12 ]asl 32( Msq, sz( i,gj)(.r))”l}dSldSQ

)OS 3 RCN AT

1ert) gez®7 'y
Ty oy (£ 97 @) 120127705, T, (5 97) ()2
T,y (£ 97 @) 120127705, T, (FF 97) ()2

Ty oy (£ 9) @) 212772700, (T, (1 67) (@) 2 | dsadise.

Observe that if m is an a-admissible multiplier up to order 2, then

T, o (F,07) (@)l|2 S 270 ldbominia} 3 £, lg]),
105 T, . (F,97) (@) |2 S 2727 mextiadgmintiads | £y ||,
106, T, ., (1 ) (@) 2 S 2727 mextiahgmindidb 5 | £l g,
100,52 Tomey oy (f397) (@) |2 S 2727 mextihgmin b3 £l g o,

and that is all one needs to finish up the proof. 0O

With the same argument as the one used in Subsection 3.2 for A,, g, the following
corollaries follow from the decay bounds for the pieces of “47(2) 5, 1, given by Theorem 4.1.

Corollary 4.2 (Sobolev bounds for .AmE B ). Let d > 1 and E; C [1,2] with upper

Minkowski dimension dimps(F;) = Bi, i = 1,2. Let m be an a-admissible bilinear

multiplier up to order 2, and assume 2a > d + [ + [2. Given s1,s2 > 0, with
1+ 89 < %, then
2

1A 5y (£ D)2z S N1 gl (56)

Corollary 4.3 (Continuity estimates for Ai?EhEQ). Let d > 1 and E; C [1,2] with upper
Minkowski dimension dimp;(E) = B;, i = 1,2. Let m be an a-admissible bilinear mul-
tiplier up to order 2, and assume that 2a > d + B1 + B2. Then, there exists v > 0 such
that

1A 5, 5, (f = Lo llze + 1A g, 5, (f.9 = Tg)lze < BN £l 2 llgll e
V|h| < 1. (57)
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Moreover, under the same hypothesis there exist v1,v2 > 0 such that

AR o (F =i £9 = Tha9)llz2 S 1hal " ha 2| Fll 22 gl 2,
V|h1‘ <1, |h2| < 1. (58)

5. Sparse bounds consequences for multi-scale bilinear maximal functions
In this section, we consider a special class of multipliers m(&,n) = fi(§,n), where p is
0

a compactly supported finite Borel measure on R?? and assume that (0,0) ¢ supp(u),
so that

min{|(y, 2)|: (y, ) € supp(p)} > 0. (59)

For a dilation set E C [1,2], recall the definition of the multi-scale bilinear maximal
operator associated to A; g given by

M e(f,9)(x) =supsup [T, , (f,9)(z)]

I€Z teE
(60)
—supsup| [ f(a = 2)g(o ~ 2'2) )]
I€Z teE
In the particular case F = {1} one gets the lacunary bilinear maximal operator
associated to the bilinear multiplier ji given by
Mﬂ,lac(f7 g)(:ﬂ) = ?ug |T[L2L (fa g) (l’)‘
€
(61)
—sup| [ 7o = 2y)gl ~22) duly. ).
€

From the techniques in [5,37], one can check that the continuity estimates below are
enough to get the sparse domination result claimed in Theorem 1.7. The assumption that
m = [i for some compactly supported finite measure p is not important for the continuity
estimates below but it is crucial for the reduction to sparse bounds of dyadic maximal
operators (see [5, Section 4]). The assumption that (0,0) ¢ supp(p) implies condition
(59), which we can use to get the analogue of [5, Lemma 19] in our more general setting.

Proposition 5.1. Let E C [1,2] with upper Minkowski dimension  and let p be a
compactly supported finite Borel measure in R??. Assume that [i is a-admissible with
2a > d+ (. Then the following continuity estimates hold for any point (1/p,1/q,1/r) €
int(R(u, E)).

There exists v > 0 such that

[Aa2(f =t 9)ler + [ Ape(f, 9 — mg)llr SR fllellgliza,  VIAl <1 (62)
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Moreover, under the same hypothesis there exist vi,v2 > 0 such that

[Ane(f = Th 9 = Tho@) e S Tha " B2 (| fllzellglle, VY |ha| <1, V]hao| < 1. (63)

Proof. We already know by Corollary 3.7 that A, g satisfies continuity estimates at
L? x L? — L? if 2a > d + B. For any (1/po, 1/qo,1/70) € R(u, E), we have

1Az, e(f —f,9)llzro + | Axe(f, 9 — Thg)llLro S| fllLeollgllLa, VIh] <1

and

1A e(f = Thi f, 9 = Tha9)llzro S I Fllzeollgllzao, ¥V [Pa] <1, V[ho| < 1.

By multilinear interpolation, one immediately gets continuity estimates for A; g at LP x
L7 — L" for any triple (%, %, 1) in the interior of the region R(p, E). O

Remark 5.2. Let F C [1, 2] with upper Minkowski dimension 5 and let p be a compactly
supported finite Borel measure in R2¢. Assume that for all 1 < p < oo,

AﬁuE LP x L1 — [P (64)
for all sufficiently large ¢ and symmetrically, for all 1 < ¢ < oo
Ay g LP x LT — LY (65)

for all sufficiently large p. Then as shown in [5] the restriction p, ¢ < r in the Theorem 1.7
can be removed. This is the case for 1 = 0941 for example, as one can check from the
description of the boundedness region of M = A [1,2], initiated in [30] and improved in

[3]-

Let Tg and T; be the single-scale and multi-scale triangle averaging maximal op-
erators defined in (12) and (13) respectively. Also, let R(7g) be the LP improving
boundedness region of Tg, namely

R(Te) :=={(1/p,1/q,1/r): 1 <p,q < o0,r>0,1/p+1/q>1/r

(66)
and Tg : LP — LY — L" is bounded}.

As in the proof of Proposition 5.1, by interpolating the continuity estimates for T (E)
at L? x L? — L? given by Corollary 3.11 with its LP improving bounds, we get the
following proposition.

Proposition 5.3. Let E C [1,2] with upper Minkowski dimension 8 and let d > 4 + j.
Then the following continuity estimates hold for any point (1/p,1/q,1/r) € int(R(TE)).
There exists v > 0 such that



36 T. Borges et al. / Journal of Functional Analysis 288 (2025) 110694

1Te(f =t e + 1 Te(f, 9 — o)l SIRPfllellgllze,  VIR[ <1. (67)

Moreover, under the same hypothesis there exist vi,v2 > 0 such that

Te(f — [, 9 — Tha9)]

L Sl 2 Lr||g|lLa, 1 ) 2 .
S [l R Fl e N9 Vb <1, Vlhe| <1.  (68)
Again by the arguments in [37] and [5] we have the following corollary.

Corollary 5.4 (Sparse bounds for Tj). Let E C [1,2] with upper Minkowski dimension
B, and let d > 4 + 5. Then, for any (1/p,1/q,1/r) € int(R(Tg)) with r > 1 and
p,q < 1, one has sparse domination for T with parameters (p,q,v'). That is, for any
f,9,h € C°(R?), there exists a sparse family S such that

(T2 M S Y Nasldeathlaral (69)

Qes

Remark 5.5. Observe that in the corollary above we only claim sparse bounds for suf-
ficiently large dimensions d > 5 in the case 8 € [0,1) and d > 6 in the case 8 = 1,
due to the constraints in our continuity estimates Corollary 3.11. Although a version of
[37] claimed continuity estimates and sparse bounds in all dimensions d > 2 for the case
E = {1} and E = [1,2], there is unfortunately an error in the proof (more precisely in
the proof of their continuity estimates). In personal communication with the authors of
[37], we have learned that an upcoming amended version of their paper will prove con-
tinuity estimates, hence sparse bounds, for the triangle averaging operator in the case
E = {1} and E = [1,2] in high enough dimensions, in contrast to all dimensions d > 2 as
originally claimed. Our result improves on their new dimensional restrictions by lowering
the threshold to d > 5 in the lacunary case E = {1} and d > 6 in the full case E = [1,2],
and is new in other cases of E. In dimensions d = 2, 3,4, continuity estimates, and in
turn sparse domination for the maximal triangle operator, remain open questions.

Lastly, we can also define the LP improving region associated to the biparameter-like
bilinear maximal operator Aﬁ‘ﬂl By

RO (u, By, Bs) = {(1/p,1/q,1/7): 1 < p,g < o0,7 >0, 1/p+1/qg>1/r

@) (70)
and Ay p, + LP x L9 — L" is bounded}

Recall that in Corollary 4.3 we proved continuity estimates for the biparameter like
single-scale operator AI(—L2)E1 B, &b L? x L? — L?. By multilinear interpolation continuity
estimates hold at LP x L — L" for any point (1/p,1/q,1/r) € int(R® (u, E1, E3)) and
the following sparse bounds corollary follows.

Corollary 5.6 (Sparse bounds for MLQ)EIE2) Let Fy, Ey C [1,2] with upper Minkowski
dimensions B, and By respectively. Suppose m is an a-admissible with 2a > d + (1 + Ps.
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Then, for any (1/p,1/q,1/r) € int(R® (i, Ev, Ey)) with v > 1 and p,q < r, one has
sparse domination for MS)El g, With parameters (p,q,r'). Namely, for any f,g,h €
Cs°(RY), there exists a sparse family S such that

(M, 1, (F:0). W] S DD awl)eahar@l- 1)

QeS

6. Some Lebesgue bounds for Ay, g, M g and their biparameter variants

As in the previous section we will restrict ourselves to the case m(&,n) = [i(€,n) where
 is a compactly supported finite measure in R??. Throughout the section we assume s
is a-admissible and F C [1,2] is a dilation set with upper Minkowski dimension .

6.1. Hélder bounds for M g in the Banach case

In this subsection we prove some Holder bounds LP x L? — L" with 1/p+1/¢=1/r
and 1 < p,q,r < oo. We do so by making use of the known bounds for linear versions of
such maximal operators. The proof is inspired from that of Proposition 3 in [6], where

they deal with the case E = [1,2].

Proposition 6.1 (Holder Banach bounds for My, g and its biparameter variants). If 2a >
d+ 3, then

Mup: LP x L9 — L7 (72)
foralll <p,g<ooandl/r=1/p+1/q < 1. Moreover, if 2a > d + max{p1, B2} then

the same Hdélder Banach bounds hold true for the biparameter variants M?El B, and

Mbip o
BBy

Proof. We first observe that for any 1 < p < oo one has

Mg LP x L — LP.

To see this, first observe that the case p = oo is trivially true. Next, let us assume
1<p<oo. Forge L™,

Mu(f,9)(@) < gllso supsup / Fla - 2ty)] duly, 2).
leZ teFE

For any t € E, and | € Z, by using that the function constant 1 in R?, has Fourier
transform 1(n) = do(n), we get
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/Ifx—t2’ Y dpu(y, = /|fx—tzl 1z — 122) dyu(y, 2)

/ | F1(£)d0(n)(t2', t24m) e = (M) dedn

/Ifl A(E21€, 0)e2i7 € de

Consider the sublinear operator

fn—>M]%f( := sup sup /f t2§0 2’”I£d§
I€Z tEE

Observe that MY is bounded on LP for all 1 < p < oco. That is indeed the case for
2a > d + 8 by an application of Theorem B in [20] for the multiplier m(§) = (¢, 0)
which has decay |0“m/(§)| Sa (14 (£])~* for any multi-index a.

That is enough to get the claimed bound since

M (fDlle S Mgl IMEADIle < Ngllzell .
Symmetrically one can also show
Mp g L x LT — L1,
for all 1 < ¢ < oo. Hence by interpolation M, g satisfies Holder bounds of the form
Mpp: LP x LT = L7

forall1<p,g<ocoand 1/r=1/p+1/q<1.
The proof above implies our claim for the biparameter case since one will have

MOt LP X L — LP
for any 1 < p < oo as long as 2a > d + 1, and

MO g L x LI L9
forany 1 < ¢ < oo aslong as 2a >d+ (2. O
6.2. Some LP improving bounds for the single-scale A

The goal of this subsection is to give a partial description of the boundedness re-
gion R(u, E) of the operator A g. We already know from Proposition 6.1 and The-
orem 1.1 that if i is a-admissible with a sufficiently large, namely 2a > d + 3, then
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Fig. 2. Region for pairs (1/p,1/q) such that ||A.,, gllLrxLi—r2 < oo given by Proposition 6.2 in the case
a<d+ 8.

the region R(u, F) contains at least the interior of the convex closure of the points
(0,0,0),(0,1,1),(1,0,1) and (1/2,1/2,1/2). Since we actually have Sobolev smoothing
estimates at L? x L? — L2, we can do better, by using Sobolev embedding theorems
which will lead to L? improving bounds of the form Ay g : LP x L9 — L? with p,q < 2.
In fact, the same bound holds for the general multiplier m, not only the case m = ji. We
state and prove the result below in this generality.

Proposition 6.2 (Bounds for A, g and Ag?El,Ez with target space L?). Suppose m is
a-admissible up to order 1 with 2a > d + 3. If 2a < 2d + 3, then

App: LP x LY — L? (73)

for 2:1255 < p,q < 2 with % + é <14 2‘;;5 (Fig. 2). If 2a > 2d + 3, (73) holds for
1<pg<2andl/p+1/q<3.

Moreover, if m is a-admissible up to order 2 with 2a > d+51+82 and 2a < 2d+ 31+ 32,
then

AR i IP XL L

for% <p,g<2 with%—l—% < %—I—W. While if 2a > 2d + (51 + B2, then
AR IP XL L

f0r1<p,q§2with%+%< %

Remark 6.3.In the case m = [, by Proposition 6.1 and the trivial inequality

Ane(f.9)(®) < My e(f,g)(z), we also know that A, p : L? x L — L? and
App: L x L? — L2 In the case a < d+ g, interpolation implies Ay g : LP x L9 — L?
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Fig. 3. Colored region represents the pairs (1/p,1/q) such that || Az g|lrxre—r2 < 0o given by Remark 6.3
in the case a < d + g (For interpretation of the colors in the figure(s), the reader is referred to the web
version of this article.)

for any (5, 7) in the interior of the convex closure of the points (3,0), (0, 3), (28 1)
and (3, 2adﬂ) and in the closed segment connecting (3,0) and (0, 3) (Fig. 3).

Proof of Proposition 6.2. The second claim for A, g follows from the first by setting
a =d+ (/2 in the first claim, so let us assume a < d + g
By the duality between H® and H ~°, we have

11l e+ = sup{(f, g)r=: g € SR), ||lgllm= < 1}.

For 0 < s < d/2, Sobolev embedding implies that H* embedds in L% for g5 = di‘és (see

Theorem 1.3.5 in [27], for example). Hence, for 0 < s < d/2 and 1/¢s + 1/¢} =1,

2d
. < ;= »s : 4
7= S U = I eoe, o = s (74)
Since 2a < 2d+ 3 one has 22=9=8 < 4. So from Theorem 1.1 and (74), we get for any
0<s< 2 Qd B
Am,E fag LZg f —s
I (£, 9)ll 1f1la (75)
S I llzes llgllz>
for ps = d+2 . Therefore,
A LP x L* — L? (76)
for any 2 ,6 < p < 2. Similarly, Theorem 1.1 and inequality (74) also imply
Apmp: L? x L — L? for 2d <q<2 (77)
mes 2a — 3 -7
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Interpolating (76) and (77) we get the claimed LP improving bounds.

In the biparameter case, we are again reduced to just checking the case 2a < 2d +
81+ B2. For any 0 < s < w, it follows from Corollary 4.2 combined with the
Sobolev embedding in (74) that

2
AR, 5. (F D2 S 1< lglze S Iflze-

gl (78)

for ps = That means that

d+2s
||A7(73?E1,E2||LP><L2—>L2 < 0o
for m < p < 2, and similarly,
HAEVQL?EI,EZHL2><L7—>L2 < 00
for m < q < 2. The claimed bounds then follow from interpolation. O

6.3. Hélder bounds for My g from the sparse bounds

In this subsection we finally prove Theorem 1.8. It will be a consequence of the
Lebesgue bounds that have been obtained so far in the previous two sections and the
Lebesgue Hélder bounds for M, g that can be obtained as a consequence of the sparse
bounds for M, g given by Corollary 1.7. Note that, as usual, the sparse bounds in fact
imply stronger weighted norm inequalities for multilinear A, weights. Since the deduction
is standard, we omit those corollaries in this article, while only discuss the unweighted
case for comparison with earlier results in this section.

Proof of Theorem 1.8. Let (1/pg,1/qo) be a point in the interior of the triangle deter-
mined by the points (l, l), (2‘12(/3, 2) and (17 Za— B) Observe that (1/po,1/q0,1/2) is
a point in int(R(y, E)) with 7o :== 2 > 1 and 1/p0,1/q0 > 1/2 = 1/rg, according to
Proposition 6.2. So by Corollary 1.7 we know that M g satisfies sparse bounds with
parameters (po, go,2). By [12, Proposition 1.2] it follows that My g : L? x L9 — L"
is bounded for any 0 < 1/p < 1/py, 0 < 1/q < 1/qp with max{1/p,1/q} > 0 and

1/r =1/p+1/q. By varying over all (1/po,1/qo) we get Holder boundedness for M, g
for (1/p,1/q) satisfying 0 < 1/p,1/q < 2
recall that from Proposition 6.1 we have Holder bounds for any 0 < 1/p+1/¢q < 1, which
by interpolation leads to the claimed bounds. O

Remark 6.4. The proof above can be adapted to get Holder Lebesgue bounds for
Mu £, .E,- Suppose that 2a > d+ (1 + (2, and that we are in the case 2a < 2d+ 1 + (.

By using Proposition 6.2 for ALQ)EI 5, combined with Corollary 5.6, we have (po, qo,2)
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sparse bounds for Mf}% g, for any (1/po,1/qo) in the interior of the triangle deter-

1), (W, 1) and (3, W) That, combined with [12, Proposition

1.2] and the Banach bounds from Proposition 6.1 lead to Hoélder Lebesgue bounds

mined by (

M;(12)‘El B, ¢ LP X LT — L#¥a for any (1/p,1/q) in interior of the convex closure of
the points

(100, 0.0, 0.1), (5,252 ) ana (220220

6.4. Lifting LP improving bounds for A, r to quasi-Banach Holder bounds

Before wrapping up the section, we prove some results that further enlarge the known
region of LP improving bounds for the single-scale operator A; g. These bounds are
not needed in the proof of Theorem 1.8, hence are presented separately here. The sharp
boundedness region for A; g, even in the case 1 = 02q—_1, remains an interesting open
question. We will derive further information on the region by studying some examples
in the next section.

Through a minor variant of an argument in [29, Proposition 4.1], for all the single-
scale bilinear operators of the form Ay g, where p is a compactly supported finite surface
measure, we can deduce bounds of the form LP x LY — L", 1/r = 1/rg(p,q) :=1/p+1/q,
whenever we know an L? improving bound of the form L? x L? — L™ with 1/p+1/q >
1/ro and rg(p,q) < 1.

The idea is that, due to the local nature of this single-scale maximal operators (in
the sense that A, g(f,g)(x) only depends on values of f,g at points in a fixed-size
neighborhood of x), we can morally reduce to being on a domain of finite measure and
use the fact that L™ embeds into L"®9 for such a domain.

Proposition 6.5. Let A be a mazimal bilinear Radon transform of the form Ap g or
AELQ,}%,& associated to a finite measure u compactly supported in a ball of radius K > 1,
and whose dilation sets are subsets of [1,2]. If A : LP x LT — L™ continuously, with
1/ro <1/p+1/q and 1/p+1/q > 1 then A: LP x LT — L" continuously, for 1/r =
1/p+ 1/q with the operator norm controlled by C'(K)||AllLrxLa—Lro -

Proof. We can tile Euclidean space by unit cubes {Q;};cz« and let S denote the set
of integer lattice points in the box centered at the origin with sidelength 10K in Eu-
clidean space, i.e. S = Z% N [-5K,5K]%. By sub-linearity and by the compact support
assumptions for u we get

r 1/r

1A, g) 1o < / S Y AU xengxarsa) (@) | de

seS ez
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r 1/r
e | [ |3 atxanaaaie)| do|
ses lez?
because S is finite and L" is a quasi-Banach space. Now using that r < 1,
r 1/r
S| 13 Atrxan o) do
ses leZd
1/r
< 3 [ txonsxa )@l ds
seS \lezd

Notice that each term in the sum is an integral of a function whose support has
measure at most some universal constant C'(K). Thus, we can replace by the L™ norm
at the cost of just a multiplicative constant. Thus,

1/r
JA(f, @)l < CE)D | D IAF X 9XQi+) 7o
seS \lezd
1/r
< CK)|AllLoxraszro Y | D I1x@ 50 lloxg+sllia

seS \leZd

< C(K)||Al|Lrxra—srro |l fllellgllLe,

where the last step follows from the fact that #5 < K? and Holder’s inequality, since
LD = > 1eza If Xz O

In Proposition 6.2 we obtained some LP improving bounds for A, g : LP x LY — L?,
which satisfy 1/p +1/¢ > 1. Combining that with the lifting to Holder bounds given by
Proposition 6.5 and interpolation, we conclude the following.

Proposition 6.6 (L? improving bounds for A, g). Suppose [i is a-admissible with 2a >
d+ 5. If a < d+ /2, then

.Aﬂ,E : LP x LY — L" (79)

for 2(12513 < p,q <2 with %—Fé < %—F 2“2;’6 and any 2 > r > rg(p,q) where rg = rg(p,q)
is given by the Hélder relation 1/rg =1/p+1/q.
Moreover, if a > d+ /2, the hypotheses on p,q become 1 < p,q <2 and 1/p+1/q <

3/2.
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An analogue of this result obviously holds for the biparameter operator .Aﬁgl B, a8
well, as a consequence of Proposition 6.2 and Proposition 6.5. We leave the exact range
of boundedness exponents to the interested reader.

Remark 6.7. In the particular case of E = {1} and p = pug where S is a compact smooth
surface in R?¢ with k > d nonvanishing principal curvatures, by lifting LP improving
bounds with target space L', [15] proved in Proposition 1.2 Holder bounds A, 1 : LP x
L1 — Lru®a) for 1 <p,q<2,3/2<1/p+1/q=1/ryg < 1+k/2d. For comparison, the
proposition above gives Holder bounds for 1/p,1/q € [1/2,1) with 1/p+1/q=1/rg <
1/2+4k/2d. These two bounds are not directly comparable to each other. However, in this
particular case (E = {1}, fi = fig), one can improve the result in [15] by interpolating
it with our earlier Proposition 6.1 to derive the better bounds for A, ;1 for all Hélder
exponents (p, q,7g(p,q)) with p,¢ > 1 and 1/p+1/q < 14+ k/2d. In particular, in general
we do not expect the region obtained by Proposition 6.6 above to be sharp, but it does
give us nontrivial interesting LP improving bounds for a large class of bilinear multipliers.

7. Some necessary conditions for the boundedness of Ag

In this section, we will focus on the case u = 0241, i.e., the normalized spherical
measure in the unit sphere $2¢=1 ¢ R2?. We extend to the bilinear setting some examples
from the works [1] and [5] to derive necessary conditions for boundedness of the single-
scale bilinear maximal operator Ag := As,, , g in terms of the (upper) Minkowski and
Assouad dimensions of the fractal dilation set E C [1,2]. This seems to suggest that,
similar to the linear case, a complete description of the LP improving region of Ag may
depend on both the upper Minkowski and Assouad dimensions of the set E.

In general, all of the examples fall into the same regime: we choose f, g to be indicator
functions of suitable regions (balls, boxes, or annuli) with dimensions depending on a
parameter §. Then, we can argue that Ag(f, g)(«) has a lower bound (in terms of ¢) on
some region whose measure we understand. Testing the bound

IA(f, )l < 1 11pll9llq (80)

and sending J to 0 gives necessary relations among the exponents p, ¢, r. For convenience,
we will denote A(r,s) = B(0,s)\ B(0,7) = {z € R?: r < |z| < s} for annuli centered at
the origin.

Proposition 7.1. Suppose E has upper Minkowski dimension . If Ag : LP x LY — L"
continuously then we have
1 1 < 2d—1 1-p

p ¢S Td T ar

(81)

Proof. Let f = g = xp(o,cs) be indicator functions of balls where C' is a sufficiently
large universal constant, such as C' = 100. By the slicing formula, we have that
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Ap(f.0)(x) = sup / g(x—twﬁ / f(x—t\/l—ywz)dod_l(z)) (1= [y[2)@=2/2 gy,

B4(0,1)

and we will denote this quantity by k(x) for simplicity. First, we illustrate the case
E = {1} and set t = 1. For any x such that ||z| — %| < 4, we claim that we have a

lower bound k(x) 2 4241, Fix such an x. We get a lower bound to k(z) by restricting
the integration in y to a small delta ball around z, say B := {y € R%: |y — 2| < 6}.
Observe that implies that |y| is 28 close to 1/v/2 so we have that ||y| — /1 — [y[?| < 100.

Also, for any y € B one has (1 — |y|2)% is comparable to 1 and g(x —y) =1, so

/ / f(@ = VI P2)doar(2) | dy

The inner integrand contributes about §4~! for such values of 3 because we can guarantee
that f(z—ty/1 — |y[2z) = 1 for all z € S4~1 that is cé-close to Ty € S4=1 and a geodesic
ball of radius § inside S¢~! has measure comparable to 6¢~1. Thus, k(x) > |B2|09~1 ~
§24=1 for x on an annulus of measure about § (see Fig. 4 for illustration).

Now, we consider varying t € E for a general dilation set E C [1,2]. Instead of a single
annulus {z € R?: [v/2|z| — 1| < v/26}, we get about N(E,§) many annuli on which the
lower bound k(z) > 4§21 holds, namely if {I; }N(E ) is a minimal cover of E with &

closed intervals then we get the lower bound in the set
{z e R: V2| e LN PO 1)
by using that if v/2|x| € I;, one can take t; € I; N E to compute
k(z) = Ai (f,9)(2) 2 / / f@—ti/1 = yP2)do(2) | dy 2 6B, |
y:ly—371<6 et

so we have the lower bound on a set of measure about N(E,d)d. We put this into the
bound (80) to deduce

SHLGY T N(E, §)VT < §4/Pgdla. (82)

Recalling the definition of upper Minkowski dimension, for any € > 0 there exists a
sequence of § > 0 converging to zero such that

N(E,8) > §=P+e

Now, comparing the exponents in (82) gives the claim. O
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Fig. 4. In the case E = {1}, y lives in a § ball around = so that  — y lies in B(0, C§). For such a fixed v,
the dashed circle illustrates the sphere along which z — /1 — |y|?z varies when z varies over S4=1. This

intersects B(0, C¢) for z in a § cap around ﬁ € 5971, which has spherical measure about §¢71.

Remark 7.2. In the case of the multi-scale maximal operator Mg, we recall that the
Holder condition 1/p+1/q = 1/r is necessary by scaling. Since Ag(f,g) < Mg(f,g), by
replacing 1/p+ 1/¢q with 1/r in the necessary condition for Ag given by Proposition 7.1
we get that the condition

1 2d —1
P e
r—d-1+8" (83)

is necessary for Mg to be LP x LY — L" bounded.

The geometry behind the previous proof in the simplest case of E = {1} is given in
Fig. 4.

The idea is that when the slicing formula is applied to indicator functions, it computes
the measure of intersections of spheres and balls centered at x with the sets in the
indicator functions. The figure demonstrates the ¢ = 1 case, but as described in the
proof, the general case would consist of more concentric brown annuli consisting of x

values where k(x) has a lower bound §24-1.

Proposition 7.3. If Ag : LP x L9 — L" continuously then we have

+-<1+

S

bR
Q| =
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Proof. By the equality Ai(f,g)(z) = Ai(f(t),g(t-))(%), it is clear that
| A¢llzrxra—srr < oo if and only if || A rpxresrr < oo. Take any point tgp € E.
Since A:,, < Ag any necessary condition for Ay, it is also necessary for Ag. The fact
that 1/p+1/q < 1+ d/r is necessary for the boundedness of A; is written out in detail
in [30, Proposition 3.3]. Although that proposition only considers the case E = [1,2],
their argument derives a lower bound for M = Aj1,2) by replacing the supremum over
t € [1,2] by t =1 and thus applies equally well to the single scale average A;. O

Proposition 7.4. Suppose E has upper Minkowski dimension 5. If Ag : LP x LY — L"
continuously then we have

1 1 24 1 23
iy 85
p q  d+1 r( (d+1)> (85)

Proof. The case E = [1, 2] was obtained in [5]. One can get this more general condition
by adapting their Knapp-type example. In their example they define

Ry = [-C1V35,C1V0]7! x [~C16,C16], Ry = [~CaV/5,CoV/8]471 x [~Cad, Cyd],
R3 = [7\/57 \/g}dil X [%7\/5},

where say C1,Cy = 100, and 9§ is sufficiently small. For f5 = xr, and g5 = xr, they
showed that

M(fs,96)(x) Z 6

for all z € Ry = {x = (¢/,24) € R" T x R: 2’ € [-V/6,V5]?" and 2z, € [1,2]}.
For a more general E we replace Rg with

Rg ={x= (l’l7$d) eER*™I xR: 2 € [—\/S7 \/S}d_l and \/ﬁxd S l_IZ-Ai(lE’é)Ii},

where {I;: 1 <i < N(E,J)} is a minimal collection of closed intervals of length |I;| = §
covering E. For each i take t; € ENI;. Then for x € R¥ with v/2x,4 € I;, one can check
that (Fig. 5)

Ap(f5,95)(x) = Ar,(f5,95) () 2 677 657 = &%,

That combined with |R¥| ~ & “s* N(E, §)§ is enough to finish the computation. One can
also get this proposition as a corollary of Proposition 7.5 in the case § = v since the
upper Assouad dimension of F will be at least 5. O

If all we know is that dim(E) = 8, by combining the Proposition 7.1, 7.3 and 7.4 we
get that for
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N(E,¥)
copies

Fig. 5. Picture illustrating the proof of Proposition 7.4. The gray region represents the region Rf for  where
the lower bound for Ag(fs,gs)(x) holds. The empty rectangle represents the support of fs or gs, and the
dashed circle represents the spherical averages that will show up in the slicing. The key is that for = in a
shaded rectangle, we can find a radius in our dilation set so that dashed circle intersects a substantial part
of the empty rectangle.

I AElLrx s < 00 (86)
it is necessary that
1 1 . [d—1 1-8 d—-1 1d+1-28\ d
- +-<1 14—, —7. 87
p+q_ +m1n{ a " ar ’d—|—1<+r d—1 )’r} (87)

In the case f = 1 this coincides with the necessary conditions obtained in [5] for
the case E = [1,2]. To get more refined necessary conditions we will need to take into
account the Assouad dimension of F, which already played an important role in [1]. Let
v = dim4(FE) be the Assouad dimension of E. One can check that when v > § the
necessary condition given in Proposition 7.5 is more restrictive than the one above and
they coincide when v = .

Proposition 7.5. Suppose E C [1,2] is an Assouad reqular set with (upper) Minkowski
dimension 8 and (upper) Assouad dimension 7. Let oo = B/~ and let Cd_; =14+a(d-
1)/2. If Ag : LP x LY — L" continuously then we have

%+égcd,a{a(d—1)+1+%(d—ﬁ—@)}. (88)
That is,

11 B(d—1) (d—B)2y—(d—-1)B\ 1

5*5“*5@1)%*( Bd-1)+2 )F

In particular, when 8 =, one recovers inequality (85).
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Proof. From the definition of Assouad spectrum and the fact that E is Assouad regular,
for any € > 0 there exists § > 0 (which can be shrunk smaller if desired) such that we can
find an interval I C [1,2] of length §'=%/7 with the property N(E N1,8) > (|I|/5)7~*.
For convenience, we will denote « = 8/y < 1 and o = §9/2 > §1/2 Tt hs,r be the
indicator function of the set

{0 ya) € R : Iy = 27/%r| < 6.1y'| < o)
where 7 is the left endpoint of I. Then we have the estimate
hsrllp 2 (" 16)"/

Cover £ NI by a minimal collection of pairwise disjoint d-intervals 7, which has cardi-
nality comparable to N(E N I,d). Consider the region

-1
R= {(a:’,a:d): |2'| < c¢§/o,xq = —=(t — 1), for some t € U J}
V2 JeT

We claim that for any x € R, we have the lower bound
.AE(h(;J, h571)($) Z 2426, (89)

The calculation is analogous to the earlier one in the proof of Proposition 7.4; by using
the slicing formula, one sees that balls centered in R with radius chosen suitably intersect
the support of ks in a set of measure about 0?~1§ and spheres intersect in a set of area
about 0?1, Here, choosing the radius suitably means taking the radius to be the closest
value in F to the z4 coordinate and then rescaling by %

We notice that R has volume about (6/0)?"*dN(ENI,§). Putting the lower bound (89)
into (80) leads to the inequality

1

02425 (/)4 16N(E N 1,6))"" < (o9 1o) 0 (90)
Recalling that o = §%/2, the claim follows by comparing the exponents and doing routine
algebraic manipulation. O

Putting Propositions 7.1, 7.3, and 7.5 all together we get the following necessary
conditions for the boundedness of Afg.

Proposition 7.6 (Necessary conditions for boundedness of Ag). Let E C [1,2] be a As-
souad regular set with dimy (E) = 8 and dimy(E) = . If Ag : LPx LY — L" is bounded,
then

IA
AR

S 1 + Miinear (du r, 67 ’7)7

S| =
Q=
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where

d-1 1-8 Bd-1) +(d—ﬂ)2v—(d—1)61§}_

inear d17 ) = i ) i
mtinear(dh 7, 8,7) mm{ d " dr Bd-1)+2y Bld—1)+2y 7

The example of Proposition 7.1 can also be adapted to give necessary conditions in
the biparameter setting.

Proposition 7.7. Suppose Eq, Es have upper Minkowski dimensions (1, 2. Define the

quantity
B* = dlmM(ElEQ(E% + E%)_l/g).
If Afsi)dfl,El,EQ : LP x L1 — L continuously then we have
1 1 2d-1 1-p*
i1l < 91
P + q~ d + dr (01)

Proof. Let f = g = xp(o,c5) and denote h = Ag};hEz(f, g). Mimicking the single

parameter case, we want to find the set of  where we have the lower bound |h(z)| 2

§24=1_ Since we now have parameters t;,ts, the region where this lower bound holds

contains all x such that there exist ¢t1 € Ey,ts € E9 and some |y| € (0, 1) satisfying

lz| = ti|y| = ta/1 — |y|?.

Really, the first equation just needs to hold up to § error so that we can compute the
d-covering number and take a limit. Substituting the second equation necessitates that

12+ 12
()=
2

and so we can write the solution as

ly| solves the quadratic equation

Thus, the values of |z| that are admissible is a C'é-neighborhood of points of the form

tit
E%:{—ii—wﬁu%me@}

Vi + 13

Call 8* = dimy/(E*), which depends on Ej, Fy. Testing this against the boundedness
condition gives
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62d—161/7'N(E*76)1/7- < 6d/p6d/q (92)
which leads to the inequality

d d 1-p*
did ggqytzfite
P q r

We can send € to 0 in the limit, so dividing through by d gives the claim. O
Similarly, we can adapt Proposition 7.4 to the biparameter setting.

Proposition 7.8. Suppose E1, E5 have upper Minkowski dimension 31,32 and let 5* be
as in the previous proposition. If Ag : LP x LY — L" continuously then we have

1 2d 1 23*
et (arn) )

1
p
Proof. Once again, we can define

Ry = [~C1V3,C1V3]4 1 x [~C16,C18], Ry = [~CaV/§,CoV/6]% 1 x [~C48, Cod),
N(E*,8)
Ry =[-Vo, Vo' x| |J L

=1

where we may take C7,Cy = 100, ¢ is sufficiently small, and {I;} is a minimal collection
of d-intervals covering the set E*. Then for x € R3, one can check that

Ap(fs,95)(x) 2 8¢
That combined with |Rs| ~ 6“2 N(E*,6)d is enough to finish the computation. O

Remark 7.9. In fact, Proposition 7.5 also generalizes to the biparameter setting, with
58,7 being replaced by 5* and +* respectively, the Minkowski and Assouad dimensions
of the set E*. The details are very similar to the other biparameter arguments we have
given, so we leave them to the interested reader.

In fact, we can say more about $* by making use of Lemma 2.1. The dimension of E*

EfES . . -2 —2\—1 .
77 iz Which can be rewritten as (E7"+ E;“)~"'. Notice

that if we freeze one of the sets Fq or Fo and vary the ¢;s in the other set, we immediately

is equal to the dimension of

see from Lemma 2.1 that $* > max{f;, f2} since dimension is preserved under taking
reciprocals, squaring, and translation by a constant. This lower bound can be achieved,
such as in the case that 57 = 1. On the other hand, given two sets Sy, So, their sumset
satisfies the dimension bound

dimM(Sl + 52) < dlmM(Sl) + dlmM(Sg)
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Thus, the description

max{f1, Sz} < B* < B1 + B2

is the best we can say for an arbitrary pair of sets Fy, E5 C [1,2].
Data availability
No data was used for the research described in the article.
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