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1. Introduction

Let d ≥ 1. Given a bounded measurable function m : R
2d → C, we consider the 

associated bilinear multiplier operator defined as

Tm(f, g)(x) =

ˆ

R2d

f̂(ξ)ĝ(η)m(ξ, η)e2πix·(ξ+η) dξdη, x ∈ R
d, (1)

for all f, g ∈ C∞
0 (Rd).

We say a bilinear multiplier m : R
2d → C has a-admissible decay up to order k, k ≥ 0, 

if m ∈ Ck(R2d) and there is a > d
2 such that

|∂αm(ξ, η)| �α
1

(1 + |ξ| + |η|)a
, (2)

for all multi-indices α = (α1, . . . , α2d) with |α| ≤ k.

In the case where m = μ̂ where μ is a compactly supported finite measure on R2d

satisfying

|μ̂(ξ, η)| � 1

(1 + |ξ| + |η|)a
(3)
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with a > d
2 , we will simply say that μ̂ is a-admissible.

As observed in [39], if μ is a compactly supported finite measure on R2d satisfying 

the decay estimate (3), then for any multi-index α ∈ Z
2d
≥0, one also has |∂α(μ̂)(ξ, η)| �α

(1 + |ξ| + |η|)−a. Hence, if μ̂ is a-admissible of order 0, it is automatically a-admissible 

up to order k for any k ∈ N.

Multipliers like m defined above are sometimes referred to as multipliers of limited 

decay in literature. For instance, a class of such bilinear multipliers has been studied by 

Grafakos–He–Honzík in [23] where an L2 × L2 → L1 bound of its multi-scale maximal 

function is obtained for a-admissible multipliers up to order �d
2 � + 2 with a > d

2 + 1. 

These operators are natural bilinear analogues of a class of linear operators studied by 

Rubio de Francia [39] that includes the spherical maximal functions (whose boundedness 

have been obtained by Stein [45] and Bourgain [7]) as a special case. Note that, even 

though the assumption a > d
2 in our definition of admissible is necessary for the proof 

strategies in this paper, it is unclear whether it is necessary for the results to hold true.

In this paper, we study boundedness properties of single-scale maximal functions of 

such bilinear multiplier operators over a fractal dilation set, as well as their corresponding 

multi-scale maximal functions. In addition to Lp bounds, we also obtain Sobolev norm 

bounds and sparse bounds, which in turn imply vector valued estimates and weighted 

norm inequalities with respect to the Muckenhoupt Ap weights for such operators. We 

give the definition of these operators below after discussing a few motivating examples 

of the multiplier m.

One important class of bilinear multiplier operators with admissible multipliers as 

defined above is given by bilinear averaging operators over smooth compact surfaces. 

Let S ⊂ R
2d be a (2d − 1)-dimensional compact smooth hypersurface without boundary 

such that k of the (2d − 1) principal curvatures do not vanish, where k > d. Let μS be 

the normalized natural surface measure on S and define the (scale 1) averaging operator

Aμ̂S ,1(f, g)(x) =

ˆ

S

f(x − y)g(x − z) dμS(y, z). (4)

Then it is easy to see that Aμ̂S,1 is a bilinear multiplier operator Tm associated to 

m(ξ, η) = μ̂S(ξ, η) as defined above. It is well known [34] that in that case all the 

derivatives of μ̂S satisfy

|∂α(μ̂S)(ξ, η)| ≤ Cα
1

(1 + |(ξ, η)|)k/2
, for all |α| ≥ 0, (5)

hence the multiplier μ̂S is k
2 -admissible. Similarly, after fixing a scale t ∈ [1, 2], one can 

define the (scale t) averaging operator

Aμ̂S ,t(f, g)(x) =

ˆ

S

f(x − ty)g(x − tz) dμS(y, z), (6)
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which is obviously an operator of the form Tmt
with k

2 -admissible multiplier mt(ξ, η) =

μ̂S(tξ, tη).

As a particular case, when d ≥ 2 and μS = σ2d−1, the normalized spherical measure 

on the unit sphere S2d−1 ⊂ R
2d, then for every t > 0, mt(ξ, η) = σ̂2d−1(tξ, tη) is an 

a-admissible multiplier with a = 2d−1
2 > d

2 and we introduce the notation

At(f, g)(x) := Aσ̂2d−1,t(f, g)(x) =

ˆ

S2d−1

f(x − ty)g(x − tz) dσ2d−1(y, z), x ∈ R
d.

Here, At is usually referred to as the bilinear spherical averaging operator at scale t > 0. 

This operator and its associated maximal functions were first studied by Oberlin [36] and 

Geba–Greenleaf–Iosevich–Palsson–Sawyer [21] respectively. They have received a great 

amount of attention since then; see e.g. [6,23,28] and the references therein. The sharp 

range of Lp × Lq → Lr bounds for its associated full maximal function has only recently 

been obtained, by Jeong–Lee [30] in d ≥ 2 and Christ–Zhou [18] and Dosidis–Ramos [19]

independently in d = 1 (see also [18] and [4] for the corresponding sharp result in the 

lacunary case). The sharp Lp × Lq → Lr boundedness region for At itself remains an 

open question.

Another important bilinear averaging operator we will be interested in is the triangle 

averaging operator of radius t > 0, namely,

Tt(f, g)(x) =

ˆ

I

f(x − ty)g(x − tz) dμ(y, z), (7)

where μ is the natural normalized surface measure on the submanifold of R2d given by

I = {(y, z) ∈ R
2d : |y| = |z| = |y − z| = 1}, d ≥ 2. (8)

This operator is closely related to the three-point configuration problems (e.g. of the 

Falconer distance type) and has been studied recently in [26,14,29,37,38]. This situation 

requires a more delicate analysis, as the submanifold I is codimension 3 rather than codi-

mension 1, and the Fourier transform of the surface measure has worse decay properties. 

For instance, it was proved in [38] that for any multi-indices α, β

|∂α
ξ ∂³

η μ̂(ξ, η)| ≤ Cα,³ (1 + min{|ξ|, |η|}| sin θ|)− d−2
2 (1 + |(ξ, η)|)− d−2

2 , (9)

where θ denotes the angle between ξ and η. If one tries to bound this independently 

of θ, the best one can say is that the right hand-side of (9) is bounded above by (1 +

|(ξ, η)|)− d−2
2 . Since d−2

2 < d
2 , μ̂ does not fall in our class of admissible multipliers and 

our general theorems later do not apply to it. To get decay bounds for the single-scale 

triangle averaging operators we will need a more careful analysis than the one for the 

decay bounds for single-scale maximal operators associated to admissible multipliers 
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since we have to take into account the dependence in θ in the decay of the multiplier. 

We resolve this issue by applying an additional angular decomposition of the multiplier, 

and we extend our main boundedness results to such triangle averaging operators.

With these examples in mind, we are ready to introduce one of the main objects of 

the study in this paper: a class of general single-scale bilinear maximal operators defined 

as

Am,E(f, g)(x) = sup
t∈E

|Tmt
(f, g)(x)|, (10)

where mt(ξ, η) = m(tξ, tη), and E ⊂ [1, 2] is a nonempty fractal set of dilation scales. Our 

first goal is to understand its boundedness region on the Lebesgue spaces Lp × Lq → Lr

and similarly establish bounds for the associated multi-scale maximal operator

Mm,E(f, g)(x) := sup
l∈Z

sup
t∈E

|Tm
t2l

(f, g)(x)|. (11)

Note that the operator Am,E is local in t, it is hence not scaling invariant and is ex-

pected to satisfy Lebesgue space bounds outside the Hölder range. Such bounds are often 

referred to as the Lp improving bounds.

In the case that E = {t}, we oftentimes write Am,{t} = Am,t for short, similarly 

Mm,{t} = Mm,t. In the case that m = σ̂2d−1, these become the more familiar bilinear 

spherical maximal functions and we adopt the notation AE := Aσ̂2d−1,E and ME :=

Mσ̂2d−1,E .

When m = μ̂ for μ being the natural normalized surface measure on the triangle 

manifold I, for the sake of clarity and being in line with existing literature, we denote 

these operators as

TE(f, g)(x) := sup
t∈E

|Tt(f, g)(x)| (12)

and

T ∗
E (f, g)(x) := sup

l∈Z

sup
t∈E

|Tt2l(f, g)(x)|, (13)

respectively.

Obtaining the sharp bounds of Am,E and TE for general E is a very challenging 

question, and even in some special cases, our knowledge is far from complete. For the 

particular case that m = σ̂2d−1 and E = [1, 2], the study of Lp improving bounds 

outside the Hölder range for M̃ := Aσ̂2d−1,[1,2] was initiated in [30] for d ≥ 2 and has 

been improved very recently in [3]. In d = 1, nothing outside the Hölder range is known 

(see [18,19] for some Hölder bounds of Aσ̂1,[1,2] followed as a consequence of the same 

bounds for the full bilinear circular maximal function). The only other case of E that 

partial results are known is E = {1}, see [29,4,15] and the references therein for some 
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boundedness results when m = σ̂2d−1, d ≥ 2 and [44,36,9] for the case m = σ̂1, d = 1. 

The recent estimates in [15] also extend to the case m = μ̂S where S ⊂ R
2d is a compact 

smooth surface with k ≥ d nonvanishing principal curvatures. Even in these special cases, 

very few sharp bounds are known for E = {1} beyond the Hölder range (e.g. the sharp 

Lp improving range for A1 into L1, obtained in [29]).

In this paper, we initiate the study of this question for a general dilation set E ⊂ [1, 2]

and obtain a partial description of the boundedness region. Even in the case m = σ̂2d−1, 

the sharp Lp improving region for Am,E is still unknown, as is the case for TE as well. 

We use Sobolev smoothing estimates for Am,E at L2 × L2 → L2 as a key tool in proving 

the sufficient conditions. For the case m = σ̂2d−1, we will also provide some necessary 

conditions for the parameters p, q, r for which Aσ̂2d−1,E : Lp × Lq → Lr is bounded for a 

general E ⊂ [1, 2]. These necessary conditions match the necessary conditions given in 

[30,5] for the case E = [1, 2].

In the linear setting, similar questions have been investigated by a large group of 

authors over the decades. The model operators there are the spherical maximal function 

over a fractal dilation set, defined as

AE,linearf(x) := sup
t∈E

∣∣∣∣∣∣

ˆ

Sd−1

f(x − ty) dσd−1(y)

∣∣∣∣∣∣
,

and its corresponding multi-scale maximal function similarly as defined in (11). In the 

particular case that E = {1}, the multi-scale maximal function becomes the classical 

(linear) lacunary spherical maximal function whose boundedness on Lp, 1 < p ≤ ∞
is well known (see [11,17]). While in the case that E = [1, 2], its multi-scale maximal 

function is the famous (linear) spherical maximal function, whose Lp bound was obtained 

by Stein [45] in d ≥ 3 and Bourgain [7] in d = 2. The sharp Lp improving region for 

A{1},linear follows from a classical result in [35,46], and the case A[1,2],linear are obtained 

in [42,43]. For the general dilation set case, the systematic study of this class of linear 

operators began in the 1990s, see [48,20,49,47] for the Lp → Lp boundedness of AE,linear

and some refinement. It was only a few years ago that an almost complete understanding 

of its sharp Lp improving region was finally achieved, see [1,40]. As it turned out, this 

region is closely related to various notions of dimension of the dilation set E. In this 

paper, we explore in the bilinear setting a similar relation between the boundedness 

region of the averaging operator and the dimension of the dilation set E, which seems 

to be the first result of its kind for bilinear operators. In many results that we prove 

below, there is an explicit relation between the allowed class of multipliers, more precisely 

the allowed admissibility of the multipliers (given by the decay parameter a), and the 

dimension of the dilation set E. Such a phenomenon also showed up in the linear setting, 

see [20].

Our second goal is to establish sparse bounds for Mm,E and to link the Lp improving 

bounds Lp ×Lq → Lr of Am,E with r > 1 to sparse bounds of Mm,E. To this end, a ma-

chinery that resolves this problem is successfully developed in this paper. More precisely, 
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we will prove Sobolev smoothing estimates for the single-scale operator Am,E, getting 

as corollaries continuity estimates for Am,E at the exponent (2, 2, 2) (to be made precise 

below, see Theorem 1.1 and Corollary 3.7), which, via previously developed methods 

(see [37,5]), will imply a sparse bound (p, q, r′) for Mm,E at the same exponent (p, q, r)

where the Lebesgue space bound of Am,E holds true.

Sparse domination has been a rich and rapidly growing area in harmonic analysis 

since its birth less than ten years ago. It was originally developed for the study of the A2

conjecture on sharp weighted norm inequalities for Calderón-Zygmund operators [33,31], 

but has shown to be a powerful tool in deriving many more properties of different types 

of operators. As it is impossible to exhaust the list of important prior works in the the-

ory, here we only mention a few that are most closely related to the subject matter of 

our article, and refer the interested reader to the great amount of references listed there 

for further results on sparse domination. In [32], sharp sparse bounds for the linear full 

and lacunary spherical maximal functions were derived, as a consequence of continuity 

estimates of their corresponding single-scale operator A{1},linear and A[1,2],linear respec-

tively. This then motivated many followup sparse domination results for other Radon 

type operators in the linear setting, see for instance [16,8,10], and in particular for the 

multi-scale maximal operator associated to AE,linear obtained in [1].

In the bilinear setting, only a few sparse domination results are known for operators in 

or related to the class of operators that we are interested in here. More precisely, sparse 

bounds for the full and lacunary bilinear spherical maximal functions were obtained in 

[5,37], see also [41] for a similar operator but with a product structure, and [37] for the 

triangle maximal operators. A common framework all these works follow is a machinery 

(adapted from [32] to the bilinear setting) that turns continuity estimates for single-

scale operators to sparse bounds for multi-scale maximal functions. This is also the 

framework we will follow in this paper, which, as mentioned above, reduces the matter 

to obtaining satisfactory single-scale estimates. We refer to Section 2 for the precise 

definitions of sparse family and sparse domination and to Corollary 1.7 below for the 

precise statement of one of our sparse domination theorems for Mm,E. It is also well 

known that sparse bounds have many applications. For example, they imply immediately 

quantitative weighted norm inequalities (with respect to multilinear Muckenhoupt Ap

weights in our case, and include the Lebesgue space bounds as a special case), endpoint 

estimates, and vector valued estimates. We do not explore the sharp consequences in 

these directions, see for instance [12,41,37] for some of these applications.

The sparse bounds for Mm,E that we obtain have close connections and applications 

to the aforementioned first goal of the paper, i.e. obtaining Lebesgue space bounds for 

Am,E and Mm,E . As was already briefly mentioned above, a key feature of our machinery 

is that it reduces the understanding of the sparse bounds for Mm,E to that of the sharp 

Lp ×Lq ×Lr boundedness region of Am,E . Indeed, as mentioned above, a key step in our 

proof of the sparse bounds for Mm,E is obtaining continuity estimates for Am,E. Once 

such a continuity estimate (at some exponent) is obtained, the framework becomes very 

flexible: any improvement in the known boundedness region of Am,E would translate 
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to improvement in known continuity estimates by using multilinear interpolation, hence 

leads to improvement in the range of known sparse bounds as well as the implied Lebesgue 

or weighted norm estimates. Our paper is the first effort to prove continuity estimates 

for multilinear operators associated with a general dilation set E. In the special case 

m = σ̂2d−1 and E = {1} or E = [1, 2], continuity estimates have been studied before 

simultaneously in [37] and [5]. In [37] they prove continuity estimates for E = {1} and 

E = [1, 2] for all except some low dimensional cases, namely for d ≥ 2 for E = {1} and 

for d ≥ 4 for E = [1, 2]. In [5], continuity estimates are obtained for Mσ̂2d−1,[1,2] for 

any dimension d ≥ 2 and for Mσ̂2d−1,{1} in d = 1. The proof of continuity estimates in 

[37] uses the L2 × L2 → L2 boundedness criteria developed in [25] and it relies heavily 

on the decay of the multiplier σ̂2d−1, but only leads to continuity estimates for M̃ in 

sufficient large dimensions d ≥ 4 (also see Remark 3.9 for more details on how that 

strategy compares to the one in this paper). The continuity estimates for Mσ̂2d−1,[1,2] in 

[5] do not use the decay of σ̂2d−1 as directly, but in turn rely on the slicing technique 

developed in [30] for the sphere so it seems harder to generalize to the setting that we 

are aiming for in this work.

Moreover, by applying our sparse bounds and exploiting some other techniques such 

as Sobolev embedding, we obtain a wide range of Lebesgue bounds for Mm,E, which 

includes the particular case L2 × L2 → L1 (see Theorem 1.8). Such bounds in such 

generality seem to be the first of their kind, except for the special cases Mσ̂2d−1,{1} and 

Mσ̂2d−1,[1,2], for which better estimates were already known ([30,18,4]). In the bilinear 

setting, obtaining the L2×L2 → L1 (and other Lebesgue bounds) is in general much more 

challenging compared to obtaining the natural L2 → L2 bound for linear operators, which 

oftentimes follows from Plancherel. They are also of intrinsic interest, since they imply 

among many other things almost everywhere convergence results. For example, suppose 

m = μ̂S and E = [1, 2], then our Lebesgue bound of Mμ̂S,[1,2] (included as a special case 

of Theorem 1.8 below) implies immediately the convergence of Aμ̂S ,t(f, g)(x) to f(x)g(x), 

for almost all x as t → 0, for f, g ∈ L2. In this sense, our work naturally extends the 

line of investigation (e.g. [23]) of Lebesgue bounds of bilinear analogues of classical linear 

operators of averaging type studied by Stein [45], Bourgain [7], Rubio de Francia [39], and 

others (see also [20] for an extension to the fractal dilation set setting of [39] in the linear 

case). And our boundedness results, which improve previously best known estimates in 

many directions (see Remark 1.9 below for a more detailed discussion), further confirms 

the strength and versatility of the sparse domination technique.

It turns out that in order for the argument deducing sparse bounds from the continuity 

estimates to work, we will need the extra assumption that m is given by the Fourier 

transform of a compactly supported finite measure μ in R2d. In that case the bilinear 

multiplier operator Tmt
becomes a bilinear average over a compact set, namely

Tmt
(f, g)(x) =

ˆ

f(x − ty)g(x − tz) dμ(y, z). (14)
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The motivating example Aμ̂S ,t as defined in (6) obviously falls into this category, but 

the theory is more general than that as μ is not necessarily given as a surface measure 

at all.

We also extend the continuity estimates and sparse bounds to the triangle averaging 

operator TE and its maximal function T ∗
E , partially resolving an issue that showed up in 

[37] and improving the previously best known results in this direction; see Remark 5.5

for more details.

In addition, we extend the aforementioned estimates regarding Am,E and Mm,E to 

their slightly larger biparameter analogues, which were even less understood in literature 

before. We obtain interesting sufficient and necessary conditions for their boundedness 

regions. Given two dilation sets E1, E2 ⊂ [1, 2], define

A(2)
m,E1,E2

(f, g)(x) := sup
t1∈E1,t2∈E2

|Tmt1,t2
(f, g)(x)|,

where

Tmt1,t2
(f, g)(x) =

ˆ

R2d

f̂(ξ)ĝ(η)m(t1ξ, t2η)e2πix·(ξ+η) dξdη.

We are interested in the boundedness of A(2)
m,E1,E2

and its multi-scale maximal function 

defined as supl∈Z supt1∈E1,t2∈E2
|Tm

2lt1,2lt2
|.

In the case that E1 = E2 = [1, 2] and m = σ̂2d−1, the slicing technique developed 

in [30] applies equally well to these biparameter operators and implies that they sat-

isfy Lp improving bounds (as well as continuity estimates and sparse bounds, if one 

follows a similar strategy as in [5]). However, once one considers the general case of 

E1, E2, such slicing becomes significantly less effective even when m = σ̂2d−1, making 

the study of these biparameter bilinear operators very different from their one-parameter 

counterparts. We will show how our one-parameter arguments can be extended to the 

biparameter setting in Section 4.

Moreover, we obtain sparse domination for the multi-scale maximal function of 

A(2)
m,E1,E2

. This may come as a surprise since it is well known that sparse domination 

techniques usually do not work well in the multiparameter setting (see for instance [2]

for a counterexample to sparse bound of the multiparameter strong maximal function). 

However, our situation here is in fact slightly different. Since both E1, E2 are localized 

at roughly the same scale, the multi-scale maximal function in some sense only exhibits 

one-parameter behavior when it comes to sparse domination. Hence, the key step in 

the proof of the sparse bound is the continuity estimate for the single-scale operator 

A(2)
m,E1,E2

. We defer the statements of these results to Section 4.
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Main results of the article

We will be looking for Sobolev smoothing bounds with decay for the pieces of the 

single-scale operator Am,E , which in turn will lead to continuity estimates at the expo-

nent (2, 2, 2), that is, bounds of the form

‖Am,E(f − τh1
f, g − τh2

g)‖L2 � |h1|´1 |h2|´2‖f‖L2‖g‖L2 ,

where |h1|, |h2| < 1, ³1, ³2 > 0 and τh(f)(x) = f(x −h), whose corollaries include sparse 

domination results for Mm,E .

Sobolev smoothing bounds for bilinear single-scale Radon type operators are not only 

interesting in their own right but also are particularly useful for deriving continuity 

estimates. In our previous work [5], a different Sobolev bound H−µ × L2 → L1 was 

obtained for Aσ̂1,1 in the d = 1 case, which played a key role in obtaining continuity 

estimates of it and then sparse bound for its corresponding multi-scale maximal operator 

there. However, the proof of that Sobolev bound required strong machinery (a trilinear 

smoothing estimate from [18]) and the passage from it to continuity estimates was also 

quite involved. In contrast, the Sobolev estimates obtained in this paper (for example 

Theorem 1.1 and 1.3) are of the form H−s1 × H−s2 → L2. An advantage of this type 

of result is that it enables us to have a much simplified derivation of the continuity 

estimates and allows for general dilation sets E and general bilinear multipliers (with 

admissible decay) in the theory. For comparison, the slicing method applied in [5] relies 

heavily on the geometry of the sphere and the dilation set [1, 2], and does not seem to 

yield a natural extension to the more general situations.

Our first theorem concerns the Sobolev norm bound of the single-scale maximal opera-

tor Am,E associated to a fractal subset E ⊂ [1, 2]. Here and throughout this paper for s ≥
0, H−s consists of functions f : R

d → C for which ‖f‖H−s := ‖(1 +|ξ|2)−s/2f̂(ξ)‖L2 < ∞.

Theorem 1.1 (Sobolev smoothing bounds for Am,E). Let d ≥ 1 and E ⊂ [1, 2] with upper 

Minkowski dimension dimM (E) = β. Let m be an a-admissible bilinear multiplier up to 

order 1, and assume 2a > d + β. Given s1, s2 ≥ 0, with s1 + s2 < 2a−d−³
2 , then

‖Am,E(f, g)‖L2 � ‖f‖H−s1 ‖g‖H−s2 . (15)

In particular, Am,E : L2 × L2 → L2.

Remark 1.2. For the case E = {1} one can actually include the endpoint s1+s2 = 2a−d−³
2

and assume the weaker condition that m is an admissible multiplier of order 0. See 

Proposition 3.1.

In the case of the single-scale bilinear maximal operators associated to triangle aver-

ages TE , the Sobolev smoothing estimates for TE can be stated as follows.
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Theorem 1.3 (Sobolev smoothing bounds for TE). Let E ⊂ [1, 2] with upper Minkowski 

dimension dimM (E) = β, and assume that d > 4 + β. Given s1, s2 ≥ 0, with s1 + s2 <
d−4−³

2 , then

‖TE(f, g)‖2 � ‖f‖H−s1 ‖g‖H−s2 . (16)

Remark 1.4. Observe that in the result above since d is integer, the restriction d > 4 + β

becomes d ≥ 5 for β ∈ [0, 1), and d ≥ 6 for β = 1.

The Sobolev smoothing theorem for Am,E (Theorem 1.1) easily implies continuity 

estimates for Am,E which we state and prove in Corollary 3.7. Similarly, Theorem 1.3

implies continuity estimates for TE (see Corollary 3.11). For the case m = μ̂S where S

is a (2d − 1)-dimensional compact smooth hypersurface without boundary in R2d with 

k non-vanishing principal curvatures, Theorem 1.1 combined with the decay bounds in 

inequality (5) immediately implies the following corollary.

Corollary 1.5 (Consequences for the surface averaging operator Aμ̂S,E). Let d ≥ 2 and 

E ⊂ [1, 2] with upper Minkowski dimension dimM (E) = β.

(1) For m(ξ, η) = σ̂2d−1, if d > 1 + β (which is always the case for d ≥ 3), then, one 

has that

‖AE(f, g)‖L2 � ‖f‖H−s1 ‖g‖H−s2 , (17)

for any s1, s2 ≥ 0 with s1 + s2 < d−1−³
2 . Moreover, continuity estimates like (40)

and (41) hold true for any d ≥ 2 and β ∈ [0, 1], except possibly for (d, β) = (2, 1).

(2) For a (2d − 1)-dimensional compact smooth surface S in R2d without boundary such 

that k of the (2d − 1) principal curvatures do not vanish, and k > d + β, one has 

that

‖Aμ̂S ,E(f, g)‖L2 � ‖f‖H−s1 ‖g‖H−s2 , (18)

for any s1, s2 ≥ 0 with s1 + s2 < k−d−³
2 . Moreover, continuity estimates like (40)

and (41) hold true for any d ≥ 2 and k > d + β.

Remark 1.6. Observe that in the second part of Corollary 1.5, since k is an integer the 

assumption k > d +β can be described as k ≥ d +1 for β ∈ [0, 1), and k ≥ d +2 if β = 1.

In the particular case that m = μ̂ where μ is a compactly supported finite measure in 

R
2d, the continuity estimates given by Corollary 3.7 will imply sparse bound corollaries 

for multi-scale bilinear maximal functions Mμ̂,E which we state below.

For such a given measure μ, consider the Lp improving boundedness region of Aμ̂,E , 

namely
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R(μ, E) := {(1/p, 1/q, 1/r) : 1 ≤ p, q ≤ ∞, r > 0, 1/p + 1/q ≥ 1/r

and Aμ̂,E : Lp × Lq → Lr is bounded}.
(19)

Corollary 1.7 (Sparse bounds for Mμ̂,E). Let E ⊂ [1, 2] with upper Minkowski dimen-

sion β and let μ be a compactly supported finite Borel measure in R
2d. Suppose μ̂ is 

an a-admissible bilinear multiplier, with 2a > d + β. Then, for any (1/p, 1/q, 1/r) ∈
int(R(μ, E)), with r > 1 and p, q ≤ r, one has sparse domination for Mμ̂,E with pa-

rameters (p, q, r′). That is, for any f, g, h ∈ C∞
0 (Rd), there exists a sparse family S such 

that

|〈Mμ̂,E(f, g), h〉| �
∑

Q∈S
〈f〉Q,p〈g〉Q,q〈h〉Q,r′ |Q|. (20)

These sparse bounds have interesting weighted bounds consequences. In particular, 

we can get the following Lebesgue bounds for Mμ̂,E , by combining these consequences 

in the Lebesgue measure case and some further techniques.

Theorem 1.8 (Lebesgue bounds for Mμ̂,E). Let E ⊂ [1, 2] be a subset with upper 

Minkowski dimension β and μ̂, the Fourier transform of a compactly supported finite 

Borel measure in R2d that is a-admissible. Suppose 2a > d + β. Let R(β, a) ⊂ [0, 1]2 be 

the interior of the convex closure of the points

(1, 0), (0, 0), (0, 1),

(
1

2
,

2a − β

2d

)
, and

(
2a − β

2d
,

1

2

)
.

Let L1 be the open segment connecting (1, 0) to (0, 0), and L2 be the open segment 

connecting (0, 0) to (0, 1). Then for any (1/p, 1/q) ∈ R(β, a) ∪L1 ∪L2 ∪{(0, 0)}, we have

Mμ̂,E : Lp × Lq → Lr

for r given by the Hölder relation 1/r = 1/p + 1/q (see Fig. 1).

Remark 1.9. Even though the study of Lebesgue bounds usually precedes that of the 

sparse bounds for many operators, in our case, Theorem 1.8 in fact seems to be the first in 

literature about Lebesgue bounds of such bilinear averaging operators for general dilation 

set E and improves many previously best known results for special cases of Mμ̂,E . For 

example, in the case of Mμ̂,[1,2], Theorem 1.8 implies that it maps L2 × L2 → L1 as 

long as 2a > d + 1. This improves [23, Theorem 1.1], where the same bound is proved 

under the stronger assumption 2a > d + 2. (Note that the result in [23] does have the 

advantage that it applies to general multipliers m rather than only m = μ̂. Hence our 

bound is not fully comparable to theirs. Similar pair of results, where one applies to 

more general multipliers while the other has stronger bound, exist in the linear setting 

as well, see [39].)
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1
q

1
p

1

1

1
2

1
2

2a−β
2d

2a−β
2d

1

p
+

1

q
=

1

2
+

2a−β

2d

Fig. 1. Region of pairs (1/p, 1/q) for which Theorem 1.8 guarantees ‖Mμ̂,E‖Lp×Lq →Lr < ∞ for 1/r =
1/p + 1/q.

For the case where μ = μS , the normalized surface measure in a smooth compact 

surface with k non-vanishing principal curvatures, one can check that

• Theorem 1.8 implies

Mμ̂S ,[1,2](f, g)(x) = sup
t>0

∣∣∣∣∣∣

ˆ

S

f(x − ty)g(x − tz) dμS(y, z)

∣∣∣∣∣∣

is bounded from L2 × L2 → L1, for k ≥ d + 2. This improves a result from [13, 

Theorem 2] where they proved Mμ̂S,[1,2] : L2 × L2 → L1 for k ≥ d + 3.

• For E ⊂ [1, 2] with upper Minkowski dimension β ∈ [0, 1), as long as k ≥ d + 1, one 

has Mμ̂S ,E : L2 × L2 → L1. In the particular case E = {1}, this was already known 

as a consequence of [24, Theorem 1.4].

We defer the statements of the necessary conditions for boundedness of Am,E, the 

Sobolev smoothing estimates, continuity estimates, and sparse domination for the bipa-

rameter analogues of Am,E , Mm,E to later sections.

Outline of the article

In Section 2, we collect various fundamental facts about Minkowski and Assouad 

dimension, as these are the right notion of size for the dilation set in this setting. We 

also recall the definition of sparse domination of a bilinear operator. We start Section 3 by 

studying Sobolev smoothing estimates for Am,E, single-scale bilinear Fourier multipliers 

with admissible decay that are associated with a general fractal dilation set E ⊂ [1, 2], 

giving a proof of Theorem 1.1. In our setting, the amount of smoothing depends on the 

geometry of the hypersurface, since having more non-vanishing principal curvatures gives 

better decay for the Fourier transform of the surface measure. We then extend this to 
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the case of the single-scale triangle operator TE, proving Theorem 1.3. As a corollary, 

these yield continuity estimates for Am,E and TE which will later be a key ingredient in 

proving sparse bounds for their associated multi-scale operators. In Section 4, we make 

a digression to the even more general biparameter setting, where each argument of the 

operator has its own associated dilation set. In Section 5, we interpolate our previous 

continuity estimates with known bounds to get a larger range of continuity estimates, 

allowing us to deduce sparse bounds (such as Corollary 1.7) for Mμ̂,E and its biparameter 

analogue, and the triangle maximal operator T ∗
E by appealing to standard techniques. In 

Section 6, we explore various Lebesgue bounds including Theorem 1.8 for single-scale and 

multi-scale maximal operators; many arguments in this section are robust enough to also 

deduce bounds for the biparameter variants, as well. Finally, in Section 7, we consider 

several examples to get necessary conditions for our single-scale maximal operators.
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2. Some notation and preliminaries

2.1. Notions of dimension for fractal sets

Given E ⊂ [1, 2], we denote by N(E, ́ ) the minimal number of closed intervals of size 

´ that one needs to cover the set E. The upper Minkowski dimension of E is given by

dimM (E) = lim sup
µ→0

log(N(E, ´))

log(1/´)
. (21)

Equivalently, if the upper Minkowski dimension of E is dimM (E) = β, then β is the 

smallest nonnegative number for which it holds that

N(E, ´) ≤ C¶´−(³+¶), for all ´ < 1 and µ > 0.

Note that to show dimM (E) ≤ dimM (E′), it is enough to show that there exists a 

universal constant C > 0 such that N(E, ́ ) ≤ CN(E′, ́ ) holds. In our special setting, 

we can establish some lemmas about how certain algebraic operations affect the upper 

Minkowski dimension.

Lemma 2.1. Let E ⊂ [1/2, 2]. Then the upper Minkowski dimension of E, E2, 
√

E and 

1/E all agree, where f(E) for a function f denotes

f(E) = {f(t) : t ∈ E}.
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Proof. These all follow immediately from the invariance of upper Minkowski dimension 

under bi-Lipschitz maps. �

Understanding how the upper Minkowski dimension can change is more compli-

cated for binary operations on sets. We do have the following well-known bounds for 

a Minkowski sum of two sets.

Lemma 2.2. Let E1, E2 be bounded subsets of R. Then

max{dimM (E1), dimM (E2)} ≤ dimM (E1 + E2) ≤ dimM (E1) + dimM (E2).

Proof. The lower bound is trivial since for any fixed ti ∈ Ei, we have that t1 + E2 ⊂
E1 + E2 and dimM (t1 + E2) = dimM (E2) by translation invariance, so dimM (E2) ≤
dimM (E1 + E2) and then argue symmetrically. The upper bound can be seen by taking 

´-covers of E1, E2 of the form {Iµ(a
(k)
i )}N(Ek,µ)

i=1 for k = 1, 2 where Iµ(a) stands for a 

closed interval of length ´ centered at a and getting a cover of E1 + E2 via intervals of 

the form {I2µ(a
(1)
i1

+ a
(2)
i2

)}N(Ek,µ)
ik=1 . Since Euclidean space is doubling, we can cover this 

by a collection of ´-intervals with cardinality at most CN(E1, ́ )N(E2, ́ ). �

The equality case for the upper bound is achieved when taking (for instance) E1 =

{1 − n−1 : n ∈ N} and E2 = {1 − n−2 : n ∈ N}.

There is another notion of dimension that is useful in the theory of the linear spherical 

maximal operators (see [1,40]). The upper Assouad dimension of E is given by

dimA(E) = inf
µ0>0

lim sup
µ→0

sup
I:|I|∈(µ,µ0)

log(N(E ∩ I, ´))

log(|I|/´)
, (22)

where I is a subinterval of [1, 2]. Equivalently, we say the upper Assouad dimension is ³

if ³ is the smallest nonnegative number such that there exists ´0 > 0 and Cε > 0 for all 

µ > 0 such that for any ´ < ´0 and interval I whose length satisfies ´ < |I| < ´0, we have

N(E ∩ I, ´) ≤ Cε(´/|I|)−´−ε.

In fact, more generally, one can study the Assouad spectrum dimA,θ(E) for 0 ≤ θ < 1

which is given by

dimA,θ(E) = lim sup
µ→0

sup
I:|I|=µθ

log(N(E ∩ I, ´))

log(|I|/´)
. (23)

We direct the reader to the paper [1,40], which discusses all of these concepts and their 

role in understanding linear spherical maximal functions with fractal dilation sets. We 

will make use of the notion of an Assouad regular set, which is a set E where dimA,θ E =

dimA E for all 1 > θ > 1 − dimM E
dimA E .
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In [1, Theorem 2] they show that if E ⊂ [1, 2] is Assouad regular with dimM (E) = β

and dimA(E) = ³, then for

AE(f)(x) := sup
t∈E

∣∣∣∣
ˆ

f(x − ty)dσ(y)

∣∣∣∣ ,

a necessary condition (and also sufficient up to some boundary pieces as shown in [1], 

[40]) for the boundedness of AE : Lp → Lr is that (1/p, 1/r) ∈ Q(β, ³), the closed convex 

hull of the points Q1 = (0, 0), Q2(β) = ( d−1
d−1+³ , d−1

d−1+³ ), Q3(β) = ( d−³
d−³+1 , 1

d−³+1 ) and 

Q4(³) = ( d(d−1)
d2+2´−1 , d−1

d2+2´−1 ). This region has the following precise description:

Q(β, ³) =

{(
1

p
,

1

r

)
∈ [0, 1]2 such that

1

r
≤ 1

p
≤ mlinear(d, r, β, ³)

}
(24)

for

mlinear(d, r, β, ³)

= min

{
d − 1

d
+

1 − β

dr
,

β(d − 1)

β(d − 1) + 2³
+

(d − β)2³ − (d − 1)β

β(d − 1) + 2³

1

r
,

d

r

}
.

In particular, for Assouad regular sets there is an interesting connection between the nec-

essary conditions we get in Proposition 7.6 with the sharp (up to boundary) boundedness 

region of AE in the linear case.

2.2. Sparse families and sparse bounds

Let S denote a (possibly infinite) collection of cubes in Euclidean space. We say that 

it is η-sparse (for some 0 < η ≤ 1) if for each Q ∈ S there exists a subset EQ such that 

|EQ| ≥ η|Q| and the EQ’s are pairwise disjoint. We say that a bilinear or bisublinear 

operator B has a (p, q, r) trilinear sparse domination if for all functions f, g, h ∈ C∞
0 (Rd), 

there exists an η-sparse family S such that

|〈B(f, g), h〉| �
∑

Q∈S
|Q|〈f〉Q,p〈g〉Q,q〈h〉Q,r. (25)

On the left side of the equation, the brackets denote the standard L2 inner product, and 

on the right side, we are using the notation

〈f〉Q,p =

⎛
¿ 1

|Q|

ˆ

Q

|f(x)|p dx

À
⎠

1/p

.
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3. Sobolev estimates and continuity estimates at L2 × L2 → L2

This section focuses on proving Sobolev smoothing estimates of the form H−s1 ×
H−s2 → L2, s1, s2 ≥ 0 for single-scale maximal bilinear operators of the form Am,E, 

associated to an admissible multiplier m and a fractal subset E ⊂ [1, 2], and similar 

bounds for the maximal bilinear averaging operator TE associated to triangle averages. 

First we deal with the special case E = {1} because the argument is simpler and the result 

is slightly stronger. We then move to the study for general E with (upper) Minkowski 

dimension β by passing through the proof of decay bounds for pieces of Am,E. We then 

adapt the methods to the study of triangle averaging operators TE by a more careful use 

of the decay of the associated multiplier.

3.1. Single-scale bilinear operators associated to admissible multipliers: case E = {1}

We start by proving Sobolev type bounds of the form H−s1 × H−s2 → L2, with 

s1, s2 ≥ 0 for the bilinear multiplier operator Tm defined in (1) and we show how that 

implies continuity estimates for it. This corresponds to the special case that the dilation 

set E = {1}. Note that in this special case, we do not need to assume that ∇m has any 

decay, all we need is enough decay for m.

From the definition (1), for any ϕ ∈ S, one has

ˆ

Rd

Tm(f, g)(x)ϕ̂(x) dx =

ˆ

R2d

f̂(ξ)ĝ(η)m(ξ, η)ϕ(ξ + η) dξdη

=

ˆ

Rd

ˆ

Rd

f̂(ξ − η)ĝ(η)m(ξ − η, η)ϕ(ξ) dξdη.

Hence, the Fourier transform of Tm(f, g)(x) is given by

F(Tm(f, g))(ξ) =

ˆ

Rd

f̂(ξ − η)m(ξ − η, η)ĝ(η) dη. (26)

We first have the following Sobolev estimate.

Proposition 3.1 (Sobolev bounds for Tm). Assume d ≥ 1 and that m is an a-admissible 

multiplier up to order 0, for some a > d/2. Then, for any s1, s2 ≥ 0 satisfying s1 + s2 ≤
2a−d

2 , one has

‖Tm(f, g)‖L2 � ‖f‖H−s1 ‖g‖H−s2 . (27)

In particular, it follows that Tm : L2 × L2 → L2.
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Proof of Proposition 3.1. From the inequality ‖f‖H−s ≤ ‖f‖H−s′ if s′ ≤ s, once we 

know the proposition for s1 + s2 = 2a−d
2 we actually get Tm : H−s1 × H−s2 → L2 for 

all s1, s2 ≥ 0 with s1 + s2 ≤ 2a−d
2 . So let us assume s1 + s2 = 2a−d

2 . In this case, s1

and s2 can not both be zero, so we can also assume by symmetry that s1 > 0. Using 

Plancherel’s Theorem, followed by Minkowski’s and Hölder’s inequality, we get

‖Tm(f, g)‖L2 =‖F(Tm(f, g))‖L2

=

∥∥∥∥
ˆ

f̂(ξ − η)ĝ(η)m(ξ − η, η) dη

∥∥∥∥
L2

ξ

≤
ˆ

|ĝ(η)|
∥∥∥f̂(ξ − η)m(ξ − η, η)

∥∥∥
L2

ξ

dη

=

ˆ

|ĝ(η)|
(
ˆ

|f̂(ξ)m(ξ, η)|2 dξ

)1/2

dη

≤
ˆ |ĝ(η)|

(1 + |η|)s2

(
ˆ |f̂(ξ)|2

(1 + |ξ| + |η|)2s1+d
dξ

)1/2

dη

≤
(
ˆ |ĝ(η)|2

(1 + |η|)2s2
dη

)1/2
(
¨ |f̂(ξ)|2

(1 + |ξ| + |η|)2s1+d
dηdξ

)1/2

,

where the second to last step in the above follows from the decay assumption on the 

symbol m. We observe that for any ξ ∈ R
d,

ˆ

Rd

1

(1 + |ξ| + |η|)2s1+d
dη �

1

(1 + |ξ|)2s1
.

Indeed, using polar coordinates,

ˆ

Rd

1

(1 + |ξ| + |η|)2s1+d
dη =cd

∞̂

0

rd−1

(1 + |ξ| + r)2s1+d
dr

�
1

(1 + |ξ|)2s1+d

1+|ξ|
ˆ

0

rd−1 dr +

∞̂

1+|ξ|

r−2s1−1 dr

�(1 + |ξ|)−2s1 .

Coming back to our estimate,

‖Tm(f, g)‖L2 � ‖g‖H−s2

(
ˆ

|f̂(ξ)|2 1

(1 + |ξ|)2s1
dξ

)1/2

� ‖g‖H−s2 ‖f‖H−s1 . �
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In the case that Tm is a bilinear averaging operator over smooth compact surfaces, 

using the known decay estimate for m = μ̂S , i.e. α = 0 in inequality (5), we immediately 

derive the following results.

Corollary 3.2. Let d ≥ 2, and m(ξ, η) = σ̂2d−1. Then, for any s1, s2 ≥ 0 with s1 + s2 ≤
d−1

2 , one has

‖A1(f, g)‖L2 � ‖f‖H−s1 ‖g‖H−s2 . (28)

More generally, let d ≥ 2, for a (2d − 1)-dimensional compact smooth surface S in R2d

without boundary such that k of the (2d − 1) principal curvatures do not vanish, and 

k > d, one has that

‖Aμ̂S ,1(f, g)‖L2 � ‖f‖H−s1 ‖g‖H−s2 , (29)

for any s1, s2 ≥ 0 with s1 + s2 ≤ k−d
2 .

Remark 3.3. For the particular case E = {1} and m = σ̂2d−1, the corollary above 

was obtained independently in [22], even though they stated it slightly differently in 

terms of what it implies for the pieces of the operator A1. Their result can recover 

‖A1(f, g)‖L2 � ‖f‖H−s1 ‖g‖H−s2 for s1, s2 ≥ 0 and s1 + s2 < d−1
2 .

Back to the general bilinear operator Tm and recall the notation τh(f)(x) = f(x − h)

for any h ∈ R
d. Proposition 3.1 can be used to deduce the following continuity estimate 

for Tm, which plays a key role in deriving the sparse bound for its corresponding multi-

scale maximal operator.

Corollary 3.4 (Continuity estimates for Tm). Assume d ≥ 1 and that m is an a-admissible 

multiplier up to order 0 for some a > d/2. Then there exists ³ > 0 such that

‖Tm(f − τhf, g)‖L2 + ‖Tm(f, g − τhg)‖L2 � |h|´‖f‖L2‖g‖L2 , ∀|h| < 1. (30)

Moreover, under the same hypothesis there exist ³1, ³2 > 0 such that

‖Tm(f − τh1
f, g − τh2

g)‖L2 � |h1|´1 |h2|´2‖f‖L2‖g‖L2 , ∀|h1| < 1, |h2| < 1. (31)

Proof of Corollary 3.4. From Proposition 3.1, with s2 = 0 and s1 = 2a−d
2 , we have

‖Tm(f − τhf, g)‖L2 � ‖f − τhf‖H−s1 ‖g‖L2 =

(
ˆ

|f̂(ξ)|2 |1 − e−2πih·ξ|2
(1 + |ξ|)2a−d

dξ

)1/2

‖g‖L2 .

Let ³ = 1
2min(2a − d, 2) > 0. Then,
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|1 − e−2πih·ξ|2
(1 + |ξ|)2a−d

�

⎧
⎪⎪«
⎪⎪¬

(|h||ξ|)2

(1 + |ξ|)2a−d
≤ (|h||ξ|)2´

(1 + |ξ|)2a−d
� |h|2´ if |ξ| ≤ 1

|h|
1

|ξ|2a−d
� |h|2a−d if |ξ| ≥ 1

|h|
�|h|2´ , for all |h| ≤ 1.

Similarly, one can get continuity estimates with the translation in the second input func-

tion. The proof of (31) follows from a simple adaptation of this argument by applying 

Proposition 3.1 with s1 = s2 = 2a−d
4 for example. Alternatively, by applying the conti-

nuity estimate in each separate input, we know there exists ³1, ³2 > 0 such that

‖Tm(f − τh1
, g − τh2

g)‖L2 � |h1|´1‖f‖1‖g − τh2
g‖L2 � |h1|´1‖f‖L2‖g‖L2

and

‖Tm(f − τh1
, g − τh2

g)‖L2 � |h2|´2‖f‖L2‖g‖L2 .

Multiplying these two inequalities we get

‖Tm(f − τh1
, g − τh2

g)‖2
L2 � |h1|´1 |h2|´2‖f‖2

L2‖g‖2
L2 ,

leading to the desired bound. �

Remark 3.5. The L2 × L2 → L2 approach generalizes easily to the multilinear setting. 

Let � ≥ 2 and assume that

|m(ξ)| � (1 + |ξ|)−a

where ξ = (ξ1, ξ2 · · · , ξ
) ∈ R

d. If 2a > (� − 1)d, then

Tm(f1, . . . , f
)(x) :=

ˆ

S�d−1

f̂1(ξ1)f̂2(ξ2) · · · f̂
(ξ
)m(ξ)e2πix·(ξ1+ξ2+...ξ�) dξ

satisfies

‖Tm(f1, f2, . . . , f
)‖L2 � ‖f1‖
H−

2a−(�−1)d
2

‖f2‖L2 . . . ‖f
‖L2 .

More generally, Tm : H−s1 × · · · × H−s� → L2 for all si ≥ 0 with 
∑


i=1 si ≤ 2a−(
−1)d
2 .

3.2. Single-scale bilinear maximal operators associated to admissible multipliers and 

general dilation sets E ⊂ [1, 2]

In this section, given E ⊂ [1, 2], with a certain (upper) Minkowski dimension 

dimM (E), we are interested in proving Sobolev smoothing bounds and continuity es-

timates for the more general single-scale bilinear maximal operators
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Am,E(f, g)(x) = sup
t∈E

|Tmt
(f, g)(x)| (32)

where mt(ξ, η) = m(tξ, tη). When m = σ̂2d−1 we might simply write AE = Am,E .

Similarly to what is done in [28,4], we start with choosing a radial function ϕ ∈ S(Rd)

such that

ϕ̂(ξ) =

{
1, if |ξ| ≤ 1,

0, if |ξ| ≥ 2.
(33)

Let ψ̂(ξ) = ϕ̂(ξ) − ϕ̂(2ξ), which is supported in {1/2 < |ξ| < 2}. Then

ϕ̂(ξ) +
∞∑

j=1

ψ̂(2−jξ) ≡ 1. (34)

For all i, j ≥ 1 and t ∈ [1, 2], define

T i,j
mt

(f, g)(x) :=

ˆ

R2d

f̂(ξ)ĝ(η)m̂(tξ, tη)ψ̂(2−iξ)ψ̂(2−jη)e2πix·(ξ+η) dξdη

=Tmt
(f i, gj)(x)

(35)

where f̂ i(ξ) := f̂(ξ)ψ̂(2−iξ). If i = 0, replace ψ̂(2−iξ) by ϕ̂(ξ) in the expression above, 

and similarly if j = 0. Then one has

Tmt
(f, g)(x) =

∑

i,j≥0

T i,j
mt

(f, g)(x).

Let us consider the pieces of the operator Am,E given by

Ai,j
m,E(f, g)(x) = sup

t∈E
|T i,j

mt
(f, g)(x)| = Am,E(f i, gj). (36)

Obviously,

Am,E(f, g)(x) ≤
∑

i,j≥0

Ai,j
m,E(f, g)(x).

Recall from Section 2 that N(E, ́ ) denotes the minimal number of closed intervals of 

size ´ that one needs to cover the set E, and that if dimM (E) = β, then

N(E, ´) ≤ C¶´−(³+¶), for all ´ < 1 and µ > 0.

Theorem 3.6 (Decay estimates for the pieces of Am,E). Let d ≥ 1, and let E ⊂ [1, 2] with 

β = dimM E. Let m be an a-admissible bilinear multiplier up to order 1. If 2a > d + β, 

then for any i, j ≥ 0 one has
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‖Ai,j
m,E(f, g)‖L2 � N(E, 2− max{i,j})

1
2 2− max{i,j}a2min{i,j} d

2 ‖f‖L2‖g‖L2 . (37)

In particular,

‖Ai,j
m,E(f, g)‖L2 �¶2− max{i,j}( 2a−d−β−ε

2 )‖f‖L2‖g‖L2 . (38)

Before proving Theorem 3.6, let us discuss how it implies Sobolev smoothing estimates 

and continuity estimates for Am,E (stated in Theorem 1.1 and Corollary 3.7 respectively).

Proof of Theorem 1.1 assuming Theorem 3.6. From Theorem 3.6 we know that for all 

i, j ≥ 0,

‖Ai,j
m,E(f, g)‖L2 �¶ 2− max{i,j}( 2a−d−β−ε

2 )‖f i‖L2‖gj‖L2 ,

where f̂ i(ξ) = f̂(ξ)ψ̂(2−iξ), i ≥ 1, and f̂0(ξ) = f̂(ξ)ϕ̂(ξ). Then,

‖Am,E(f, g)‖L2 �
∑

i,j≥0

‖Am,E(f i, gj)‖L2

�¶

∑

i≥0

‖f i‖L2

∑

j≥i

2−j( 2a−d−β−ε
2 )‖gj‖L2

+
∑

i≥0

∑

j<i

‖f i‖L22−i( 2a−d−β−ε
2 )‖gj‖L2 = I + II.

(39)

Observe that by Hölder’s inequality (first in the sum in j and later in the sum in i),

I �
∑

i≥0

‖f i‖L2

∑

j≥i

2−j(
2a−d−2s2−β−ε

2 )2−js2‖gj‖L2

�
∑

i≥0

‖f i‖L2‖g‖H−s2

⎛
¿∑

j≥i

2−j(2a−d−2s2−³−¶)

À
⎠

1/2

�‖g‖H−s2

∑

i≥0

2−is1‖f i‖L22−i(
2a−d−2s1−2s2−β−ε

2 )

�¶‖f‖H−s1 ‖g‖H−s2

because 2a > d + 2s1 + 2s2 + β. Similarly, by reversing the roles of i and j,

II �
∑

j≥0

‖gj‖L2

∑

i>j

2−i(
2a−d−2s1−β−ε

2 )2−is1‖f i‖L2 � ‖f‖H−s1 ‖g‖H−s2

because 2a > d + 2s1 + 2s2 + β. �
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Corollary 3.7 (Continuity estimates for Am,E). Let d ≥ 1 and E ⊂ [1, 2] with upper 

Minkowski dimension dimM (E) = β. Let m be an a-admissible bilinear multiplier up to 

order 1, and assume that 2a > d + β. Then, there exists ³ > 0 such that

‖Am,E(f − τhf, g)‖L2 + ‖Am,E(f, g − τhg)‖L2 � |h|´‖f‖L2‖g‖L2 , ∀|h| < 1. (40)

Moreover, under the same hypothesis there exist ³1, ³2 > 0 such that

‖Am,E(f − τh1
f, g − τh2

g)‖L2 � |h1|´1 |h2|´2‖f‖L2‖g‖L2 , ∀|h1| < 1, |h2| < 1. (41)

Proof of Corollary 3.7 assuming Theorem 1.1. Since we are assuming 2a > d + β, one 

can take s1 ∈ (0, 2a−d−³
2 ) and s2 = 0 in Theorem 1.1 to say that

‖Am,E(f − τhf, g)‖L2 �‖f − τhf‖H−s1 ‖g‖L2

=

∥∥∥∥
(1 − e2πih·ξ)

(1 + |ξ|)s1
f̂(ξ)

∥∥∥∥
L2

ξ

‖g‖L2 � |h|´‖f‖L2‖g‖L2 ,

for ³ = min{s1, 1} > 0. To bound ‖Am,E(f, g − τhg)‖2 one can apply Theorem 1.1 with 

s1 = 0 and s2 ∈ (0, 2a−d−³
2 ) and for the bound for ‖Am,E(f − τh1

f, g − τh2
g)‖2 it is 

enough to take s1, s2 > 0 with s1 + s2 < 2a−d−³
2 . �

Remark 3.8. The continuity estimates (40) and (41) for the particular case of m = σ̂2d−1

were already known for any d ≥ 2 and β ∈ [0, 1] as a consequence of the continuity 

estimates for M̃ = Mσ̂2d−1,[1,2] in d ≥ 2 at the exponent L2 × L2 → L1 proved in [5]. 

As already observed in there, interpolation leads to continuity estimates at any point 

in the interior of the boundedness region of M̃, and from the partial description of the 

boundedness region for M̃ given by [30], one could check that the point (1/2, 1/2, 1/2)

lives in the interior of the boundedness region for M̃. Therefore, Corollary 3.7 (which, 

when m = σ̂2d−1, holds in all cases of (d, β) except (2, 1)) recovers, as a special case, all 

previously known continuity estimates for M̃ when d ≥ 3.

Remark 3.9. When β > 0, the use of the L2 × L2 → L2 decay bounds for the pieces 

seems more effective for obtaining continuity estimates than using the L2 × L2 → L1

boundedness criteria from [25], since using that one the decay bounds look more like

‖Ai,j
m,E(f, g)‖1 �N(E, 2− max{i,j})2− max{i,j}a2(i+j) d

4 ‖f‖L2‖g‖L2

�¶2− max{i,j} (2a−d−2β−2ε)
2 ‖f‖L2‖g‖L2 .

(42)

Since 2a − d − β > 2a − d − 2β, it is easier to have a negative power of 2max{i,j} with 

our L2 × L2 → L2 strategy. That explains why in the case m = σ̂2d−1 and E = [1, 2], in 

[37] they needed the assumption d ≥ 4 to get continuity estimates for M̃.
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Proof of Theorem 3.6. Let us look at the case i ≥ j. The case j ≥ i is analogous.

We start with the case E = {t}, with t ∼ 1. Then |m(tξ, tη)| � 1
(1+|ξ|+|η|)a .

From the proof of Proposition 3.1 it follows that

‖T i,j
mt

(f, g)‖L2 �

ˆ

|η|∼2j

|ĝ(η)|

⎛
⎜¿
ˆ

|ξ|∼2i

|f̂(ξ)|2
(1 + |ξ| + |η|)2a

dξ

À
⎟⎠

1/2

dη

�2−ia‖f‖L2

ˆ

|η|∼2j

|ĝ(η)| dη � 2−ia2jd/2‖f‖L2‖g‖L2

(43)

and for this bound one does not even need to assume 2a > d.

For each ν ∈ Z≤0, let Iν = Iν(E) be the family of all binary intervals [n2ν , (n +1)2ν), 

n ∈ N, that contains a point in E. Then one has #I−i � N(E, 2−i), ∀i ≥ 0.

Take a non-negative function α ∈ C∞
c (R), such that α ≡ 1 in |t| ≤ 1/2 and supp(α) ⊂

(−1, 1). For I ∈ Iν , say I = [cI − 2ν−1, cI + 2ν−1), define

αI = α(2−ν(t − cI)).

Notice that αI ≡ 1 on I and supp(αI) ⊂ 2I =: Ĩ, the concentric dilation of I with length 

2|I|.
One has that

|Ai,j
m,E(f, g)(x)|2 = sup

t∈E
|T i,j

mt
(f, g)(x)|2

≤
∑

I∈I−i

sup
t∈I

|T i,j
mt

(f, g)(x)|2 ≤
∑

I∈I−i

sup
t∈I

|αI(t)T i,j
mt

(f, g)(x)|2.

By the Fundamental theorem of calculus,

sup
t∈I

|αI(t)T i,j
mt

(f, g)(x)|2 = sup
t∈I

∣∣∣∣∣∣∣

t
ˆ

cI −2−i

d

ds
|αI(s)T i,j

ms
(f, g)(x)|2 ds

∣∣∣∣∣∣∣

� |I|−1

ˆ

Ĩ

|T i,j
mt

(f, g)(x)|2 dt +

ˆ

Ĩ

∣∣T i,j
mt

(f, g)(x)
∣∣
∣∣∣∣

d

dt
T i,j

mt
(f, g)(x)

∣∣∣∣ dt

� |I|−1

ˆ

Ĩ

|T i,j
mt

(f, g)(x)|2 dt +
1∣∣Ĩ
∣∣
ˆ

Ĩ

|T i,j
mt

(f, g)(x)|
∣∣∣∣2−i d

dt
T i,j

mt
(f, g)(x)

∣∣∣∣ dt.

Putting all together and using inequality (43),

ˆ

Rd

|Ai,j
m,E(f, g)(x)|2 dx
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�
∑

I∈I−i

⎧
⎪«
⎪¬

−
ˆ

Ĩ

‖T i,j
mt

(f, g)(x)‖2
L2

x
dt + −
ˆ

Ĩ

∥∥∥∥T i,j
mt

(f, g)(x) · 2−i d

dt
T i,j

mt
(f, g)(x)

∥∥∥∥
L1

x

dt

«
⎪¬
⎪­

�
∑

I∈I−i

⎧
⎪«
⎪¬

2−2ai2jd‖f‖2
L2‖g‖2

L2 + −
ˆ

Ĩ

‖T i,j
mt

(f, g)(x)‖L2
x

∥∥∥∥2−i d

dt
T i,j

mt
(f, g)(x)

∥∥∥∥
L2

x

dt

«
⎪¬
⎪­

.

We claim that 
∥∥2−i d

dtT i,j
mt

(f, g)(x)
∥∥

L2 � 2−i( 2a
2 )2j d

2 ‖f‖L2‖g‖L2 , for all t ∈ [1, 2]. As-

suming this claim is true, then the theorem follows because

ˆ

Rd

|Ai,j
m,E(f, g)(x)|2 dx �

∑

I∈I−i

2−i2a2jd‖f‖2
L2‖g‖2

L2 � (#I−i)2
−i2a2jd‖f‖2

L2‖g‖2
L2 ,

which implies

‖Ai,j
m,E(f, g)(x)‖2

L2 �N(E, 2−i)2−i2a2jd‖f‖2
L2‖g‖2

L2

=N(E, 2− max{i,j})2− max{i,j}2a2min{i,j}d‖f‖2
L2‖g‖2

L2

since we are assuming i ≥ j.

Now let us check the claim. Since

T i,j
mt

(f, g)(x) =

ˆ

Rd

m(tξ, tη)ψ̂(2−iξ)ψ̂(2−jη)f̂(ξ)ĝ(η)e2πix·(ξ+η) dξdη,

one has

d

dt
T i,j

mt
(f, g)(x) =

ˆ

Rd

d

dt
(m(tξ, tη))ψ̂(2−iξ)ψ̂(2−jη)f̂(ξ)ĝ(η)e2πix·(ξ+η) dξdη.

Observe that since t ∼ 1, m̃t(ξ, η) :=
d

dt
(m(tξ, tη)) satisfies

|m̃t(ξ, η)| =|∇m(tξ, tη) · (ξ, η)|

�
1

(1 + |ξ| + |η|)a−1
.

Therefore, from the same argument as in estimate (43) one has

∥∥∥∥
d

dt
T i,j

mt
(f, g)

∥∥∥∥
L2

=‖Tm̃t
(f i, gj)‖L2

�2−i( 2a−2
2 )2j d

2 ‖f‖L2‖g‖L2

=2i2−i( 2a
2 )2j d

2 ‖f‖L2‖g‖L2 . �
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3.3. Single-scale maximal operators associated to triangle averages and general dilation 

sets E ⊂ [1, 2]

The goal of this subsection is to prove decay estimates for single-scale maximal bilinear 

operator associated with the triangle averages Tt. Recall from the introduction that the 

multiplier associated with the triangle average is not admissible, hence results from the 

previous section does not apply. In addition to the techniques already mentioned, we 

need to consider a more refined angular decomposition of the multiplier here.

Here are the details. Assume for now that t = 1. We follow the decomposition from 

[38] and use the notation from [4]. We break T1 into pieces via

T1(f, g)(x) =
∑

i≥0

∑

j≥0

⎛
¿∑

k≥0

T i,j,k
1 (f, g)(x)

À
⎠ =

∑

i≥0

∑

j≥0

T i,j
1 (f, g)(x),

where the Fourier transform of a piece of the triangle operator is given by

̂T i,j,k
1 (f, g)(ξ) =

ˆ

Rd

f̂(ξ − η)ĝ(η)mi,j,k(ξ − η, η) dη.

Here, the i index denotes localization in ξ, the j index denotes localization in η and the 

k index denotes localization in sin θ where θ is the angle between ξ, η. The multiplier 

mi,j,k is the piece of the multiplier with the above localizations. More precisely,

mi,j,k(ξ, η) = μ̂(ξ, η)ψ̂(2−iξ)ψ̂(2−jη)ρk(ξ, η),

where ψ̂ is the same as in the previous subsection, and ρk are smooth functions satisfying ∑
k≥0 ρk(ξ, η) ≡ 1 except at the origin and

supp(ρk) ⊂ {(ξ, η) : 2−k−1 ≤ | sin(θ)| ≤ 2−k+1}, if k ≥ 1;

supp(ρ0) ⊂ {(ξ, η) : | sin(θ)| ≥ 1/2}.
(44)

We estimate the L2 norm using Plancherel identity and Minkowski inequality:

‖T i,j,k
1 (f, g)‖L2 ≤

ˆ

|ĝ(η)|‖f̂(· − η)mi,j,k(· − η, η)‖L2 dη.

We change variables ξ − η �→ ξ and apply Cauchy-Schwarz to further bound this by

‖T i,j,k
1 (f, g)‖L2 ≤ ‖g‖L2

(
¨

|f̂(ξ)|2|mi,j,k(ξ, η)|2 dηdξ

)1/2

.

Now, we appeal to the results on the size and support of the truncated multiplier; from 

the decay bounds recalled in inequality (9) we have that
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|mi,j,k(ξ, η)| � (1 + 2min{i,j}2−k)−(d−2)/2(1 + 2max(i,j))−(d−2)/2

and that for fixed ξ, the support in the η variable has measure at most 2jd2−k(d−1). Let’s 

assume i ≥ j for simplicity. In order to get the most decay possible from the multiplier 

there are two cases for k to consider.

|mi,j,k(ξ, η)| �
{

2−(j−k) d−2
2 2−i( d−2

2 ), if 0 ≤ k ≤ j;

2−i( d−2
2 ), if k > j.

If 0 ≤ k ≤ j we get the estimate on the last factor

(
ˆ

|f̂(ξ)|2
(
ˆ

|mi,j,k(ξ, η)|2 dη

)
dξ

)1/2

�

(
ˆ

|f̂(ξ)|22−(d−2)(i+j−k)|supp(mi,j,k)(ξ, ·)| dξ

)1/2

�

(
ˆ

|f̂(ξ)|22−(d−2)(i+j−k)2jd2−k(d−1) dξ

)1/2

�‖f‖L22−i(d−2)/2+j2−k/2.

Adding over 0 ≤ k ≤ j we get

j∑

k=0

‖T i,j,k
1 (f, g)‖L2 � 2−i(d−2)/22j

j∑

k=0

2−k/2‖f‖L2‖g‖L2 � 2−i(d−4)/2‖f‖L2‖g‖L2 .

Alternatively, for each k such that k > j, the decay of the multiplier is instead

|mi,j,k(ξ, η)| � (1 + 2max{i,j})−(d−2)/2

so we get instead

‖T i,j,k
1 (f, g)‖L2 � ‖g‖L2‖f‖L22−(i(d−2)−jd+k(d−1))/2

and we have

∞∑

k=j

‖T i,j,k
1 (f, g)‖L2 � ‖f‖L2‖g‖L22−i(d−2)/2+jd/22−j(d−1)/2

� 2−i(d−3)/2‖f‖L2‖g‖L2 .

Putting all together, for any i ≥ j

‖T i,j
1 (f, g)‖L2 �

∞∑

k=0

‖T i,j,k
1 ‖L2 �(2−i(d−3)/2 + 2−i(d−4)/2)‖f‖L2‖g‖L2

�2−i(d−4)/2‖f‖L2‖g‖L2 ,

(45)
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and more generally for any i, j ≥ 0,

‖T i,j
1 (f, g)‖L2 � 2− max{i,j}(d−4)/2‖f‖L2‖g‖L2 . (46)

This argument works for any t ∈ [1, 2]. Indeed, let

mi,j,k;t(ξ, η) = μ̂(tξ, tη)ψ̂(2−iξ)ψ̂(2−jη)ρk(ξ, η),

so

Tt(f, g)(x) =
∑

i≥0

∑

j≥0

∑

k≥0

T i,j,k
t (f, g)(x)

where

T i,j,k
t (f, g)(x) =

ˆ

f̂(ξ)ĝ(η)mi,j,k;t(ξ, η)e2πix·(ξ+η) dξdη.

Observe that

̂T i,j,k
t (f, g)(ξ) =

ˆ

Rd

f̂(ξ − η)mi,j,k;t(ξ − η, η)ĝ(η) dη,

and

T i,j
t (f, g)(x) := Tt(f

i, gj)(x) =
∑

k≥0

T i,j,k
t (f, g)(x).

It is immediate from the proof of inequality (45) that for any t ∈ [1, 2],

‖T i,j
t (f, g)‖L2 � 2− max{i,j}(d−4)/2‖f‖L2‖g‖L2 . (47)

Next we will use these decay bounds for pieces of Tt to take of the more general 

dilation set E ⊂ [1, 2].

Theorem 3.10 (Decay estimates for the pieces of TE). Let E ⊂ [1, 2] with β = dimM E. 

If d > 4 + β, then for any i, j ≥ 0 one has

‖TE(f i, gj)‖L2 � N(E, 2− max{i,j})
1
2 2− max{i,j}(d−4)/2‖f i‖L2‖gj‖L2

�¶ 2− max{i,j}(d−4−³−¶)/2‖f‖L2‖g‖L2 .
(48)

With the same argument as the one used in Subsection 3.2 for Am,E , the proof of The-

orem 1.3 and Corollary 3.11 below (Sobolev smoothing bounds and continuity estimates 

for TE respectively) will follow once we prove Theorem 3.10.
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Corollary 3.11 (Continuity estimates for TE). Let E ⊂ [1, 2] with upper Minkowski di-

mension dimM (E) = β, and assume that d > 4 + β. Then, there exists ³ > 0 such 

that

‖TE(f − τhf, g)‖L2 + ‖TE(f, g − τhg)‖L2 � |h|´‖f‖L2‖g‖L2 , ∀|h| < 1. (49)

Moreover, under the same hypothesis there exist ³1, ³2 > 0 such that

‖TE(f − τh1
f, g − τh2

g)‖L2 � |h1|´1 |h2|´2‖f‖L2‖g‖L2 , ∀|h1| < 1, |h2| < 1. (50)

Proof of Theorem 3.10. This proof is an adaptation of Theorem 3.6. We sketch the ar-

gument. Assume we are in the case i ≥ j. Following the same notation of Theorem 3.6,

|TE(f i, gj)(x)|2 = sup
t∈E

|Tt(f
i, gj)(x)|2

≤
∑

I∈I−i

sup
t∈I

|Tt(f
i, gj)(x)|2 ≤

∑

I∈I−i

sup
t∈I

|αI(t)Tt(f
i, gj)(x)|2.

For any I ∈ I−i,

sup
t∈I

|αI(t)Tt(f
i, gj)(x)|2 = sup

t∈I

∣∣∣∣∣∣

t
ˆ

cI −2ν

d

ds
|αI(s)Ts(f i, gj)(x)|2 ds

∣∣∣∣∣∣

� |I|−1

ˆ

Ĩ

|Tt(f
i, gj)(x)|2 dt +

1

|Ĩ|

ˆ

Ĩ

|Tt(f
i, gj)(x)|

∣∣∣∣2−i d

dt
Tt(f

i, gj)(x)

∣∣∣∣ dt.

Observe that

d

dt
Tt(f

i, gj)(x) =

ˆ

d

dt
(μ̂(tξ, tη))ψ̂i(ξ)ψ̂j(η)f̂(ξ)ĝ(η)e2πx·(ξ+η) dξdη

which is a bilinear multiplier operator whose multiplier m̃(ξ, η) = d
dt (μ̂(tξ, tη)) satisfies 

for |ξ| ∼ 2i, |η| ∼ 2j ,

|m̃(ξ, η)| = |∇μ̂(tξ, tη) · (ξ, η)| � 2i(1 + 2min{i,j}| sin(θ)|)−(d−2)/2(1 + 2max{i,j})−(d−2)/2.

The same strategy that lead to estimate (47) gives us

∥∥∥∥2−i d

dt
Tt(f

i, gj)

∥∥∥∥
L2

� 2−i (d−4)
2 ‖f‖L2‖g‖L2 .

This is enough since it will imply for i ≥ j
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ˆ

|TE(f i, gj)(x)|2 dx

≤
∑

I∈I−i

⎛
⎜¿−
ˆ

Ĩ

‖Tt(f
i, gj)(x)‖2

L2
x

dt + −
ˆ

Ĩ

‖Tt(f
i, gj)(x)‖L2

x

∥∥∥2−i d

dt
Tt(f

i, gj)
∥∥∥

L2
x

dt

À
⎟⎠

�N(E, 2−i)2−i(d−4)‖f‖2
L2‖g‖2

L2 . �

4. Bilinear biparameter-like maximal operators with dilation sets E1, E2 ⊂ [1, 2]

Since we are working in the bilinear setting, it is also natural to investigate bound-

edness properties of biparameter analogues of the operator Am,E or its associated 

multi-scale maximal operator Mm,E . Namely, let m be a bilinear multiplier in Rd × R
d

and let E1, E2 ⊂ [1, 2] be two dilation sets. We define

A(2)
m,E1,E2

(f, g)(x) := sup
t1∈E1,t2∈E2

|Tmt1,t2
(f, g)(x)|, (51)

where

Tmt1,t2
(f, g)(x) =

ˆ

R2d

f̂(ξ)ĝ(η)m(t1ξ, t2η)e2πix·(ξ+η) dξdη, (52)

and its associated multi-scale maximal operator

M(2)
m,E1,E2

(f, g)(x) := sup
l∈Z

sup
t1∈E1, t2∈E2

|Tm
2lt1,2lt2

(f, g)(x)|. (53)

We observe that in the particular case where m(ξ, η) = μ̂(ξ, η), for a compactly 

supported finite Borel measure μ in R2d, then

Tmt1,t2
(f, g)(x) =

ˆ

f(x − t1y)g(x − t2z) dμ(y, z).

In this case the biparameter multi-scale maximal operator we are interested in takes the 

form

M(2)
μ̂,E1,E2

(f, g)(x) := sup
l∈Z

sup
t1∈E1, t2∈E2

∣∣∣∣
ˆ

f(x − 2lt1y)g(x − 2lt2z) dμ(y, z)

∣∣∣∣ . (54)

Note that for M(2)
μ̂,E1,E2

(f, g) the two averaging parameters for f and g are not the same 

but they vary at the same dyadic scale 2l. It would also be interesting to study the 

following larger bilinear biparameter operator given by

Mbip
μ̂,E1,E2

(f, g)(x) := sup
k,l∈Z

sup
t1∈E1, t2∈E2

∣∣∣∣
ˆ

f(x − 2kt1y)g(x − 2lt2z) dμ(y, z)

∣∣∣∣ ,
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in which the averaging parameter for f and g can be any pair in 2ZE1 × 2ZE2. For the 

particular case when E1 = E2 = [1, 2], these two different biparameter operators become

M(2)
μ̂,[1,2],[1,2](f, g)(x) = sup

l∈Z

sup
t,s∈[2l,2l+1]

∣∣∣∣
ˆ

f(x − ty)g(x − sz) dμ(y, z)

∣∣∣∣

and

Mbip
μ̂,[1,2],[1,2](f, g)(x) = sup

t1,t2>0

∣∣∣∣
ˆ

f(x − t1y)g(x − t2z) dμ(y, z)

∣∣∣∣ .

Inspired from our earlier approach, we would be interested in understanding the decay 

properties of the pieces (A(2)
m,E1,E2

)i,j of this operator, defined as

(A(2)
m,E1,E2

)i,j(f, g)(x) := A(2)
m,E1,E2

(f i, gj)(x)

for i, j ≥ 0, where f i, gj are defined as in Subsection 3.2. Our goal in this section is to 

derive Sobolev smoothing estimates and continuity estimates for A(2)
m,E1,E2

, analogously 

as for the one-parameter operators. In the next section, such results will be applied to 

derive sparse bound for the multi-scale operator M(2)
μ̂,E1,E2

. A key difference between the 

two biparameter operators M(2)
m,E1,E2

and Mbip
μ̂,E1,E2

is that the sparse theory for the 

former is essentially one parameter. Once one has a good understanding of the bipa-

rameter behavior of its corresponding single-scale operator A(2)
μ̂,E1,E2

, the sparse bound 

would follow via a similar argument as in the one-parameter case.

The theorem below can be seen as a biparameter version of Theorem 3.6.

Theorem 4.1 (Decay bounds for pieces of A(2)
m,E1,E2

). Let E1 and E2 be two subsets of 

[1, 2] with upper Minkowski dimension dimM (Ei) = βi, i = 1, 2. Let m be an a-admissible 

bilinear multiplier up to order 2, and assume that 2a > d + β1 + β2. Then,

∥∥∥A(2)
m,E1,E2

(f i, gj)
∥∥∥

L2
� N(E1, 2−i)

1
2 N(E2, 2−j)

1
2 2− max{i,j}a2min{i,j} d

2 ‖f‖L2‖g‖L2

�¶ 2− 1
2 max{i,j}(2a−d−³1−³2−¶)‖f‖L2‖g‖L2 .

Proof of Theorem 4.1. For ν ≤ 0, let I(k)
ν (E) be the family of all binary intervals 

[n2ν , (n + 1)2ν+1) that intersect Ek, k = 1, 2. Then we know that

#I(k)
ν � N(Ek, 2ν) �¶ 2−ν(³k+¶), k = 1, 2.

One has
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|A(2)
m,E1,E2

(f i, gj)(x)|2 ≤
∑

I∈I(1)
−i

∑

J∈I(2)
−j

sup
t1∈I,t2∈J

|Tmt1,t2
(f i, gj)|2

=
∑

I∈I(1)
−i

∑

J∈I(2)
−j

sup
t1∈I,t2∈J

α2
I(t1)α2

J(t2)|Tmt1,t2
(f i, gj)|2

(55)

with αI as defined in the proof of Theorem 3.6.

By the Fundamental Theorem of Calculus and the fact that supp(αI) ⊂ 2I = [cI −
2−i, cI + 2−i), we have for any t1 ∈ I and t2 ∈ J ,

α2
I(t1)α2

J (t2)|Tmt1,t2
(f i, gj)(x)|2

=

t1
ˆ

cI −2−i

t2
ˆ

cJ −2−j

{
2αI(s1)α′

I(s1)2αJ (s2)α′
J (s2)|Tms1,s2

(f, g)(x)|2

+ 2αI(s1)α′
I(s1)α2

J(s2)∂s2
(|Tms1,s2

(f, g)(x)|2)

+ α2
I(s1)2αJ(s2)α′

J (s2)∂s1
(|Tms1,s2

(f, g)(x)|2)

+ α2
I(s1)α2

J (s2)∂s1,s2
(|Tms1,s2

(f, g)(x)|2)
}

ds1ds2.

Hence,

sup
t1∈I,t2∈J

|αI(t1)αJ(t2)Tmt1,t2
(f i, gj)(x)|2

�

ˆ

Ĩ

ˆ

J̃

{
|I|−1|J |−1|Tms1,s2

(f, g)(x)|2

+ |I|−1|Tms1,s2
(f, g)(x)||∂s2

Tms1,s2
(f, g)(x)|

+ |J |−1|Tms1,s2
(f, g)(x)||∂s1

Tms1,s2
(f, g)(x)|

+ |Tms1,s2
(f, g)(x)||∂s1,s2

(Tms1,s2
(f, g)(x))|

}
ds1ds2

�−
ˆ

Ĩ

−
ˆ

J̃

{
|Tms1,s2

(f, g)(x)|2 + |Tms1,s2
(f, g)(x)||2−j∂s2

Tms1,s2
(f, g)(x)|

+ |Tms1,s2
(f, g)(x)||2−i∂s1

Tms1,s2
(f, g)(x)|

+ |Tms1,s2
(f, g)(x)||2−i2−j∂s1,s2

(Tms1,s2
(f, g)(x))|

}
ds1ds2.

Taking integrals in inequality (55), and by Fubini and Hölder’s inequality,

ˆ

|A(2)
m,E1,E2

(f i, gj)(x)|2 dx

�
∑

I∈I(1)
−i

∑

J∈I(2)
−j

ˆ

sup
t1∈I,t2∈J

|αI(t1)αJ(t2)Tmt1,t2
(f i, gj)(x)|2 dx
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�
∑

I∈I(1)
−i

∑

J∈I(2)
−j

−
ˆ

Ĩ

−
ˆ

J̃

{
‖Tms1,s2

(f i, gj)(x)‖2
2

+‖Tms1,s2
(f i, gj)(x) · 2−j∂s2

Tms1,s2
(f i, gj)(x)‖1

+‖Tms1,s2
(f i, gj)(x) · 2−i∂s1

Tms1,s2
(f i, gj)(x)‖1

+‖Tms1,s2
(f i, gj)(x) · 2−i2−j∂s1,s2

(Tms1,s2
(f i, gj)(x))‖1

}
ds1ds2

�
∑

I∈I(1)
−i

∑

J∈I(2)
−j

−
ˆ

Ĩ

−
ˆ

J̃

{
‖Tms1,s2

(f i, gj)(x)‖2
2

+‖Tms1,s2
(f i, gj)(x)‖2‖2−j∂s2

Tms1,s2
(f i, gj)(x)‖2

+‖Tms1,s2
(f i, gj)(x)‖2‖2−i∂s1

Tms1,s2
(f i, gj)(x)‖2

+‖Tms1,s2
(f, g)(x)‖2‖2−i2−j∂s1,s2

(Tms1,s2
(f i, gj)(x))‖2

}
ds1ds2.

Observe that if m is an a-admissible multiplier up to order 2, then

‖Tms1,s2
(f i, gj)(x)‖2 � 2−a max{i,j}2min{i,j} d

2 ‖f‖2‖g‖2,

‖∂s2
Tms1,s2

(f i, gj)(x)‖2 � 2j2−a max{i,j}2min{i,j} d
2 ‖f‖2‖g‖2,

‖∂s1
Tms1,s2

(f i, gj)(x)‖2 � 2i2−a max{i,j}2min{i,j} d
2 ‖f‖2‖g‖2,

‖∂s1,s2
Tms1,s2

(f i, gj)(x)‖2 � 2i+j2−a max{i,j}2min{i,j} d
2 ‖f‖2‖g‖2,

and that is all one needs to finish up the proof. �

With the same argument as the one used in Subsection 3.2 for Am,E , the following 

corollaries follow from the decay bounds for the pieces of A(2)
m,E1,E2

given by Theorem 4.1.

Corollary 4.2 (Sobolev bounds for A(2)
m,E1,E2

). Let d ≥ 1 and Ei ⊂ [1, 2] with upper 

Minkowski dimension dimM (Ei) = βi, i = 1, 2. Let m be an a-admissible bilinear 

multiplier up to order 2, and assume 2a > d + β1 + β2. Given s1, s2 ≥ 0, with 

s1 + s2 < 2a−d−³1−³2

2 , then

‖A(2)
m,E1,E2

(f, g)‖L2 � ‖f‖H−s1 ‖g‖H−s2 . (56)

Corollary 4.3 (Continuity estimates for A(2)
m,E1,E2

). Let d ≥ 1 and Ei ⊂ [1, 2] with upper 

Minkowski dimension dimM (E) = βi, i = 1, 2. Let m be an a-admissible bilinear mul-

tiplier up to order 2, and assume that 2a > d + β1 + β2. Then, there exists ³ > 0 such 

that

‖A(2)
m,E1,E2

(f − τhf, g)‖L2 + ‖A(2)
m,E1,E2

(f, g − τhg)‖L2 � |h|´‖f‖L2‖g‖L2 ,

∀|h| < 1. (57)
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Moreover, under the same hypothesis there exist ³1, ³2 > 0 such that

‖A(2)
m,E1,E2

(f − τh1
f, g − τh2

g)‖L2 � |h1|´1 |h2|´2‖f‖L2‖g‖L2 ,

∀|h1| < 1, |h2| < 1. (58)

5. Sparse bounds consequences for multi-scale bilinear maximal functions

In this section, we consider a special class of multipliers m(ξ, η) = μ̂(ξ, η), where μ is 

a compactly supported finite Borel measure on R2d and assume that (0, 0) /∈ supp(μ), 

so that

min{|(y, z)| : (y, z) ∈ supp(μ)} > 0. (59)

For a dilation set E ⊂ [1, 2], recall the definition of the multi-scale bilinear maximal 

operator associated to Aμ̂,E given by

Mμ̂,E(f, g)(x) = sup
l∈Z

sup
t∈E

|Tμ̂
t2l

(f, g)(x)|

= sup
l∈Z

sup
t∈E

∣∣∣∣
ˆ

f(x − t2ly)g(x − t2lz) dμ(y, z)

∣∣∣∣ .
(60)

In the particular case E = {1} one gets the lacunary bilinear maximal operator 

associated to the bilinear multiplier μ̂ given by

Mμ̂,lac(f, g)(x) = sup
l∈Z

|Tμ̂
2l

(f, g)(x)|

= sup
l∈Z

∣∣∣∣
ˆ

f(x − 2ly)g(x − 2lz) dμ(y, z)

∣∣∣∣ .
(61)

From the techniques in [5,37], one can check that the continuity estimates below are 

enough to get the sparse domination result claimed in Theorem 1.7. The assumption that 

m = μ̂ for some compactly supported finite measure μ is not important for the continuity 

estimates below but it is crucial for the reduction to sparse bounds of dyadic maximal 

operators (see [5, Section 4]). The assumption that (0, 0) /∈ supp(μ) implies condition 

(59), which we can use to get the analogue of [5, Lemma 19] in our more general setting.

Proposition 5.1. Let E ⊂ [1, 2] with upper Minkowski dimension β and let μ be a 

compactly supported finite Borel measure in R
2d. Assume that μ̂ is a-admissible with 

2a > d + β. Then the following continuity estimates hold for any point (1/p, 1/q, 1/r) ∈
int(R(μ, E)).

There exists ³ > 0 such that

‖Aμ̂,E(f − τhf, g)‖Lr + ‖Aμ̂,E(f, g − τhg)‖Lr � |h|´‖f‖Lp‖g‖Lq , ∀ |h| < 1. (62)
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Moreover, under the same hypothesis there exist ³1, ³2 > 0 such that

‖Aμ̂,E(f − τh1
f, g − τh2

g)‖Lr � |h1|´1 |h2|´2‖f‖Lp‖g‖Lq , ∀ |h1| < 1, ∀ |h2| < 1. (63)

Proof. We already know by Corollary 3.7 that Aμ̂,E satisfies continuity estimates at 

L2 × L2 → L2 if 2a > d + β. For any (1/p0, 1/q0, 1/r0) ∈ R(μ, E), we have

‖Aμ̂,E(f − τhf, g)‖Lr0 + ‖Aμ̂,E(f, g − τhg)‖Lr0 � ‖f‖Lp0 ‖g‖Lq0 , ∀ |h| < 1

and

‖Aμ̂,E(f − τh1
f, g − τh2

g)‖Lr0 � ‖f‖Lp0 ‖g‖Lq0 , ∀ |h1| < 1, ∀ |h2| < 1.

By multilinear interpolation, one immediately gets continuity estimates for Aμ̂,E at Lp ×
Lq → Lr for any triple ( 1

p , 1q , 1r ) in the interior of the region R(μ, E). �

Remark 5.2. Let E ⊂ [1, 2] with upper Minkowski dimension β and let μ be a compactly 

supported finite Borel measure in R2d. Assume that for all 1 < p < ∞,

Aμ̂,E : Lp × Lq → Lp (64)

for all sufficiently large q and symmetrically, for all 1 < q < ∞

Aμ̂,E : Lp × Lq → Lq (65)

for all sufficiently large p. Then as shown in [5] the restriction p, q ≤ r in the Theorem 1.7

can be removed. This is the case for μ = σ2d−1 for example, as one can check from the 

description of the boundedness region of M̃ = Aσ̂,[1,2], initiated in [30] and improved in 

[3].

Let TE and T ∗
E be the single-scale and multi-scale triangle averaging maximal op-

erators defined in (12) and (13) respectively. Also, let R(TE) be the Lp improving 

boundedness region of TE, namely

R(TE) := {(1/p, 1/q, 1/r) : 1 ≤ p, q ≤ ∞, r > 0, 1/p + 1/q ≥ 1/r

and TE : Lp → Lq → Lr is bounded}.
(66)

As in the proof of Proposition 5.1, by interpolating the continuity estimates for T (E)

at L2 × L2 → L2 given by Corollary 3.11 with its Lp improving bounds, we get the 

following proposition.

Proposition 5.3. Let E ⊂ [1, 2] with upper Minkowski dimension β and let d > 4 + β. 

Then the following continuity estimates hold for any point (1/p, 1/q, 1/r) ∈ int(R(TE)).

There exists ³ > 0 such that
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‖TE(f − τhf, g)‖Lr + ‖TE(f, g − τhg)‖Lr � |h|´‖f‖Lp‖g‖Lq , ∀ |h| < 1. (67)

Moreover, under the same hypothesis there exist ³1, ³2 > 0 such that

‖TE(f − τh1
f, g − τh2

g)‖Lr � |h1|´1 |h2|´2‖f‖Lp‖g‖Lq , ∀ |h1| < 1, ∀ |h2| < 1. (68)

Again by the arguments in [37] and [5] we have the following corollary.

Corollary 5.4 (Sparse bounds for T ∗
E ). Let E ⊂ [1, 2] with upper Minkowski dimension 

β, and let d > 4 + β. Then, for any (1/p, 1/q, 1/r) ∈ int(R(TE)) with r > 1 and 

p, q ≤ r, one has sparse domination for T ∗
E with parameters (p, q, r′). That is, for any 

f, g, h ∈ C∞
0 (Rd), there exists a sparse family S such that

|〈T ∗
E (f, g), h〉| �

∑

Q∈S
〈f〉Q,p〈g〉Q,q〈h〉Q,r′ |Q|. (69)

Remark 5.5. Observe that in the corollary above we only claim sparse bounds for suf-

ficiently large dimensions d ≥ 5 in the case β ∈ [0, 1) and d ≥ 6 in the case β = 1, 

due to the constraints in our continuity estimates Corollary 3.11. Although a version of 

[37] claimed continuity estimates and sparse bounds in all dimensions d ≥ 2 for the case 

E = {1} and E = [1, 2], there is unfortunately an error in the proof (more precisely in 

the proof of their continuity estimates). In personal communication with the authors of 

[37], we have learned that an upcoming amended version of their paper will prove con-

tinuity estimates, hence sparse bounds, for the triangle averaging operator in the case 

E = {1} and E = [1, 2] in high enough dimensions, in contrast to all dimensions d ≥ 2 as 

originally claimed. Our result improves on their new dimensional restrictions by lowering 

the threshold to d ≥ 5 in the lacunary case E = {1} and d ≥ 6 in the full case E = [1, 2], 

and is new in other cases of E. In dimensions d = 2, 3, 4, continuity estimates, and in 

turn sparse domination for the maximal triangle operator, remain open questions.

Lastly, we can also define the Lp improving region associated to the biparameter-like 

bilinear maximal operator A(2)
μ̂,E1,E2

,

R(2)(μ, E1, E2) = {(1/p, 1/q, 1/r) : 1 ≤ p, q ≤ ∞, r > 0, 1/p + 1/q ≥ 1/r

and A(2)
μ̂,E1,E2

: Lp × Lq → Lr is bounded}
(70)

Recall that in Corollary 4.3 we proved continuity estimates for the biparameter like 

single-scale operator A(2)
μ̂,E1,E2

at L2 × L2 → L2. By multilinear interpolation continuity 

estimates hold at Lp × Lq → Lr for any point (1/p, 1/q, 1/r) ∈ int(R(2)(μ, E1, E2)) and 

the following sparse bounds corollary follows.

Corollary 5.6 (Sparse bounds for M(2)
μ̂,E1,E2

). Let E1, E2 ⊂ [1, 2] with upper Minkowski 

dimensions β1 and β2 respectively. Suppose m is an a-admissible with 2a > d + β1 + β2. 
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Then, for any (1/p, 1/q, 1/r) ∈ int(R(2)(μ̂, E1, E2)) with r > 1 and p, q ≤ r, one has 

sparse domination for M(2)
μ̂,E1,E2

with parameters (p, q, r′). Namely, for any f, g, h ∈
C∞

0 (Rd), there exists a sparse family S such that

|〈M(2)
μ̂,E1,E2

(f, g), h〉| �
∑

Q∈S
〈f〉Q,p〈g〉Q,q〈h〉Q,r′ |Q|. (71)

6. Some Lebesgue bounds for Aµ̂,E , Mµ̂,E and their biparameter variants

As in the previous section we will restrict ourselves to the case m(ξ, η) = μ̂(ξ, η) where 

μ is a compactly supported finite measure in R2d. Throughout the section we assume μ

is a-admissible and E ⊂ [1, 2] is a dilation set with upper Minkowski dimension β.

6.1. Hölder bounds for Mμ̂,E in the Banach case

In this subsection we prove some Hölder bounds Lp × Lq → Lr with 1/p + 1/q = 1/r

and 1 < p, q, r ≤ ∞. We do so by making use of the known bounds for linear versions of 

such maximal operators. The proof is inspired from that of Proposition 3 in [6], where 

they deal with the case E = [1, 2].

Proposition 6.1 (Hölder Banach bounds for Mμ̂,E and its biparameter variants). If 2a ≥
d + β, then

Mμ̂,E : Lp × Lq → Lr (72)

for all 1 < p, q ≤ ∞ and 1/r = 1/p + 1/q < 1. Moreover, if 2a ≥ d + max{β1, β2} then 

the same Hölder Banach bounds hold true for the biparameter variants M(2)
μ̂,E1,E2

and 

Mbip
μ̂,E1,E2

.

Proof. We first observe that for any 1 < p ≤ ∞ one has

Mμ̂,E : Lp × L∞ → Lp.

To see this, first observe that the case p = ∞ is trivially true. Next, let us assume 

1 < p < ∞. For g ∈ L∞,

Mμ̂,E(f, g)(x) ≤ ‖g‖∞ sup
l∈Z

sup
t∈E

ˆ

|f(x − 2lty)| dμ(y, z).

For any t ∈ E, and l ∈ Z, by using that the function constant 1 in R
d, has Fourier 

transform 1̂(η) = ´0(η), we get
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ˆ

|f(x − t2ly)| dμ(y, z) =

ˆ

|f(x − t2ly)|1(x − t2lz) dμ(y, z)

=

ˆ

R2d

|̂f |(ξ)´0(η)μ̂(t2lξ, t2lη)e2πix·(ξ+η) dξdη

≤
ˆ

Rd

|̂f |(ξ)μ̂(t2lξ, 0)e2πix·ξ dξ.

Consider the sublinear operator

f �→ M0
Ef(x) := sup

l∈Z

sup
t∈E

∣∣∣∣∣∣

ˆ

Rd

f̂(ξ)μ̂(t2lξ, 0)e2πix·ξ dξ

∣∣∣∣∣∣
.

Observe that M0
E is bounded on Lp for all 1 < p < ∞. That is indeed the case for 

2a ≥ d + β by an application of Theorem B in [20] for the multiplier m(ξ) = μ̂(ξ, 0)

which has decay |∂αm(ξ)| �α (1 + |ξ|)−a for any multi-index α.

That is enough to get the claimed bound since

‖Mμ̂,E(f, g)‖Lp � ‖g‖L∞‖M0
E(|f |)‖Lp � ‖g‖L∞‖f‖Lp .

Symmetrically one can also show

Mμ̂,E : L∞ × Lq → Lq,

for all 1 < q ≤ ∞. Hence by interpolation Mμ̂,E satisfies Hölder bounds of the form

Mμ̂,E : Lp × Lq → Lr

for all 1 < p, q ≤ ∞ and 1/r = 1/p + 1/q < 1.

The proof above implies our claim for the biparameter case since one will have

Mbip
μ̂,E1,E2

: Lp × L∞ → Lp

for any 1 < p ≤ ∞ as long as 2a ≥ d + β1, and

Mbip
μ̂,E1,E2

: L∞ × Lq → Lq

for any 1 < q ≤ ∞ as long as 2a ≥ d + β2. �

6.2. Some Lp improving bounds for the single-scale Aμ̂,E

The goal of this subsection is to give a partial description of the boundedness re-

gion R(μ, E) of the operator Aμ̂,E . We already know from Proposition 6.1 and The-

orem 1.1 that if μ̂ is a-admissible with a sufficiently large, namely 2a > d + β, then 
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+ 2a−β
2d

Fig. 2. Region for pairs (1/p, 1/q) such that ‖Am,E‖Lp×Lq →L2 < ∞ given by Proposition 6.2 in the case 
a ≤ d + β

2 .

the region R(μ, E) contains at least the interior of the convex closure of the points 

(0, 0, 0), (0, 1, 1), (1, 0, 1) and (1/2, 1/2, 1/2). Since we actually have Sobolev smoothing 

estimates at L2 × L2 → L2, we can do better, by using Sobolev embedding theorems 

which will lead to Lp improving bounds of the form Aμ̂,E : Lp × Lq → L2 with p, q < 2. 

In fact, the same bound holds for the general multiplier m, not only the case m = μ̂. We 

state and prove the result below in this generality.

Proposition 6.2 (Bounds for Am,E and A(2)
m,E1,E2

with target space L2). Suppose m is 

a-admissible up to order 1 with 2a > d + β. If 2a ≤ 2d + β, then

Am,E : Lp × Lq → L2 (73)

for 2d
2a−³ < p, q ≤ 2 with 1

p + 1
q < 1

2 + 2a−³
2d (Fig. 2). If 2a > 2d + β, (73) holds for 

1 < p, q ≤ 2 and 1/p + 1/q < 3
2 .

Moreover, if m is a-admissible up to order 2 with 2a > d +β1+β2 and 2a ≤ 2d +β1+β2, 

then

A(2)
m,E1,E2

: Lp × Lq → Lr

for 2d
2a−³1−³2

< p, q ≤ 2 with 1
p + 1

q < 1
2 + 2a−³1−³2

2d . While if 2a > 2d + β1 + β2, then

A(2)
m,E1,E2

: Lp × Lq → Lr

for 1 < p, q ≤ 2 with 1
p + 1

q < 3
2 .

Remark 6.3. In the case m = μ̂, by Proposition 6.1 and the trivial inequality 

Aμ̂,E(f, g)(x) ≤ Mμ̂,E(f, g)(x), we also know that Aμ̂,E : L2 × L∞ → L2 and 

Aμ̂,E : L∞ × L2 → L2. In the case a ≤ d + ³
2 , interpolation implies Aμ̂,E : Lp × Lq → L2
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Fig. 3. Colored region represents the pairs (1/p, 1/q) such that ‖Aμ̂,E‖Lp×Lq →L2 < ∞ given by Remark 6.3

in the case a ≤ d + β
2 . (For interpretation of the colors in the figure(s), the reader is referred to the web 

version of this article.)

for any ( 1
p , 1q ) in the interior of the convex closure of the points (1

2 , 0), (0, 12 ), (2a−³
2d , 12 )

and (1
2 , 2a−³

2d ) and in the closed segment connecting (1
2 , 0) and (0, 12) (Fig. 3).

Proof of Proposition 6.2. The second claim for Am,E follows from the first by setting 

a = d + β/2 in the first claim, so let us assume a ≤ d + ³
2 .

By the duality between Hs and H−s, we have

‖f‖H−s = sup{〈f, g〉L2 : g ∈ S(Rd), ‖g‖Hs ≤ 1}.

For 0 < s < d/2, Sobolev embedding implies that Hs embedds in Lqs for qs = 2d
d−2s (see 

Theorem 1.3.5 in [27], for example). Hence, for 0 < s < d/2 and 1/qs + 1/q′
s = 1,

‖f‖H−s � ‖f‖
Lq′

s
= ‖f‖Lps , ps :=

2d

d + 2s
. (74)

Since 2a ≤ 2d + β one has 2a−d−³
2 ≤ d

2 . So from Theorem 1.1 and (74), we get for any 

0 ≤ s < 2a−d−³
2 ,

‖Am,E(f, g)‖L2 � ‖f‖H−s‖g‖L2

� ‖f‖Lps ‖g‖L2

(75)

for ps = 2d
d+2s . Therefore,

Am,E : Lp × L2 → L2 (76)

for any 2d
2a−³ < p ≤ 2. Similarly, Theorem 1.1 and inequality (74) also imply

Am,E : L2 × Lq → L2 for
2d

2a − β
< q ≤ 2. (77)
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Interpolating (76) and (77) we get the claimed Lp improving bounds.

In the biparameter case, we are again reduced to just checking the case 2a ≤ 2d +

β1 + β2. For any 0 ≤ s < 2a−d−³1−³2

2 , it follows from Corollary 4.2 combined with the 

Sobolev embedding in (74) that

‖A(2)
m,E1,E2

(f, g)‖L2 � ‖f‖H−s‖g‖L2 � ‖f‖Lps ‖g‖L2 (78)

for ps = 2d
d+2s . That means that

‖A(2)
m,E1,E2

‖Lp×L2→L2 < ∞

for 2d
2a−³1−³2

< p ≤ 2, and similarly,

‖A(2)
m,E1,E2

‖L2×Lq→L2 < ∞

for 2d
2a−³1−³2

< q ≤ 2. The claimed bounds then follow from interpolation. �

6.3. Hölder bounds for Mμ̂,E from the sparse bounds

In this subsection we finally prove Theorem 1.8. It will be a consequence of the 

Lebesgue bounds that have been obtained so far in the previous two sections and the 

Lebesgue Hölder bounds for Mμ̂,E that can be obtained as a consequence of the sparse 

bounds for Mμ̂,E given by Corollary 1.7. Note that, as usual, the sparse bounds in fact 

imply stronger weighted norm inequalities for multilinear Ap weights. Since the deduction 

is standard, we omit those corollaries in this article, while only discuss the unweighted 

case for comparison with earlier results in this section.

Proof of Theorem 1.8. Let (1/p0, 1/q0) be a point in the interior of the triangle deter-

mined by the points (1
2 , 12 ), ( 2a−³

2d , 12 ) and ( 1
2 , 2a−³

2d ). Observe that (1/p0, 1/q0, 1/2) is 

a point in int(R(μ, E)) with r0 := 2 > 1 and 1/p0, 1/q0 > 1/2 = 1/r0, according to 

Proposition 6.2. So by Corollary 1.7 we know that Mμ̂,E satisfies sparse bounds with 

parameters (p0, q0, 2). By [12, Proposition 1.2] it follows that Mμ̂,E : Lp × Lq → Lr

is bounded for any 0 ≤ 1/p < 1/p0, 0 ≤ 1/q < 1/q0 with max{1/p, 1/q} > 0 and 

1/r = 1/p + 1/q. By varying over all (1/p0, 1/q0) we get Hölder boundedness for Mμ̂,E

for (1/p, 1/q) satisfying 0 ≤ 1/p, 1/q < 2a−³
2d and 0 < 1/p + 1/q < 1/2 + 2a−³

2d . We also 

recall that from Proposition 6.1 we have Hölder bounds for any 0 ≤ 1/p +1/q < 1, which 

by interpolation leads to the claimed bounds. �

Remark 6.4. The proof above can be adapted to get Hölder Lebesgue bounds for 

M(2)
μ̂,E1,E2

. Suppose that 2a > d + β1 + β2, and that we are in the case 2a ≤ 2d + β1 + β2. 

By using Proposition 6.2 for A(2)
μ̂,E1,E2

combined with Corollary 5.6, we have (p0, q0, 2)
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sparse bounds for M(2)
μ̂,E1,E2

for any (1/p0, 1/q0) in the interior of the triangle deter-

mined by (1
2 , 12 ), ( 2a−³1−³2

2d , 12 ) and (1
2 , 2a−³1−³2

2d ). That, combined with [12, Proposition 

1.2] and the Banach bounds from Proposition 6.1 lead to Hölder Lebesgue bounds 

M(2)
μ̂,E1,E2

: Lp × Lq → L
pq

p+q for any (1/p, 1/q) in interior of the convex closure of 

the points

(1, 0), (0, 0), (0, 1),

(
1

2
,

2a − β1 − β2

2d

)
, and

(
2a − β1 − β2

2d
,

1

2

)
.

6.4. Lifting Lp improving bounds for Aμ̂,E to quasi-Banach Hölder bounds

Before wrapping up the section, we prove some results that further enlarge the known 

region of Lp improving bounds for the single-scale operator Aμ̂,E . These bounds are 

not needed in the proof of Theorem 1.8, hence are presented separately here. The sharp 

boundedness region for Aμ̂,E , even in the case μ = σ2d−1, remains an interesting open 

question. We will derive further information on the region by studying some examples 

in the next section.

Through a minor variant of an argument in [29, Proposition 4.1], for all the single-

scale bilinear operators of the form Aμ̂,E , where μ is a compactly supported finite surface 

measure, we can deduce bounds of the form Lp×Lq → Lr, 1/r = 1/rH(p, q) := 1/p +1/q, 

whenever we know an Lp improving bound of the form Lp × Lq → Lr0 , with 1/p + 1/q ≥
1/r0 and rH(p, q) < 1.

The idea is that, due to the local nature of this single-scale maximal operators (in 

the sense that Aμ̂,E(f, g)(x) only depends on values of f, g at points in a fixed-size 

neighborhood of x), we can morally reduce to being on a domain of finite measure and 

use the fact that Lr0 embeds into Lr(p,q) for such a domain.

Proposition 6.5. Let A be a maximal bilinear Radon transform of the form Aμ̂,E or 

A(2)
μ̂,E1,E2

associated to a finite measure μ compactly supported in a ball of radius K > 1, 

and whose dilation sets are subsets of [1, 2]. If A : Lp × Lq → Lr0 continuously, with 

1/r0 ≤ 1/p + 1/q and 1/p + 1/q > 1 then A : Lp × Lq → Lr continuously, for 1/r =

1/p + 1/q with the operator norm controlled by C(K)‖A‖Lp×Lq→Lr0 .

Proof. We can tile Euclidean space by unit cubes {Ql}l∈Zd and let S denote the set 

of integer lattice points in the box centered at the origin with sidelength 10K in Eu-

clidean space, i.e. S = Z
d ∩ [−5K, 5K]d. By sub-linearity and by the compact support 

assumptions for μ we get

‖A(f, g)‖Lr ≤

⎛
¿
ˆ

⎛
¿∑

s∈S

∑

l∈Zd

A(fχQl
, gχQl+s)(x)

À
⎠

r

dx

À
⎠

1/r
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�K

∑

s∈S

⎛
¿
ˆ

∣∣∣∣∣∣
∑

l∈Zd

A(fχQl
, gχQl+s)(x)

∣∣∣∣∣∣

r

dx

À
⎠

1/r

,

because S is finite and Lr is a quasi-Banach space. Now using that r < 1,

∑

s∈S

⎛
¿
ˆ

∣∣∣∣∣∣
∑

l∈Zd

A(fχQl
, gχQl+s)(x)

∣∣∣∣∣∣

r

dx

À
⎠

1/r

≤
∑

s∈S

⎛
¿∑

l∈Zd

ˆ

|A(fχQl
, gχQl+s)(x)|r dx

À
⎠

1/r

.

Notice that each term in the sum is an integral of a function whose support has 

measure at most some universal constant C(K). Thus, we can replace by the Lr0 norm 

at the cost of just a multiplicative constant. Thus,

‖A(f, g)‖Lr ≤ C(K)
∑

s∈S

⎛
¿∑

l∈Zd

‖A(fχQl
, gχQl+s)‖r

Lr0

À
⎠

1/r

≤ C(K)‖A‖Lp×Lq→Lr0

∑

s∈S

⎛
¿∑

l∈Zd

‖fχQl
‖r

Lp‖gχQl+s‖r
Lq

À
⎠

1/r

≤ C(K)‖A‖Lp×Lq→Lr0 ‖f‖Lp‖g‖Lq ,

where the last step follows from the fact that #S � Kd and Hölder’s inequality, since 

‖f‖p
p =

∑
l∈Zd ‖fχQl

‖p
Lp . �

In Proposition 6.2 we obtained some Lp improving bounds for Aμ̂,E : Lp × Lq → L2, 

which satisfy 1/p + 1/q > 1. Combining that with the lifting to Hölder bounds given by 

Proposition 6.5 and interpolation, we conclude the following.

Proposition 6.6 (Lp improving bounds for Aμ̂,E). Suppose μ̂ is a-admissible with 2a >

d + β. If a ≤ d + β/2, then

Aμ̂,E : Lp × Lq → Lr (79)

for 2d
2a−³ < p, q ≤ 2 with 1

p + 1
q < 1

2 + 2a−³
2d and any 2 ≥ r ≥ rH(p, q) where rH = rH(p, q)

is given by the Hölder relation 1/rH = 1/p + 1/q.

Moreover, if a > d + β/2, the hypotheses on p, q become 1 < p, q ≤ 2 and 1/p + 1/q <

3/2.
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An analogue of this result obviously holds for the biparameter operator A(2)
μ̂,E1,E2

as 

well, as a consequence of Proposition 6.2 and Proposition 6.5. We leave the exact range 

of boundedness exponents to the interested reader.

Remark 6.7. In the particular case of E = {1} and μ = μS where S is a compact smooth 

surface in R
2d with k > d nonvanishing principal curvatures, by lifting Lp improving 

bounds with target space L1, [15] proved in Proposition 1.2 Hölder bounds Aμ̂S,1 : Lp ×
Lq → LrH (p,q) for 1 ≤ p, q ≤ 2, 3/2 ≤ 1/p + 1/q = 1/rH < 1 + k/2d. For comparison, the 

proposition above gives Hölder bounds for 1/p, 1/q ∈ [1/2, 1) with 1/p + 1/q = 1/rH <

1/2 +k/2d. These two bounds are not directly comparable to each other. However, in this 

particular case (E = {1}, μ̂ = μ̂S), one can improve the result in [15] by interpolating 

it with our earlier Proposition 6.1 to derive the better bounds for Aμ̂S,1 for all Hölder 

exponents (p, q, rH(p, q)) with p, q > 1 and 1/p +1/q < 1 +k/2d. In particular, in general 

we do not expect the region obtained by Proposition 6.6 above to be sharp, but it does 

give us nontrivial interesting Lp improving bounds for a large class of bilinear multipliers.

7. Some necessary conditions for the boundedness of AE

In this section, we will focus on the case μ = σ2d−1, i.e., the normalized spherical 

measure in the unit sphere S2d−1 ⊂ R
2d. We extend to the bilinear setting some examples 

from the works [1] and [5] to derive necessary conditions for boundedness of the single-

scale bilinear maximal operator AE := Aσ̂2d−1,E in terms of the (upper) Minkowski and 

Assouad dimensions of the fractal dilation set E ⊂ [1, 2]. This seems to suggest that, 

similar to the linear case, a complete description of the Lp improving region of AE may 

depend on both the upper Minkowski and Assouad dimensions of the set E.

In general, all of the examples fall into the same regime: we choose f, g to be indicator 

functions of suitable regions (balls, boxes, or annuli) with dimensions depending on a 

parameter ´. Then, we can argue that AE(f, g)(x) has a lower bound (in terms of ´) on 

some region whose measure we understand. Testing the bound

‖AE(f, g)‖r � ‖f‖p‖g‖q (80)

and sending ´ to 0 gives necessary relations among the exponents p, q, r. For convenience, 

we will denote A(r, s) = B(0, s) \ B(0, r) = {x ∈ R
d : r ≤ |x| < s} for annuli centered at 

the origin.

Proposition 7.1. Suppose E has upper Minkowski dimension β. If AE : Lp × Lq → Lr

continuously then we have

1

p
+

1

q
≤ 2d − 1

d
+

1 − β

dr
. (81)

Proof. Let f = g = χB(0,Cµ) be indicator functions of balls where C is a sufficiently 

large universal constant, such as C = 100. By the slicing formula, we have that
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AE(f, g)(x) = sup
t∈E

ˆ

Bd(0,1)

g(x − ty)

⎛
⎜¿
ˆ

Sd−1

f(x − t

√
1 − |y|2z) dσd−1(z)

À
⎟⎠ (1 − |y|2)(d−2)/2 dy,

and we will denote this quantity by k(x) for simplicity. First, we illustrate the case 

E = {1} and set t = 1. For any x such that ||x| − 1√
2
| ≤ ´, we claim that we have a 

lower bound k(x) � ´2d−1. Fix such an x. We get a lower bound to k(x) by restricting 

the integration in y to a small delta ball around x, say Bµ
x := {y ∈ R

d : |y − x| < ´}. 

Observe that implies that |y| is 2´ close to 1/
√

2 so we have that 
∣∣|y| −

√
1 − |y|2

∣∣ ≤ 10´. 

Also, for any y ∈ Bµ
x one has (1 − |y|2)

d−2
2 is comparable to 1 and g(x − y) = 1, so

k(x) �

ˆ

Bδ
x

⎛
¿
ˆ

Sd−1

f(x −
√

1 − |y|2z)dσd−1(z)

À
⎠ dy

The inner integrand contributes about ´d−1 for such values of y because we can guarantee 

that f(x − t
√

1 − |y|2z) = 1 for all z ∈ Sd−1 that is c´-close to x
|x| ∈ Sd−1 and a geodesic 

ball of radius ´ inside Sd−1 has measure comparable to ´d−1. Thus, k(x) � |Bµ
x|´d−1 ∼

´2d−1 for x on an annulus of measure about ´ (see Fig. 4 for illustration).

Now, we consider varying t ∈ E for a general dilation set E ⊂ [1, 2]. Instead of a single 

annulus {x ∈ R
d : |

√
2|x| − 1| <

√
2´}, we get about N(E, ́ ) many annuli on which the 

lower bound k(x) � ´2d−1 holds, namely if {Ii}N(E,µ)
i=1 is a minimal cover of E with ´

closed intervals then we get the lower bound in the set

{x ∈ R
d :

√
2|x| ∈ �N(E,µ)

i=1 Ii}

by using that if 
√

2|x| ∈ Ii, one can take ti ∈ Ii ∩ E to compute

k(x) ≥ Ati
(f, g)(x) �

ˆ

y : |y− x
ti

|<µ

⎛
¿
ˆ

Sd−1

f(x − ti

√
1 − |y|2z)dσ(z)

À
⎠ dy � ´d−1|Bµ

x/ti
|

so we have the lower bound on a set of measure about N(E, ́ )´. We put this into the 

bound (80) to deduce

´2d−1´1/rN(E, ´)1/r ≤ ´d/p´d/q. (82)

Recalling the definition of upper Minkowski dimension, for any ε > 0 there exists a 

sequence of ´ > 0 converging to zero such that

N(E, ´) ≥ ´−³+ε

Now, comparing the exponents in (82) gives the claim. �
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Fig. 4. In the case E = {1}, y lives in a µ ball around x so that x − y lies in B(0, Cµ). For such a fixed y, 
the dashed circle illustrates the sphere along which x −

√
1 − |y|2z varies when z varies over Sd−1. This 

intersects B(0, Cµ) for z in a µ cap around x
|x| ∈ Sd−1, which has spherical measure about µd−1.

Remark 7.2. In the case of the multi-scale maximal operator ME, we recall that the 

Hölder condition 1/p +1/q = 1/r is necessary by scaling. Since AE(f, g) ≤ ME(f, g), by 

replacing 1/p + 1/q with 1/r in the necessary condition for AE given by Proposition 7.1

we get that the condition

1

r
≤ 2d − 1

d − 1 + β
, (83)

is necessary for ME to be Lp × Lq → Lr bounded.

The geometry behind the previous proof in the simplest case of E = {1} is given in 

Fig. 4.

The idea is that when the slicing formula is applied to indicator functions, it computes 

the measure of intersections of spheres and balls centered at x with the sets in the 

indicator functions. The figure demonstrates the t = 1 case, but as described in the 

proof, the general case would consist of more concentric brown annuli consisting of x

values where k(x) has a lower bound ´2d−1.

Proposition 7.3. If AE : Lp × Lq → Lr continuously then we have

1

p
+

1

q
≤ 1 +

d

r
. (84)
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Proof. By the equality At(f, g)(x) = A1(f(t ·), g(t ·))(x
t ), it is clear that

‖At‖Lp×Lq→Lr < ∞ if and only if ‖A1‖Lp×Lq→Lr < ∞. Take any point tE ∈ E. 

Since AtE
≤ AE any necessary condition for AtE

it is also necessary for AE . The fact 

that 1/p + 1/q ≤ 1 + d/r is necessary for the boundedness of A1 is written out in detail 

in [30, Proposition 3.3]. Although that proposition only considers the case E = [1, 2], 

their argument derives a lower bound for M̃ = A[1,2] by replacing the supremum over 

t ∈ [1, 2] by t = 1 and thus applies equally well to the single scale average A1. �

Proposition 7.4. Suppose E has upper Minkowski dimension β. If AE : Lp × Lq → Lr

continuously then we have

1

p
+

1

q
≤ 2d

d + 1
+

1

r

(
1 − 2β

(d + 1)

)
(85)

Proof. The case E = [1, 2] was obtained in [5]. One can get this more general condition 

by adapting their Knapp-type example. In their example they define

R1 = [−C1

√
´, C1

√
´]d−1 × [−C1´, C1´], R2 = [−C2

√
´, C2

√
´]d−1 × [−C2´, C2´],

R3 = [−
√

´,
√

´]d−1 × [
1√
2

,
√

2],

where say C1, C2 = 100, and ´ is sufficiently small. For fµ = χR1
and gµ = χR2

they 

showed that

M̃(fµ, gµ)(x) � ´d

for all x ∈ R3 = {x = (x′, xd) ∈ R
d−1 × R : x′ ∈ [−

√
´, 

√
´]d−1 and

√
2xd ∈ [1, 2]}.

For a more general E we replace R3 with

RE
3 := {x = (x′, xd) ∈ R

d−1 × R : x′ ∈ [−
√

´,
√

´]d−1 and
√

2xd ∈ �N(E,µ)
i=1 Ii},

where {Ii : 1 ≤ i ≤ N(E, ́ )} is a minimal collection of closed intervals of length |Ii| = ´

covering E. For each i take ti ∈ E ∩ Ii. Then for x ∈ RE
3 with 

√
2xd ∈ Ii, one can check 

that (Fig. 5)

AE(fµ, gµ)(x) ≥ Ati
(fµ, gµ)(x) � ´

d−1
2 ´´

d−1
2 = ´d.

That combined with |RE
3 | ∼ ´

d−1
2 N(E, ́ )´ is enough to finish the computation. One can 

also get this proposition as a corollary of Proposition 7.5 in the case β = ³ since the 

upper Assouad dimension of E will be at least β. �

If all we know is that dim(E) = β, by combining the Proposition 7.1, 7.3 and 7.4 we 

get that for
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Fig. 5. Picture illustrating the proof of Proposition 7.4. The gray region represents the region RE
3 for x where 

the lower bound for AE(fδ, gδ)(x) holds. The empty rectangle represents the support of fδ or gδ, and the 
dashed circle represents the spherical averages that will show up in the slicing. The key is that for x in a 
shaded rectangle, we can find a radius in our dilation set so that dashed circle intersects a substantial part 
of the empty rectangle.

‖AE‖Lp×Lq→Lr < ∞ (86)

it is necessary that

1

p
+

1

q
≤ 1 + min

{
d − 1

d
+

1 − β

dr
,

d − 1

d + 1

(
1 +

1

r

d + 1 − 2β

d − 1

)
,

d

r

}
. (87)

In the case β = 1 this coincides with the necessary conditions obtained in [5] for 

the case E = [1, 2]. To get more refined necessary conditions we will need to take into 

account the Assouad dimension of E, which already played an important role in [1]. Let 

³ = dimA(E) be the Assouad dimension of E. One can check that when ³ > β the 

necessary condition given in Proposition 7.5 is more restrictive than the one above and 

they coincide when ³ = β.

Proposition 7.5. Suppose E ⊂ [1, 2] is an Assouad regular set with (upper) Minkowski 

dimension β and (upper) Assouad dimension ³. Let α = β/³ and let C−1
d,α = 1 + α(d −

1)/2. If AE : Lp × Lq → Lr continuously then we have

1

p
+

1

q
≤ Cd,α

{
α(d − 1) + 1 +

1

r

(
d − β − α(d − 1)

2

)}
. (88)

That is,

1

p
+

1

q
≤ 1 +

β(d − 1)

β(d − 1) + 2³
+

(
(d − β)2³ − (d − 1)β

β(d − 1) + 2³

)
1

r

In particular, when β = ³, one recovers inequality (85).
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Proof. From the definition of Assouad spectrum and the fact that E is Assouad regular, 

for any ε > 0 there exists ´ > 0 (which can be shrunk smaller if desired) such that we can 

find an interval I ⊂ [1, 2] of length ´1−³/´ with the property N(E ∩ I, ́ ) ≥ (|I|/´)´−ε. 

For convenience, we will denote α = β/³ ≤ 1 and σ = ´α/2 ≥ ´1/2. Let hµ,I be the 

indicator function of the set

{(y′, yd) ∈ R
d :
∣∣∣|y| − 2−1/2r

∣∣∣ ≤ ´, |y′| ≤ σ}

where r is the left endpoint of I. Then we have the estimate

‖hµ,I‖p ≈ (σd−1´)1/p

Cover E ∩ I by a minimal collection of pairwise disjoint ´-intervals J , which has cardi-

nality comparable to N(E ∩ I, ́ ). Consider the region

R =

{
(x′, xd) : |x′| ≤ c´/σ, xd =

−1√
2

(t − r), for some t ∈
⋃

J∈J
J

}

We claim that for any x ∈ R, we have the lower bound

AE(hµ,I , hµ,I)(x) � σ2d−2´. (89)

The calculation is analogous to the earlier one in the proof of Proposition 7.4; by using 

the slicing formula, one sees that balls centered in R with radius chosen suitably intersect 

the support of hµ,I in a set of measure about σd−1´ and spheres intersect in a set of area 

about σd−1. Here, choosing the radius suitably means taking the radius to be the closest 

value in E to the xd coordinate and then rescaling by 1√
2
.

We notice that R has volume about (´/σ)d−1´N(E ∩ I, ́ ). Putting the lower bound (89)

into (80) leads to the inequality

σ2d−2´
(
(´/σ)d−1´N(E ∩ I, ´)

)1/r ≤ (σd−1´)p−1+q−1

(90)

Recalling that σ = ´α/2, the claim follows by comparing the exponents and doing routine 

algebraic manipulation. �

Putting Propositions 7.1, 7.3, and 7.5 all together we get the following necessary 

conditions for the boundedness of AE.

Proposition 7.6 (Necessary conditions for boundedness of AE). Let E ⊂ [1, 2] be a As-

souad regular set with dimM (E) = β and dimA(E) = ³. If AE : Lp×Lq → Lr is bounded, 

then

1

r
≤ 1

p
+

1

q
≤ 1 + mlinear(d, r, β, ³),
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where

mlinear(d, r, β, γ) := min

{
d − 1

d
+

1 − β

dr
,

β(d − 1)
β(d − 1) + 2γ

+
(d − β)2γ − (d − 1)β

β(d − 1) + 2γ

1
r

,
d

r

}
.

The example of Proposition 7.1 can also be adapted to give necessary conditions in 

the biparameter setting.

Proposition 7.7. Suppose E1, E2 have upper Minkowski dimensions β1, β2. Define the 

quantity

β∗ = dimM (E1E2(E2
1 + E2

2)−1/2).

If A(2)

S2d−1,E1,E2
: Lp × Lq → Lr continuously then we have

1

p
+

1

q
≤ 2d − 1

d
+

1 − β∗

dr
(91)

Proof. Let f = g = χB(0,Cµ) and denote h = A(2)
σ̂,E1,E2

(f, g). Mimicking the single 

parameter case, we want to find the set of x where we have the lower bound |h(x)| �
´2d−1. Since we now have parameters t1, t2, the region where this lower bound holds 

contains all x such that there exist t1 ∈ E1, t2 ∈ E2 and some |y| ∈ (0, 1) satisfying

|x| = t1|y| = t2

√
1 − |y|2.

Really, the first equation just needs to hold up to ´ error so that we can compute the 

´-covering number and take a limit. Substituting the second equation necessitates that 

|y| solves the quadratic equation

(
t2
1 + t2

2

t2
2

)
|y|2 = 1

and so we can write the solution as

|x| = t1|y| =
t1t2√
t2
1 + t2

2

Thus, the values of |x| that are admissible is a C´-neighborhood of points of the form

E∗ :=

{
t1t2√
t2
1 + t2

2

: t1 ∈ E1, t2 ∈ E2

}

Call β∗ = dimM (E∗), which depends on E1, E2. Testing this against the boundedness 

condition gives
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´2d−1´1/rN(E∗, ´)1/r ≤ ´d/p´d/q (92)

which leads to the inequality

d

p
+

d

q
≤ 2d − 1 +

1 − β∗ + ε

r

We can send ε to 0 in the limit, so dividing through by d gives the claim. �

Similarly, we can adapt Proposition 7.4 to the biparameter setting.

Proposition 7.8. Suppose E1, E2 have upper Minkowski dimension β1, β2 and let β∗ be 

as in the previous proposition. If AE : Lp × Lq → Lr continuously then we have

1

p
+

1

q
≤ 2d

d + 1
+

1

r

(
1 − 2β∗

(d + 1)

)
(93)

Proof. Once again, we can define

R1 = [−C1

√
´, C1

√
´]d−1 × [−C1´, C1´], R2 = [−C2

√
´, C2

√
´]d−1 × [−C2´, C2´],

R3 = [−
√

´,
√

´]d−1 ×

⎛
¿

N(E∗,µ)⋃

i=1

Ii

À
⎠

where we may take C1, C2 = 100, ´ is sufficiently small, and {Ii} is a minimal collection 

of ´-intervals covering the set E∗. Then for x ∈ R3, one can check that

AE(fµ, gµ)(x) � ´d

That combined with |R3| ∼ ´
d−1

2 N(E∗, ́ )´ is enough to finish the computation. �

Remark 7.9. In fact, Proposition 7.5 also generalizes to the biparameter setting, with 

β, ³ being replaced by β∗ and ³∗ respectively, the Minkowski and Assouad dimensions 

of the set E∗. The details are very similar to the other biparameter arguments we have 

given, so we leave them to the interested reader.

In fact, we can say more about β∗ by making use of Lemma 2.1. The dimension of E∗

is equal to the dimension of 
E2

1 E2
2

E2
1 +E2

2
which can be rewritten as (E−2

1 + E−2
2 )−1. Notice 

that if we freeze one of the sets E1 or E2 and vary the tis in the other set, we immediately 

see from Lemma 2.1 that β∗ ≥ max{β1, β2} since dimension is preserved under taking 

reciprocals, squaring, and translation by a constant. This lower bound can be achieved, 

such as in the case that β1 = 1. On the other hand, given two sets S1, S2, their sumset 

satisfies the dimension bound

dimM (S1 + S2) ≤ dimM (S1) + dimM (S2).
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Thus, the description

max{β1, β2} ≤ β∗ ≤ β1 + β2

is the best we can say for an arbitrary pair of sets E1, E2 ⊂ [1, 2].

Data availability

No data was used for the research described in the article.
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