Check for
Updates

Fast Constraint Synthesis for C++ Function Templates

SHUO DING, Georgia Institute of Technology, USA
QIRUN ZHANG, Georgia Institute of Technology, USA

C++ templates are a powerful feature for generic programming and compile-time computations, but C++ com-
pilers often emit overly verbose template error messages. Even short error messages often involve unnecessary
and confusing implementation details, which are difficult for developers to read and understand. To address
this problem, C++20 introduced constraints and concepts, which impose requirements on template parameters.
The new features can define clearer interfaces for templates and can improve compiler diagnostics. However,
manually specifying template constraints can still be non-trivial, which becomes even more challenging when
working with legacy C++ projects or with frequent code changes.

This paper bridges the gap and proposes an automatic approach to synthesizing constraints for C++ function
templates. We utilize a lightweight static analysis to analyze the usage patterns within the template body and
summarize them into constraints for each type parameter of the template. The analysis is inter-procedural
and uses disjunctions of constraints to model function overloading. We have implemented our approach based
on the Clang frontend and evaluated it on two C++ libraries chosen separately from two popular library sets:
algorithm from the Standard Template Library (STL) and special_functions from the Boost library, both
of which extensively use templates. Our tool can process over 110k lines of C++ code in less than 1.5 seconds
and synthesize non-trivial constraints for 30%-40% of the function templates. The constraints synthesized
for algorithm align well with the standard documentation, and on average, the synthesized constraints can
reduce error message lengths by 56.6% for algorithm and 63.8% for special_functions.

CCS Concepts: « Software and its engineering — Compilers; « Theory of computation — Type
structures.

Additional Key Words and Phrases: generic programming, compile-time computations, program analysis

ACM Reference Format:
Shuo Ding and Qirun Zhang. 2025. Fast Constraint Synthesis for C++ Function Templates. Proc. ACM Program.
Lang. 9, OOPSLA1, Article 88 (April 2025), 28 pages. https://doi.org/10.1145/3720422

1 Introduction

C++ is a high-performance programming language widely used in system programming [4], games
and GUI [17], compilers [27], artificial intelligence [38], etc. C++ templates are a powerful language
feature that facilitates generic programming and compile-time computations, and this feature
has been used extensively in practice. It provides compile-time polymorphism, complementing
the run-time polymorphism of virtual functions used in many object-oriented languages. For
example, almost all containers and algorithms in the Standard Template Library (STL) utilize
templates [25]. Template parameters can be values, types, and templates themselves. It is worth
noting that templates can be used to simulate arbitrary Turing machines at compile time [57].
During the compilation process, templates are instantiated to generate non-templated C++ code:
the compiler substitutes formal template parameters with concrete template arguments. If the
concrete template arguments do not support certain operations used in the template bodies, the

Authors’ Contact Information: Shuo Ding, Georgia Institute of Technology, Atlanta, USA, sding@gatech.edu; Qirun Zhang,
Georgia Institute of Technology, Atlanta, USA, qrzhang@gatech.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/4-ART88

https://doi.org/10.1145/3720422

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

HTTPS://ORCID.ORG/0000-0003-0843-0729
HTTPS://ORCID.ORG/0000-0001-5367-9377
https://doi.org/10.1145/3720422
https://orcid.org/0000-0003-0843-0729
https://orcid.org/0000-0001-5367-9377
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3720422
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3720422&domain=pdf&date_stamp=2025-04-09

88:2 Shuo Ding and Qirun Zhang

#include <vector>

template <typename T> void f(T x) { std::vector<T> v(x, x); }
int main() { f(nullptr); }

/* abbreviated error message (with manually added "...")
old.cc:3:52: error: no matching constructor for initialization of...
template <typename T> void f(T x) { std::vector<T> v(x, x); }
old.cc:4:14: note: in instantiation of function template special...
int main() { f(nullptr); 3}

.../ct+t/v1/vector:395:57: note: candidate constructor not viable...
(48 more lines of "candidate constructor not viable" or similar) x/

(a) Erroneous template instantiation without constraints. Apple Clang 15.0.0 with -std=c++20
prints 55 lines of error messages.

#include <vector>
#include <concepts>

template <std::integral T> void f(T x) { std::vector<T> v(x, x); }
int main() { f(nullptr); }

/* abbreviated error message (with some manually added "...")
new.cc:5:14: error: no matching function for call to 'f'
int main() { f(nullptr); 3}

...note: candidate template ignored: constraints not satisfied...
template <std::integral T> void f(T x) { std::vector<T> v(x, x); }
(8 more lines) =%/

(b) Erroneous template instantiation with constraints. Apple Clang 15.0.0 with —~std=c++20 prints
13 lines of error messages.

Fig. 1. Erroneous C++ template instantiations without/with constraints.

instantiation generates code that fails to compile, and the compiler emits error messages. Because
such failures can occur during deeply nested instantiation processes, it is folklore that C++ template
errors could be verbose and difficult to understand [55], and this issue has a long history: for
example, for a small 26-byte C++ program, g++-4.6. 3 can produce 15, 786 bytes of output, with the
longest line of 330 characters [48]. On the other hand, the diagnostics often involve unnecessary
implementation details and do not provide much insight into fixing the errors, which confuses
C++ developers and hinders production [50, 51]. Consider a simple C++ example in Figure 1a. The
std: :vector class does not have a constructor suitable for the arguments (nullptr, nullptr).
However, C++ compilers are unable to catch this error until the actual instantiation of std: : vector,
resulting in the production of 55 lines of error messages; yet the error messages contain too many
implementation details such as “candidate constructor not viable” and thus hinder readability.

To improve the readability and maintainability of C++ templates, C++20 introduced a language
feature called constraints and concepts [43]. Constraints are predicates that impose requirements
on template parameters, while concepts are named sets of such requirements. They define clearer
interfaces for templates and enable C++ compilers to detect errors early on in the instantiation

The SFINAE mechanism [11] can remove templates from the overload resolution candidate set and thus avoid some errors,
but it is often hard to read and maintain.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

Fast Constraint Synthesis for C++ Function Templates 88:3

template <typename T>

concept IntClass = requires (T x, T y) {
typename T::integer_type;
{x + y} -> std::same_as<T>;
x.dump();

)

template <typename T> requires IntClass<T> || std::integral<T>
void g(T x) { /* omitted */ }

Fig. 2. Complicated constraints with type requirements, compound requirements, simple requirements, and
disjunctions of requirement expressions.

process (with better error messages). Consider the example in Figure 1b, which extends the example
in Figure 1a by adding the concept std: : integral. The concept std: : integral, which is part of
the standard library, requires that the template parameters must be of integral types. By using
std: :integral, the error in Figure 1b can be caught before the instantiation of f’s body, resulting in
only 13 lines of error messages. Furthermore, the message “constraints not satisfied” is easily
understandable. Note that constraints and concepts are very flexible and expressive. For example,
the concept IntClass in Figure 2 specifies three requirements on type T: (1) it must contain a type
member called integer_type; (2) it must support the operator + with a result type T, and (3) it must
support the dump() member function call. Additionally, g’s template parameter T must satisfy either
the IntClass constraint or the std: :integral constraint. Due to this expressiveness, manually
writing and reasoning about constraints and concepts can be error-prone and time-consuming. It
becomes more challenging during the development process with frequent code changes. Moreover,
many existing C++ projects do not incorporate concepts or constraints, because these language
features were only introduced in C++20.

The topic of synthesizing constraints and concepts for C++ templates has not been extensively
explored. This paper introduces an approach to automatically synthesize constraints for C++ function
templates based on their template bodies and caller-callee relations. Our approach is built on Clang’s
frontend and leverages only a lightweight static analysis, thus it is very efficient. Moreover, our
approach is fully automated and can be directly applied to real C++ code without requiring manual
annotations. The synthesized constraints can both specify clearer interface requirements and
significantly improve template-related error messages.

Constraint synthesis for C++ function templates is challenging. Because function templates
can call other functions or function templates, the synthesis must be inter-procedural to achieve
reasonable precision. However, the caller-callee relation can involve arbitrary argument passing and
type correspondence. Moreover, C++ supports function overloading, so the actual function being
called inside a function template may not be resolved until instantiations. Recursive dependencies, if
present, pose yet another challenge. Our approach handles these challenges elegantly and efficiently.
We introduce a novel idea called backmap to relate type correspondence between the caller and the
callee (Section 3.3), use disjunctive clauses to model function overloading (Section 3.3), and cut off
recursive dependencies by treating them as trivial constraints (Section 3.4). Finally, we design a
polynomial-time simplification procedure for the synthesized constraint formulas (Section 3.5).

At first glance, constraint synthesis for C++ templates bears resemblance to type inference [3,
39, 60]. However, there are several key differences. First, instead of inferring an existing type or
typeclass, our approach infers a constraint that corresponds to a set of types, including potential new
types that may be defined in the future.? Second, the constraints we consider are not limited to those

2Section 6.1 discusses a method to match inferred constraints with pre-defined constraints, which can give meaningful
names to inferred constraints and help to understand them.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

88:4 Shuo Ding and Qirun Zhang

defined by the standard library. In fact, constraints can incorporate arbitrary conjunctive/disjunctive
combinations of member function requirements, member type requirements, etc. For example,
it is valid to define a constraint requiring the member function specialFunctionA(), even if no
class in the existing C++ code contains such a member function. Third, as shown in Section 2, the
precise requirement of a type can be non-computable due to the potential for a non-terminating
C++ compilation if the compiler does not set limits on template instantiations. Therefore, template-
related automated reasoning can be viewed as a form of “meta-analysis” of the compilation process.

We have implemented our approach based on the Clang C++ frontend, targeting function tem-
plates, supporting constraints in various forms, including unary operators, binary operators, higher-
order functions, class member accesses, and simple type traits. We evaluated our tool on real-world
library code from the Standard Template Library (STL) header <algorithm> and the Boost library®
header <boost/math/special_functions.hpp>. The evaluation results demonstrate that our tool
is efficient and effective. Firstly, our analysis is extremely fast, taking less than 1.5 seconds to
process over 110k lines of code (LOC). We are able to synthesize non-trivial constraints for 38.4% of
function templates from algorithm and for 35.9% of function templates from special_functions.
Secondly, our analysis is reasonably precise. We select the 14 representative function templates
from algorithm, as listed in the introductory C++ textbook [53]. We compare the synthesized
constraints with the standard requirements specified in the document. The majority of the syn-
thesized constraints either match or under-approximate the standard requirements. Finally, the
synthesized constraints significantly reduce the length of compiler error messages for incorrect
instantiations of function templates, with average reductions of 56.6% for algorithm and 63.8% for
and special_functions.

This paper makes the following contributions.

e We study and analyze the problem of synthesizing template constraints for improving C++
code readability and maintainability.

e We present an automated constraint synthesis for C++ templates.

e We conduct an extensive evaluation based on two widely used C++ libraries. The empirical
results demonstrate that our approach is fast, precise, and can significantly reduce template-
based compiler errors.

e We designed and implemented a way to automatically measure the effectiveness of compila-
tion error message reductions.

The rest of the paper is structured as follows. Section 2 describes the C++ background and the
problem that we target, including its general undecidability. Section 3 describes our approach
in detail. Section 4 gives the experimental results. Section 5 contains three case studies for error
messages. Section 6 discusses more about the spirit of our work and technical details. Section 7
surveys related work, and Section 8 concludes.

2 Preliminary

This section reviews the background and introduces the constraint synthesis problem.

2.1 C++ Function Templates, Constraints, and Concepts

In C++, a function template F defines a family of functions. Abstractly, F takes a list of template
arguments @ and returns a concrete C++ function F(d); this computation, normally called template
instantiation, is done in compile-time. Since template arguments @ might result in type errors
after the instantiation of function template F, a constraint can be associated with F to specify
requirements on F’s template arguments. A named set of such constraints is called a concept. A

Shttps://www.boost.org.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

https://www.boost.org

Fast Constraint Synthesis for C++ Function Templates

template <typename T>
void f(T x) {
for (int i = 0; i < 3; i++)
x.dump();
}

template <typename U, typename V>
void g(U x) {

X.print(100);

for (int i = 0; i < 10; i++)

template <typename T>
concept Dumpable =
requires (T x) { x.dump(); }

template <Dumpable T>
void f(T x) {
for (int i = 0; i < 3; i++)
x.dump(Q);
3

template <typename U, typename V>
requires Dumpable<V> &&

(requires (U x, int y) { x.print(y); })
void g(U x) {

x.print(i); X.print(100);
Vy; for (int i = 0; i < 10; i++)
fly); x.print(i);
} Vy;

fly);
3

(a) An example of unconstrained C++ function
templates.

(b) The syntax of constraints and concepts in
C++20.

Fig. 3. The syntax of C++ templates, constraints, and concepts.

concept C is a compile-time predicate taking a list of template arguments @ and returning true or
false, and C can be used to specify requirements for multiple function templates.

We use an example to illustrate C++ templates and constraints/concepts. The most common
syntax of C++ function template definition consists of a template parameter list followed by the
function body, as shown in Figure 3a. In this example, the template parameters T, U, and V are
unconstrained. Specifically, the keyword typename only indicates that these template parameters
should be “types.” However, it is straightforward to see that not all types can be used:

e a variable of type T must support the member function call dump();
e a variable of type U must support the member function call print(int);
e type V must at least satisfy the constraint of T.

To express these constraints, we can either define a standalone concept (Dumpable) and replace
typename with it, or use the requires clause to specify the constraints in-place, as shown in
Figure 3b. Here the concept Dumpable is a named predicate checking whether a variable of the given
type supports the dump() member function call, and requires is used both to associate constraints
(either pre-defined concepts or directly written constraint expressions) to function templates and
to start “requires expressions” that can be used as parts of larger constraints.

2.2 Problem Statement and Undecidability

From Figure 3, we can see that the process of writing constraints involves inter-procedural reasoning.
For example, in Figure 3b, the requirement Dumpable originates from f and is propagated into g,
because g calls f. Real-world C++ code consists of much more complicated function templates and
call graphs (with possibly overloaded callees), and during the development process, frequent code
changes make the situation harder. Thus, manually completing the above process is non-trivial
and time-consuming. This paper proposes automated C++ template constraint synthesis to help the
development process. We focus on type parameters of templates because that is the most frequently
used feature in generic programming like STL.

Ideally, our goal is to precisely define the set of requirements for each template type parameter.
However, because C++ template is Turing-complete, we can demonstrate that precise constraint

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

88:6 Shuo Ding and Qirun Zhang

C++ translation unit

|

Constraint collection Formula map construction Formula simplification
(Section 3.3) (Section 3.4) (Section 3.5)

|

Synthesized constraints

Fig. 4. An overview of our approach. First, constraint collection (Section 3.3) traverses each function template
to collect constraints into the inter-procedural constraint map. Second, formula map construction (Section 3.4)
takes the inter-procedural constraint map and produces the formula graph, which is a compact representa-
tion of all constraints and their dependencies in the entire translation unit. Finally, formula simplification
(Section 3.5) uses a lightweight algorithm to simplify the constraints into versions that are suitable to be
inserted into the source code.

synthesis is undecidable by slightly modifying the construction proposed by Veldhuizen [57].
Specifically, given an arbitrary closed Turing machine M, we define a struct S containing a
member type halted_state, so that in a specific instantiation of S, the halted_state is

e int if and only if M halts in the accept state,
e double if and only if M halts in the reject state,
e undefined if M does not halt at all.

It is well known that there does not exist a total program that distinguishes the first two cases even
if we allow the program to output arbitrary results for the third case [20]. We can further specify
constraints on any type template parameter

static_assert(std::is_same<S<...>::halted_state, T>::value);

so in general precise constraint synthesis for type template parameters is also non-computable,
and practical synthesizers must sacrifice precision in order to guarantee termination. Our work
synthesizes under-approximations of the precise requirements. An under-approximation of require-
ments means specifying fewer requirements, which corresponds to allowing more types. To sum
up, we give our problem definition as follows. In particular, we mainly target C++ programs that
do not contain any constraints, so there is no interference between existing constraints and our
constraint generation process.

Given a C++ translation unit, for each function template in the translation unit, for each type
template parameter of the function template, compute a constraint C under-approximating the
real requirement R on this parameter. C is specified using the C++2@ constraints and concepts
syntax, and R is the requirements on the parameter implicit in the template body. Suppose the
set of types allowed by C and R are S(C) and S(R), respectively. An under-approximating
constraint allows more types, so we can express our goal as S(C) 2 S(R).

3 Approach

This section formalizes our approach in detail. To aid the formal discussion, Section 3.1 introduces a
simplified calculus for modelling C++ function templates; Section 3.2 introduces constraint formulas
which are finally inserted into the source code to restrict type template parameters. Our main
approach consists of the following three steps, which is summarized in Figure 4.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

Fast Constraint Synthesis for C++ Function Templates 88:7

T € TypeParameter
t € TypeU TypeParameter
v € Variable
n € FunctionOrFieldName
e € Expression
op, € PrefixOperator
op, € SuffixOperator
op; € InfixOperator
trait € TypeTrait
use = 0p,v |vop,|vop;e|eop;v|ov(e’)|v.n|v.n(e)|trait(t) | n(...v...)
fun = tn((to)") {use’}
temp = <T*> fun
spec := <> fun
translationUnit := (fun |temp | spec)*

Fig. 5. A simplified calculus for modelling C++ function templates.

(1) Section 3.3 describes the process of scanning template bodies and constructing the inter-
procedural constraint map for each translation unit.

(2) Section 3.4 transforms the inter-procedural constraint map to the formula graph, during
which recursive dependencies are resolved.

(3) Section 3.5 describes the simplification process after directly reading the constraint formulas
from the formula graph.

Section 3.6 discusses the soundness aspect of our approach.

3.1 A Simplified Calculus

C++ is notorious for its complex syntax and semantics, as evidenced by the 1853-page C++20
standard [23]. To enable a formal discussion, we present a simplified calculus that models the core
semantics of C++ function templates. This is similar to the spirit of Garcia and Lumsdaine [19], but
we also choose to adhere more to the realistic syntax of C++ since our approach applies to real C++
code. On syntax constructs of the simplified calculus that deviate from the standard C++ language,
our open-source implementation provides the complete details.

Figure 5 gives the syntax of our simplified calculus. As usual, “+” means repeating zero or more
times and “+” means repeating one or more times. The ellipsis “...” means similar but irrelevant
syntax constructs, such as the argument list (...v...) where we only consider the argument v and
ignore other arguments. We consider type template parameters “T”, and “t” represent concrete types
or type template parameters. Variables “v” and expressions “e” represent standard C++ variables
and expressions, respectively. We use “n” to denote function or field names. We consider three
types of operators because these are the most common ones in C++: prefix operators (opp), suffix
operators (op,), and infix operators (op;). C++ type traits (trait) are template-based utilities that can
provide type information at compile-time.

Our synthesis framework is flow-insensitive, so we omit control flows and only consider the
usage sites “use” of type template parameter ¢ or variable v of type t. The usage sites include
direct trait assertions on the type template parameter (trait(t)), and usages of variables of the type
template parameter, such as being used as operands (oppv), functions (v(e*)), member accesses
(v.n, v.n(e*)), and function call arguments (n(...v...), where v should satisfy n’s corresponding

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

88:8 Shuo Ding and Qirun Zhang

type requirements). A function body “fun” could be non-template functions where the types ¢
involved are all concrete types or template functions where the types t could be type template
parameters. A function template “temp” consists of a list of type template parameters and a function
body. A function template can have specializations “spec” where all type template parameters are
substituted by concrete types. All of “fun”, “temp”, and “spec” participate in overloading resolution
of function calls. Finally, a “translationUnit” is a basic compilation unit for this calculus. Our
analysis is performed on individual translation units. Our implementation is based on Clang, and
Clang has all the classes corresponding to real C++ constructs, such as TemplateTypeParmDecl,
DeclRefExpr, and TemplateSpecializationType, etc.

3.2 Constraint Formalization

C++20 supports many kinds of constraints, such as type constraints (e.g. requiring the existence of a
type member), expression constraints (requiring an expression such asa.f (1, true) to successfully
compile), type traits (e.g. std: : is_same). These are considered as atomic constraints. Our work also
supports conjunctions and disjunctions of smaller constraints according to C++20. Formally, we
define constraint formulas as follows.

Definition 3.1 (Constraint formula). Constraint formulas express constraints on types. Atomic
formulas pose restrictions on the type template parameter T, and compound formulas are either
atomic formulas or conjunctions/disjunctions of smaller formulas. The atomic formulas are similar
to the use part of our simplified calculus in Figure 5, except that we only preserve the type
information (e.g., the exact expression e in v op; e is omitted; only its type is preserved). Note that
a specific atomic formula convertible_to is introduced, which helps to handle overloaded callee
candidates where implicit type conversions are permitted.

atomic = op, T |Topy|Top;t|top, T|T(t")|T.n|T.n(t") |
trait(T) | convertible_to(T, t)
formula := atomic| (A formula®) | (V formula®)

Example 3.2. In real C++ code, the constraint formula (T x) { ++x; } && ((T x) { x.f(Q; 3 ||
(T x) { x.g(); }) consists of three atomic constraints (T x) { ++x; }, (T x) { x.f(); }, and
(T x) { x.g0); 3. The overall requirement is that the type T must support the prefix-increment
operator ++, and must support member function calls of either () or g(). Note that (T x) { ++x; }
corresponds to the atomic constraint ++7 as defined in Definition 3.1, and thus Definition 3.1 can
be regarded as abbreviations of real C++ constraints.

We do not reason about implications between different atomic constraints except for equality
comparisons. Certain atomic constraints are normalized to reduce redundancies: for example,
(Tx, Ty) {x+y; Yand (T x, Ty) { y + x; } are treated as the same atomic constraint
by rewriting y + x to x + y (i.e. the x is always on the left hand side). Our main reasoning effort
is devoted to conjunctions and disjunctions, e.g. removing duplicate conjuncts. Also, we consider
constraint formulas for each template type parameter T, but the formula itself can involve other
type parameters, such as std: : same_as<T, U>, which is an atomic constraint formula requiring T
to be the same as another template type parameter U.

3.3 Interprocedural Constraint Map Construction

The first step is to traverse the abstract syntax tree (AST) of the C++ translation unit and construct
the inter-procedural constraint map* representing both intra-procedural constraints inside individual

4The same idea can be extended to class templates, which could be defined as inter-class constraint map.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

Fast Constraint Synthesis for C++ Function Templates 88:9

op,v v:T vop, 0v:T vop;e v:T e:t eop.v e:t v:T
P Ps (2) Pi (3) Pi (4)
op, T T op, Top;t top; T
v(e*) ov: 7*“ et 5) on v:T ©) v.n(e’) ov: I*' et @ traft(T) @®)
T(t) T.n T.n(t%) trait(T)

n(...o...) 0:T (<...U...> _n(...U_..){..D" (<>)?_n(...t_..){.D
(U, m)",t"]

©)
Fig. 6. Rules for inter-procedural constraint map construction.

function templates and the relations between different function templates. The traversal can be
either depth-first search or breadth-first search, and we primarily collect all usage sites of variables
of types in the template parameter list. Formally, for each C++ translation unit U, we use Ur to
denote the set of function templates in U. For each function template f; € Ur, we use TTParm(f;)
to denote the set of type template parameters of f;. Given a translation unit U, we define the inter-
procedural constraint map Mg, which maps each type template parameter in (¢ q;, TTParm(f;)
to a set of constraints that it should satisfy.

Definition 3.3 (Inter-procedural constraint map). Given a specific type template parameter T €
TTParm(f;), we classify the constraints in Mq,(T) into two categories.

e Intraprocedural Constraints: This category includes constraints on T that are not de-
pendent on other functions or function templates, such as unary/binary operators, member
accesses, etc., inside the body of f;. They are atomic constraints as defined in Definition 3.1.

e Interprocedural Constraints: An inter-procedural constraint is generated for each named
call-site g(. ..) inside f; where a variable of type T is used as the k-th argument. Because of
overloading, g can refer to many functions or function templates sharing the same name:
{¢° g%, ...}. The inter-procedural constraint for this call-site is thus a list of elements in the
following forms.

- (U, m) corresponds to another function template ¢/, such that the k-th parameter of g’
is of type U € TTParm(g’). m is a corresponding backmap which will be explained later.
Overall, this means T should satisfy whatever U satisfies.

— t corresponds to a function or function template specialization® ¢*, such that the k-th
parameter of g* is of concrete type t; or a function template g* but the k-th parameter of
g~ is of concrete type t. Overall, this means T should be convertible to ¢.

Constraint Collection. Figure 6 depicts our constraint collection process using typing rules.
Note that, unlike conventional typing rules that start with type environments, our implementation
directly uses the Clang frontend to obtain types for variables and expressions. In particular, Clang’s
Expr class® has a member function getType, which returns the (possibly qualified) type QualType
of the expression. As a result, we omit type environments and focus on constraint generations.
In terms of formalization, we can consider an elaborated version of our simplified calculus with
explicit type annotations for variables and expressions, as shown in Figure 7.

5C++ only allows full specialization for function templates, meaning that every template parameter should be concrete in
the specialization.
Shttps://clang.llvm.org/doxygen/classclang_1_1Expr.html.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

https://clang.llvm.org/doxygen/classclang_1_1Expr.html

88:10 Shuo Ding and Qirun Zhang

T € TypeParameter

t € TypeU TypeParameter
v:t € Variable
e:t € Expression

Fig. 7. The elaboration of our simplified calculus where types of variables and expressions are explicitly
annotated. We only show the most relevant parts (i.e. variables and expressions) of the language definition,
as other parts follow Figure 5 with v and e replaced by type-annotated versions.

The formal constraint collection process is shown in Figure 6, where T is the type template
parameter for which we want to infer constraints. * means repeating zero or more times, “_” means
“don’t care” tokens (i.e., source code tokens that are ignored), and “...” means adjacent irrelevant
syntax constructs.

e Rules (1) - (4) consider the variable v of type T used in expressions. For example, if v is used
as “++v,” we generate an atomic constraint “++T.

e Rule (5) considers the variable v of type T used as a higher-order call, meaning that T must
be a callable type.

o Rules (6) - (7) consider the variable v of type T where a member access is requested, meaning
that T should have the corresponding members.

e Rule (8) considers type trait predicates directly applied to the type template parameter T.

e Rule (9) considers the variable v of type T used as an argument for a function call, where v
must satisfy the corresponding requirements of at least one overloading candidate.

Note that Figure 6 only shows the rules for our simplified calculus for demonstration purposes,
and in our implementation for the C++ language, we have further ad-hoc reasoning processes
to refine the results. For example, if a higher-order function call (Rule (5) in Figure 6) is used as
a condition of a branch, then its return type should be convertible to the Boolean type, which
corresponds to an additional constraint.

The constraints collected in this stage are not completely in the form of constraint formulas
in Definition 3.1, because the inter-procedural constraints (Rule (9) in Figure 6) are not defined
in Definition 3.1 and we have not generated conjunctions or disjunctions. In the formula map
construction stage in Section 3.4, (unsimplified) constraint formulas as defined in Definition 3.1
are generated, where conjunctions are constructed to model multiple requirements in the same
function template, and disjunctions are constructed to model function overloading (Rule (9) in
Figure 6).

Constraint Propagation. To correctly propagate constraints inter-procedurally, we need backmaps.
We explain the intuition through an example. Consider the following C++ code.

template <typename T> void f(T x) { x++; }

template <typename U> void g(U x) { f(x); }
We need to propagate the constraint on the template parameter T of f, whichis (T x) { x++; 3,
to the template parameter U of g. However, we cannot directly copy that constraint, because at g,
there is no type template parameter named T. To resolve this issue, we design backmaps, which
store what arguments (in this case, U) are substituted for the callee’s type template parameter (in
this case, T). In a more general case where we have a chain of function calls (f; calls f, f> calls f5,
etc.) of length [, the correct type can be resolved by iteratively stepping through the I backmaps.

Definition 3.4 (Backmap). For each named call-site g(. . .) inside a function template f, for each
function template ¢’ in the overloading candidate set {¢°, ¢, ...}, the backmap m; is defined as

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

Fast Constraint Synthesis for C++ Function Templates 88:11

a (possibly non-total) map mapping each type template parameter U € TTParm(g') to either a
concrete type t or a type depending on template parameters in TTParm(f).

In our implementation, we construct backmaps in a best-effort fashion. This involves analyzing
the named call-site and identifying the arguments that should be used to replace the type template
parameters of the callee. If the correct type cannot be resolved, then we simply discard the constraint,
which still preserves the under-approximation property.

Example 3.5 (Inter-procedural constraint map and backmap). For the following code,
void f(int x) {}
template <typename T> void f(T x) { x++; ++x; x+=1; }
template <typename U> void g(U x) { f(x); x.print(); }
the corresponding inter-procedural constraint map is

T —{@ x5} (T x0{++x;}, (T x,int y){x+=y;} }
U - {[int,(T,m)], (U x){x.print();}}

where [int, (T, m)] is an inter-procedural constraint as described in Definition 3.3, and the corre-
sponding backmap m for the function template f (not the separate overloading of f with concrete
type int) is

{T - U}

Note that in our implementation, the keys of constraint maps are pointers to template type
parameters in the AST (const clang: :TemplateTypeParmDeclx), so there is no ambiguity even if
different function templates use the same name (such as T) for their template parameters.

3.4 Formula Map Construction

The inter-procedural constraint map M contains all we need for constraint synthesis, but recursive
dependencies could exist. For example, the constraints of a function template’s type parameter T
can depend on another function template’s type parameter U, which can, recursively, depend on T
again. Our second step is thus obtaining the formula map, which maps type template parameters to
constraints formulas, and which does not contain recursive dependencies. Algorithm 1 gives the
formula map construction algorithm, which employs a depth-first search on the inter-procedural
constraint map.

Algorithm 1 maintains two data structures. The status map at line 3 represents whether the con-
straint formula of a type template parameter has not been touched by the algorithm (NOTVISITED),
is in the process of being constructed (ONSTACK), or has already been constructed (VISITED). The
result map at line 5 represents the formula map being computed, wherein the implementation, we
actually store the pointers to constraint formulas, so that the same constraint formula for a type
template parameter of a callee can be shared by different callers. The function DFS at line 6 recur-
sively construct the constraint formula for each type template parameter (line 31), and any recursive
dependency in the inter-procedural constraint map is truncated at line 27 and is eventually treated
as true (line 18). Inside DFS, the only case where we involve backmaps is for inter-procedural
constraints of the form (U, m), where we also store the backmap to the constraint formula being
constructed at line 20 so that we can recover type names for inter-procedural constraints.

The order of visiting keys (line 31) can affect the final results. Consider this chained dependency
of type template parameters T «— U < V « T, meaning that T depends on U, U depends on V,
and V depends on T again. If T is visited first, then when we recursively get to V, V’s dependency
of T will be truncated to true; if V is visited first, then V’s dependency of T will at least include
the intra-procedural constraints of T. This is a loss of precision when handling recursions, and we

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

88:12 Shuo Ding and Qirun Zhang

Algorithm 1 The formula map construction algorithm

1: function coNsTRUCTFORMULAMAP(M /* inter-procedural constraint map */)
2 // type template parameter — construction status

3 status «— emptyMap(default = NOTVISITED)

4 // type template parameter — formula

5: result «— emptyMap()

6 function prs(T /* type template parameter */)

7 if status[T] = NOTVISITED then

8 status[T] « ONSTACK

9 conjunction « emptyConjunction()

10: for constraint € M[T] do

11: if constraint.intra() then // intra-procedural constraint
12: conjunction.add(constraint)

13: else if constraint.inter() then // inter-procedural constraint
14: disjunction < emptyDisjunction()

15: for (U, m) € constraint do

16: temp « DFs(U)

17: if temp = NULL then

18: disjunction.add(true)

19: else

20: disjunction.add((m, temp))

21: for t € constraint do

22: disjunction.add(convertible_to(T, t))
23: conjunction.add(disjunction)

24: result[T] « conjunction

25: status[T] « VISITED

26: return conjunction

27: else if status[T] = ONSTACK then

28: return NULL

29: else if status[T] = VISITED then

30: return result[T]

31: for T € M keys() do

32: if status(T) = NOTVISITED then

33: Drs(T)

34: return result

choose to keep the algorithm lightweight without introducing time-consuming processes such as
fixed point computations.

Example 3.6 (Formula map). For the C++ code shown in Figure 8a, the corresponding formula
map is shown in Figure 8b, where m; and m; are backmaps for call-site 1 and call-site 2, respectively.
The constraint of T is also shared inside U and V’s constraints, because g1 and g2 both call f. Note
that there are redundant nested conjunctions and disjunctions in this case, which can be handled
by our formula simplification algorithm in Section 3.5.

3.5 Formula Simplification

From the formula map, we can recursively read and print the constraint formula (as defined in
Definition 3.1) for each type template parameter, with the help of backmaps. However, because of
chained function calls in function templates, the constraint formulas could contain redundancies

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

Fast Constraint Synthesis for C++ Function Templates 88:13

template <typename T> void f(T x) { x++; }
template <typename U> void gl(U x) { f(x); // call-site 1 }
template <typename V> void g2(V x) { f(x); // call-site 2 }

(a) Three C++ function templates where g1 and g2 share the callee f.

Conjunction
U Disjunction T
(my,
Conjunction
(T x){x++;}
Conjunction
Disjunction
\%
(mo,

(b) The corresponding formula map where T, U, V are type template parameters pointing to their constraints.

Fig. 8. A piece of C++ code and its corresponding formula map.

such as (A(V(A(V(atomicConstraint))))). A typical case is that when there is only one callee for
a call-site inside the template body, Algorithm 1 still insert a disjunction layer in the formula.
To make the final constraint formula smaller, we apply a simple polynomial-time simplification
process (Algorithm 2) before actually inserting the constraint formula into C++ code.

The basic idea of Algorithm 2 is to simplify conjunctions (line 1) and disjunctions (line 27) in a
bottom-up fashion using recursion. Redundant layers of the formula are recursively eliminated
(line 7). The main simplification rules include de-duplicating terms and discarding trivial terms
(line 12). The main procedure (line 29) starts the simplification based on the input formula’s format
(atomic, conjunction, disjunction).

There exist sophisticated Boolean formula minimization algorithms, such as the Quine-McCluskey
algorithm [35, 40, 41], but the problem itself is NP-hard [56]. Since our goal is to keep our approach
lightweight, we choose to use our Algorithm 2. Suppose the input formula f’s length is [and
nesting depth is d, and suppose the hash function takes linear time with respect to the input length.
Then Algorithm 2’s time complexity is O(ld), and is thus polynomial time with respect to the
formula size.

3.6 Soundness versus Soundiness

Our goal is to let the computed constraint formula C under-approximate (allow more types than)
the real requirement R. Suppose the set of types (including new types that can be added to the code
in the future) allowed by C and R are denoted as S(C) and S(R), respectively; as we discussed
in Section 2, we need S(C) 2 S(R). We call this property soundness. In our simplified calculus
(Figure 5), soundness is ensured by our algorithms.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

88:14 Shuo Ding and Qirun Zhang

Algorithm 2 The formula simplification algorithm

1: function siMPLIFYCONJUNCTION(f /* constraint formula */)

2 newConjunction < emptyConjunction()

3 deduplicate « emptyHashSet()

4 for conjunct € f do

5: candidates < emptyList()

6 conjunct «— sIMPLIFYFORMULA(conjunct) // recursive simplification

7 if conjunct.isConjunction() then // inspect one layer of conjunction
8 for child € conjunct do

9

candidates.add(child)
10: else
11: candidates.add(conjunct)
12: for candidate € candidates do
13: if candidate.isTrue() then // omit trivial conjuncts
14: continue
15: else if candidate.isFalse() then // f is trivially false
16: return false
17: else
18: if not deduplicate.contains(candidate.hash()) then
19: newConjunction.add(candidate)
20: deduplicate.add(candidate.hash())
21: if newConjunction.length() = 0 then // f is trivially true
22: return true
23: else if newConjunction.length() = 1 then // omit one trivial conjunction layer
24: return newCojunction.first()
25: else
26: return newCojunction

27: function SIMPLIFYDISJUNCTION(f /* constraint formula */)
28: // similar to siMPLIFYCONJUNCTION, omitted

29: function sIMPLIFYFORMULA(f /* constraint formula */)

30: if f.isAtomic() then

31: return f

32: else if f.isConjunction() then

33: return siMPLIFYCONJUNCTION(f)
34: else// disjunction

35: return SIMPLIFYDi1sJUuNCTION(f)

THEOREM 3.7. For programs written in the simplified calculus shown in Figure 5, for every type
template parameter T, if a type argument t is passed in for T and does not result in compile-time errors,
then the constraint formula generated for T according to the three steps (Sections 3.3, 3.4, and 3.5)
evaluates to true on t.

Proor. Since the type argument ¢ does not result in compile-time errors, all uses of type ¢ in
the code are valid. Every intra-procedural constraint as defined in Definition 3.3 is satisfied, so the
conjunction of these constraints is also satisfied. Every inter-procedural constraint, as defined in
Definition 3.3, according to overloading resolution, should result in at least one valid candidate,
so the disjunction of the constraint formulas from the overloading candidates is satisfied. The
choice of truncating recursive dependencies to true in Section 3.4 only relaxes the constraint, so

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

Fast Constraint Synthesis for C++ Function Templates 88:15

#include <utility> #include <utility>

struct S { void f() && {3} }; struct S { void f() && {3} };
template <typename T> temp%ate <typename T>

void g(T x) { std::move(x).f(); } requires requires (T o) { 0.f(); 2

void g(T x) { std::move(x).f(); }
int main() { g(5{}; } .)

int main() { g(5{}); }
(a) Original code: successful compilation on Apple (b) Modified code: failed compilation on Apple clang
clang 15.0.0. 15.0.0.

Fig. 9. An unsound corner case where our tool inserted over-constrained constraints. The member function f
of S should be invoked on r-values, while our tool ignores references and uses an |-value to invoke f in the
constraint. Note that requires requires is not a typo: the first requires specifies the constraint for the
template while the second requires starts a constraint expression.

satisfaction is preserved. The formula simplification algorithm as described in Section 3.5 preserves
the truth value of the constraint formulas, so the simplified formula is also satisfied by t. O

However, almost all realistic static analysis tools are unsound in certain aspects [32]. The reasons
include scalability, precision, and engineering details of realistic programming languages. A static
analysis tool is soundy when most common language features are soundly-approximated while some
special language features, well-known to experts in the area, are unsoundly-approximated [32].
This is known as the soundiness. We claim our implementation is soundy for C++. First, we apply
the following general strategy in our implementation: whenever we encounter unsupported C++
language features, we treat the constraint generated by the unsupported part as true, so our tool
gracefully bypasses them and approximates toward S(C) 2 S(R).

e For example, std: :enable_if expressions occurring on parameter lists and/or return types
are currently ignored, which relaxes the constraints generated by our tool and preserves
under-approximation. We plan to support std: :enable_if by starting from simple cases
(such as single traits std: : is_void<T>::value or its negation) and gradually handling more
and more complicated constraints (including nested expressions).

e As another example, if one of the overloading candidates contains unsupported features such
as if constexpr, then the entire constraint for the candidate falls back to true, which still
preserves under-approximation.

Second, for cv(const/volatile)-qualifiers and Ivalue/rvalue references, with deliberately designed
corner cases such as Figure 9, our tool can generate slightly over-constrained constraints and
therefore results in S(C) C S(R). In Figure 9, the reason is that we ignore references when
handling constraints. To sum up, our tool is sound except for the two features (1) cv-qualifiers
and (2) lvalue/rvalue references. Those two features have complicated interactions with template
argument deductions [8, 12], and we leave the completely sound handling of them as future work.

4 Experiments

We implemented our approach based on the RecursiveASTVisitor facility from Clang frontend
(forked from the main branch of Clang in October 2023). Our implementation language is C++,
consisting of roughly 2.8 KLOC. We support unary operators, binary operators, higher-order
functions, class member accesses, and simple type traits as atomic constraints. We provide the link
to our open-source implementation at the end of this paper.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

88:16 Shuo Ding and Qirun Zhang

Table 1. Overall performance. The execution time includes not only the three steps described in Section 3,
but also the actions of generating the rewritten code, reporting statistical results, etc.

algorithm | special_functions
Total LOC after preprocessing 32,206 111,862
Execution time (seconds) 0.250 1.302
Number of templates 821 2,531
Number of templates with nontrivial results 315 908

template <typename _Integral>
__attribute__((__visibility__("hidden")))
__attribute__((__exclude_from_explicit_instantiation__))
__attribute__((__abi_tag__("v160006"))) constexpr
typename enable_if

<

is_integral<_Integral>::value,
_Integral

>::type

__half_positive(_Integral __value)

{
return static_cast<_Integral>(
static_cast<__make_unsigned_t<_Integral> >(__value) / 2
);

Fig. 10. A function template from algorithm that our tool fails to synthesize non-trivial constraints.

We conducted experiments on two libraries: <algorithm> from the Standard Template Library
(STL) and <boost/math/special_functions.hpp> from the Boost library. We chose these two
libraries because they mainly consist of function templates instead of class templates, and our tool
currently only targets function templates, although the idea can also be extended to class templates.
Our evaluation focuses on three dimensions.

e Performance (Section 4.1). For both libraries, we report the numbers of function templates
for which our tool can infer nontrivial constraints (constraints that are not simply the literal
true). We also measure execution time.

e Precision (Section 4.2). For the algorithm library, we compare the inferred constraints with
the documented constraints.

e Error Reduction (Section 4.3). For both libraries, we measure the Clang compilation error
message reductions after adding constraints.

It is important to mention that our tool is lightweight and can be used on ordinary hardware.
To demonstrate this, all of our experiments were conducted on a MacBook Air (2020) with Apple
M1 chip and 8GB memory, and everything was executed in a single thread. The pre-processing
of standard library headers and the compilation error measurements were all based on the main
compiler on the MacBook, which is Apple Clang version 15.0.0.

4.1 Overall Performance

Table 1 presents the execution speed and the number of function templates with non-trivial
synthesized constraints. Our analysis is highly efficient, taking only 0.250 seconds to process
more than 30k lines of code from algorithm and only 1.302 seconds to process over 110k lines of
code from special_functions. Note that these times include not only the three steps described in
Section 3, but also the reporting of statistical results, and the code rewriting for adding synthesized
constraints. This demonstrates the exceptional performance of our tool. Furthermore, our tool can

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

Fast Constraint Synthesis for C++ Function Templates 88:17

Table 2. Precision on STL algorithmlibrary. The library requirement is obtained from the standard document,
while the synthesized requirement is generated by our tool.

Template Documented requirement Synthesized requirement
for_each (Inputlterator, UnaryFunction) (Iterator, UnaryFunction)
find (Inputlterator, Any) (Iterator, Any)

find_if (Inputlterator, Predicate) (Tterator, Predicate)

count (Inputlterator, Any) (Iterator, Any)

count_if (Inputlterator, Predicate) (Iterator, Predicate)
replace (ForwardIterator, Any) (Iterator, Any)
replace_if | (ForwardlIterator, Predicate, Any) (Iterator, Predicate, Any)
copy (Inputlterator, Outputlterator) (Any, Any)

copy_if (Inputlterator, Outputlterator, Predicate) (Iterator, Iterator, Predicate)
move (Inputlterator, Outputlterator) (Any, Any)

unique_copy | (Inputlterator, Outputlterator) (Iterator, Iterator)

sort (ValueSwappable A RandomAccesslterator) | (RandomAccesslterator)
equal_range | (ForwardIterator, Any) (Iterator, Any)

merge (Inputlterator, Inputlterator, Outputlterator) | (Iterator, Iterator, Iterator)

synthesize non-trivial constraints for approximately 30%-40% of function templates. The remaining
function templates either (1) lack requirements in our supported categories of atomic constraints, or
(2) incorporate C++ features that are not yet supported by our tool, such as complicated type sugars
or aliases. Note that the two cases are overlapping (there could be function templates incorporating
unsupported features while at the same time does not have constraints in reality), and in general it is
not possible to automatically isolate the first case due to the undecidability mentioned in Section 2.2.
An example from the algorithm library in which our tool fails to synthesize constraints is shown
in Figure 10, where the usage of the variable __value is wrapped in type conversions before being
divided by the operator /, and our tool currently only supports limited forms of such wrappers.
It is worth mentioning that our conservative strategy (Section 3.6) ensures under-approximation
by treating an inter-procedural constraint as true when there exists a callee candidate containing
unsupported features. This can result in some function templates having trivial constraints.

Summary. Our analysis is highly efficient and can synthesize non-trivial constraints for 30%-40%
of function templates. In particular, the high efficiency makes it possible to use our tool in interactive
settings where the developer is editing the code.

4.2 Precision on STL Library

To further understand the quality of the synthesized non-trivial constraints for algorithm, we
conduct a semi-automated comparison of our generated requirements with the ones documented
in the C++ standard. We choose the 14 function templates from the introductory C++ textbook [53]
as our targets. These function templates are regarded as “particularly useful” [22].

The measurement process is as follows. First, we collect a set of representative named require-
ments [10] that are used in the C++ standard to specify the expectations of template parameters in
the standard library. We create a constraint formula evaluator, which incorporates certain named
requirements as hard-coded components. The evaluator then runs on the synthesized constraint for-
mula and reports the most general named requirement N that evaluates to true on the formula. This
implies that N is at least as constrained as the formula itself. This method can, in general, be used

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

88:18 Shuo Ding and Qirun Zhang

103 ¢
F B Original
i B8 Constrained
E -
5
S 10% |
& &
= r
Q_‘ |
g L
et
1l
o F
= &
g -
:s |
LL‘ I I
100 ; . _

T T T T T T
0-49 50-99 100-149 150-199 200-249 250+

Error message length

Fig. 11. Error message length (number of lines) distribution on algorithm. The y-axis is of logarithm scale,
so most lengths reside in [0,50). The average lengths are 30.022 for the original code and 13.019 for the
constrained code.

for matching constraints with pre-defined concepts, as discussed in Section 6.1. Next, we manually
compare the generated named requirements with the ones described in the documentation.

Table 2 shows the library requirements obtained from the document and the synthesized require-
ments obtained from the above process. We can observe that the synthesized requirements always
under-approximate the library requirements, and they are often similar or identical to the docu-
mented requirements. For the first type template parameter of for_each, the library requirement is
InputIterator, while the generated constraint formula is

(requires (T x@) { *x@; } && requires (T x0) { ++x0; })

which is inferred to be just Iterator by our formula evaluator. The distinction between these
types of iterators can be complex [9], involving details that our tool does not handle. However, the
conclusion of Iterator already provides more information than the unconstrained case, and in
clearer cases, our tool can also synthesize more precise iterators such as the RandomAccessIterator
for sort, where the code of sort provides enough information for our tool to differentiate it from
normal iterators. For copy and move (not to be confused with the move for move semantics), our tool
synthesized trivial constraints. This is because in the version of STL targeted by our experiment,
they were implemented using a helper struct _ClassicAlgPolicy, which our tool currently does
not handle.

Summary. Our tool can synthesize meaningful constraints under-approximating the standard
library document for algorithm, and in many cases the generated constraints are the same as the
library requirements. This demonstrates that our tool can synthesize constraints improving the
template interface’s clarity.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

Fast Constraint Synthesis for C++ Function Templates 88:19

10° -

i B8 Original
I B8 Constrained

g i

o

(&)

g 10°}

= F

a, r

g r

_8 [

=i

.8

S g

g 100} I

= B
f l _BE

0-49 50-99 100-149 150-199 200-249 250-299 300+
Error message length

Fig. 12. Error message length (number of lines) distribution on special_functions. The y-axis is of loga-
rithm scale, so most lengths reside in [0, 50). The average lengths are 43.769 for the original code and 15.826
for the constrained code.

4.3 Error Message Reduction on STL Library and Boost Library

We also examine the reduction in error messages when incorrect arguments are used for both
algorithm and special_functions. Specifically, for each function template f, we use a Python
script to introduce a new empty struct S {}; along with a variable s of type struct S into the
code. We then make a function call f(s, s, ...).Given that the new type S is unlikely to satisfy
the requirements of f, template-related error messages are expected. We compare the lengths
(numbers of lines) of error messages before and after the addition of the constraints. Figure 11 and
Figure 12 give the distribution of these lengths. Note that the Boost library special_functions
includes some STL headers as well, and for measurements of the error message reductions in this
case, we excluded STL function templates and only considered Boost function templates.

From these two figures, it is clear that the synthesized concepts can successfully intercept the
errors at the early stages and greatly reduce the length of error messages. Constrained templates
consistently produce error messages that are less than 100 lines for both libraries. This provides
strong evidence that the new errors are more comprehensible and manageable.

Since length is not the only measurement of error messages’ readability, we also report the
number of cases where the added constraint results in an error message containing the string
“constraints not satisfied”. Among 158 original errors for algorithm, 137 constrained errors contain
“constraints not satisfied”; among 582 original errors for special_functions, 214 constrained errors
contain “constraints not satisfied”. This provides further evidence that many constrained templates
can intercept the error in an early stage of instantiation and improve error message readability.
Section 5.3 also presents a concrete case study where the constrained version is not much shorter
but is arguably more readable.

Summary. The constraints synthesized by our tool for algorithm and special_functions can
effectively reduce the lengths of error messages. Additionally, even for shorter error messages, the
constrained version could be more comprehensible, as discussed in Section 5.3.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

88:20 Shuo Ding and Qirun Zhang

int elem = 12;
bool isElementPresent = std::binary_search(
v.begin(), v.end(), elem,
[1(const X& right, const X& left) { return right.attribute_1 < left.attribute_1; }

);
(a) Case study 1 code snippet.

sort(graph->edgel[0], graph->edge[(graph->E)-1], myComp<T>);

(b) Case study 2 code snippet.

struct S {3};

int main() {
S s;
boost::math::sign(s);

3
(c) Case study 3 code snippet.

Fig. 13. C++ code snippets for case studies.

5 Case Studies

To better understand the error message improvements, we conduct three case studies. In Sec-
tion 4, our tool synthesized constraints for <algorithm> from the Standard Template Library (STL)
and <boost/math/special_functions.hpp> from the Boost library. We select two incorrect C++
programs using STL and one incorrect C++ program using Boost, and study the error message
improvements after adding the synthesized constraints to STL/Boost. The incorrect programs using
STL are two real-world examples obtained from the StackOverflow Q&A website, and the incorrect
program using Boost is one obtained from our synthetic incorrect programs in Section 4.3. All
errors were produced by Apple Clang version 15.0.0.

5.1 Case 1: Real World Error Example of STL Binary Search from StackOverflow

Figure 13a gives a C++ code snippet, which is based on a real-world question from Stack-
Overflow [49]. The question is about a compilation error on C++ code with an incorrect use
of std: :binary_search on a vector of a custom class: the provided lambda expression only ac-
cepts objects of the custom class while the target of the binary search is an int. According to
the C++ specification,” the last parameter of std: :binary_search should be a binary predicate
bool pred(const Typel &a, const Type2 &b) such that the object elem can be implicitly con-
verted to both Type1 and Type2, and the iterators can be dereferenced and then implicitly converted
to both Type1 and Type2. Our tool synthesized constraints for std: :binary_search so the error
message for that code can be improved. The effective part of the added constraint is as follows.

requires (_Compare f, _Tp x@, _ForwardIterator x1) { f(x@, *x1); }

The error messages before/after adding the constraint are shown in Figure 14. Note that in the
error messages before adding the constraint, there are 20 omitted lines, which matches Section 4.3’s
conclusion that adding constraints can effectively reduce the error message length. Also, in the
error messages before adding the constraint, there are unnecessary implementation details such

https://en.cppreference.com/w/cpp/algorithm/binary_search.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

https://en.cppreference.com/w/cpp/algorithm/binary_search

Fast Constraint Synthesis for C++ Function Templates 88:21

In file included from testl.cc:1:

In file included from /Library/Developer/CommandLineTools/SDKs/...

In file included from /Library/Developer/CommandLineTools/SDKs/...

...failed due to requirement '__is_callable<(lambda at testl.cc...
static_assert(__is_callable<_Compare, decltype(*__first), const...

/Library/Developer/CommandLineTools/SDKs/MacOSX. sdk. . .
__first = std::lower_bound<_ForwardIterator, _Tp, __comp_ref...

testl.cc:16:34: note: in instantiation of function template spec...
bool isElementPresent = std::binary_search(
s

In file included from testl.cc:1:
In file included from /Library/Developer/CommandLineTools/SDKs/. ..
In file included from /Library/Developer/CommandLineTools/SDKs/...
...lower_bound.h:40:9: error: attempt to use a deleted function
if (std::__invoke(__comp, std::__invoke(__proj, *__m), __...
...specialization 'std::__lower_bound_impl<std::_ClassicAlgPolicy...
return std::__lower_bound_impl<_ClassicAlgPolicy>(__first

P

/Library/Developer/CommandLineTools/SDKs/MacOSX. sdk. . .
(20 lines omitted)
3 errors generated.

(a) Error messages of the template std: :binary_search before adding constraints.

...:16:29: error: no matching function for call to 'binary_search'

...candidate template ignored: constraints not satisfied [with...
binary_search(_ForwardIterator __first, _ForwardIterator __last,...

/Library/Developer/CommandLineTools/SDKs/MacOSX. sdk. . .
...requires (_Compare f, _Tp x@, _ForwardIterator x1) { f(x@, *x1); }

/Library/Developer/CommandLineTools/SDKs/MacOSX. sdk. . .
binary_search(_ForwardIterator __first, _ForwardIterator __last,...

1 error generated.

(b) Error messages of the template std: :binary_search after adding constraints.

Fig. 14. Error messages comparison on std: :binary_search.

as std: : __lower_bound_impl<_ClassicAlgPolicy>, while in the error messages after adding the
constraint a clear explanation of the compilation error “constraints not satisfied” In particular,
it shows that the predicate passed to the call does not satisfy the requirements.

5.2 Case 2: Real World Error Example of STL Sorting from StackOverflow

Figure 13b gives a C++ code snippet, which is based on a real-world question from StackOver-
flow [52]. The question is about a compilation error on the C++ code with the incorrect use of
std: :sort on an array of a custom class. According to the C++ specification,® the first and second
parameters of std: :sort should be a pair of iterators. The incorrect code uses a pair of custom
objects of class Edge. Our tool synthesized constraints for std: : sort. The effective part of the
added constraint is as follows.

requires

requires (_RandomAccessIterator x0) { *x0@; } &&
requires (_RandomAccessIterator x0) { ++x0; } &&
requires (_RandomAccessIterator x0) { --x0; }

)

8https://en.cppreference.com/w/cpp/algorithm/sort.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

https://en.cppreference.com/w/cpp/algorithm/sort

88:22 Shuo Ding and Qirun Zhang

(135 lines omitted)
.: note: in instantiation of...
std: :sort(graph->edge[0], graph->edge[(graph->E)-1], myComp<int>);

: error: no type named...

: note: in instantiation of... .
std::__sort<_WrappedComp>(std::__unwrap_iter(__first), ...

...: error: invalid operands...
difference_type __depth_limit = 2 x __log2i(__last - __first);
: note: candidate template ignored:...
operator-(const reverse_iterator<_Iter1>& __x, const...
S

12 warnings and 8 errors generated.

(a) Error messages of the template std: : sort before adding constraints.

(33 lines omitted)
: warning: user-defined literal suffixes not starting with '_'...
__attribute__((__visibility__("hidden")))...

i error: no matching function for call to 'sort'

: note: candidate template ignored: constraints not satisfied...
void sort(_RandomAccessIterator __first, _RandomAccessIterator __last...
s

...: note: because '*x@' would be invalid...
requires (_RandomAccessIterator x@) { *x0; } &&

...: note: candidate function template not viable:...
void sort(_RandomAccessIterator __first, _RandomAccessIterator __last) {
S

12 warnings and 1 error generated.

(b) Error messages of the template std: : sort after adding constraints.

Fig. 15. Error messages comparison on std: : sort.

The error messages before/after adding the constraint are shown in Figure 15. Before adding the
constraints, there are 151 lines of warnings and errors generated (where the warnings are related
to C++ preprocessing in our experimental steps and are irrelevant to the main errors), where there
are 8 errors in total. After adding the constraints, the number of lines of warnings and errors is
reduced to 49, and the number of errors is reduced to 1. Again, the new error message provides a
clear explanation of the reason: “constraints not satisfied.” In particular, the *x@ in the error
message clearly explains the problem: dereferencing an object of type class Edge is invalid.

5.3 Case 3: Synthetic Error Example of Boost from Our Experiments

Figure 13c gives a C++ code snippet, which is based on one of the synthetic erroneous code de-
scribed in Section 4.3. The code makes use of boost: :math: : sign, but the argument type struct Sis
incorrect, resulting in compilation errors. Our tool synthesized constraints for boost: :math: :sign.
The effective part of the added constraint is as follows.

requires (T x0@, int x1) { x@ == x1; }

The error messages before/after adding the constraint are shown in Figure 16. Although, in this
case, the lengths of error messages before/after adding the constraint are similar, it is arguably
true that the messages after adding the constraint are clearer and easier to understand. Specifically,
before adding the constraint, the implementation details of the function template are exposed
(return (z == 0) ? 0 : (boost::math::signbit)(z) ? -1 : 1;). After adding the constraint, it

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

Fast Constraint Synthesis for C++ Function Templates 88:23

<stdin>:76087:14: error: invalid operands to binary expression
('const S' and 'int')
return (z == @) ? @ : (boost::math::signbit)(z) ? -1 : 1;
A~
<stdin>:111864:14: note: in instantiation of function template
specialization 'boost::math::sign<S>' requested here
boost::math::sign(s);
x

1 error generated.

(a) Error messages of the template boost: :math: : sign before adding constraints.

:126854:1: error: no matching function for call to 'sign'
th::sign(s);

<stdin>:80713:12: note: candidate template ignored:
constraints not satisfied [with T = S]

inline int sign (const T& z)

<stdin>:80712:30: note: because 'x@ == x1' would be invalid:
invalid operands to binary expression ('S' and 'int')
requires (T x0, int x1) { x@ == x1; }

1 error generated.

(b) Error messages of the template boost: :math: : sign after adding constraints.

Fig. 16. Error messages comparison on boost: :math: :sign.

becomes evident that the template is ignored due to “constraints not satisfied” and “because
'x@ == x1' would be invalid” In particular, the erroneous code causes the comparison between
s and an int, which is invalid.

6 Discussions
6.1 Matching with Existing Concepts

Our approach synthesizes a constraint formula for each type template parameter. However, there are
also pre-defined concepts such as std: : integral or domain-specific ones created by programmers.
Our approach can be easily extended to match the synthesized constraint formula with these pre-
defined concepts as explained in Section 4.2, using evaluators on the constraint formulas. Specifically,
we view the pre-defined concept as a predicate P, and suppose the synthesized constraint formula
is of the form ((A V B) A C). We first check whether P implies atomic components A, B, C, and then
combine them using V or A. This idea for comparing predicates is also general and can potentially
have other usage scenarios.

6.2 Generalization

Our approach targets C++ templates, but the general idea is applicable to various programming
languages in different usage scenarios. For example, disjunctions can model the requirements of
various kinds of polymorphisms, such as overloading, dynamic dispatch, etc. The backmap 3.4
idea can, in general, retain different information as needed at call-sites. Our goal of “synthesizing
constraints for C++ templates” can also be abstracted to “synthesizing requirements for functions,”
so it shares similarities with API/specification inference techniques [45]. The paper focuses on C++
as a concrete and tangible illustration of the overarching idea.

6.3 High Level Semantics of Programming Languages

Our work also advocates attention to the high-level semantics of modern programming languages.
In particular, C++ templates themselves are not translated into middle-level IR or assembly code

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

88:24 Shuo Ding and Qirun Zhang

by the compiler: only template instantiations are preserved. Indeed, the main problem we target
(compilation error) is no longer accessible in middle-level IR, such as LLVM-IR [34]. To deal with such
high-level semantics, it is necessary to confront complicated high-level program representations.
In our case, we directly analyze the C++ AST.

6.4 Usage Scenarios

We expect our tool to be used mainly in two scenarios. First, our tool can be applied to existing
templated C++ code, which can improve the interface and serve as a precaution for future error
messages. Second, because of the high analysis speed (Section 4.1), our tool can be integrated into
IDEs (similar to refactoring tools) and thus provide interactive feedback even when the developers
are changing the code. In both usage scenarios, the developer can choose to either accept or reject
the synthesized constraints to ensure absolute soundness.

6.5 Limitations

Section 3.6 mentions two limitations of our current implementation: (1) in certain cases precision
is sacrificed to preserve general correctness, and (2) cv-qualifiers and lvalue/rvalue references
are ignored to maintain a lightweight implementation, which may lead to unsoundness for these
features. In general, achieving full precision is inherently impossible due to the undecidability
discussed in Section 2.2. Furthermore, undecidability implies that it is not possible to automatically
tell whether a synthesized trivial constraint (true) is genuine. However, static analysis techniques
could provide partial insights into this question, potentially serving as a foundation for a more
precise approach. Future work could focus on improving precision and incorporating support for
qualifiers and references.

7 Related Work

This work attacks a relatively unexplored problem: C++ template constraint synthesis. Our work
improves the readability and maintainability of C++ code by leveraging the features of C++20. Our
novel technical insight includes using lightweight static analysis to handle complicated program-
ming languages like C++ in real-world scenarios while still ensuring high rigor and soundiness
(Section 3.6). This section focuses on surveying related topics.

Our work shares similarities with type inference for dynamically-typed languages, such as
JavaScript [3] and Python [39, 60]. However, as highlighted in the introduction, our work does
not infer types but infers constraints corresponding to sets of types, synthesizes complicated
constraints applicable to newly defined types, and can be regarded as a meta-analysis of the
compilation process for the statically-typed language C++. There are also previous efforts targeting
Java wildcard inference [1, 2].

Existing static analysis work for C++ typically focuses on traditional and general topics such
as symbolic execution [29, 30] and model checking [5, 26, 36, 37], which rarely targets high-level
C++ semantic problems. In contrast, our work handles recent language features (constraints and
concepts) introduced in C++20. While there are existing studies on the formal semantic analysis of
C++ templates [46] and comparisons with other languages like Haskell [6], our work presents a
practical application for C++ templates. There also exists work handling high-level semantics such
as Java reflection [31] and containers [58], while our work focuses on C++ generic programming.
There also exists work improving type error messages by using the type checker as an oracle to
search for similar programs that do type-check [28]. Our work adds “specifications” to the original
programs, which itself is beneficial for a clearer interface even if no error occurs.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

Fast Constraint Synthesis for C++ Function Templates 88:25

Our work also shares similarities with API/specification [45] inference techniques, but we focus
on soundy type requirements, while existing API/specification inference techniques [7, 14, 33, 42, 59]
utilize data-mining, probabilistic methods, or various heuristics.

The idea of backmap (Section 3) can be regarded as a form of compile-time context-sensitivity,
similar to the usual run-time context-sensitivity [15, 24, 44, 54, 61]. In our case, the same function
template can be called inside different function templates, each of which passes potentially different
“type-contexts” into the callees, which are all resolved in compile time.

The field of program synthesis [13, 18, 21, 47] has achieved great progress in recent years. Our
work does not synthesize programs but constraints for template parameters in existing code. Thus,
our work targets a different problem and is more scalable (Section 4.1) than typical program
synthesis techniques.

8 Conclusion

We propose a framework for automatically synthesizing constraints for C++ function templates.
The synthesized requirements are expressed using C++20 constraints and concepts, which can
significantly improve interface clarity and template-related compilation error messages. Our tool
runs extremely fast and thus has the potential to be used in IDE for interactive error reporting.
Experimental results show that our tool can synthesize valid constraints for real-world C++ code
from the Standard Template Library and the Boost library.

Acknowledgments

The authors thank the anonymous reviewers for their feedback on earlier drafts of this paper.
The work described in this paper was supported, in part, by the United States National Science
Foundation (NSF) under grants No. 2114627 and No. 2237440; and by the Defense Advanced Research
Projects Agency (DARPA) under grant N66001-21-C-4024. Any opinions, findings, conclusions, or
recommendations expressed in this publication are those of the authors and do not necessarily
reflect the views of the above sponsoring entities.

Data-Availability Statement

The implementation of our constraint synthesizer, and the corresponding experimental scripts and
data are available on Zenodo [16]. The latest version of our tool is also made publicly available at
https://github.com/sdingcn/concept-synthesizer.

References

[1] John Altidor, Shan Shan Huang, and Yannis Smaragdakis. 2011. Taming the wildcards: combining definition- and use-
site variance. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2011, San Jose, CA, USA, June 4-8, 2011. ACM, 602-613. doi:10.1145/1993498.1993569

[2] John Altidor and Yannis Smaragdakis. 2014. Refactoring Java generics by inferring wildcards, in practice. In Proceedings
of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA
2014, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014. ACM, 271-290. doi:10.1145/2660193.2660203

[3] Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. 2005. Towards Type Inference for JavaScript. In
ECOORP 2005 - Object-Oriented Programming, 19th European Conference, Glasgow, UK, July 25-29, 2005, Proceedings
(Lecture Notes in Computer Science, Vol. 3586). Springer, 428—452. doi:10.1007/11531142_19

[4] Wisnu Anggoro and John Torjo. 2015. Boost. Asio C++ Network Programming. Packt Publishing Ltd.

[5] Jiri Barnat, Lubos Brim, Vojtech Havel, Jan Havlicek, Jan Kriho, Milan Lenco, Petr Rockai, Vladimir Still, and Jiri
Weiser. 2013. DiVinE 3.0 - An Explicit-State Model Checker for Multithreaded C & C++ Programs. In Computer Aided
Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings (Lecture
Notes in Computer Science, Vol. 8044). Springer, 863-868. doi:10.1007/978-3-642-39799-8_60

[6] Jean-Philippe Bernardy, Patrik Jansson, Marcin Zalewski, Sibylle Schupp, and Andreas P. Priesnitz. 2008. A comparison
of c++ concepts and haskell type classes. In Proceedings of the ACM SIGPLAN Workshop on Generic Programming, WGP

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

https://github.com/sdingcn/concept-synthesizer
https://doi.org/10.1145/1993498.1993569
https://doi.org/10.1145/2660193.2660203
https://doi.org/10.1007/11531142_19
https://doi.org/10.1007/978-3-642-39799-8_60

88:26 Shuo Ding and Qirun Zhang

2008, Victoria, BC, Canada, September 20, 2008. ACM, 37-48. do0i:10.1145/1411318.1411324
[7] Victor Chibotaru, Benjamin Bichsel, Veselin Raychev, and Martin T. Vechev. 2019. Scalable taint specification inference
with big code. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. ACM, 760-774. doi:10.1145/3314221.3314648
[8] Cppreference. Accessed in April 2024. Class template argument deduction. https://en.cppreference.com/w/cpp/
language/class_template_argument_deduction.
[9] Cppreference. Accessed in April 2024. CPP named requirements: LegacyInputlterator. https://en.cppreference.com/w/
cpp/named_req/Inputlterator.
[10] Cppreference. Accessed in April 2024. Named Requirements. https://en.cppreference.com/w/cpp/named_req.
[11] Cppreference. Accessed in April 2024. SFINAE. https://en.cppreference.com/w/cpp/language/sfinae.
[12] Cppreference. Accessed in April 2024. Template argument deduction. https://en.cppreference.com/w/cpp/language/
template_argument_deduction.
[13] Loris D’Antoni, Qinheping Hu, Jinwoo Kim, and Thomas W. Reps. 2021. Programmable Program Synthesis. In Computer
Aided Verification - 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 12759). Springer, 84-109. doi:10.1007/978-3-030-81685-8_4
Yinlin Deng, Chenyuan Yang, Anjiang Wei, and Lingming Zhang. 2022. Fuzzing deep-learning libraries via automated
relational API inference. In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18, 2022. ACM, 44-56.
doi:10.1145/3540250.3549085
Shuo Ding and Qirun Zhang. 2023. Mutual Refinements of Context-Free Language Reachability. In Static Analysis -
30th International Symposium, SAS 2023, Cascais, Portugal, October 22-24, 2023, Proceedings (Lecture Notes in Computer
Science, Vol. 14284). Springer, 231-258. doi:10.1007/978-3-031-44245-2_12
Shuo Ding and Qirun Zhang. 2025. Fast Constraint Synthesis for C++ Function Templates (Artifact). doi:10.5281/zenodo.
14945421
Lee Zhi Eng. 2016. Qt5 C++ GUI programming cookbook. Packt Publishing Ltd.
Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. 2017. Component-based synthesis for
complex APIs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017. ACM, 599-612. doi:10.1145/3009837.3009851
Ronald Garcia and Andrew Lumsdaine. 2009. Toward foundations for type-reflective metaprogramming. In Generative
Programming and Component Engineering, 8th International Conference, GPCE 2009, Denver, Colorado, USA, October 4-5,
2009, Proceedings. ACM, 25-34. doi:10.1145/1621607.1621613
William Gasarch. 1998. A survey of recursive combinatorics. In Studies in Logic and the Foundations of Mathematics.
Vol. 139. Elsevier, 1041-1176. doi:10.1016/S0049-237X(98)80049-9
Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis. Found. Trends Program. Lang. 4, 1-2
(2017), 1-119. doi:10.1561/2500000010
ISO. Accessed in January 2025. A Tour of CPP: Containers and Algorithms. https://isocpp.org/files/4-Tour-Algo-
draft.pdf, 117 pages.
ISO. Accessed in October 2024. The Standard Definition of CPP. https://www.iso.org/standard/79358.html.
Minseok Jeon and Hakjoo Oh. 2022. Return of CFA: call-site sensitivity can be superior to object sensitivity even for
object-oriented programs. Proc. ACM Program. Lang. 6, POPL (2022), 1-29. doi:10.1145/3498720
Nicolai M Josuttis. 2012. The C++ standard library: a tutorial and reference. (2012).
Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. 2018. Effective stateless model
checking for C/C++ concurrency. Proc. ACM Program. Lang. 2, POPL (2018), 17:1-17:32. doi:10.1145/3158105
Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation.
In International symposium on code generation and optimization, 2004. CGO 2004. IEEE, 75-86. doi:10.1109/CGO.2004.
1281665
Benjamin S. Lerner, Matthew Flower, Dan Grossman, and Craig Chambers. 2007. Searching for type-error messages.
In Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language Design and Implementation, San Diego,
California, USA, June 10-13, 2007. ACM, 425-434. doi:10.1145/1250734.1250783
Guodong Li, Indradeep Ghosh, and Sreeranga P. Rajan. 2011. KLOVER: A Symbolic Execution and Automatic
Test Generation Tool for C++ Programs. In Computer Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6806). Springer, 609-615.
doi:10.1007/978-3-642-22110-1_49
Guodong Li, Indradeep Ghosh, and Sreeranga P Rajan. 2012. KIL: An Abstract Intermediate Language for Symbolic
Execution and Test Generation of C++ Programs. Citeseer, 15.
[31] Yue Li, Tian Tan, and Jingling Xue. 2019. Understanding and Analyzing Java Reflection. ACM Trans. Softw. Eng.
Methodol. 28, 2 (2019), 7:1-7:50. do0i:10.1145/3295739

[14

[l

[15

—

(16

—

[17
[18

—

(19

—

[20

[t

[21

—

[22

—

[23
[24

[lan i te}

[25
[26

—

[27

—

[28

[t

[29

—

[30

—

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

https://doi.org/10.1145/1411318.1411324
https://doi.org/10.1145/3314221.3314648
https://en.cppreference.com/w/cpp/language/class_template_argument_deduction
https://en.cppreference.com/w/cpp/language/class_template_argument_deduction
https://en.cppreference.com/w/cpp/named_req/InputIterator
https://en.cppreference.com/w/cpp/named_req/InputIterator
https://en.cppreference.com/w/cpp/named_req
https://en.cppreference.com/w/cpp/language/sfinae
https://en.cppreference.com/w/cpp/language/template_argument_deduction
https://en.cppreference.com/w/cpp/language/template_argument_deduction
https://doi.org/10.1007/978-3-030-81685-8_4
https://doi.org/10.1145/3540250.3549085
https://doi.org/10.1007/978-3-031-44245-2_12
https://doi.org/10.5281/zenodo.14945421
https://doi.org/10.5281/zenodo.14945421
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1145/1621607.1621613
https://doi.org/10.1016/S0049-237X(98)80049-9
https://doi.org/10.1561/2500000010
https://isocpp.org/files/4-Tour-Algo-draft.pdf
https://isocpp.org/files/4-Tour-Algo-draft.pdf
https://www.iso.org/standard/79358.html
https://doi.org/10.1145/3498720
https://doi.org/10.1145/3158105
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/1250734.1250783
https://doi.org/10.1007/978-3-642-22110-1_49
https://doi.org/10.1145/3295739

Fast Constraint Synthesis for C++ Function Templates 88:27

[32] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhotak, José Nelson Amaral, Bor-Yuh Evan Chang,
Samuel Z. Guyer, Uday P. Khedker, Anders Meller, and Dimitrios Vardoulakis. 2015. In defense of soundiness: a
manifesto. Commun. ACM 58, 2 (2015), 44—46. doi:10.1145/2644805

[33] V.Benjamin Livshits, Aditya V. Nori, Sriram K. Rajamani, and Anindya Banerjee. 2009. Merlin: specification inference
for explicit information flow problems. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009. ACM, 75-86. doi:10.1145/1542476.1542485

[34] LLVM. Accessed in April 2024. LLVM Language Reference Manual. https://llvm.org/docs/LangRef.html.

[35] Edward J McCluskey. 1956. Minimization of Boolean functions. The Bell System Technical Journal 35, 6 (1956), 1417-1444.
d0i:10.1002/j.1538-7305.1956.tb03835.x

[36] Felipe R. Monteiro, Mikhail R. Gadelha, and Lucas C. Cordeiro. 2022. Model checking C++ programs. Softw. Test.
Verification Reliab. 32, 1 (2022). doi:10.1002/STVR.1793

[37] Brian Norris and Brian Demsky. 2016. A Practical Approach for Model Checking C/C++11 Code. ACM Trans. Program.
Lang. Syst. 38, 3 (2016), 10:1-10:51. doi:10.1145/2806886

[38] Bo Pang, Erik Nijkamp, and Ying Nian Wu. 2020. Deep learning with tensorflow: A review. Journal of Educational and
Behavioral Statistics 45, 2 (2020), 227-248.

[39] Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and Michael R. Lyu. 2022. Static Inference
Meets Deep learning: A Hybrid Type Inference Approach for Python. In 44th IEEE/ACM 44th International Conference
on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 2019-2030. doi:10.1145/3510003.3510038

[40] Willard V Quine. 1952. The problem of simplifying truth functions. The American mathematical monthly 59, 8 (1952),
521-531. doi:10.2307/2308219

[41] Willard V Quine. 1955. A way to simplify truth functions. The American mathematical monthly 62, 9 (1955), 627-631.
doi:10.1080/00029890.1955.11988710

[42] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. 2007. Static specification inference using predi-
cate mining. In Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language Design and Implementation,
San Diego, California, USA, June 10-13, 2007. ACM, 123-134. doi:10.1145/1250734.1250749

[43] Gabriel Dos Reis and Bjarne Stroustrup. 2006. Specifying C++ concepts. In Proceedings of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2006, Charleston, South Carolina, USA, January
11-13, 2006. ACM, 295-308. doi:10.1145/1111037.1111064

[44] Thomas W. Reps. 2000. Undecidability of context-sensitive data-independence analysis. ACM Trans. Program. Lang.
Syst. 22,1 (2000), 162-186. doi:10.1145/345099.345137

[45] Martin P. Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan Ratchford. 2013. Automated API Property
Inference Techniques. IEEE Trans. Software Eng. 39, 5 (2013), 613-637. doi:10.1109/TSE.2012.63

[46] Jeremy G. Siek and Walid Taha. 2006. A Semantic Analysis of C++ Templates. In ECOOP 2006 - Object-Oriented
Programming, 20th European Conference, Nantes, France, July 3-7, 2006, Proceedings (Lecture Notes in Computer Science,
Vol. 4067). Springer, 304-327. doi:10.1007/11785477_19

[47] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. 2010. From program verification to program synthesis. In
Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010, Madrid,
Spain, January 17-23, 2010. ACM, 313-326. doi:10.1145/1706299.1706337

[48] StackExchange. Accessed in April 2024. Generate the longest error message in CPP. https://codegolf.stackexchange.
com/a/10470.

[49] StackOverflow. Accessed in April 2024. Compilation error for a binary search on the attributes. https://stackoverflow.
com/questions/42604796/compilation-error-for-a-binary-search-on-the-attributes.

[50] StackOverflow. Accessed in April 2024. Deciphering CPP template error messages. https://stackoverflow.com/questions/
47980/deciphering-c-template-error-messages.

[51] StackOverflow. Accessed in April 2024. How to improve compiler error messages when using CPP std::visit? https:
//stackoverflow.com/questions/72507596/how- to-improve-compiler-error-messages-when-using- c- stdvisit.

[52] StackOverflow. Accessed in October 2024. Using stdsort in CPP with iterators and templates. https://stackoverflow.
com/questions/59096297/using- stdsort-in-c-with-iterators-and-templates.

[53] Bjarne Stroustrup. 2022. A Tour of C++. Addison-Wesley Professional.

[54] Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis. 2021. Making pointer analysis more precise by
unleashing the power of selective context sensitivity. Proc. ACM Program. Lang. 5, OOPSLA (2021), 1-27. doi:10.1145/
3485524

[55] Tumblr. Accessed in April 2024. The Grand CPP Error Explosion Competition. https://tgceec.tumblr.com/.

[56] Christopher Umans, Tiziano Villa, and Alberto L Sangiovanni-Vincentelli. 2006. Complexity of two-level logic
minimization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25, 7 (2006), 1230-1246.
do0i:10.1109/TCAD.2005.855944

[57] Todd L Veldhuizen. 2003. C++ templates are Turing complete. Technical Report. Indiana University.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

https://doi.org/10.1145/2644805
https://doi.org/10.1145/1542476.1542485
https://llvm.org/docs/LangRef.html
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1002/STVR.1793
https://doi.org/10.1145/2806886
https://doi.org/10.1145/3510003.3510038
https://doi.org/10.2307/2308219
https://doi.org/10.1080/00029890.1955.11988710
https://doi.org/10.1145/1250734.1250749
https://doi.org/10.1145/1111037.1111064
https://doi.org/10.1145/345099.345137
https://doi.org/10.1109/TSE.2012.63
https://doi.org/10.1007/11785477_19
https://doi.org/10.1145/1706299.1706337
https://codegolf.stackexchange.com/a/10470
https://codegolf.stackexchange.com/a/10470
https://stackoverflow.com/questions/42604796/compilation-error-for-a-binary-search-on-the-attributes
https://stackoverflow.com/questions/42604796/compilation-error-for-a-binary-search-on-the-attributes
https://stackoverflow.com/questions/47980/deciphering-c-template-error-messages
https://stackoverflow.com/questions/47980/deciphering-c-template-error-messages
https://stackoverflow.com/questions/72507596/how-to-improve-compiler-error-messages-when-using-c-stdvisit
https://stackoverflow.com/questions/72507596/how-to-improve-compiler-error-messages-when-using-c-stdvisit
https://stackoverflow.com/questions/59096297/using-stdsort-in-c-with-iterators-and-templates
https://stackoverflow.com/questions/59096297/using-stdsort-in-c-with-iterators-and-templates
https://doi.org/10.1145/3485524
https://doi.org/10.1145/3485524
https://tgceec.tumblr.com/
https://doi.org/10.1109/TCAD.2005.855944

88:28 Shuo Ding and Qirun Zhang

[58] Chengpeng Wang, Peisen Yao, Wensheng Tang, Qingkai Shi, and Charles Zhang. 2022. Complexity-guided container
replacement synthesis. Proc. ACM Program. Lang. 6, OOPSLA1 (2022), 1-31. doi:10.1145/3527312

[59] Shengzhe Xu, Ziqi Dong, and Na Meng. 2019. Meditor: inference and application of API migration edits. In Proceedings
of the 27th International Conference on Program Comprehension, ICPC 2019, Montreal, QC, Canada, May 25-31, 2019.
IEEE / ACM, 335-346. doi:10.1109/ICPC.2019.00052

[60] Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. 2016. Python probabilistic type inference with
natural language support. In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. ACM, 607-618. doi:10.1145/2950290.2950343

[61] Qirun Zhang and Zhendong Su. 2017. Context-sensitive data-dependence analysis via linear conjunctive language
reachability. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017,
Paris, France, January 18-20, 2017. ACM, 344-358. doi:10.1145/3009837.3009848

Received 2024-10-08; accepted 2025-02-18

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 88. Publication date: April 2025.

https://doi.org/10.1145/3527312
https://doi.org/10.1109/ICPC.2019.00052
https://doi.org/10.1145/2950290.2950343
https://doi.org/10.1145/3009837.3009848

	Abstract
	1 Introduction
	2 Preliminary
	2.1 C++ Function Templates, Constraints, and Concepts
	2.2 Problem Statement and Undecidability

	3 Approach
	3.1 A Simplified Calculus
	3.2 Constraint Formalization
	3.3 Interprocedural Constraint Map Construction
	3.4 Formula Map Construction
	3.5 Formula Simplification
	3.6 Soundness versus Soundiness

	4 Experiments
	4.1 Overall Performance
	4.2 Precision on STL Library
	4.3 Error Message Reduction on STL Library and Boost Library

	5 Case Studies
	5.1 Case 1: Real World Error Example of STL Binary Search from StackOverflow
	5.2 Case 2: Real World Error Example of STL Sorting from StackOverflow
	5.3 Case 3: Synthetic Error Example of Boost from Our Experiments

	6 Discussions
	6.1 Matching with Existing Concepts
	6.2 Generalization
	6.3 High Level Semantics of Programming Languages
	6.4 Usage Scenarios
	6.5 Limitations

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

