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Abstract

We revisit the fundamental problem of learning with distribution shift, in which a learner is given
labeled samples from training distribution D, unlabeled samples from test distribution D’ and is asked
to output a classifier with low test error. The standard approach in this setting is to bound the loss of
a classifier in terms of some notion of distance between D and D’. These distances, however, seem
difficult to compute and do not lead to efficient algorithms.

We depart from this paradigm and define a new model called testable learning with distribution shift,
where we can obtain provably efficient algorithms for certifying the performance of a classifier on a test
distribution. In this model, a learner outputs a classifier with low test error whenever samples from D
and D’ pass an associated test; moreover, the test must accept (with high probability) if the marginal of
D equals the marginal of D’. We give several positive results for learning well-studied concept classes
such as halfspaces, intersections of halfspaces, and decision trees when the marginal of D is Gaussian or
uniform on {41}%. Prior to our work, no efficient algorithms for these basic cases were known without
strong assumptions on D’.

For halfspaces in the realizable case (where there exists a halfspace consistent with both D and
D’), we combine a moment-matching approach with ideas from active learning to simulate an efficient
oracle for estimating disagreement regions. To extend to the non-realizable setting, we apply recent
work from testable (agnostic) learning. More generally, we prove that any function class with low-
degree Lo-sandwiching polynomial approximators can be learned in our model. Since we require Lo-
sandwiching (instead of the usual £; loss), we cannot directly appeal to convex duality and instead
apply constructions from the pseudorandomness literature to obtain the required approximators. We also
provide lower bounds to show that the guarantees we obtain on the performance of our output hypotheses
are best possible up to constant factors, as well as a separation showing that realizable learning in our
model is incomparable to (ordinary) agnostic learning.
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1 Introduction

Mitigating distribution shift remains one of the major challenges of machine learning. Training distributions
can deviate significantly from test distributions, and pre-trained models are commonly deployed without
a precise understanding of these differences. In such cases, a model may have poor performance with
potentially dangerous consequences. For example, several recent studies in the Al/healthcare community
highlight the lack of generalization among many Al models trained to detect disease (e.g., skin cancer or
pneumonia), often due to distribution shift. As such, developing best practices for using these models in a
clinical setting remains a vexing and difficult problem [ZBL* 18, WOD'21, TCK*22].

The computational landscape of traditional supervised learning— where training sets and tests are drawn
from the same distribution— is by now well understood. There is a rich literature of efficient algorithms and
computational hardness results for broad sets of concept classes and distributions. In contrast, little is known
in terms of efficient algorithms for classification in the context of distribution shift or domain adaptation.
The most common approach is to prove a generalization bound in terms of some notion of distance between
D and D’ [BDBCP06, BDBCT10, MMRO09]. These distances, however, involve an enumeration of all
functions in the underlying concept class and seem difficult to compute. Other recent work requires oracles
for empirical risk minimization [GKKM?20, KK21] or the existence of distribution-free reliable learners,
which are believed to require superpolynomial time for even simple concept classes (e.g., reliably learning
conjunctions is known to be harder than PAC learning DNF formulas) [KK21, Section 4.2].

In this work we define a new model called festable learning with distribution shift (TDS learning) and
show that this model does admit efficient algorithms for several well-studied concept classes and distri-
butions. Inspired by recent work in testable learning [RV23, GKK23, GKSV23a, GKSV23b], we allow a
learner to reject unless D and D’ pass an efficiently computable test. Whenever the test accepts, the learner
outputs a classifier that is assured to have low error with respect to D’. Further, we require that the test
accept with high probability whenever the marginal of D equals the marginal of D’. This approach allows
us to take no assumptions on D’ whatsoever and still provide meaningful guarantees.

It is easy to see that TDS learning generalizes the traditional PAC model of learning, and, moreover,
TDS learning seems considerably more challenging. For example, even an algorithm to amplify the success
probability of a TDS learner is nontrivial, since we do not get to see labeled examples from D’ (we show
how to do this in Appendix C). It is also tempting to apply property testing algorithms in this setting to
“detect” when D is “close” to D’, but even for simple cases, distribution testing requires an exponential
(in the dimension) number of samples (see e.g. [Can22]). While testable learning and TDS learning both
encounter similar issues, they are fundamentally distinct models. Specifically, the realizable setting, where
there exists a classifier with zero train and test loss, is a trivial case in testable learning. We further discuss
separations among these models in Section 1.3.

1.1 Our Results

Here we formally define TDS learning and summarize our main results. For readability, we have placed
some notation and basic definitions in Section 3.

Learning Setup. Let C be a function class over R% and D be a distribution over R%. Suppose A is given
as input a set Siain consisting of i.i.d. examples from D labelled by some f € C, together with a set of

i.i.d. unlabelled examples Xiqs; from some distribution DB?St over R?. The algorithm A is allowed to either

output REJECT or (ACCEPT, f) for some concept f The algorithm A is a TDS-learning algorithm for C
under distribution D if it satisfies the following two properties:

1. Soundness. With probability 1 — 6, if the algorithm A outputs (ACCEPT, f), then hypothesis f

~

satisfies Pyeprese[f(x) # f(x)] < €.



2. Completeness. If D" = D, then with probability 1 — 4, the algorithm A outputs (ACCEPT, .

TDS Learning: the Agnostic Setting. Sometimes the training data or the testing data cannot be captured
perfectly by any function in the function class C and, instead, follow labeled distributions DE@%}“, DE@%},
where the marginal of D5 is D" = D and D45, DS} are otherwise arbitrary. We extend our setup
to apply in this setting as well. To this end, a key quantity is the smallest sum of expected training error and
expected test error among all functions in the concept class C, i.e. A = minec err(f; DY3")+-err(f; DESH),
where err(f; Day) = P(x,y)~pyy, [y # f(x)]. We denote this quantity as \, and note that it is standard in
the domain adaptation literature (see, e.g., [BDBCP06, BCK™07, BDBC™10, DLLP10]).

With this definition at hand, we modify the soundness condition to require that with probability 1 — &,
if the algorithm A outputs (ACCEPT, f), then hypothesis [ satisfies P(X@)NDS?? [y # f(x)] <O(A) +eIn

Theorem 2.13, we show that a dependence of §2(\) is unavoidable.

Proposition 1.1 (Informal). No TDS learning algorithm can have an error guarantee better than Q(\) + e.

Results. We show that TDS learning can be achieved efficiently for a number of natural high-dimension
function classes. These include halfspaces, decision trees, intersections of halfspaces and low-depth formu-
las. See Table 1 for the full list.

Function class Training Distribution TDS Setting Run-time
1 Homogeneous Isotropic Log-Concave Agnostic poly (d/e)
halfspaces (Theorem 2.1)
2 General halfspaces Standard Gaussian Realizable  d©9Uog1/€)
(Theorem 2.7)
3 General halfspaces Szrflg:rfo(r}la?zstsﬁr; Agnostic d0(1/¢)
(Corollary 6.9)
4 Intersection of ¢ Szrflg:rfo(r}la?zstsﬁr; Agnostic 20/ 62)
halfspaces (Corollary 6.9)
5 Decision trees of  Uniform on {41}¢ Agnostic  d9os(s/))
size s (Corollary 6.6)
5¢
6 Formulas of size s, ~ Uniform on {41}¢ Agnostic @V OUlos(s/€) =
depth ¢ (Corollary 6.7)

Table 1: Our TDS learning results for various function classes. Since agnostic TDS learning is more general
than realizable TDS learning, algorithms for the agnostic setting also apply to the realizable setting.

Given the abundance of positive results, it is natural to ask whether TDS learning can always be achieved
efficiently for any function class F that can be efficiently PAC-learned under a distribution D. We answer
this question in the negative by proving separations between TDS learning and PAC learning. Our separa-
tions hold for the natural and well-studied function classes of monotone functions over {£1}% and convex
sets over R? (under uniform distribution on {+1}% and the standard Gaussian distribution respectively).
Even though for these function classes there are well-known PAC-learning algorithms [BT96, KOS08] that
run in time 20(Vdpoly(1/ ), we show that any TDS-learning algorithm for these function classes needs to
run in time 2(4).



1.2 Techniques

Here we summarize the technical ideas that we use to develop the TDS learning algorithms in Table 1.

Moment Matching/Sandwiching Polynomials. We present a general approach for obtaining TDS learn-
ing algorithms for a wide variety of function classes via a moment matching approach. In brief, the algo-
rithm for this approach is as follows:

* Estimate all the degree-k moments of D" up to a high accuracy. REJECT if some of the moments
are not close to the corresponding moments of D.

* Otherwise, fit the best degree-k polynomial p on the training data, and output (ACCEPT, sign(p)).

This algorithm above runs in time d°(*), and we show that this algorithm is a valid TDS-learning al-
goithm for the wide class of functions whose Lo-sandwiching degree is bounded by &, which we define
as follows: For an approximation parameter €, the £o-sandwiching degree of a function f is the smallest
degree for a pair of polynomials paown and pyp satisfying: 1) paown(x) < f(x) < pyp(x) for all x in the
learning domain and ii) Exp|[(Pup(X) — Pdown(X))?] < €.

The related notion of £;-sandwiching was recently used to obtain several results in testable learning
[GKK23]. These results, however, do not seem to apply to TDS learning. Instead, we prove a “transfer
lemma” showing that we can relate the test error under D of a polynomial to its training error under
D by leveraging the simple fact that the squared loss between two polynomials is itself a polynomial. As
such, low-degree moment matching between the training and test marginals ensures that the squared loss
between any pair of low-degree polynomials is approximately preserved (Lemma 2.8). Absolute loss cannot
be computed by a low-degree polynomial, ruling out this type of transfer lemma based on £;-sandwiching.

Even though we need the more stringent property of small £o-sandwiching degree, we show that con-
structions from works in the pseudorandomness literature that explicitly construct £;-sandwiching polyno-
mials (e.g., [DGJT10] and [GOWZ10]) can be extended to bound the £s-sandwiching degree. This allows
us to obtain efficient TDS learning algorithms for the classes of intersections of halfspaces, decision trees
and small-depth formulas (see lines 3-6 in Table 1). We also note that this technique yields TDS learning
algorithms not only in the realizable setting, but also in the agnostic setting.

Beyond Moment Matching. It is a natural question whether it is possible to beat the moment-matching
approach. We answer this question in the affirmative by showing that for the class of halfspaces this is indeed
possible. It is a standard fact that one needs polynomials of degree Q(l /€?) to e-approximate halfspaces up
to £y error better than € under the standard Gaussian distribution. Therefore the moment-matching approach
requires a run-time of at least d*2(t/ <) to TDS learn halfspaces under the standard Gaussian. We overcome
this obstacle and give a TDS learning algorithm for halfspaces that runs in time dOos(£)) (Line 2, Table 1).

One ingredient we use to design our algorithm is what we call TDS learning via the disagreement
region method. Suppose we are able to recover the parameters of a halfspace f* up to some accuracy S.
Then, for some points x in R% we will know f*(x) with certainty, but for some others we will not. We say
that the latter points form the disagreement region, and it gets smaller as 5 decreases. The idea is to (i) use
the training data to recover the parameters of halfspace f* up to such high accuracy [ that the probability
that a Gaussian sample falls into the disagreement region is very small (ii) make sure that the recovered
halfspace f generalizes on the testing dataset by checking that only a small fraction of the testing dataset
falls into the uncertainty region. We note that this notion of disagreement region is also widely used in active
learning (see discussion in Section 2.2.1).

Although the disagreement region method gives an efficient algorithm for homogeneous (i.e. origin-
centered) halfspaces (Proposition 5.1), it fails for general halfspaces. Indeed, in Section 2.2.2 we show that



for general halfspaces under the standard Gaussian distribution the disagreement region method requires
29U samples. We design a d°(1°2(1/€)_time TDS learning algorithm for general halfspaces under the
Gaussian distribution by combining the moment matching approach with the disagreement region approach:

« Suppose the halfspace f* is not too biased, i.e. among d°(1°8(1/€)) training samples we see labels with
values of both +1 and —1. We show that the parameters of such a halfspace can be recovered up to a
very high accuracy using only d°(°8(1/€)) additional training samples. This allows us to leverage the
disagreement region method to achieve TDS learning.

» Otherwise, the halfspace f* is highly biased and it almost always takes the same label L on a Gaussian
input. For such halfspaces there is no hope to recover their parameters with d°©(1°8(1/¢) samples. Yet,
we show that using the moment-matching approach with degree parameter & of only O(log(1/¢))
allows us to certify that even under the test distribution D the halfspace f* will be biased and very
likely to take the label L. Therefore, a predictor fthat assigns the label L to all points in R? will
generalize.

Techniques from Testable Learning. Additionally, in the setting of agnostic TDS learning we give an
algorithm for the class of homogeneous (i.e. origin-centered) halfspaces under any isotropic log-concave
distribution (see line 1 in Table 1). We achieve this using techniques from testable learning [GKK23,
GKSV23a]. The first phase of our TDS learning algorithm uses an approximate agnostic learning algo-
rithm for halfspaces [ABL17, DKTZ20] in order to obtain a vector v, such that the homogeneous halfspace
defined by v has error O()) + € in the training dataset. Since the training distribution D is isotropic and
log-concave, this means that the angle between v and the vector v, defining the halfspace with optimal
combined error on the training and testing datasets, is also at most O(\) + €. Finally, we apply one of the
core procedures from [GKK23, GKSV23a] in order to ensure that every halfspace defined by a vector v’
that forms an angle of at most O(\) + € with v agrees on at least 1 — O(\) — ¢ fraction of the testing dataset
with the halfspace defined by the vector v. This allows us to certify that the halfspace defined by the vector
v will indeed generalize to the testing distribution. Note that we can use tools from testable learning to
remove the assumption on the training marginal; the algorithm would instead run a test that accepts when
both D™ and D™ equal the target D without any assumptions on D3 and DS} (see also Remark 2.4).
For clarity of exposition, we postpone formal statements composing the two models to future work.

1.3 Related Work

Domain Adaptation. The field of domain adaptation has received significant attention over the past two
decades (see [BDBCP06, BCKT07, MMR09, BDBC'10, DLLP10, RMH"20] and references therein).
Similar to our learning setting, domain adaptation considers scenarios where the learner has access to la-
beled training and unlabeled test examples and is asked to output a hypothesis with low test error without,
however, being allowed to reject. [BDBCP06, BCK™07, MMRO09] bound the test error of an empirical risk
minimizer of training data by a sum of the parameter A and some notion of distance between the training
and test marginals (discrepancy or d 4 distances) which is statistically efficient to compute using unlabeled
test and training examples. This implies a statistically efficient TDS learning algorithm with error 2\ + €
(Appendix A). All known algorithms for computing discrepancy distance or d 4 distance, however, require
exponential time even for basic classes such as halfspaces and decision trees. By allowing the learning al-
gorithm to reject, we design computationally efficient TDS learning algorithms with error O(\) + € without
explicitly computing the discrepancy distance.

PQ Learning. Among the learning models that capture settings with distribution shift, PQ learning (see
[GKKM?20] and [KK21]) is most relevant to TDS learning. In PQ learning, the learner has access to labeled
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training data and unlabeled test data and must output a classifier A and a set X. The classifier needs to
minimize the following two criteria simultaneously: (1) the test error of the hypothesis / on test data points
that fall into the region X (in other words, X is the region where one is confident in the predictions of the
hypothesis h for test data) and (2) the probability that a training example falls into X. [GKKM?20] show that
any concept class that can be agnostically learned in the distribution-free setting can be PQ learned. [KK21]
improve this reduction by showing that PQ learning is equivalent to distribution-free reliable agnostic learn-
ing (see [KKM12]). The complexity of reliable learning is known to be “in between” agnostic learning
and PAC learning. In particular, reliably learning conjunctions implies PAC learning DNF formulas. In
Appendix B, we show that PQ learning actually implies TDS learning.

Testable Learning. Although conceptually our definition of TDS learning is inspired by the recent line of
work in testable learning [RV23, GKK?23, GKSV23a, GKSV23b], the two frameworks address very different
issues. Testable learning does not address distribution shift, as it assumes that the training and testing
distributions are the same distribution DE@%}“. What the framework of testable learning does (indirectly)
test is whether D%ain satisfies a certain assumption (e.g. Gaussianity) in order to make sure the learning
algorithm gives a hypothesis fthat satisfies the agnostic learning guarantee.

As noted in [RV23], in the realizable setting one can trivially satisfy the definition of testable learning
by drawing a fresh set of samples and using them to validate the hypothesis f Due to this, existing work
on testable learning [RV23, GKK23, GKSV23a, GKSV23b] focuses on the agnostic setting, where such
validation procedure cannot be applied (see [RV23] for further detail). In contrast to this, even in the
realizable setting, no such validation procedure exists for TDS learning, as indicated by our separations
between PAC learning and TDS learning for monotone functions and convex sets (see Section 1.1). In fact,
for monotone functions and convex sets, realizable TDS learning is harder than agnostic learning as well.

Furthermore, there are cases where realizable TDS learning is easier than agnostic learning (and, there-
fore, easier than testable agnostic learning). Here are two examples:

1. Due to statistical query lower bounds and cryptographic hardness results [GGK20, DKZ20, DKPZ21,
DKR23], the run-time required to agnostically learn a halfspace under the standard Gaussian distribu-
tion is believed to be d*(1/¢*). In contrast to this, in this work we show that realizable TDS learning of
halfspaces with respect to the Gaussian distribution can be achieved using only d°(1°81/€)) run-time.

2. The agnostic learning of parity functions, even under the uniform distribution on {11}, is believed to

require QQ(WJIOM) time. In strong contrast with this, the class of parity functions can be TDS-learned
in the realizable setting using only poly(d/e) time under any distribution over {#1}%. This follows
from the PQ-learning algorithm of [KK21], together with the connection between PQ learning and
TDS learning (Appendix B).

Overall, we conclude that realizable TDS learning is incomparable to regular agnostic learning. In particular,
there are examples where realizable TDS learning is easier than testable agnostic learning. Moreover, real-
izable TDS learning is harder than PAC learning, where distributional assumptions can be verified through
validation.
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2 Technical Overview

2.1 TDS Learning of Homogeneous Halfspaces

We provide an efficient TDS learner for the class of homogeneous halfspaces over R? with respect to any
given isotropic log-concave distribution that achieves error O(\) + ¢, by applying results from prior work in
the literature of testable learning (see [GKSV23a, GKSV23b]) and agnostic learning (see [Danl5, ABL17,
DKTZ20]). We provide the following theorem and a proof sketch. The full proof can be found in Section 4.

Theorem 2.1 (Agnostic TDS learning of Halfspaces). Let C be the class of origin-centered halfspaces over
R? and C > 0 a sufficiently large universal constant. Let A, ’T be as defined in Propositions 2.2 and 4.2.
Let m 4 be the sample complexity of A(e/C,0/4) and mT = . Then, there is an algorithm (Algorithm 1)
that, given inputs Strain, Xtest Of sizes |Strain| = M4 and \Xtest] > m is a TDS learning algorithm for C
w.r.t. any isotropic log-concave distribution D with error O(\) + € and run-time poly(d, 1)log(%), where
is the accuracy parameter and ¢ is the failure probability.

Leveraging training data. We first use an efficient agnostic learner on training data to recover a halfspace
f : x — sign(V - x) with low training error. For example, we may use a (polynomial time) algorithm by
[DKTZ20] (Proposition 4.2) that outputs f with err( f Dtram) < O(n) + € whenever the training marginal
is isotropic log-concave (7 is the optimal training error). There are other similar results in the literature of
agnostic learning (e.g., see [ABL17]), but we use [DKTZ20] as it is more convenient for our setting.

Approximate parameter recovery. Let v* be the parameter vector corresponding to the halfspace f*
that minimizes the common train and test error, i.e., err(f*; DY3") 4 err(f*; DY5;) = A. Then, we have

IP’D?ain [sign(V - x) # sign(v* - x)] < err(f; DY) + err(f*; DE3") < O(n) +edt A = O()\) + e. Since
DY = D is isotropic log-concave, it is known that the disagreement over D™ between two halfspaces
is proportional to the angular distance between their parameters, i.e., £(V,v*) = O(]P)'D.txrain [sign(v - x) #
sign(v* - x)]), which we have bounded by O(X + ¢).

Testing phase. 'We have shown that Vv is geometrically close to v*, which achieves test error at most \, by
definition. It remains to certify that the test marginal behaves like an isotropic log-concave distribution with
respect to v, i.e., for a large enough set of i.i.d. examples Xjcs;, from D" and for any v/ € S?1 we have
that Wleat‘ > e Xos, Lsign(V - x) # sign(v' - x)} = Px,, [sign(V - x) # sign(v' - x)] = O(£L(V,V')),
because then we will be able to bound the empirical test error of f by A + O(£(v,v*)), which is O(\ + ¢).
The result then would follow by standard VC dimension arguments.

It turns out that recent work by [GKSV23b] on testable learning has provided an efficient tester that
achieves exactly what we need. Note that the proof of the following proposition (Lemma 3.1 in [GKSV23b])
is nontrivial, requiring estimation of low-order moments and careful conditioning. We can apply this to our
setting, because it only requires access to the marginal distribution.

Proposition 2.2 (Testably Bounding Halfspace Disagreement, Lemma 3.1 in [GKSV23b]). Let D be a
distribution over R v € S, 0 € (0,7/4], § € (0,1) and C > 0 a suﬁ‘iciently large universal
constant. Then, there is an algorithm T (0,6) that, upon drawing at least examples X from D and
in time poly(d, 35 5) either accepts or rejects and satisfies the following.

(@) If T accepts, then for any vo € R with £(v1,vy) < 6, it holds

]P’X[Sign(vl - x) # sign(vy - x)] < CL(vy,va)

X~



(b) If D is isotropic log-concave, then T accepts with probability at least 1 — .

Remark 2.3. We note that, in fact, the original version of Proposition 2.2 in [GKSV23b] does not require
the target marginal to be known, but works universally for any isotropic log-concave distribution (as well
as distributions with heavier tails). This implies that the completeness criterion that Algorithm 1 satisfies is
actually much stronger: for an appropriate choice of the absolute constant C, Algorithm 1 can be made to
accept whenever D is isotropic log-concave (and not necessarily equal to the training marginal).

Remark 2.4. Moreover, we point out that we can apply results from [GKSV23b] and substitute algorithm
A with a universal tester-learner for halfspaces. This enables us to remove the assumption that D%ain is
some fixed isotropic log-concave distribution, and the final algorithm would accept with high probability
whenever Dgﬁain is isotropic strongly log-concave and D% is isotropic log-concave. In that sense, TDS
learning composes well with (universally) testable learning. For sake of presentation, however, we leave
formal compositional arguments to future work.

2.2 TDS Learners for General Halfspaces
2.2.1 Warm-Up: Disagreement-Based TDS Learning

We provide a general TDS learner for the realizable setting, based on the notion of disagreement regions
from active learning. Not only is this approach interesting in and of itself, but it will also be useful in
Section 2.2.2 where we present our main result for TDS learning of general halfspaces in the realizable
setting. The main idea is to testably bound the probability that a test example falls in some region D, whose
mass with respect to the target distribution becomes smaller as the number of training samples increases
and, also, the output of the training algorithm achieves low error on any distribution that assigns small mass
to D. It turns out that the quantity P,..p[x € D], where D is some given distribution over a space X C R,
is a well-studied notion in the literature of active learning (see [CAL94, Han09, BBL0O6, Hanl1, Hanl14,
BHV 10, Han07] and references therein). We now provide a formal definition for the disagreement region.

Definition 2.5 (Disagreement Region). Let X C R?, D a distribution over X and C a concept class of
functions that map X' to {£1}. Fore > 0 and f € C, we define the e-disagreement region of f under D,
D.(f; D) as the subset of X’ such that if x € D.(f; D), then there are fi, fo € C with err(f1, f;D) < e,

and err(fo, f; D) < eand f1(x) # fa(x).

In the literature of active learning, the quantity of interest is called the disagreement coefficient and is
defined for a concept class C and a distribution D as follows (see, e.g., [Han14]).

]P)XND[X S Del(f; D)]

!/

f(e) = supsup
feC e'>e €

(2.1)

In particular, for active learning, is is crucial that f(e) is asymptotically bounded by a slowly increasing
function of 1/e (e.g., O(log(1/e€))), since bounds on the disagreement coefficient directly provide rates
on the label complexity of disagreement-based active learning, up to logarithmic factors [Hanl1]. In our
setting, meaningful results are obtained even when 6(¢) = O(1/¢'~¢) for any constant ¢ € (0, 1). Moreover,
we also focus on the dependence of the disagreement coefficient on other relevant parameters, like the
dimension d. To emphasize this, in what follows, we will use the notation 6(e, d) to refer to the disagreement
coefficient. We obtain the following result, which implies, for example, a polynomial improvement in
the sample complexity bound of realizable TDS learning of homogeneous halfspaces w.r.t. the Gaussian
compared to the TDS learner we proposed in Theorem 2.1 for the agnostic setting (see also Section 5.1).

Theorem 2.6 (Disagreement-Based TDS learning). Let C be the class of concepts that map X C R< to
{£1} with VC dimension VC(C), let D a distribution over X and C > 0 a sufficiently large universal



constant. Suppose that we have access to an ERM oracle for PAC learning C under D and membership
access to D (f; D) for any given f € C and € > 0. Then, there is an algorithm (Algorithm 3) that given

inputs of sizes |Strain| > cYe© log(%) and | Xiest| > C’(m + }2) log(%) is a TDS learning algorithm

€’ €
for C w.r.t. D that calls the €'-ERM oracle once and the € -membership oracle |Sirain| times, where € is the
accuracy parameter, 0 is the failure probability and € such that €' - 0(€',d) < ¢/2.

2.2.2 Beyond Disagreement: TDS Learners for General Halfspaces

We give a TDS-learning algorithm for the class of halfspaces under the standard Gaussian distribution. The
algorithm runs in quasi-polynomial time in all relevant parameters and, contrary to the case of homogeneous
halfspaces, works in a setting where efficient parameter recovery is not possible. This happens because when
a general halfspace has arbitrarily large bias, it is possible, for example, that all of the training examples have
the same label.

In particular, applying a pure disagreement-based TDS learning framework (Theorem 2.6) in the case of
general halfspaces can only give exponential-time algorithms for this problem. To illustrate this, imagine
that the ground truth is a general halfspace with bias 7 = v/d but unknown direction v € S?~!. Then, any
general halfspace x — sign(v’ - x — 7) with the same bias is exp(—(d))-close to the ground truth with
respect to the Gaussian distribution, due to standard Gaussian concentration, i.e., Py nr(0,1,) [sign(v - x —
7) # sign(v' - x — 7)] < Pyrop(o,1,)[sign(v - x — 7) # sign(—v - x — 7)], which is upper bounded by
Pynro,1pllV - x| > Vd] < 2exp(—d/2). Let € = 2exp(—d/2). Suppose that ERM returns a halfspace f
that is €’-close to the ground truth but has bias 7. Any x € R? with ||x||o > V/d, falls within the disagreement
region Dg(f; N(0,13)) and therefore Py pr(o,1,)[Xx € Der(ﬁ N(0,1;))] is constant. This implies that
running the ERM oracle on training data even up to exponentially small accuracy ¢/ = exp(—(d)) does
not meet the requirement of Theorem 2.6 (see also [EYW12]) that the disagreement coefficient is bounded
ase - 0(e',d) <e/2.

In order to overcome this obstacle, we perform a case analysis that depends on the bias of the unknown
halfspace. If the bias is bounded, then we may use a disagreement-based approach, since we can approx-
imately recover the true parameters of the unknown halfspace using training data and it suffices to verify
that the test distribution does not amplify the error between any pair of halfspaces close to the obtained
approximations of the true parameters. Now, consider the case when the bias is large. We may assume
without loss of generality the constant hypothesis 41 has low training error (since the ground truth has large
bias and the marginal is Gaussian). If we can certify that the test marginal is sufficiently concentrated in
every direction, then this hypothesis must also have small test error. To certify concentration for the test
distribution’s marginals, we use a moment-matching approach. Checking the moment matching condition
only up to degree O(log(e€)) turns out to be sufficient to certify the type of concentration we need. We
thus obtain a quasi-polynomial TDS learning algorithm for general halfspaces with respect to the Gaussian
distribution. Since the probability of success can be amplified through repetition (see Proposition C.1), we
provide a result with constant failure probability. For the full proof, see Section 5.2.

Theorem 2.7 (TDS learning of General Halfspaces). Let C be the class of general halfspaces over R¢ and
C' > 0 a sufficiently large universal constant. Then, there is an algorithm (Algorithm 4) that, given inputs
of size |Spain| = |Xtest| = CdCo8 ¢ is a TDS learning algorithm for C w.rt. N (0,13) with run-time
dOUog1/€) \where € is the accuracy parameter, and the failure probability § is at most 0.01.

Compared to Theorem 2.6, our approach here incurs an increase in the amount of test samples required
(from poly(d, 1/€) to d°01°8(1/4)) used for moment matching) but significantly decreases the amount of
training samples required (from exp(Q(d)) to d9Uog(1/e)),



2.3 TDS Learning through Moment Matching

In the previous section, we provided a TDS learner for general halfspaces in the realizable setting that re-
quires ideas beyond parameter recovery and testably bounding the probability of falling in the disagreement
region. Crucially, Theorem 2.7 uses a moment-matching approach in the case when the bias of the unknown
halfspaces is large. As is explained in this section, we show that the moment-matching approach can actually
provide a generic result which demonstrates that £o-sandwiching (see Definition 3.1) implies TDS learning,
even in the non-realizable setting. We also instantiate our framework to several important concept classes
(halfspace intersections, decision trees and Boolean formulas) with respect to the Gaussian and uniform
distributions, by applying constructions from pseudorandomness literature to bound the L2-sandwiching
degree of each of these classes and acquire entries 3-6 in Table 1.

We provide a general theorem, which demonstrates that £o-sandwiching implies TDS learning under
some additional natural assumptions about the target marginal distribution, which are satisfied by the stan-
dard Gaussian distribution over R? and the uniform distribution on {£1}?. While it is known that £;-
sandwiching implies testable learning (see [GKK23]), we require the stronger notion of L£-sandwiching. In
particular, while £;-sandwiching would (testably) imply the existence of low degree polynomials with low
test error, we do not get to see labeled examples from DB?;} Moreover, we cannot a priori assume that the
output of the training algorithm is a sandwiching polynomial, even if we know one exists.

In our analysis, we crucially use the fact that the square of the difference between two polynomials
is itself a polynomial whose coefficients and degree are bounded by the degree and coefficient bounds of
the original polynomials. Crucially, this enables us to use the following transfer lemma which relates the
squared distance between polynomials under the test distribution to their squared distance under the training
distribution. In what follows, we use the notation x% = Hie[ d xf‘i, where o € N9,

Lemma 2.8 (Informal, Transfer Lemma for Square Loss, see Lemma 6.2). Let D be a distribution over
X C R and Xy a (multi)set of points in R If By x,.., [X] = Exp[x®] forall a € N with ||a; < 2k,
then for any degree k polynomials p1, ps with bounded coefficients, it holds

m Z (p1(x) —p2(x))2 ~ ,Ep[(pl(x) _p2(x))2]

XE Xtest

Moreover, we use the fact that, due to the £o-sandwiching assumption, we can bound quantities of the
form E[(p(x) — £(x))?] for f € C from above by O(E[(p(x) — Paown(x))?] + El(paown(x) — pup(x))?]),
irrespective of the distribution that the expectations are taken over. Over the training distribution, the
quantity Ep[(pdown(X) — Pup(x))?] is small via the definition of L5-sandwiching degree, and the quan-
tity Ep[(p(x) — f(x))?] because p is obtained from Lo polynomial regression. If p, paown, Pup are all low
degree and the dataset X matches low-degree moments with D, then we may apply Lemma 2.8 to bound
ITlest\ > e Xuw L(P(X) — f(x))?]. Once it is shown that p fits f well on the testing dataset X;cs, standard
generalization bounds allows us to conclude that it will also predict f well on the testing distribution. There-
fore, by running polynomial regression on training data to obtain p and testing whether the empirical test
moments match the moments of the training distribution, we acquire the following result, whose proof can
be found in Section 6.

Theorem 2.9 (L,-sandwiching implies TDS Learning). Let D be a distribution over a set X C R and let
C C{X — {£1}} be a concept class. Lete,6 € (0,1), € = €/100 &' = §/2 and assume that the following
are true.

(i) (Lo-Sandwiching) The €' -approximate Lo sandwiching degree of C under D is at most k with coeffi-
cient bound B.



(ii) (Moment Concentration) If X ~ D®™ and m > Mconc then, with probability at least 1 — §', we have
that for any o € N% with |||y < k it holds | Ep[x®] — ITI\ Y oxex XY < mogm-

(iii) (Generalization) If S ~ D%g} where Dyy is any distribution over X X {£1} such that Dy = D
and m > Mgen then, with probability at least 1 — &' we have that for any degree-k polynomial p with
coefficient bound B it holds | Ep,.,[(y — p(x))?] — ﬁ S xesly — ) < €.

Then, there is an algorithm (Algorithm 5) that, upon receiving Myrain > Mgen labelled samples Siyain

k
from the training distribution and myest > C - %%M 4+ Meonc unlabelled samples Xieost from the test
distribution (where C' > 0 is a sufficiently large universal constant), runs in time poly(|Suain|, | Xtest |, d*)

and TDS learns C with respect to D up to error 32\ + € and with failure probability 0.

2.4 Lower Bounds

We provide three lower bounds for TDS learning. The first one shows that TDS learning the class of
monotone functions over {£1}¢ with respect to the uniform distribution requires an exponential number of
examples from either the training or the test distribution, which implies a separation with regular agnostic
learning. The second lower bound shows that TDS learning the class of indicators of convex sets also
requires an exponential in the dimension number of samples. The third lower bound demonstrates that a
linear dependence on the error term A (as defined in Equation (3.1)) is necessary for TDS learning in the
non-realizable setting.

2.4.1 Lower Bound for Monotone Functions and Convex Sets in Realizable Setting

Recent work on testable learning (which is a generalization of the classical agnostic learning framework,
see [RV23, GKK23]) has demonstrated that the class of monotone functions over {4-1}¢ cannot be testably
learned with respect to the uniform distribution unless the learner draws at least 2°(%) training samples. Since
the class of monotone functions can be agnostically learned in time 20(Vd) with respect to the uniform distri-
bution over the hypercube {41}, this implies that testable (agnostic) learning is strictly harder than regular
agnostic learning. We show that the lower bound of 2%(%) extends to the problem of TDS learning mono-
tone functions even in the realizable setting. Recall that we have shown that we can TDS learn halfspaces
with respect to the standard Gaussian distribution in the realizable setting in time d°(°8(1/€)) (Theorem 2.7)
but it is known that, for agnostic learning, any SQ algrorithm for the problem requires time d*2(1/ <) (see
[GGK20, DKZ20, DKPZ21]). Therefore, we conclude that realizable TDS learning and agnostic learning
are incomparable. We now provide our lower bound. For the proof, see Section 7.

Theorem 2.10 (Hardness of TDS Learning Monotone Functions). Let the accuracy parameter € be at most
0.1 and the success probability parameter § also be at most 0.1. Then, in the realizable setting, any TDS
learning algorithm for the class of monotone functions over {il}d with accuracy parameter requires either
20-044 rgining samples or 20-°% testing samples for all sufficiently large values of d.

We now provide a lower bound for convex sets (see also Section 7). Since the class of indicators of
convex sets can be agnostically learned in time 20(Vd) with respect to the Standard Gaussian on R?, the
following theorem implies yet another separation between agnostic learning and realizable TDS learning in
the distribution specific setting under the Gaussian distribution for a well-studied concept class.

Theorem 2.11 (Hardness of TDS Learning Convex Sets). Let the accuracy parameter € be at most 0.1 and
the success probability parameter 6 also be at most 0.1. Then, in the realizable setting, any TDS learning
algorithm for the class of indicators of convex sets under the standard Gaussian distribution on R? requires
either 2% training samples or 2°-9% testing samples for all sufficiently large values of d.
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Remark 2.12. In Proposition B.3 of the Appendix, we show that TDS learning is not harder than PQ learning
(which is a related learning primitive, see [GKKM?20, KK21]). [KK21] show that the class of parities over
{+1}¢ can be efficiently PQ learned, which provides another example where TDS learning is easier than
agnostic learning.

2.4.2 Lower Bound for the Error Guarantee in the Agnostic Setting

We now focus on the agnostic setting and provide an information theoretic lower bound on the error upon
acceptance. Our lower bound is simple and demonstrates that a linear dependence on the error factor A (see
Equation (3.1)) is unavoidable for TDS learning.

Theorem 2.13 (Lower Bound for the Error in the Agnostic Setting). Let X’ be any domain, D a distribution
over X and C a class of concepts that map X to {£1} that is closed under complement, i.e., if f € C then
—f € C. Then, for any n € (0,1/2), any € € (0,n7/2) and 6 € (0,1/3), no TDS learning algorithm for
C w.r.t. D with finite sample complexity and failure probability 6, can have an error guarantee better than
A1 =2n)+e=Q(\) +e

Proof. Let Dtrg}n denote the training distribution and Dg‘?i} the test distribution, which are both over X' x
{=1}. Suppose that for € (0,1/2) and € € (0,7/2) there exists an algorithm .4, that, upon acceptance and
with probability at least 1 — , outputs f € C with err(J; DY) < A(1—2n) 4+ € (A = MC; DY3", DS,
see Equation (3.1)). Let C' > 0 be a sufficiently large universal constant.

We consider the following algorithm 7. Algorithm 7 uses an oracle to .A and accepts or rejects accord-
ing to the following criteria.

o If A rejects, then 7 rejects.

 If A accepts and outputs f € C, then T draws C 5 log(1/6) examples S7 from Dtram and rejects if
Pxyyes, Lf F(x) # y] > 3n/4. Otherwise, T accepts.

Fix some f € C and let Dtram be the distribution over X x {£1} whose marginal on X" is D and the
labels are generated as y(x) = f ( ). Consider the following two cases about D'}

Case 1. First, suppose that DY) has D as marginal on X and y(x) = f(x). Then, A accepts with
probability at least 1 — 4, due to completeness We have A = 0 (attained by f) and, hence, upon acceptance,
IP’(x7y)NDg§§}in [f(x) # y] = P, y)Nthest[ ( ) # y] < e < n/2 with probability at least 1 —d. By a Hoeffding
bound, we then have that 7 must accept with probability at least 1 — 4. Overall, 7 accepts with probability
atleast 1 — 30 > 1/2.

Case 2. Second, suppose that Dmt has D as marginal on X and y(x) = — f(x). Then, we have that A = 1
(because for any point x € X, any clas\s1ﬁer will either classify x incorrectly under DB?%}“ or under DB?%} .
By assumption, we have P, YD [f(x) # y] < M1 —2n)+ e < 1-—2n+ e with probability at least
1— 26 (by completeness and soundness) Since the test labels are the negation of the train labels, we have
P e gyt Lf flx) £yl =1~ Pocy)~pygn [f(x) # . and Pocy)~pygn [f(x) # y] > 21— € > n (since
e < 1n/2). By a Hoeffding bound, 7 will reject with probability at least 1 —35>1/2.

We have reached a contradiction, because in both cases, the input of 7 does not depend on the test
labels, and everything else remains the same in both cases. Therefore, 7 should have the same behavior in
both cases and we conclude that the algorithm A cannot exist as defined. O
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Remark 2.14. While the above lower bound demonstrates that the error of a TDS learning algorithm can
be necessarily high in certain settings, we emphasize that the construction corresponds to a contrived case
where the training distribution does not provide enough information about the test distribution and, therefore,
any meaningful notion of learning should be hopeless (see also [BDU12]).

3 Notation and Basic Definitions

We let X C R? and, in particular, X’ will either be the d-dimensional hypercube {=1}¢ or the d-dimensional
Euclidean space RY. For a distribution D over X, we use Ep (or Ex~p) to refer to the expectation over
distribution D and for a given (multi)set X, we use Ex (or Ex.x) to refer to the expectation over the
uniform distribution on X (i.e., Ex.x[g9(x)] = \71| > xex 9(x), counting possible duplicates separately).
We let Ry = (0, 00).

For a function p : X — Rand r € N, we define the £, norm of p under D as ||p||z, (p) = Ex~p[p(x)"]

a
7

For x € X where x = (x1,Xs,...,%q) and for o € N? we denote with x® the product Hie[d} X"

1
r .

Mo = E[x?] and [lafy = > ¢y . For a polynomial p over R? and o € N9 we denote with p,
the coefficient of p corresponding to x®, i.e., we have p(x) = > cnaPaX®. If p is a polynomial over
{+1}4, then we can always express it in a unique multilinear form, so we will only use coefficients p,, with
a € {0,1}4, ie., p(x) = >_aefo,1}4 Pax®. We define the degree of p and denote deg(p) the maximum
degree of a monomial whose coefficient in p is non-zero, i.e., deg(p) = max{||c||1 : pa # 0}.

We denote with S*! the d — 1 dimensional sphere on R%. For any vi,vy € R% we denote with
vy - vy the inner product between v; and vo and we let £(vq,vy) be the angle between the two vectors,
i.e., the quantity 6 € [0, 7] such that ||vy]2||v2]|2 cos(§) = vi - vo. For v € R% 7 € R, we call a function
of the form x +— sign(v - x) an origin-centered (or homogeneous) halfspace and a function of the form
X sign(v - x — 7) a general halfspace over R%.

Lo-sandwiching degree. We now define the notion of L£o-sandwiching polynomials for a function f with
respect to a distribution D, i.e., a pair of polynomials such that one of them is pointwise above f, the other
one is pointwise below f and the Lo distance between the two polynomials with respect to D is small.
While the notion of L; sandwiching polynomials is standard in the literature of pseudorandomness (see,
e.g., [Baz09]) and has applications to testable learning (see [GKSV23a]), in order to obtain our main results,
we make use of the stronger notion of L3-sandwiching polynomials which we define below.

Definition 3.1 (L2-sandwiching polynomials). Consider a product set X" and a distribution D over X. For
e >0and f : X — {£1}, we say that the polynomials pup, pdown : X — R are e-approximate Lo-
sandwiching polynomials for f under D if the following are true.

1. Paown(x) < f(x) < pup(x), forall x € X.
2. Hpup - pdownH%2(D) <e€

Moreover, for € > 0, a concept class C C {X — {£1}} and k, B > 0, we say that the e-approximate
Lo-sandwiching degree of C under D is at most k and with coefficient bound B if for any f € C there are
e-approximate Lo-sandwiching polynomialS pyp, Pdown for f such that deg(pyp), deg(Pdown) < k and each
of the coefficients of pyp, Pdown are absolutely bounded by B.

Learning Setup. Consider D5, D5! to be distributions over X' x {£1} and let Di*™, D be the
corresponding marginal distributions on X C R%. Our tester-learners receive labelled examples from DE@%}“

and unlabelled examples from D™ and their goal is to produce a hypothesis with low error on D35 or
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potentially reject but only if distribution shift is detected. Given a hypothesis class C C {X — {x1}},
hi,hy : X — {£1} and distributions Dyy, D5, DESY over X' x {1}, we define err(hi; Dyy) =
Px,y)~Dry [V # h1(x)] and err(hy, ho; Dx) = Pxopy[hi(x) # ha(x)] as well as the following quan-
tity, which is standard in the domain adaptation literature (see, e.g., [BDBCP06, BCK™07, BDBC*10,
DLLP10]).

A(C; DR, DY) = mm{err(f DE3"™) + err(f; DF3)}, attained by f* € C G.1)

Observe that parameter A becomes small whenever the training and test errors can be simultaneously min-
imized by a common classifier in C. Clearly, if there is no relationship between the training and test dis-
tributions, then using data from the training distribution does not reveal any information about the test
distribution and, therefore, learning is hopeless (see also Theorem 2.13). We will assume (as is common
in the domain adaptation literature) that the parameter A is a valid choice for quantifying the relationship
between the training and test distributions, in the sense that considering A to be small is not unrealistic. In
particular, we will partly focus on the following setting where A is zero. To distinguish between the two
settings, we say that we are in the agnostic setting when A > 0 (arbitrary) and in the realizable setting
when A = 0. When A = 0, there exists a classifier in C that achieves both zero training loss and test loss and
we therefore refer to this setting as realizable. Another (slightly more specific) way to view the realizable
setting is by considering the labelled distribution Dtram (resp. DtOSt) formed as follows: for some f* € C,
draw an example x from DE™ (resp. DY) and forrn the pair (x y) ~ DY3" (resp. (x,y) ~ DES)) by
setting y = f*(x). We now pr0V1de a formal definition of our learning model

Definition 3.2 (Testable Learning with Distribution Shift (TDS Learning)). Let X C R? and consider a
distribution D over X and a concept class C C {X — {£1}}. Forsome 1 : [0,1] — [0,1] and €,0 € (0,1),
we say that an algorithm A testably learns C with distribution shift w.r.t. D up to error ¥)(\) + € and
probability of failure § if the following is true. For any distributions DE@%}“, DtOSt over X x {#1} such that
D%ain = D, algorithm A, upon receiving a large enough set of labelled samples Strain from the training
distribution D%g}n and a large enough set of unlabelled samples X5, from the test distribution DE,?St, either
rejects (Strain, Xtest) OF accepts and outputs a hypothesis h : X — {£1} with the following guarantees.

(a) (Soundness.) With probability at least 1 — § over the samples Siyain, Xtest We have:
If A accepts, then the output / satisfies err(h; DE5;) < ¥(N) +e.

(b) (Completeness.) Whenever DS = Dgﬁain, A accepts with probability at least 1 — § over the samples
Straina Xtest .

In particular, we say that A testably learns C with distribution shift w.r.t. D in the realizable setting, if A is

required to satisfy the above guarantees only when DE@%}“, DtCSt and C are realizable (where A = 0 = ¥ ().

4 TDS Learning of Homogeneous Halfspaces

We now provide a proof of Theorem 2.1, which we restate here for convenience.

Theorem 4.1 (Agnostic TDS learning of Halfspaces). Let C be the class of origin-centered halfspaces over
R? and C' > 0 a sufficiently large universal constant. Let A, T be as defined in Propositions 2.2 and 4.2. Let
m 4 be the sample complexity of A(e/C,§/4) and m = (i;l; . Then, Algorithm 1, given inputs Strain, Xtest
of sizes |Strain| = ma and | Xiest| > my is a TDS learning algorithm for C w.r.t. any isotropic log-concave
distribution D with error O(\) + € and run-time poly(d, 1)log(%), where € is the accuracy parameter and
0 is the failure probability.
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Algorithm 1: Agnostic TDS Learning of Halfspaces

Input: Sets Sirain from DE@%}“, Xiest from DESY, parameters € > 0, 6 € (0,1)
Set € = ¢/C where C is some sufficiently large universal constant.

Let m 4 be the sample complexity of A(€’,§/4).

Split Sirain to S1, So with sizes m 4, 6% log(1/0)

Run A(€’,5/4) on S; and obtain v € S?—1

Let € = Py ), [sign(V - x) # y].

Run 7(€,6/2) on Xiest-

Reject and terminate if 7 rejects.

Otherwise, output f : R — {1} with f : x — sign(v - x).

In order to prove the above theorem, we make use of the following result from [DKTZ20].

Proposition 4.2 (Agnostic Learning of Homogeneous Halfspaces, Theorem 3.1 in [DKTZ20]). Let Dxy
be a distribution over R? x {£1} such that its marginal on R? is isotropic log-concave. Then there is
an algorithm A such that for any ¢ > 0 and 6 € (0,1), A(e,d), upon drawing m = O( 4 log(1/6))
independent examples from Dyy and in time poly(d,1/e) - log(1/6), outputs v € S—! such that, with
probability at least 1 — 6, the corresponding halfspace has error at most O(n) + €, where 1) is the error of
the optimal halfspace on Dyy.

We also use the following fact about isotropic log-concave distributions.
Fact 4.3. Py p[sign(v - x) # sign(v* - x)| = O(L(v, v*)), when D is isotropic log-concave.

Proof. Suppose that Si;ain 1S a set of my;ai, independent samples from DB%}“, where the marginal of Dtram
on R% is the standard Gaussian distribution. Let also Xiest be a set of Miyest independent unlabelled samples

from D55, In what follows, let € = €/C and let C' > 0 be a sufficiently large universal constant. Let also
m 4 be the sample complexity of A(¢',4/4) and my = (de;.

Soundness. Suppose that the algorithm accepts. Let v* E S9! define the halfspace f* that achieves
err(f*; Dtest) +err(f*; Dtraln) = ). Note that since |Sg| > log(l/é) we have that € < err(f, Dtram) +

€. By Proposition 4.2, since |S1| > m 4 we have err(f Dtram) < n+€,wheren € (0,1) is the error of the
optlmum halfspace, say f : x — sign(v - x) on Dtram Note that n < . We have that err(]?7 f;Dipainy <

err(f: DY) + err(f; DY) < 2n+ €. Therefore, due to Fact 4.3, and since DY = D, we obtain
L(v,v) < 20’7] + C'€ for some sufficiently large C’ > 0 (with C > C").
Moreover, we have that err(f*; DE@%}“) < X and, hence err(f*, f; DFa") < X + 7. We now apply

Proposition 2.2, to obtain err(f, I Xiest) < VCL(V,v*). Since [Xiest| > g log(1/0), due to stan-
dard VC dimension arguments, we have err(f, f*; DY) < VOL(V,v*) + €. By Fact 4.3, £(v,v*) <
C'err(f, f*; D). Therefore, with probability at least 1 — &, we have

err(f DY) < err(f 5 DY) + err(f*5 DY) < \/Eerr(f, DRy 4 A
< \/_err(f f Dtraln)+\/_err(f f Dtraln)+6/+)\
<ON+CE <e

Completeness. Readily follows from Proposition 2.2 and |Xtest| > m. O
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S Realizable TDS Learning

5.1 Disagreement-Based TDS Learners

In this section, we prove Theorem 2.6. First, we prove the following a special version regarding realizable
TDS learning of homogeneous halfspaces with respect to the Gaussian distribution.

Proposition 5.1 (TDS learning of Homogeneous Halfspaces). Let C be the class of origin-centered half-
spaces over R and C' > 0 a sufficiently large universal constant. Then, Algorithm 2, given inputs
Strain, Xtest 0f sizes |Strain| > C(g)3/2 lOg(é) and |Xtest| > C(g + E%)lOg(%) is a TDS learning al-
gorithm for C w.r.t. the standard Gaussian distribution N (0, 1;) with run-time poly(d, 1/¢) log(%), where €
is the accuracy parameter and ¢ is the failure probability.

Algorithm 2: TDS Learning of Homogeneous Halfspaces

Input: Sets Siyain from DE@%}“, Xiest from DS, parameter € > 0

Set ¢ = €3/2/(10d"/?).

Run the Empirical Risk Minimization algorithm on Sy, up to error €, i.e., compute a vector
v € ST with v = arg mingscga-1 P y)esyu [V 7 sign(v/ - x)]

LetV = {v € S ! |v —¥|s <€}

For each x € X, compute the following quantities.

v} =argmaxv’'-xand v =argminv’-x

v'ey v/'ey

Reject and terminate if Py x,.. [sign(vy - x) # sign(vy - x)] > 3¢/4.
Otherwise, output f : R — {+1} with f : x > sign(v - x).

We will use the following fact about the Gaussian distribution.

Fact 5.2. For any vy, vy € S%! we have Py (0,1, [51g0(V1 - X) # sign(va - x)] = L(v1,Vv2)/T.

Proof of Proposition 5.1. Suppose that St ,in is a set of Mmyrain independent samples from D}%}n, where the

marginal of DB?%}“ on R? is the standard Gaussian distribution. Let also Xiest be a set of miest independent
unlabelled samples from Dt. In what follows, let ¢’ = ¢3/2/(8d"/2).

Soundness. When the algorithm accepts, we have that P x,., [sign(vy - x) # sign(vy - x)] < . By
standard VC dimension arguments and Fact 5.2, after running the Empirical Risk Minimization algorithm
on training data, as long as Mgyain > C’g log(1/(0€’)), we have ||[v — v||a < €. Therefore, both v and v are

within V = {v/ € S9! ||v/ — ¥||2 < €'}. By the definition of v} and vy, we have the following.

P [sign(Vv-x) #sign(v-x)] < P [sign(vy - x) # sign(vy - x)] < 3¢/4 (5.1

X~ Xtest X~ Xtest

Moreover, we have err(f; DES) = E[Pxe X [sign(V - X) # sign(v - x)]], where the expectation is over

Xiest ~ (D5st)@est | By standard VC dimension arguments, we have that, with probability at least 1—4/2,
err(f; D)) = P Xyew [51gN(V-X) # sign(v-x)]-+€/4 whenever mies; > C%log(1/(€)). Therefore, with

probability at least 1 — § (union bound over two bad events), upon acceptance, we have err(f; DB?;}) <e
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Completeness. For completeness, we assume that Xt is drawn from A/(0, I;). Observe that } does not
depend on X (since it is formed only using training data). Therefore, we may apply a standard Hoeffding
bound to ensure that with probability at least 1 — §, whenever myest > C }2 log(1/(0)), we have
P [sign(vy -x) #sign(vy -x)] < P [sign(v) - x) # sign(vy -x)] +€/4
x~Xtest x~N(0,14)

It remains to bound Py zr(o 1, [sign(vy - x) # sign(vy - x)] by ¢/2. We observe that, since v, v~ €V,
we have v - x > v -x — [[vii — v |2llx]l2 > vi - x — €[|x||2 > V- x — €’||x||]2 by the definition of v
and vy . We similarly have v - x < v - x + €'[|x]|2.

Therefore the probability that sign(vy - x) # sign(vy - x) is upper bounded by the probability that
[v - x| < €||x]|2 (since, otherwise, both v - x and v - x have the same sign). In particular

ol e (v ) £sien(vi 0l < P (9 x] < €l
< P > \/4d P Vx| < édv\/4d
_XNN(OJd)[Htz V /e]+XNN(OJd)Hv x| < €y/4d/e]

Exnro,1) [IX]13]€ ~ )
< ’ P x| < 4d
< e +x~./\/’(0,ld)”V x| < €'/4d/e]

We obtain the final inequality by applying Markov’s inequality. Since Ey. 0,1, [[|x]|3] = d and the one-
dimensional Gaussian density is upper bounded by (277)~!, we have the following bound.

2
P [sign(v? - ien(vo - x)] < < ' JAd]e < ¢/2
B il x) £ signlvy ) € 5+ VAT < ef2,

since € < €3/2/(8d"/?). This completes the proof. O

We now prove Theorem 2.6, which we restate here for convenience.

Theorem 5.3 (Disagreement-Based TDS learning). Let C be the class of concepts that map X C R< to
{£1} with VC dimension VC(C), let D a distribution over X and C > 0 a sufficiently large universal
constant. Suppose that we have access to an ERM oracle for PAC learning C under D and membership

access to Do (f; D) for any given f € C and € > 0. Then, Algorithm 3, given inputs of sizes |Strain| >

C’%,(C) 10g(%) and | Xiest| > C’(m + eiz) log(%) is a TDS learning algorithm for C w.r.t. D that calls

€
the € -ERM oracle once and the € -membership oracle |Sirain| times, where € is the accuracy parameter, § is

the failure probability and € such that €' - 6(¢',d) < €/2.

Algorithm 3: Disagreement-Based TDS Learning

Input: Sets Sirain from DE@%}“, Xiest from DS, parameter € > 0

Set € > O such that ¢ - 0(¢’, d) < ¢/2.

Rgn the Empirical Risk Minimization algorithm on Si;i, up to error €, i.e., compute f € C with
f = arg minf’ec ]P)(x,y)EStrain [y 7é f/(X)]

Let Der(f; D) be as in Definition 2.5.

Reject and terminate if Py x,., [X € Do (f;D)] > ¢/2.

Otherwise, output f.

Proof of Theorem 2.6. Suppose that Styain 1S @ set of myyain independent samples from DE@%}“, where the

marginal of DB?%}“ on X is the distribution D. Let also Xiest be a set of myest independent unlabelled
samples from D', In what follows, let € > 0 such that €6(¢’,d) < €/2. The proof follows a similar
recipe as the one of Proposition 5.1. For the following, let f* € C be the label generating function.
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Soundness. Suppose that the algorithm accepts. Then, Py x,...[x € Do (f;D)] < ¢/ 2. Since fis an

minimizes the empirical error on training data, by standard VC arguments, we have that err(f, f*; D) < €/2,
whenever Mipain > C VC(C) log( ; 6), since Dggain = D by assumption. Therefore, by the definition of

D, (f;D), for any x ¢ DE (f:D), we have f(x) = f*(x). Therefore, we have
P (f0# /' 00] <P [xeDu(fiD) <ef2

X~ Xtest ~ Xtest

-~

Whenever mye; > CY2E 10g (L), we have Propigg [y 7# F* ()] € Panion [f() # f* ()] +¢/2 <

Completeness. Suppose that D'** = D. Then, by a standard Hoeffding bound, we have that whenever
Miest > C110g(1/6), we have Py x,,, [X € Der(f; D)] < Pxup[Der(f; D)] +€/2 with probability at least
1 — 8 and Pxop[De (f: D)] < €6(¢, d) < €/2, by the choice of €. O

5.2 TDS Learner for General Halfspaces

We now prove Theorem 2.7 which we restate here for convenience.

Theorem 5.4 (TDS learning of General Halfspaces). Let C be the class of general halfspaces over R% and
C > 0 a sufficiently large universal constant. Then, Algorithm 4, given inputs of size |Strain| = | Xtest| =
CdClogl/¢ js q TDS learning algorithm for C w.rt. the standard Gaussian distribution N (0, 1;) with run-
time d°(°81/€) where € is the accuracy parameter, and the failure probability & is at most 0.01.

Algorithm 4: TDS Learning of General Halfspaces

Input Sets Sirain from DE@%}“, Xiest from DESY, parameter € > 0

. Set T = 201108 e+ |k = Olog 2, A = - and § = e

20 Pl y)msyanly 7 0] < % for some b € {£1} (large bias case) then
3:  Foreach a € N¢ with |afj1 <k, compute the quantity My = Exoxyon, [x°)-

4 Reject and terminate if [M, — Exn(0,1,) [x?]| > A for some « with ||||; < k.
5. Otherwise, output f : RY — {#1} and terminate, where f:x > b(f constant).
6: else
7.

8

9

Set v — E(x,9)~ St rain V¥
1, 5)~ Sgpain X2

Let7 ={V-x:(X,y) € Strain}-

’ Set 7/: - arg minTET ]P)(xvy)estrain [f*(x) # Slgn(v "X T/)]’
10 LetV={W, 7): v =v|2<8,|7 -7 <5}

11:  Foreach x € X, compute the following quantities.

(v, —argmaxv x — 7 and (v, 7 ) = argmin v’ - x — 7/

(v, ey (v, ey

12:  Reject and terminate if Py~ x,,., [sign(vyl - x — 7f) # sign(vy - x — 757)] > 10e.
13:  Otherwise, output f : RY — {£1} with fixes sign(v - x — 7-)
14: end if

Suppose the ground-truth halfspace f*(x) = sign(x - v — 7) is determined by a unit vector v € R and
a value 7 € R. We will need the following showing that if a halfspace not too biased under the standard
Gaussian distribution, then it is possible to recover the parameters of the halfspace up to a very high accuracy.
See Subsection 5.2.3 for the proof.
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Proposition 5.5 (Parameter recovery for halfspaces). For a sufficiently large absolute constant C' > 0,
the following is true. For every 3,7 € (0,1) and integer d, let Siyain be a set of C (%)C i.i.d samples
from a distribution DE@%}“ such that D%ain = N(0, I;) and the labels are given by an unknown halfspace
[ x = sign(v - x — 7). Additionally, assume that the halfspace f satisfies Pycpro,1,)[f*(x) = —=1] > v
and Pyc (o, [f*(x) =1] > 7. Let T = {V - x : (X,y) € Strain} and set

> Xy R ~
(X7y)€Stra1n and T=arg min P [f*(x) ?é SigH(V Cx — 7_/)]'
||Z(x7y)estrain XyH2 T'eT (va)estrain

Then, with probability at least 1 — 1/1000 we have ||v — V||o < Band |7 — 7| < .

V=

We also highlight two technical lemmas that we use for the analysis of Algorithm 4. Our first technical
lemma insures that if f is a halfspace that very likely assigns the same label to samples from the Gaussian
distribution, then f also very likely assigns the same label to samples form a distribution whose low-degree
moments match those of a Gaussian. This lemma will be useful for proving the soundness of Algorithm 4,
and is proven in Section 5.2.2. (Recall that for x € R¢ we denote [T, " as x.)

Lemma 5.6. When C and C5 both exceed some specific absolute constant, the following holds. Let k and
T be defined as in Algorithm 4. Suppose, the set Xiest is such that for every collection of non-negative
integers (a1, -+, aq) satisfying >, o < k we have

€

E - E N < —. 52
x~Xiest [ x~N(0,14) ) = dCzk (5:2)

Also, suppose the function f*(x) = sign(x - v — 7) and the value L € {1} are such that

. 2
LB AL < (5.3)
Then, it is the case that
P AL <0, (5.4)

Our second technical lemma bounds, for x chosen from the standard Gaussian, the probability that one
is unsure about f*(x) = sign(v - x — 7) when one only has approximate estimates for v and 7 for v and
7 respectively. This lemma will be useful for proving the completeness of Algorithm 4, and is proven in
Section 5.2.1.

Lemma 5.7. There is some absolute constant K1, such that for every positive integer d and € (0, 1),
the following holds. Let ¥V be any unit vector in R? and 7 be in R. Then, we have for V = {(v',7) :
V' =Vll2 < 8,|7" =7 < B}

P ) [sign (( max Vv -x— 7'/> = sign (( min v -x— ’7'/>:| < KldKl\/E (5.9

x~N (0,14 v/, ey v/, ey

5.2.1 Proof of Soundness.

In this subsection we show that if Algorithm 4 accepts then the output fof our algorithm will generalize on
the distribution D5,

Proposition 5.8 (Soundness). For any sufficiently large absolute constant C, the following is true. For any
distribution DteSt and any halfspace f = sign(v-x—7), the followzng is true. It can happen with probability
only at most 100 that Algorithm 4 gives an output (ACCEPT, f ) for some predictor f but it is not the case
that

[f*(x) # F(x)] < O(e).

x~Digst
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To prove this proposition, we first need to prove Lemma 5.6.

Proof of Lemma 5.6. First of all, we claim that Equation 5.3 implies that

1 T
7| = §log§ (5.6)

Indeed, we have

2 > L /oo 6_22/2(12 > |7_|e—2‘7'|2 > e—2|7"2’
T = \V2r Jir - -

where the last inequality holds because for sufficiently large C the value of 7" and therefore |7] is sufficiently
large and exceeds 1.

Recall that v is assumed to be a unit vector in R?. Assume, without loss of generality, that L = —1, and
therefore 7 > 0. We have

P [signx-v—71)#—-1= P [x-v>7]

X~ Xtest xr~ Xtest T

IN

5.7

To use this inequality, we need to upper-bound Ex,...[(x - v)¥]. Since v is a unit vector, every (of at
most d¥) terms of the polynomial mapping x € R? to (x - v)* has coefficient at most 1. This, together with
Equation 5.2 and the triangle inequality, allows us to conclude that

E [xv)f]- E (v <d

xr~ Xtest x~N(0,14)

Now, since v is a unit vector, we have Eyxr(0,7,)[(x - v)¥] = k!! < k*. Combining this with the equation
above, and Equation 5.7 and then substituting Equation 5.6 and the values of k and T we get:

P [sign(x-v—r71)# —1] < 1 (k‘k/z + dkL) <

X~ Xtest - |’7’|k dc2k -

1 1 Cllog% c
Cilog - +dF——
C1log X (( 1 ) Cak
(%Clzlogl) 18 € d

€

We see that when C and C5 both exceed some absolute constant, the above expression is at most €, which
completes the proof. O

Having proven Lemma 5.6, we are now ready to prove Proposition 5.8.

Proof of Proposition 5.8. First, suppose the algorithm outputs (ACCEPT, L) for some L € {+1} via Step
5. For the algorithm to reach this step, it has to be that

P [f*(x) £ L] < =,

x€es T
Via Hoeffding’s inequality, if C' is sufficiently large then with probability at least 1 — ﬁ it holds that

1

| PAFOO AL - BIF00 AL < 5 58

and combining the two equations above

. 2
- NE(”Q Id)[f (x) # L] < .
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Furthermore, for the algorithm not output REJECT in Step 4, it has to be the case that for every collection
of non-negative integers (o, - - , aq) satisfying >, a; < k we have

€

X~ Xtest x~N(0,14

Overall, this allows us to apply Lemma 5.6 to conclude that

P [f*(x) # L] < O(e),

X~ Xtest

1

and, for a sufficiently large absolute constant C, with probability at least 1 — 1555, this is only possible if

P L(x)# L] <0(e),

x~ DSt

which finishes the proof for the case when the algorithm accepts in Step 5.
Now, suppose the algorithm accepts in Step 13. For the algorithm to reach this step, it has to be that

P00 AL > 7

x€eS
And together with Equation 5.8, this implies that

. 1
ko, Id)[f (x) # L] > o

For such f* we can apply Proposition 5.5 and conclude that with probability at least 1 — 1/1000 the values
of v and 7 obtained in Algorithm 4 satisfy

2
N €
[v—¥l2 < (m) =B, (5.9
~ € 2
T —7| < <03d03> = 0, (5.10)

where the last equality is by the definition of 3. Now, since the algorithm did not reject in Step 12, it must
be the case that the fraction of elements in Xteg that satisfy sign(vy - x — 7,8 # sign(vy - x — 70 ) is at
most 10e. If C is a sufficiently large absolute constant, the standard Hoeftfding inequality tells us that for
this to happen with probability larger than 1/1000 it has to be the case that

P [sign <( max Vv -x— 7'/> = sign <( min v -x — 7”)} < 1le.

x~Dgst v/, 7)eV v/ r)eV

Whenever the event above occurs, since V = {(v/,7/) : [|[v/ —=¥||2 < 8,|7" — 7| < 3} we can use Equations
5.9 and 5.10 to conclude sign(v - x — 7) = sign(v - x — 7). Therefore,

P [sign(v-x—7)#sign(v-x—7)] < 1le

x~Diest

This completes the proof of soundness of Algorithm 4. O

20



5.2.2 Proof of Completeness.

The second proposition shows that if the testing distribution is the standard Gaussian, then the algorithm
will likely accept. Together, propositions 5.8 and 5.9 yield Theorem 2.7.

Proposition 5.9 (Completeness). For sufficiently large value of the absolute constants C' and Cs and for any
halfspace f = sign(V - x — T), suppose the testing distribution D" is the standard Gaussian distribution.
Then, with probability at least 1 — ﬁ Algorithm 4 will accept, i.e. output (ACCEPT, f) for some f.

To prove this proposition, we first need to prove Lemma 5.7.

Proof of Lemma 5.7. We have Ey_ (0.1, [[[x]|3] = d. Therefore, by Markov’s inequality, we have

Vd [ ) d}
P X|lg > —| = P x5 >—=| < 5.11
- [u > = B |lE> 5| <5 (5.11)

Additionally, from the bound of \/% on the density of standard Gaussian in one dimension, we get:

~ ~ 200+/8d + 28
P -x — 7] <1004/ 5d < 5.12
x~N(0,14) “V x=7l< p +ﬁ} o V2T ( )

If it holds that ||x||» <
that

\/_, we have for every v’ satisfying ||v/ — V||2 < § and any 7’ satisfying |7' — 7| < 3

V x—7 - -x-7)| < VdB+ 7
Therefore, if it is also the case that [v - x — 7| > 100+/3d + 3, then we have
sign (v/-x—7') =sign(v-x—7)

This allows us to conclude that

P [Sigﬂ( max v'-x—7">;ésign< min v'-x—7">] <
x~N(0,13) (v, 7")ey (v, 7)ey

vd 200+/Bd + 28
XNN]I?O,Id) [HXH2 > \/—B] + N(O L) [!V x—7| < 100\/7—1-@ <p4 =¥ Nor: :

where in the end we substituted Equation 5.11 and Equation 5.12. Recalling that for 5 € (0,1) we have
B < +/B and picking K; to be a sufficiently large absolute constant, our proposition follows from the
inequality above. U

Having proven Lemma 5.7, we are now ready to prove Proposition 5.9.

Proof of Proposition 5.9. There are two ways for the algorithm to output REJECT: through Step 4 and
through Step 12. We will argue neither takes place. From standard Gaussian concentration, if C is a
sufficiently large absolute const ant, with probability at least 1 — the algorithm will not output REJECT
in Step 4.

We now proceed to ruling out the possibility that the algorithm outputs REJECT in Step 12. For the
algorithm to reach step Step 12, it is necessary that

1000

P (x) # L] >

xeS
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Via Hoeffding’s inequality, if C' is sufficiently large then with probability at least 1 — ﬁ it holds that
| Pxes[f*(x) # L] — Pxes[f*(x) # L]| < 5, which together with the equation above implies that
1
P (x) # L] > —.
xeN(o,Id)[f (x) # L] 2T
For such f* we can apply Proposition 5.5 and conclude that with probability at least 1 — 1/1000 the
values of v and 7 obtained in Algorithm 4 satisfy

2
~ €
lv =¥z < <03d03> =5, (5.13)
€ 2
\T—ﬂ§<0ﬂ@> =B, (5.14)

Recall that V = {(v/,7') : ||[v/ = V]||2 < 8,|7" — 7| < B}. The equation above together with Lemma 5.7
implies that

P sign [ max v .-x—17 sign( min v-x—7)| <Kd—_< ,
x~N(0,14) |: & ((v’,ﬂ-’))év T > 7& & ((v’,T’)GV T = ngc3 =€

where the last inequality holds for sufficiently large value of C'3. Combining the inequality above with the
standard Hoeffding bound and recalling that D%** = N(0, I;), we see that with probability at least 1 — ﬁ,

P [Sign ( max Vv -x-— 7") = sign ( min v -x — 7'/>:| < 2¢,
X~ Xtest (v, 7)ev (v, 7)ey

In conclusion, we see that the inequality above implies that the algorithm does not output REJECT in Step
12. This completes our proof. U

5.2.3 Parameter recovery.

Here we prove Proposition 5.5, which was used in the proofs of Proposition 5.8 and Proposition 5.9, thereby
finishing the proof of Theorem 2.7. Let us first recall the setting of Proposition 5.5. For a unit vector v in
R? and 7 € R satisfying

min( P [v.x—7>0, P [V-X—T<0]>27],
2eN (0,14) 2€N(0,14)

C .
Strain 15 a set of C (%) i.i.d samples from a distribution DE@%}“ with X-marginal distributed as standard

Gaussian and Y-marginal given by the halfspace f = sign(v - x — 7). The absolute constant C' is assumed
to be sufficiently large. Welet 7 = {V - x : (X,y) € Sirain} and set

Z(va)estrain Xy
H Z(xyy)estrain Xy”2

V=

7 = argmin P [f*(x) #sign(v-x—1')].
T'eT (xvy)estrain

We would like to prove that with probability at least 29/30 we have
v —vll2 <5,
[T—7]< 8.

The following proposition tells us that the first inequality above is likely to hold:
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Proposition 5.10 (Recovery of normal vector for halfspaces). For a sufficiently large absolute constant
C
C, and every n, 3 € (0, 1) and integer d, the following holds. Let Siyqin is a set of at least C (i> iid

samples from a distribution D%am with X -marginal distributed as standard Gaussian and Y-marginal given
by the halfspace f = sign(v - x — 7). For every unit vector v in R? and T € R satisfying

min< P [v.x—7>0, P [V'X—T<O]>ZT],
x€EN(0,14) xeN(0,14)

Z(x,y) €S¢rain Y
Z(ny)estrain Xy”2

The vector v.= T with probability at least 1 — 2000 satisfies:

v —vl2 <5,
Once this stage is accomplished, the next proposition tells us that we can recover the offset 7.
Proposition 5.11 (Offset recovery for halfspaces). For a sufficiently large absolute constant C, and every

C
1,y € (0,1) and integer d, the following holds. Let Siain is a set of at least C (i> i.i.d samples

from a distribution Dtram with X -marginal distributed as standard Gaussian and )-marginal given by the
halfspace f = 51gn(v x — 7). For every unit vector v in R? and T € R satisfying

min< P [v.x—7>0, P [V'X—T<O]>ZT],
xEN(0,14) xeN(0,14)

Then, with probability at least 1 — ﬁ, for every unit vector V that forms an angle of at most y with v the
value
7 = argmin P [f*(x) #sign(v-x —7')].
77eR  (%,Y)EStrain
satisfies

N 1
|T—T|§O<Wﬁ>.

Formally, Proposition 5.5 follows from the two propositions above as follows. One first uses Propo-
sition 5.10 to conclude that, for any absolute constant C', there is a value of the absolute constant C' for
which with probability 1 — ﬁ a vector Vv that satisfies ||[v — V|| < C% (21199, This implies that the angle
between v and V is upper-bounded by é'_?, (%0190, Then, if the absolute constant Cj is large enough, if we
use Proposition 5.11, then with probability 1 —
Proposition 5.5.

Now, proceed to prove the two propositions above. We start with Proposition 5.10.

2000 the value 7 satisfies |7 — 7| < §3, finishing the proof of

Proof of Proposition 5.10. Let {eq,---e4_1} form an orthonormal basis for the subspace orthogonal to v.
Since all the projections {v - x,e; - X,--- ,e4_1 - X} are independent standard Gaussians and f*(x) =
sign(v - x — 7) we have for all 7

E i xfr =0.
CARC RS

At the same time

+00
v xf(x)] = /t__ tsign(t — 7)% dt =

1
tsign(t —7) —dt+/ tsign(t — 7)—— dt:—/ tdt
/te[_THT} 00, —|7|]U[|7|,+o0] V2T V2T Ji=|r|
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For some positive absolute constant K, the final expression above is atleast K2 Py (o,1) [t > 7], because if
|7| > 1, then one can lower-bound the expression above by \/% ftozom dt. On the other hand, if |7| € [0, 1],

then the expression on the right side is at least \/%_W ftozol dt which is a positive absolute constant, while
Py n(0,1)[t > 7] is always upper-bounded by 1. Overall, we have

E -xfr > K P [t>
xeN(o,Id)[V xf (X)] - 2t~N(0,1)[ T]

:Kgmin< P [v.x—7>0], P [V-X—T<0]>
xEN(0,14) xeN(0,14)
> Kon.

Now, we bound the variance of x f*(x). Since f*(x) € {£1}, we have

E e -xf*x))?*= E e -x)] =1,
xEN (0,1,) (e ") xeN (0,1,) [(es )]
E v-xf*x))*|= E v-x) =1.
xenosy XN =, )]
This allows us to use the Chebychev’s inequality together with the union bound to conclude that with prob-
ability at least 1 — ﬁ we have for all ¢
N 60d
| Exeslei - xf*(x)]| < N
and also
N 60d
Exeslv-xf*(x)] > Kon — N
. o 25y X)L Exesy xf1(x)
Recalling that v = T cs, PNz~ [Exes, xR we see that
60d
Vel < — YN
60d
Kon—/>x

Substituting N = C (%)C, and letting C' be a sufficiently large absolute constant, we obtain from above

implies that |V - e;] < —2~. Since ||¥|| = 1 we have

= 10Vd"
1>fpv>1-2s1- 8
10 10

we also see that taking C' to be a sufficiently large absolute constant also ensures that v - v > 0, so overall
we get
IV —vll <5,

which finishes the proof. O

In order to prove Proposition 5.11, we will need a proposition that relates the following two quantities:
(1) the difference in offsets 71 and 7 of two halfspaces (2) The probability that these two hafspaces disagree
on a point drawn from the standard Gaussian.
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Proposition 5.12. There is some absolute constant K1 such that for any pair of unit vectors v, vy € R* and
a pair of real numbers 71, To, letting v denote the angle between v and v, the following holds. Suppose
v < /4, then

. . 1 _ o . Ty 1
P Lx — Sx — > T/ 2| - 5.15
A [sign (vi - x — 71) # sign (vo - x — 7o) > e e min ( 1 COS"}/‘ e 1) ( )
It is also the case that
P sign (vy -+ X — sign (vg - X — 71 CcOS <K 5.16
xEN(O,Id)[ gn (v 1) # sign (vo 11 cosy)] < K1/ (5.16)

Proof. To prove this, we first show that for any z € R, conditioned on v; - x = z; the distribution of
vy - x is N (21 cos v, sin ). Indeed, let v3 be the unit vector that one obtains by first projecting vo into the
subspace perpendicular to v, and then normalizing the resulting vector to have unit norm. This means v3
is orthogonal to v; and we have

Vo = Vi o8y + vssiny.
Therefore

X-Vy =X-VyC087Y+X-Vvsgsiny
Now, since x - v and x - vy are distributed as i.i.d. one-dimensional standard Gaussians. Thus, conditioning
on x - vi = z1 we get that x - vy is distributed as N (z cos v, sin 7).
Our observation allows us to write:
P sign (v - X — 71 sign (vg - x — 1) =
xeN(OJd)[ gn ( ) # sign ( )]

P sign (z1 — T sign (21 cosy + zosiny — 13)| =
217226/\/(071)[ gn (2 1) 7 sign (21 Y 2 Y 2)]

P [sign (21 — 71) # sign (21 + zg tany — 12/ cosy)| (5.17)
21,22€N'(0,1)

Let us first focus on the case when «y € [0, 7/2). We see that

P [sign (21 — 71) # sign (21 + 22 tan~y — 19/ cosy)] >
z1,22€N'(0,1)

1
- P sign (z1 — 7 sign (21 — T/ cos 5.18
221@\/(071)[ gn (21 — 71) # sign (21 — 2/ cos )] (5.18)
The reason that inequality above is true is that, conditioned on a specific value of z1, if 21 > 75/ cos~y, then
21 + zatany — 75 is more likely to be positive than negative. At the same time, if z; < 79/ cos~y, then
z1 + 22 tany — 7 is more likely to be negative than positive.
We lower-bound the probability above as follows. Let A be the interval of R defined as follows:

1
A= {z eR: sign(z — 1) #sign(z — 1o/ cosvy) & |z—11| < 7}
|| + 1

‘We have

: ' B i - > P Al >
ZEN(0,1) [sign (21 — 71) # sign (21 — 72/ cosy)] > a0 [21 € A] >

2
Zmin<7'1_ > " 1 ) 1 e‘%(““‘mﬁ)
cosvy| |m|+1) Vor
>Q(1)-min<

1
> -2 : e~ Ti/2, (5.19)
cosy| |m|+1
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which, combined with Equations 5.17 and 5.18, finishes the proof of Equation 5.15.
Now, we proceed to proving Equation 5.16. We proceed as follows:

P sign (z1 — 7 ) = sign (21 + zotany — 7
217226/\[(071)[ gn (21 — 1) gn (21 + zp tany — 7)]

> P z1 — 11| > Viany & |za] <
T 21,22€N(0,1) [| 1 1| i | 2|

1
y/tany

>1—-0(1) - tany — O(l)/ ) e =12 gz
Ve

= 1- O/ = 1- O(y7),
which, when combining with with Equation 5.17 and substituting 75 = 71 cos 7, proves Equation 5.16. [

Having proven Proposition 5.12, we are now ready to prove Proposition 5.11.

Proof of Proposition 5.11. Recall that T = {V-x : (X,y) € Strain }. We see for 7’ between two neighboring
elements of 7 the value of Pycno 1)[f*(x) # sign(V - x — 7')] stays the same. Therefore

P[0 # sign(¥-x—7) = min P [f(x) #sign(¥ - x— )] = min P [f*(x) # sign(¥-x— 7).
(5.20)

Since the function class {sign(v’-x — 7/ : v/ € R%, 7/ € R} has a VC dimension of d + 1, the standard

VC bound tells us that for sufficiently large absolute constant C' with probability at least 1 — ﬁ we have

for every 7/ € R and unit vector v that

xeN]I?O,I) [f*(x) # sign(v - x — 7] — x]E’T[f*(x) #sign(v-x—7)]| <\~ (5.21)

From Equation 5.16 in Proposition 5.12 we have that

glei%xel\]TP()O,I)[f*(x) #sign(v-x — 1) < K1/ < O(/7) (5.22)

We now upper-bound |7 in terms 7 as follows:

i
|7 <104 /log —, (5.23)
n

For |7| < 1, this is immediate, because the probability that the Gaussian exceeds one standard deviation in
a given direction is at least 1/10. For |7| > 1, we write

)

e _t2 2 1 _ 1 2 2 1 1 |2 2
nz/fz/ﬁZ_GWHM/zﬁ_ﬂh/
7| 7| e 7]

which proves Equation 5.23.
Taking Equation 5.15 in Proposition 5.12 and substituting Equation 5.23 we get

1 2 T 1
p en (@2 -] > et (e - ——|, L) »
meN(O’Id)[f(a:)#&gn(v z T)]_Kle mln(T cos ’T‘+1>_
min (-l 1)
— min | |7 — , 1
K Cos 7y
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Combining the above with Equation 5.20, Equation 5.21 and Equation 5.22 we get

~

— < —(0 <0 .
T | < T O V) < OWA/™)
Finally, we see that
T T
-7 < |- T — <0 %) + O(y/log(1/n)¥*) = O 50).
P A< | P | < O™ + ORI = O/ )
This completes the proof of Proposition 5.11. O

6 TDS Learning Through Moment Matching

6.1 L,-Sandwiching Implies TDS Learning
We now prove Theorem 2.9 which we restate here for convenience.

Theorem 6.1 (Ly-sandwiching implies TDS Learning). Let D be a distribution over a set X C R® and let
C C{X — {£1}} be a concept class. Lete,6 € (0,1), € = €/100 &' = §/2 and assume that the following
are true.

(i) (Lo-Sandwiching) The € -approximate Lo-sandwiching degree of C under D is at most k with coeffi-
cient bound B.

(ii) (Moment Concentration) If X ~ D®™ and m > Mconc then, with probability at least 1 — §', we have

that for any o € N% with |||y < k it holds | Ex[x®] — Ep[x®]| < BZE—;W'

(iii) (Generalization) If S ~ D;@ég} where Dyy is any distribution over X x {1} such that Dy = D
and m > Mgey, then, with probability at least 1 — &' we have that for any degree-k polynomial p with
coefficient bound B it holds |Ep ., [(y — p(x))?] — Es[(y — p(x))?]| < €.

Then, Algorithm 5, upon receiving Mirain > Mgen labelled samples Sirain from the training distribution

k
and miest > C - %%u/é) + Meone Unlabelled samples Xiogt from the test distribution (where C > 0is a
sufficiently large universal constant), runs in time poly(|Sizain|, | Xtest|, d*) and TDS learns C with respect
to D up to error 32\ + € and with failure probability §.

One key ingredient of the proof of Theorem 2.9 is the following transfer lemma which states that moment
matching implies that the empirical squared loss between two polynomials on the test distribution is close
to their expected squared loss under the target distribution.

Lemma 6.2 (Transfer Lemma for Square Loss). Let D be a distribution over X C R and Xiost @ (multi)set
of points in R If | Ex~ X, [XY] — Exon[x%]| < A for all « € N with |||y < 2k, then for any degree k
polynomials p1, po with coefficients that are absolutely bounded by B, it holds

E [(m(x) = p2(x)’] = E [(m(x) —pa(x))’]| < B>-d™ - A
x~ Xtest x~D
Proof. The polynomials py, p2 all have degree at most k and coefficients that are absolutely bounded by B.
Therefore, the polynomial (p; — p2)? has degree at most 2k and coefficients that are absolutely bounded by
B2d%. Letp' = (p1 — p2)? = Dol <2k PaX™ (With [pf| < B2d? as argued above) which gives the
following.

!
B
=]
5

Ip1 = P2llZy () = . B [(p1(%) = p2(x))?]

X~ Xtest
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Algorithm 5: TDS Learning through Moment Matching
Input: Sets Sirain from DE@%}“, Xiest from DI, parameters € > 0,6 € (0,1), k € N,B >0
Set €’ =€/100, ' = 6/2and A = B;—c,ﬂk
For each o € N? with ||| < 2k, compute the quantity

Ma — ExNXtcst [Xa] — EXNXtcst Hle[d] X'lal:|

Reject and terminate if [M, — Exp[x?]| > A for some a with || < 2k.
Otherwise, solve the following least squares problem on S, 4;, up to error €’

min E —p(x))?
p (xvy)NStrain [(y ( )) ]
s.t. p is a polynomial with degree at most k

each coefficient of p is absolutely bounded by B

Let p be an ¢’-approximate solution to the above optimization problem.
Accept and output h : X — {+1} where h : x — sign(p(x)).

It remains to relate Ex.x,.., [p'(X)] to Ex~p [p(x)], which follows by the moment-matching assumption.

> (B k- B )]

| E &) - E )| =

x~Xtest x~D x~ Xtest
o:l|al]1 <2k
< D | B xY- E [xY
asllalls <2k X Niest P
= Z ‘p;"‘Ma_Ma‘
o:l|al]1 <2k

<d*.-B*-d*-A
which concludes the proof of the lemma. O
We are now ready to prove Theorem 2.9.

Proof of Theorem 2.9. For the following, let D3 be the training distribution, D'} the test distribution
(both over X x {£1}) and D}am, D't the corresponding marginal distributions over X'. We assume that
D%ain = D. Let Mirain = |Strain| and Miest = |Xtest|, € = €/100, &’ = §/2, k, B as defined in condition
(i). We also set A = B2€—[,14k and mcon as defined in condition (ii), as well as mgey, as defined in (iii).

Soundness. Suppose that Algorithm 5 accepts and outputs ~ = sign(p). For the following, let A\ain =

err(f*; D}%}n) and Aesy = err(f*; D)) (where we have A = Agrain + Atest). We can bound the error of

the hypothesis 7 on D3} as follows

err(h; DESS) < err(f* D)) + ere(f*, hs DE™)
= Atest + E[err(f*, h; Xtest)] s

where the expectation above is over Xes; ~ (DY™)®™et. Denote err(h; D¥3)) = Poress [y # h(x)] and

err(hy, ho; DY) = Poprtest [h1(x) # ho(x)] and use the fact that for random variables y1,y2,ys € {+1},
it holds Ply; # yo] < Plyr # y3] + Ply2 # ys]. Since h is the sign of a polynomial with degree at most
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k = k(€’) (see Algorithm 5) and the class of functions of this form has VC dimension at most d* (e.g., by
viewing it as the class of halfspaces in d* dimensions) we have that whenever myest > C - W for
some sufficiently large universal constant C' > 0 the following is true with probability at least 1 — ¢’ over
the distribution of Xt .

Elerr(f*, h; Xiest)] < err(f*, h; Xtest) + ¢

Therefore, it is sufficient to bound the quantity err(f*, h; Xiest ). We now observe the following simple fact.

E [(f(0)=PX)] > P [f(x) =1,p(x) <0+ P [f"(x) = —~1,p(x) > 0]

X~ Xtest test test

= P [f"(x) # signp(x)]

test

= err(f*, h; Xtost)

Therefore, we have err(f*, h; Xiest) < || f*— mz (Xtest)" Let pup, Pdown be €' -approximate Lo sandwiching

polynomials for f* of degree at most k = k(¢’) and with coefficient bound B = B(¢’). The right hand side
can be bounded as follows.

”f* - i)\”ﬁz(Xtest) < ”f* - deWHHC2(Xtesc) + ”deWH - ﬁHEZ(«Xtest)
< ||pup - pdown”Ez(Xmst) + deown - ﬁ”ﬁg(Xmst)

In the last inequality, we used the fact that pgown(x) < f*(x) < pup(x) for any x € X. We will now
compare ”pup - pdown”ﬁg (Xtest) to Hpup - pdownHLQ(D) (and, SimﬂaﬂYs Pdown — i)\”ﬁz (Xtest) to deown -
Pllzo(p)) using the transfer lemma (Lemma 6.2). The polynomials pyp, pdown, P all have degree at most k
and coefficients that are absolutely bounded by B. Moreover, since Algorithm 5 has accepted, we have that
for any o € N¢ with ||a||; < 2k, the following is true

‘MQ—MQ‘ <A, 6.1)

where M = Eyx,.., [x] (recall that x* = [Licig xi*) M = Ex.p[x*] and A = B;—c/l‘lk‘ Therefore, by
applying Lemma 6.2, we obtain that ||puyp — Pdown|| Lo(Xeest) = |Dup — pdownuﬁg(D) + V¢ and, similarly,

||pdown _1/7\H£2(Xmst) < deown _ﬁnﬁz(D) + \/g
We have assumed that pyp, Paown are €' -approximate Lo sandwiching polynomials for f* and, therefore

[Pup — Pdown | 2,() = \/ [Pup — pdownHiQ(D) < /¢ (see Definition 3.1). We bound the quantity ||pgown —
Pllzo(p) as follows.

[Pdown — Pll2o(0) < IPdown — £l 2oy + 1 = Pll2om)

< ||pup _pdownHEz(D) + I/ _ﬁHKQ(D) (since paown < f* < pup)
<Vt (1 = Pllzy) (6.2)

Recall that Hf*—ﬁH%Q(D) = Exp[(P(x)—f*(x))?]. By assumption, D{* = D and therefore Ex..p[(P(x)—
f*(x)? = Eyptyain [(P(x) — £*(x))?]. Moreover, we can view the expectation to be over the joint distribu-
tion (x,y) ~ DY¥3" (coupling of x and y), but the variable y is ignored, i.e., EXN'DtXrain[(i)\(X) — f*(x))?] =
E(Xy)NfD%}in [(P(x) — f*(x))?]. We can bound the latter term as follows.

E_[(6x) - P2 =  E((5x) - y+y— ()%
(x,y)~DY3" (x,y)~DYgin
< E () -7+ E [(v- )"
DXrgjln ’D;%}ll’)
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For the term E )Npggzijn[(ﬁ(x) — 9)?], we use condition (iii) to have with probability at least 1 — &',

X?y

‘E(x’y)NDB§§}in[(ﬁ(X) — )% — Ex y)~Spnain [(P(X) — )?]| < € whenever mrain > mMgen. We now use the

fact that p is an €’-approximate solution to the least squares problem defined in Algorithm 5 and have the
following bound

E [00) =91 < E  [(Paown(x) =)V + Ve
(xyy)’\’strain (x7y)NStrain

Therefore, due to the generalization condition we have
E [(px)—9)T2<  E  [(Pdown(x) — )22 +3Ve
(x,y)~DEG" (x,y)~DEG"

< ||Pdown — f*H£2('Dgl(rain) + E [(y — f*(x))2]1/2 L3V

x,y)~DR5"

< lpdown — Puplleamy + B [y — fr(x)*M2+3Ve
x,y)~DE"

< B (- £ ave
(x )~ DY
Therefore, we have shown that || f* — p|| 2, (p) < 4EDB§§3D[(y — f*(x))?]"/2 + 2V/¢€. Note that Ep%l}m[(y -
f*(x))? = 4IP’DB§§}I, [y # [*(x)] = 4Atrain Therefore, || f* — Pllz,p) < 4V Atrain + 44/€. By Equation

(6.2), this implies ||pgown — ﬁHLQ(’D) < 4v/Atrain + 5V€, which in turn implies |Pdown — I/)\”ACZ(Xtest) <
4/ Nerain + TV€'. We overall obtain the following bound.

err(h; DY) < Agest + (4/\ér/;n + 7TVe)?
< Atest + 32X ¢rain + 100¢€/

<32\ +¢€ (since € = €/100 and Agest > 0)
Note that, in fact, we have also demonstrated that upon acceptance, the following is true.
err(f*, h; DE™) < 32 train + €
The results above holds with probability at least 1 — 36’ = 1 — § (union bound over two bad events).
Completeness. For completeness, it is sufficient to ensure that mes; > Mconc, because then, the proba-
bility of acceptance is at least 1 — 9, due to condition (ii), as required. O

6.2 Applications

In this section, we apply our main result in Theorem 2.9 to obtain a number of TDS learners for important
concept classes with respect to Gaussian and Uniform target marginals. In particular, we will use the fol-
lowing corollary, which follows by Theorem 2.9 and some simple properties of the Gaussian and Uniform
distributions (see Lemmas D.1 and D.2).

Corollary 6.3. Let D be either the standard Gaussian in d dimensions or the uniform distribution over the
d-dimensional hypercube. Let C be a concept class whose e-approximate sandwiching degree with respect
t0 D is k. Then, there is an algorithm that runs in time d°®) and TDS learns C up to error 32\ + O(€) and
failure probability at most 0.1.
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Boolean Classes. We now bound the £5 sandwiching degree of bounded size Decision trees and bounded
size and depth Boolean Formulas.

Lemma 6.4 (Lo sandwiching degree of Decision Trees). Let D be the uniform distribution over the hyper-
cube X = {il}d. For s € N, let C be the class of Decision Trees of size s. Then, for any € > 0 the Lo
sandwiching degree of C is at most k = O(log(s/¢)).

Proof. Let f € C be a decision tree of size s. Consider the polynomials pyp, Pdown OVer {:l:l}d which
correspond to the following truncated decision trees. For p,,, we truncate f at depth k and substitute the
internal nodes at depth k with leaf nodes labelled 1. Then, p,;, corresponds to a sum of polynomials of degree
at most k, each corresponding to a root-to-leaf path in the truncated decision tree. Clearly, py, > f and pyp
has degree k. We have that Ep[(pup(x) — f(x))?] is upper bounded by a constant multiple of the probability
that py;, takes the value 1, while f(x) takes the value —1, since py,, is itself a Boolean-valued function (it
is a decision tree). The probability that this happens is at most s - 27% = O(e) for k = O(log(s/¢)). We
obtain pyown by a symmetric argument. ]

For the following lemma, we make use of an upper bound for the pointwise distance between a Boolean
formula and the best approximating low-degree polynomial from [OS03] (which readily implies the exis-
tence of low-degree Lo sandwiching polynomials).

Lemma 6.5 (L, sandwiching degree of Boolean Formulas, modification of Theorem 6 in [OS03]). Let D
be the uniform distribution over the hypercube X = {il}d. For 5,0 € N, let C be the class of Boolean
formulas of size at most s and depth at most £. Then, for any ¢ > 0 the Lo sandwiching degree of C is at
most k = (C'log(s/€))*/2\/s, for some sufficiently large universal constant C' > 0.

Proof. Let f € C be an formula of size s and depth ¢. We first construct a polynomial p that satisfies
Ip(x) — f(x)| < \/e/2 for any x € {£1}4. This corresponds to a slight modification of the proof of
Theorem 6 in [OS03], where the basis of the inductive construction of p (see Lemma 10 in [OS03]) is an
O(y/€/s%) bound (instead of the original 1/s® bound) for the (trivial) approximation of a single variable x;
by itself. The degree of p is indeed upper bounded by (C'log(s/¢))?*/2,/s and we may obtain pup, Pdown
by setting pup(x) = p(x) + v/€/2 and paown = p(x) — /¢/2. Clearly, paown(x) < f(x) < pup(x) and
[Pup(X) — Pdown(X)| = v/€ for all x € {£1}%. Therefore ||py, — pdown\|%2(p) <e O

We obtain the following results for agnostic TDS learning of boolean concept classes.

Corollary 6.6 (TDS Learner for Decision Trees). Let D be the uniform distribution over the hypercube in d
dimensions. Then, there is an algorithm that runs in time d°(1°8(5/9) and TDS learns Decision Trees of size
s with respect to Unif ({£1}9) up to error 32X + O(e).

Corollary 6.7 (TDS Learner for Boolean Formulas). Let D be the uniform distribution over the hypercube
in d dimensions and C > 0 some sufficiently large universal constant. Then, there is an algorithm that
runs in time dv5(C108(s/9)°" 4nd TDS learns Boolean Sformulas of size at most s and depth at most ¢ with
respect to Unif ({£1}%) up to error 32X + O(e).

Intersections and Decision Trees of Halfspaces. We now provide an upper bound for the Lo-sandwiching
degree of Decision Trees of halfspaces, which does not merely follow from a bound on the £, approximate
degree and, in particular, holds under both the Gaussian distribution and the Uniform over the hypercube.
The following lemma is based on a powerful result from pseudorandomness literature (Theorem 10.4 from
[GOWZ10]) which was originally used to provide a bound for the £;-sandwiching degree of decision trees
of halfspaces, but, as we show, also provides a bound on the £5-sandwiching degree with careful manipula-
tion.
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Lemma 6.8 (L,-sandwiching degree of Intersections and Decision Trees of Halfspaces). Let D be either
the uniform distribution over the hypercube X = {:l:l}d or the multivariate Gaussian distribution N (0, 1)
over X = R For ¢ € N, let also C be the class of concepts that can be expressed as an intersection of {
halfspaces on X. Then, for any € > 0 the Lo sandwiching degree of C is at most k = 5(f—2) For Decision

5246

Trees of halfspaces of size s and depth {, the bound is k = O(*=-).

The above result implies the following corollary.

Corollary 6.9 (TDS Learner for Intersections and Decision Trees of Halfspaces). Let D be either the stan-
dard Gaussian in R% or the uniform distribution over the hypercube in d dimensions. Then, there is an
algorithm that runs in time dO®/) and TDS learns intersections of £ halfspaces with respect to D up to

error 32\ + O(e). For Decision Trees of halfspaces with size s and depth { the bound is dO*e/e%)

In order to apply the structural result we need from [GOWZ10], we first provide a formal definition for
the notion of hypercontractivity.

Definition 6.10 (Hypercontractivity). Let D; be a distribution over Randlet 7' € N, 7' > 2, € (0,1). We
say that Dy is (T, 2, n)-hypercontractive if E[z”] < oo and for any a € R we have

E [(a+n2) V" < E [(a+n2)’]?
x~Dq z~Dq

The following result can be used to show Lemma 6.8.

Proposition 6.11 (Modification of Theorem 10.4 from [GOWZI10]). Letr € N, 0 € (0,1), T € N, n > 0
and t > 4 be parameters and consider D to be a product distribution over X C R® such that each of
its independent coordinates is (4,2,n)-hypercontractive, and (T,2,4/t)-hypercontractive. Suppose that
T > Crlog(rt) for some sufficiently large universal constant C > 0 and T is even. Then, for any function
of the form h : X — R, h(x) = 1{w -x > 7}, where w € R% and 7 € R, there is a polynomial p : X — R
such that the following are true.

(i) The degree of p is at most k = poly(log t, %) 21+ 0(L).
(if) For any x € X we have p(x) > h(x).
(iii) The expected distance between p and h is bounded by Ex .p[p(x) — h(x)] < O(O'% + T“OTM)
(iv) The values of p are upper bounded with high probability, i.e., Px..p[p(x) > 1 + Tig] <27 T/r,
(v) The Loy (D) norm of p is bounded by ||p||,,py < 1+ 7«%

Proof of Lemma 6.8. Let f € C be an intersection of ¢ halfspaces over X, i.e., f can be written in the
following form

)4
f(x) = 2H h;(x) — 1, where h;(x) = 1{w; - x 4 7;} for some w; € R%,7; € R
j=1

Note that if f is a Decision Tree of halfspaces of size s and depth £, then f can be written as a sum of at
most s intersections of ¢ halfspaces and it suffices to use accuracy parameter €/s for each intersection.

Back to the case where f is an intersection of ¢ halfspaces, we will apply Proposition 6.11 in a way
similar to the proof of Lemma 10.1 in [GOWZ10]. However, our goal here is to show that Proposition 6.11
implies the existence of Lo (rather than £1) sandwiching polynomials for f. We use the following standard
fact about the Gaussian and Uniform distributions.
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Claim (Hypercontractivity of Gaussian and Uniform marginals, see e.g. [KS88, Wol07, GOWZI10)]). If D is
either the standard Gaussian N'(0, I;) over R? or the uniform distribution over the hypercube {+1}¢, then,
for some universal constant C' > 0, each of the coordinates of D is ([Ct?],2, %)-hypercomractive for any
t > 0 and, in particular, each one is also (4,2, \/—) -hypercontractive.

We may apply Proposition 6.11 for each h; with parameters r = 2(,0 = 06—24,75 =C é log(¢/e),
n = 1/v/3 and T = (2, for some sufficiently large universal constant C' to obtain a polynomial pj of
degree k = O( ) such that the following are true.

pj(x) > hj(x) forallx € X (6.3)
€
@1 = Elp; (%) — h;(x)] = 0(5) (6.4)
. 1 —0(5 log2(¢/e)
2 = B[pj(x) > 14 73] < 270" 6.5)
1

1Pil| L (D) <1+ (6.6)

202

We will now construct a polynomial p,;, of degree 5(f—§) such that py,(x) > f(x) for all x € X and
also Ep|[(pup(x) — f(x))?] < €/4. This implies the existence of a corresponding polynomial pqoy, With
Pdown (%) < f(x) for all x € X and Ep[(pup(X) — Pdown(x))?] < € via a symmetric argument. Our proof
consists of a hybrid argument similar to the one used in the proof of Lemma 10.1 in [GOWZ10], modified
to provide a bound for the Lo error of approximation. '

We pick pup = 2p — 1, where p = [[_; p;. Let p© = [[5_y hj, p® = (IT'=; p;)([Tj=i1 hy) and
p© = p. We then have the following.

¢
Ip = Bl 2oy = 1P = 2l 2yoy <D 10D =Vl ym)

(by property (6.3))
For any fixed i € [¢] we have
), ~ B (T -]

<E[(TTr260) (ps() = hi)pifx)|  (since i > 0 and p; = h)

In order to bound the quantity Ep|[(]] #ip?)(pi — hi)pi], we split the expectation according to the event

& that (I[;,;pj)y/Pi < 2. In particular, we have that Ep[(][; p?)(pi — hi)p; 1{€}] is at most 4¢; by
property (6.4) and Ep[([ ], 4, p?)(pz‘ — h;)p; 1{—~E}] is bounded as follows.

& [(TT7209) () — o) 1 { ([T s)) Vo) > 2}] <
7 J#i
[( H p] ) 1 {(Hm(x)) Vpi(x) > 2}] (by property (6.3))

JE] J#i
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We now observe that whenever ([ ];_; p;(x))+/pi(x) > 2, there must exist some index j' such that p;/(x) >
1+ ﬁ and, therefore, we can further bound the above quantity by the following one.

(35 10> 1o g} (T0800)]) = B[ o010 g} (I )]

j'=1 i€l
In the above expression we used linearity of expectation. We now apply Hélder’s inequality and obtain
1 L .
the bound Eﬁ,zl(PD[pj,(x) >1+ ﬁ])i ngl(ED[p;M(x)]) 2t Due to properties (6.5) and (6.6), we

finally have the bound ¢,/€; - Hf 1 prH%M < 0/&(1 + 55)% < 3(,/e3. Therefore, in total, we have

llp — h||2 ) < 40%€1 + 303¢3 < €, which implies that ||pyp, — fllzoep) < €and pup > f. O

7 Lower Bounds

7.1 Lower Bound for Realizable TDS Learning of Monotone Functions
We now prove Theorem 2.10, which we restate here for convenience.

Theorem 7.1 (Hardness of TDS Learning Monotone Functions). Let the accuracy parameter € be at most
0.1 and the success probability parameter 0 also be at most 0.1. Then, in the realizable setting, any TDS
learning algorithm for the class of monotone functions over {£1}¢ with accuracy parameter € and success
probability at least 1 — § requires either 2°°%4¢ training samples or 2°-9%¢ testing samples for all sufficiently
large values of d.

We will need the following standard fact, see for example [RV23] for a proof:
Fact 7.2. For any distribution D over any domain, let multisets T1 and T be sampled as follows:
1. Set Ty is N i.i.d. samples from D.

2. First, multiset S is formed by taking M i.i.d. samples from D. Then, multiset T is formed by taking
N i.i.d. uniform elements from S.

Then, the statistical distance between the distributions of T and T5 is at most NW
Now, we prove Theorem 2.10.

Proof of Theorem 2.10. We fix 6 < 0.1 and also fix e < 0.1. Let A be an algorithm that takes N < 20.04d
testing samples and N < 20-%4¢ training samples, and either outputs REJECT, or (ACCEPT, f) for a function
f: {+1}% — {41}. We argue that for, a sufficiently large d, the algorithm A will fail to be a TDS-learning
algorithm for monotone functions over {£1}¢.

Let f be some function mapping {#1}¢ — {£1} and let a multiset .S consist of elements in {+1}%. We
define 7(f, S) to be a random variable supported on {Yes, No} determined as follows (informally, if A is a
TDS-learner for monotone functions, then 7 (f,.S) will allow us to distinguish a uniform distribution over
S from the uniform distribution over {41}%):

1. Let Syrain C {£1}% x {41} consist of N pairs (x, f(x)), where x are drawn i.i.d. uniformly from
{£1}4.

2. Let Xiest consist of N i.i.d. uniform samples from set S.

3. The algorithm A is run on (Sirain, Xtest)-

34



4. If A outputs REJECT, then output 7 (f,.S) =No.
5. If A outputs (ACCEPT, f), then

(a) Obtain a new set X5 of 10000 i.i.d. uniform samples from S.

(b) If, on the majority of points x in X5, we have f(x) = 1, then output No.
(c) Otherwise, output Yes.

For a multiset S consisting of elements in {#1}¢, let f5 be the monotone function defined as follows:

+1 ifthereexistsz € S: x > z,

fs(x) := :
—1 otherwise.

First, we observe that if A is indeed a (e, §)-TDS learning algorithm for monotone functions over {£1}¢,

then:

o T(—1,{£1}%)=Yes with probability at least % (from here on, by —1 we mean the function that maps
every element in {:l:l}d into —1). This is true because, by the definition of a TDS learner, since Styain
comes from the uniform distribution over {£1}4, with probability at least 1 — 26 = 0.8 the algorithm
A will output (ACCEPT, f) for some f satisfying Py 1 13¢[f(2) # —1] < e = 0.1. Then, via a
standard Hoeffding bound, with probability at least 0.9 on the majority of elements x in X, we have
f(x) = —1 and then T (—1, {£1}%)=Yes.

* For any multiset S with elements in {+1}%, we have T(fs,S) =No with probability at least %
Indeed, from the definition of a TDS learning algorithm, we see that, with probability at least 1 —§ =
0.9, the algorithm A will either output

— Output reject, in which case T (fs,.S) =No.

— Output (ACCEPT, f) with Pyg[f(x) # fs(x)] < e=0.1. But we know that fg takes values
+1 on all elements in S. Therefore, Px~s[f(x) # fs(x)] < 0.1. Then, via a standard Hoeffding

bound, with probability at least 0.9 on the majority of elements x in X5 we have f(x) = +1
and then 7 (fs, S)=No.

In particular, if S is obtained by picking M = 294 ii.d. elements from {41}%, we have
[T(fs,S) = Yes] — P [T (=1, {£1}%) = Yes]| >

P
S~Unif({£1}4)®M Randomness of 7~
Randomness of T~

(7.1)

Wl

The rest of the proof argues, via a hybrid argument, that this is impossible. To be specific, we claim that for
sufficiently large d the following two inequalities must hold

N2
P —1,5) = Yes| — P —1,{£1}%) = Yes]| < —. 7.2
S~Unif({£1}4)@M T( ’S) CS] Randomness ofT[T( 7{ } ) CS] - M (7.2)
Randomness of 7~
3 d
P T(fs,S) = Yes] — P T(—1,8)=Yes]| <2(-] MN. 7.3
o Fop TUS S =V =B T18) = el <2 () 3)
Randomness of T~ Randomness of 7~
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We observe that Equation 7.2 follows immediately from Fact 7.2, because if Equation 7.2 didn’t hold, then
we would be able to achieve advantage greater than % when distinguishing N i.i.d. uniform samples from

{+1}? from N i.i.d. uniform examples from S.

T(fS7S)

Now we prove Equation 7.3. Let S,,.:>""’ denote the collection of pairs {(x, fg(x))} sampled in Step

1 of T(fs,S). Analogously, let ST Genote the collection of pairs (x, —1) in set used in procedure

train
T(—1,5). In either case, the elements in Sttgns %) and Szr—a(‘i_an) are i.i.d. uniformly random elements

in {£1}%. Let E7(=19 be the event, over the choice of S and the choice of ST(_l’S), that for every

train

(x,—1) € Sg;i_nl’s) there is no z in S satisfying x = z. Analogously, let E7 (/s-5) be the event, over the
choice of S and the choice of SZ;gHS %) that for every (x, fs(x)) € Stglfrf %) there is no z in S satisfying

x > z. We observe that

ET(fS’S)] = {T(—l,S) = Yes

P T(fs,S) = Yes P ET(‘LS)] 74
SNUnif({:tl}d)®M[ (/s 5) S~ Unif({£1}4)®M 7

Randomness of 7~ Randomness of 7~

which is true because, subject to E7 (/s:9) or E7(=1.9)  the function fs takes values of —1 on every el-

ement x in Sg;{f %) and S;(ﬁ_nl’s) respectively. We also see that the random variables (.5, S;Cé{rf ’S)) and

(S, ST(_I’S)) are identically distributed (conditioned on E7 (fs-5) and E7 (=19 respectively). We also

train
observe that

d
P [ET(fs,S)} _ P [ET(—LS)] < <§> MN, (1.5)
S Unif({£1}4)®M S~ Unif({£1}4)®M —\4
Randomness of 7~ Randomness of 7~

where the equality of the two probabilities follows immediately by definition, and the upper bound of
(%)d MN is true for the following reason. Let z and x be a pair of i.i.d. uniformly random elements

in {1}, then P[x > z] = (%)d as each bit of x and z are independent and for each of the bits we have

x > z with probability exactly 3/4. Now, taking a union bound over every (x, —1) € Stfg;ll’s) andz € S,
we obtain the bound in Equation 7.5.
Overall, combining Equation 7.2 with Equation 7.3 and substituting N < 29044 and M = 2014 we get

T(fs,S) = Yes] — P [T(—1,{£1}%) = Yes]| <

P
SNUnif({:tl}d)@M[ Randomness of 7~
Randomness of 7~
N2 3\¢ )
—+2(-) MN =2~

which is in contradiction with Equation 7.1 for a sufficiently large value of d. This proves that A is not a
(€,9)-TDS learning algorithm for monotone functions. O
7.2 Lower Bound for Realizable TDS Learning of Convex Sets

We now prove Theorem 2.11 which we restate here for convenience.

Theorem 7.3 (Hardness of TDS Learning Convex Sets). Let the accuracy parameter € be at most 0.1 and
the success probability parameter 6 also be at most 0.1. Then, in the realizable setting, any TDS learning
algorithm for the class of indicators of convex sets under the standard Gaussian distribution on R? requires
either 204 training samples or 2°-9%¢ testing samples for all sufficiently large values of d.

36



We will need the following standard facts about Gaussian distributions:

Fact 7.4 (Concentration of Gaussian norm, see e.g. Lemma 8.1 in [BM97]). For any n > 0 it is the case

that
2 ) 2 2
P d—2(/dn| =) <|x||53<d+2(/dn|{ =) +2In|{—-|| >1—7n
xeN(0,14) n n n

Fact 7.5 (Concentration of Gaussian norm. See e.g. [RV23].). For any r > 0 it is the case that

4 2\ d/2
P [Hxl _X2H2 < 7“] < <6_T>
x1,x2eN(0,1) d

Recall that we use B, to denote the origin-centered closed ball in R? of radius a. Using conv(-) to
denote the convex hull of a set of points, will state the following geometric observation of [RV23] about
convex hulls of a collection of point.

Fact 7.6 ([RV23]). Forany a > 0, let {x'}}, be a collection of points in By, \ By. If for every pair of points
(x?,x7) the ||x! — x7||3 is greater than 2+/b*> — a2, then for every i and j we have

conv(x", B,) N conv(x", B,) = B,

and also 4
conv(x!, - xM B,) = Ujconv(x’, B,).

For the rest of the section we will set

1 1 1
a= d—2,/dln<%> b= d+2,/dln<%>+2ln<%>, (7.6)

and from Fact 7.4 we see that the norm a standard Gaussian vector in R falls in interval (a, b) with proba-
bility at least 0.99.
Now, we are ready to prove Theorem 2.11.

Proof of Theorem 2.10. We fix 6 < 0.1 and also fix e < 0.1. Let .A be an algorithm that takes N < 20.04d
testing samples and N < 20-04d training samples, and either outputs REJECT, or (ACCEPT, f) for a function
f R4 — {£1}. We argue that for, a sufficiently large d, the algorithm A will fail to be a TDS-learning
algorithm for convex sets under the Gaussian distribution on R

For a set S we will define gg as the indicator of the convex set conv(S N (By \ B,), Ba). And in this
section we denote the uniform distribution over .S as Ug.

Let f be some function mapping R — {£1} and let a set D be a distribution over R?. We define
H(f, D) to be a random variable supported on {Yes, No} determined as follows (informally, if A is a TDS-
learner for convex sets, then #(f, D) will allow us to distinguish D from the Gaussian distribution over
R%):

1. Let Strain € R? x {21} consist of N pairs (x, f(x)), where x are drawn i.i.d. from N(0, I).
2. Let Xiest consist of N i.i.d. uniform samples from D.
3. The algorithm A is run on (Strain, Xtest)-

4. If A outputs REJECT, then output #(f,.S) =No.
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5. If A outputs (ACCEPT, f), then

(a) Obtain a new set X5 of 10000 i.i.d. samples from D.

~

(b) If, on the majority of points x in X5, we have f(x) = —1, then output No.
(c) Otherwise, output Yes.

First, we observe that if A is indeed a (¢, §)-TDS learning algorithm for convex sets over R under
N (0, I;), then:

* H(gp,N(0,14))=Yes with probability at least 3 (from here on, by —1 we mean the function that
maps every element in {£1}¢ into —1). This is true because, by the definition of a TDS learner, since
Strain comes from the uniform distribution over N (0, I;), with probability at least 1 — 26 = 0.8 the
algorithm A will output (ACCEPT, f) for some f satisfying P, . N(0,1,) [f(x) # gp(x)] < e =0.1.

Since a was chosen is such manner that Prycar(o,7,)[X € Ba] < 0.01, and g is the indicator function
of By, we have Pryearo,7,)[90(%) # —1] < 0.01. Via a union bound, we see that Py rr(o,1,) [f(x) +
—1] < 0.11. Then, via a standard Hoeffding bound, with probability at least 0.9 on the majority of

~

elements x in X we have f(x) = —1 and then H(gy, N(0, I;))=Yes.

» For any set S with elements in R%, we have H(gg, Ug) =No with probability at least % Indeed, from
the definition of a TDS learning algorithm, we see that, with probability at least 1 — § = 0.9, the
algorithm A will either

— Output reject, in which case H(gs, Ug) =No.

— Output (ACCEPT, f) with Px~ug [F(x) # gs(x)] < e = 0.1. But we know that gg takes
values +1 on all elements in S. Therefore, Pxus[f(x) # fs(x)] < 0.1. Then, via a standard

Hoeffding bound, with probability at least 0.9 on the majority of elements x in Xy we have
f(x) = 41 and then H(gg, Us)=No.

In particular, if S is obtained by picking M = 294 ii.d. elements from N (0, I;), we have
1
. Us)=Yes] - P 0,1,)) = Yes]| > -. 77
S~N(0,14)8M [IH(gS’ S) es] Randomness ofH[H(gw’N( ’ d)) es] > 3 (7.7)

Randomness of H

The rest of the proof argues, via a hybrid argument, that this is impossible. To be specific, we claim that for
sufficiently large d the following two inequalities must hold

N2
P Ug) = Yes| — P 0,1;)) = Yes]| < —-. 7.8
S~N(0,14)@M (g0, Us) es| Randomness ofH[IH(g@’N( 14)) ]| < M (7.8)
Randomness of H
P H(gs,Ug) = Yes| — P H(gy,Ug) = Yes
SN [H(gs,Us) 1= oy oM [H(g0, Us) ]
Randomness of H Randomness of H
64 b2 _ 42 d/2
< <%> (M + N)2. (7.9)
We observe that Equation 7.8 follows immediately from Fact 7.2, because if Equation 7.8 didn’t hold, then
we would be able to achieve advantage greater than % when distinguishing N i.i.d. uniform samples from

N(0, 1) and N i.i.d. uniform examples from S.
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H(gs,Us)
raln

Now we prove Equation 7.9. Let S, denote the collection of pairs {(x, gs(x))} sampled in Step

1 of H(gs,Us). Analogously, let S, H(90-Us) genote the collection of pairs (x, —1) in set used in procedure

rain

H(gp, Us). In either case, the elements in S/~ 95""S) and § 90.U5) are ii.d. elements from N(0,1;). Let

train train
EM95:Us) be the event, over the choice of S and the choice of Sz;léf]rf Us ), that for each pair of points x' and
x2in SU{x: (x,95(x)) € Sﬁ;ﬂf’US } we have ||x! — x2||z > 2v/b2 — a2. Analogously, let £7(9s:Us)
H(g9,Us)

be the event, over the choice of S and the choice of S, ;" ~’, that for each pair of points x! and x? in

SU{x: (x,g9(x)) € tralgr‘f U we have [|Jx! — x2||, > 2VB2 — a2
We first observe that subject to £7(90:Us) it is the case that for every {(x, gs(x))} in S7195:Us) it is the

train

case that g = gp(z). Forx € B, U (R \ By) this is immediate because gg as the indicator of the convex set

conv(S N (By \ By), Bs). It remains to show this only for points (x, gs(x)) € Strélgns Us) that also satisfy
x € By \ B,. Since x is outside B,, we have gj(x) = —1 and therefore we would like to show that gs(x)
also equals to —1. This is true because from Fact 7.6 it is the case that if £7£(9%:Us) takes place, then for

every such x we have

conv(x, B,) Nconv(S N (By \ By), By) = conv(x, B,) N U conv(z N (By \ Ba),Ba) | =
z€SN(By\Ba)

U (conv(x, Bs) N (conv(zn (By \ Ba), Ba))) = Ba,
zeSN(By\Ba)

which in particular implies that x is not in the convex hull conv(S N (B \ B,),B,) and gg(x) = —1,
concluding the proof of our observation.

We therefore conclude that distributions of (S, S72¥s"Us)y and (S, S H(3(90.Us)

train ) train
tributed conditioned on £79s:Us) and £7(90.Us) respectively, which implies that

) are identically dis-

P H(gs,Ug) = Yes 57“‘(957“3)} = P [7—[ ,Ug) = Yes
S~N(0,14)8M [ (95, Us) S~N(0,14)8M (90 Us)
Randomness of H Randomness of H

gH(gw,Us)} . (7.10)

We also observe that

A2 — a2 d/2
P |:5,H(95’7US):| — P |:5H(907U5)i| < <6 (b a )> (]\4’4_]\[)27 (711)
SN (0,15)2M SN (0,15)2M d

Randomness of H Randomness of ‘H

where the equality of the two probabilities follows immediately by definition, and the upper bound of
_ /2
%ﬁ (M + N)? is true by applying Fact 7.5 to each relevant pair of points. Therefore, we obtain

the bound in Equation 7.11.
Overall, combining Equation 7.8 with Equation 7.9 and substituting N < 20-04d_ A1 = 2014 a5 well as

a= \/d—2,/dln (5—10) and b = \/d—|—2\/dln (%) +2In (5—10),weobtain

SN (0,14)®M [,H(fS, S) - YGS] a Random]rlf)ess ofH[,H(g@’N(O’ Id)) = Yes] <

Randomness of H
N? 64(* — )\ 2 0.02d 1\ Q
SR i S M+ N)? =270 — =279
i (PET) et (o)) e

which is in contradiction with Equation 7.7 for a sufficiently large value of d. This proves that A is not a
(e,0)-TDS learning algorithm for convex sets. O
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A Sample Complexity of TDS Learning

In the previous sections, we explored a number of computational aspects of TDS learning, deriving di-
mension efficient algorithms for several instantiations of our setting. In this section, we focus on the
statistical aspects of TDS learning. There are several prior works in the literature of domain adapta-
tion that study the statistical landscape of the problem of learning under shifting distributions (see, e.g.,
[BDBCP06, BCKT07, MMR09, BDBC*10, DLLP10]). All of the previous generalization upper bounds
on this problem involve some discrepancy term, which quantifies the amount of distribution shift, as well
as some additional terms that are typically considered small for reasonable settings. For a concept class
C : X — {£1}, considering that the error term A (see Eq. (3.1)) is small is a standard assumption in domain
adaptation (see, e.g., [BDBCP06, BCK™07]). Furthermore, one standard measure of discrepancy is defined
as follows.

Definition A.1 (Discrepancy Distance, [BCKT07]). Let X C R? and let C be a concept class mapping X
to {£1}. For distributions D, D’ over X, we define the discrepancy distance disce (D, D’) as follows.

disce(D, D) = sup | P[f(x) # f'(x)] — P[f(x) # f'(x)]
f.f'ec D D
In particular, [BDBCP06, BCKT07] observe that for any f € C and distributions D43, DY) over
X x {£1} the following is true.
err(f; DY) < erx(f;DRY") + disce (DR, DY) + A(C; DES", DY) (A1)

The bound of Eq. (A.1) can be translated to a generalization bound for domain adaptation, through the use
Rademacher complexity, whose definition is provided below.

Definition A.2 (Rademacher Complexity). Let X C RY, let D be a distribution over X’ and let C be a
concept class mapping X' to {41}. For a set of m samples X = (x(l) x@ ,x(m)) drawn independently
from D, we define the empirical Rademacher complexity of C w.r.t. X as follows

~ 2 m .
Rx(C) = —Esup Z o, f(x) | where the expectation is over o ~ Unif ({£1}%)
m  fec*
7j=1

Moreover, we define the Rademacher complexity of C at m w.r.t. D as R,,,(C; D) = E[SY% x(C)], where the
expectation is over X ~ D®™,

Corollaries 6, 7 in [MMRO09], demonstrate that the discrepancy between two distributions is upper
bounded as follows.

Proposition A.3 (Bounding the Discrepancy, Corollary 7 in [MMRO09]). Consider X C R? a concept class
C C {X — {£1}9} and distributions D, D’ over X. Then for any § > 0, m,m’ € N, if X, X' are
independent examples from D, D', respectively, of sizes m, m/, the following is true.

~ ~ 1 1
disce(D, D') < disce(X, X') 4 4Rx (C) + 4R x/(C) + 3 (log(4/5))1/2\/g +—
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Combining inequality (A.1) with Proposition A.3 and standard generalization bounds for classification,
yields a data-dependent generalization bound for domain adaptation whose only unknown parameter is A.
In our setting this readily implies the following sample complexity upper bound in terms of the Rademacher
complexity of the concept class C.

Corollary A.4 (Sample Complexity upper bound for TDS learning). LetC C {X — {£1}} be a hypothesis
class and D a distribution over X such that R,,,(C; D) < €/10. The algorithm that runs the Empirical
Risk Minimizer on training data and accepts only when both the empirical discrepancy distance between
the training and test unlabelled examples, i.e. discc(Xirain, Xtest), and the Rademacher complexity with
respect to the test examples, i.e. R Xiest (C), are O(e), is an (€,0)-TDS learning algorithm for C up to error
2\ + € with sample complexity O(m + }2 log(1/4)). Moreover, if there is a concept in C with zero training
error, the same is true up to error A + €.

We emphasize that, while Corollary A.4 readily follows from prior results in the literature of domain
adaptation, it highlights an important distinction between domain adaptation and TDS learning: A TDS
learning algorithm, upon acceptance, achieves error that does not scale with the discrepancy between the
training and test marginal distributions, but only a term that depends on the quantity A, which, as we show
in Theorem 2.13, is unavoidable.

B PQ Learning and Distribution-Free TDS Learning

In recent years, there has been a vast amount of work on the problem of learning under shifting distributions.
One of the most relevant models to TDS learning is PQ learning (see [GKKM20, KK21]), which was
defined by [GKKM20]. In this section, we establish a connection between PQ learning and TDS learning
and, in particular, we show that TDS learning can be reduced to PQ learning, thereby inheriting all of the
existing results in the latter framework. Unfortunately, to the best of our knowledge, most of the positive
results on the PQ learning framework make strong assumptions regarding oracle access to solvers of learning
primitives that are typically hard to solve. Nonetheless, PQ learning is an important theoretical framework
for learning under arbitrary covariate shifts and it is an interesting open question whether our methods can
be extended to provide positive results for the not-easier problem of PQ learning.

In the PQ learning framework, a learner outputs a pair (h, X), where h : X — {£1} is a classifier and
X C X is a subset of the feature space where one can be confident on the predictions of h. In particular, the
PQ learning model is defined as follows.

Definition B.1 (PQ Learning, [GKKM?20, KK21]). Let ¥ C R% be a set and C C X — {1} a concept
class. For¢,6 € (0,1) we say that algorithm A PQ learns C up to error € and probability of failure § if for
any distributions D43, DS} over X' x {+1} such that there is some f* € C so that y = f*(x) for any

(x,y) drawn from either DB?%}“ or DE,?%}, algorithm 4, upon receiving a large enough number of labelled

samples from D}%}n and a large enough number of unlabelled samples from DY, outputs a pair (h, X)

such that h : X — {£1}, X C X and with probability at least 1 — ¢ the following is true.

P [x¢X]<eand P [h(x) #yandx € X] < ¢

x~DYain (x,y)~D5%5;

We note that the above definition of PQ learning is distribution-free, i.e., the guarantees hold for any
distribution and not with respect to a specific target distribution. In Definition 3.2 for TDS learning, the
completeness criterion is stated with respect to a particular target distribution that is the same as the training
distribution. However, in order to demonstrate a connection between PQ learning and TDS learning, we
now define Distribution-Free TDS learning.
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Definition B.2 (Distribution-free TDS Learning)). Let X C R? and consider a concept class C C {X —
{£1}}. Fore, d € (0,1), we say that an algorithm .4 testably learns C under distribution shifts up to error €
and probability of failure ¢ if the following is true. For any distributions DE@%}“, DE@%} over X x {£1} such
that there is some f* € C such that y = f*(x) for any (x,y) drawn from either DY or DS, algorithm
A, upon receiving a large enough set of labelled samples Si;ain from the training distribution DE@%}“ and a
large enough set of unlabelled samples Xiq; from the test distribution D!, either rejects (Strain, Xtest) OF
accepts and outputs a hypothesis h : X — {£1} with the following guarantees.

(a) (Soundness.) With probability at least 1 — § over the samples Siyain, Xtest We have:
If A accepts, then the output / satisfies err(h; D§5) < e.

(b) (Completeness.) Whenever DS = Dgﬁain, A accepts with probability at least 1 — § over the samples
Straina Xtest .

We are now ready to prove that distribution-free TDS learning reduces to PQ learning.

Proposition B.3 (TDS learning via PQ learning). Algorithm 6 reduces TDS to PQ learning. In particular, for
€,0 € (0,1), PQ learning algorithm A and a concept class C, Algorithm 6, upon receiving mp+ ;Cg log(1/0)
labelled examples Siyain from the training distribution and mg+ E% log(1/8) unlabelled examples Xcst from
the test distribution where mp, mg are such that A is an (e/4,6)-PQ learning algorithm for C given mp
training and mg) test examples, (€, 6)-TDS learns C.

Proof. Let C > 0 be a sufficiently large universal constant. For soundness, we observe that upon accep-
tance, we have Py x,[x ¢ X] and by a Hoeffding bound, since my > % log(1/6), we have P, prest[x ¢
X] < 2¢/3. By using the fact that err(h; DY) < Pyptest[x € X] + Py prest[x € X] and the guarantee
of the PQ learner we obtain err(h; DB?;}) < ¢, with probability at least 1 — . For completeness, we use the
definition of PQ learning and a Hoeffding bound to show that with probability at least 1 — 9, Algorithm 6
accepts whenever DYt = Dyain, O

Algorithm 6: TDS learning through PQ learning
Input: Sets Sirain, Xtest. parameters €,0 € (0,1), (¢ = §,6)-PQ learner A
Set mp = mg, mg = EQ log(1/§) and split Xyest in X1, Xo with sizes mq, mo.
Run algorithm A on (Siyain, X1) and receive output (h, X).
Reject if Py x, [x & X] > €/3.
Otherwise, output h and terminate.

The simple reduction we provided in Proposition B.3 implies that all of the positive results on PQ
learning transfer to TDS learning. Moreover, note that the reduction does not alter the training and test
distributions between the corresponding TDS and PQ algorithms and, therefore, would hold even in the
distribution specific setting. This is not true, however, about the following corollary which is based on a
reduction from PQ learning to reliable agnostic learning, which does not preserve the marginal distributions.

Corollary B.4 (Combination of Theorem 5 in [KK21] and Proposition B.3). If a concept class C is distri-
bution -free reliably learnable, then it is TDS learnable in the distribution-free setting.

We remark that, in fact, (distribution-free) PQ learning is equivalent to (distribution-free) reliable learn-
ing (see Theorems 5, 6 in [KK21]). For a definition of reliable learning we refer the reader to [KKM12]. It
is known that reliable learning is no harder than agnostic learning and no easier than PAC learning.
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C Amplifying success probability

We will now demonstrate that it is possible to amplify the probability of success of a TDS learner through
repetition. Note that this is not immediate for TDS learning as it is, for example, in agnostic learning,
where one may repeat an agnostic learning algorithm and choose the hypothesis with the smallest error
estimate among the outputs of the independent runs. The main obstacle is that test labels are not available.
Nonetheless, we obtain the following theorem regarding amplifying the probability of success.

Proposition C.1 (Amplifying Success Probability). Let C be a hypothesis class, D a distribution and sup-
pose A is a TDS learner for C with respect to D with error guarantee 1V)(\) + € and failure probability at
most 0.1. Then, there is a TDS learner A’ for C with respect to D with error guarantee 41(\) + 4e and
failure probability at most 0. In particular, A’ repeats A for T = O(log(%)) times and rejects if most of the
repetitions reject. If most repetitions accept, A’ outputs the hypothesis h = maj(hq, ..., hy /2) (h outputs
the majority vote of h;), where hy, . .., hy o are the outputs of the first T /2 repetitions of A that accepted.

Proof. We split the proof into two parts, one for soundness and one for completeness.

Soundness. For soundness, suppose that A’ accepts. We denote with P (resp. IE) the probabilities (resp.
expectations) over the randomness of hq,...,hr/y (Which originates to the randomness of the samples
given to A) and with P (resp. [E) the probabilities (resp. expectations) over the randomness of a pair
( y) drawn from DYS5;. In what follows, let = 9)(\) + e. We have that for any i = 1,2,...,7/2,

Plerr(h;, DE3) < ] > 0.9, by the guarantees of A’. We will show that Plerr(h, DY) < 4n] > 1 -6 for
a sufficiently large 7' = O(log(%)).

We define G; to be the event (over the randomness of h;) that h; is ‘good’, i.e., that P[h;(x)
We define Z to be the ‘bad’ region of (x,y), i.e.. Z = {(x,y) € X x {1} : P[h(x) # y|Gy
Note that Z would be the same even if we substituted (h, Gy ) above with an arbitrary (h;, G;).

First, we observe that P[h(x) # y| < P[(x,y) € Z] + P[h(x) # y|(x,y) & Z].

We now observe that P[(x,y) € Z] = P[P[hy # y|Gi] > 1/3] < 3EP[hi(x) # y|Gi1] by Markov’s
inequality. Now, we may swap the expectations to obtain P[(x,y) € Z] < 3E[P[h1(x) # y]|G1] < 3n.

So far, we have shown P[h(x) # y] < 3n + Plh(x) # y|(x,y) & Z]. We will bound the probability
over hy, ..., hy/y that Plh(x) # y[(x,y) € Z] > 1. In particular, we have the following due to Markov’s

inequality P[P[h(x) # y|(x,y) & Z] > n] < % [P[h(x) # y|(x,y) & Z]]. Once more, we may swap the
expectations to obtain P[P[h(x) # y|(x,y) & Z] > 1] < LER[h(x) # y]|(x,y) ¢ Z].

#yl <n.
] >

1/3}.

~

Moreover, if we fix (x,y) € Z, then P[h;(x) = y] > P[h;(x) = y and G;] > 2 : i > 3/5. Because
P[G;] > 0.9 and P[h;(x) = y|Gi] > 2/3 whenever (x,y) ¢ Z, by the definition of Z Therefore, since
hi, ..., hp/y are independent, we have thatIP’[ (x) # y] < exp(—T/C) for some sufficiently large universal

constant C' > 0, for any (x,y) &
Therefore, in total, IP’[ [h(x) # yl(x,y) € Z] > n] < %exp( T/C). WesetT = C'ln(%) > Cln( 5)

to obtain P[P[h(x) # y|(x,y) & Z] > 1] <  and, hence, with probability at least 1—& over the randomness
of h we overall have P[h(x) # y| < 4n.

Completeness. Completeness follows by a standard Hoeffding bound. O

D Auxiliary Propositions

Let NV(0, I;) denote the standard multivariate Gaussian distribution over R? and Unif({£1}¢) denote the
uniform distribution over the hypercube {#1}?. For each of these distributions, we show that the sand-
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wiching polynomials of any binary concept have coefficients that are absolutely bounded, that the empirical
moments concentrate around the true ones and that the empirical squared error of polynomials with bounded
degree and coefficients uniformly converges to the true squared error. These properties are used in order to
apply Theorem 2.9 to obtain TDS learning algorithms for a number of classes under the Gaussian and Uni-
form distributions.

D.1 Properties of Gaussian Distribution
We prove the following fact about the Gaussian distribution.

Lemma D.1 (Properties of the Gaussian Distribution). Let D be the standard Gaussian N (0, I) over R<,
Then the following are true.

(i) (Coefficient Bound) Suppose that for some € € (0,1], k > 0 and some concept class C C R — {£1},
the e-approximate Lo sandwiching degree of C w.r.t. N'(0, 1) is at most k. Then, the coefficients of
the sandwiching polynomials for C are absolutely bounded by B = O(d)F.

(ii) (Concentration) For any § € (0,1),A > 0 and k > 0, if X is a set of independent samples from D
k
with size at least Meone = %l% then, with probability at least 1 — § over the randomness of X, we

have that for any o € N with |||y < k it holds | Ex [x®] — Ep[x®]| < A.

(iii) (Generalization) Forany e > 0, 6 € (0,1), B > 0, k > 0, and any distribution Dy over R% x {£1}
whose marginal on R is D, if S is a set of independent samples from Dy with size at least Mgen =
O(g%) - d9%) then, with probability at least 1 — § over the randomness of S, we have that for
any polynomial p of degree at most k and coefficients that are absolutely bounded by B it holds

|Es[(y — p(x))?] = Epyy[(y — p(x))?]| < e

Proof. We will prove each part of the Lemma separately.
Part (i). Suppose that pyp, Pdown are 1-sandwiching polynomials for some concept f € C with degree at
most k. Then, we have the following.

deownHLz(’D) < ||pup — f||L2(D) + || fllzop
< Hpup _pdown||2 +1<2

Since D is the standard Gaussian distribution, the quantity ||pgown H%Q(D) equals to the sum of the squares of
the coefficients of the Hermite expansion of pqown (see e.g. [O’D14]). Therefore, each Hermite coefficient
of Pgown 18 absolutely bounded by 2. Each Hermite polynomial of degree at most & has coefficients that
are absolutely bounded by 2% Since paown has degree at most k, each coefficient of pgown is absolutely
bounded by d°*).

Part (ii). Suppose that o € N? with ||al; < k. Then, the worst case regarding moment concentration is
oy = k. For a sample X from D, we apply Chebyshev’s inequality on the random variable z = |Ex [x’f] —
Ep[x¥]| and by bounding E[2?] by Ep[x2¥] we have that for any A > 0, z < A with probability at least
1— f)(c%z, where the randomness is over the random choice of X and C' > 0 is a sufficiently large universal
constant (for bounds on the Gaussian moments, see, e.g., Proposition 2.5.2 in [Ver18]). Since we need the
result to hold for all o simultaneously, the result follows by a union bound.

Part (iii). We define P to be the class of polynomials over R? with degree at most k and coefficients that
are absolutely bounded by B. Let T' > 0 to be disclosed later and m = |S|. We will first show that with
probability at least 1 — 6/2 over the choice of .S, we have

- p(x))*] < E[(y — p(x))’] + e forallp € P
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We aim to apply some standard uniform convergence argument, but in order to do so we first need to ensure
certain boundedness conditions as follows.

E [(y—p(x))’] = E [(y=p(x))*1{¥g € P:|q(x)| < T}+ E [(y—p(x))*1{Fg € P : [g(x)| > T}]

Dxy Xy Dxy

where we have B, [(y — p(x))? - 1{¥g € P : [¢(x)] < T} < Epy[(y — p(x))* | ¥g € P : |q(x)| < T].
Let D'y, be the distribution that corresponds to Dxy conditioned on the event {Vg € P : |¢(x)| < T'} and
let 8" = {(x,y) € S : |¢(x)| < T,Vq € P}. By standard arguments using Rademacher complexity bounds
for bounded losses (see, e.g., Theorems 5.5 and 10.3 in [MRT18]) we have that for some sufficiently large
universal constant C' > 0, with probability at least 1 — §/4, we have for any p € P

E [(y~ p(x))?] < Blly — px))?] + 70 - LIV o

Dlxy ' m/C
We now need to link Eg/[(y — p(x))?] to Eg[(y — p(x))?]. We have the following.
El(y - p(x))*] > (1 = P3¢ € P : [g(x)| > T]) E[(y — p(x))’]
> El(y - p(x))?] - P[3q € P+ |q(x)| > T]- 277 (since y € {£1} and p € P)

We will upper bound the quantity Pg[dg € P : |¢(x)| > T']. We have

PBRgeP:lalx)>T]=F [H(qa)||a||1<k | ( anx ( > T}
gt
a:llali<k
T d¥ 8
< P||x* > = | +—==1log( =), wp.atleast1 —§/4  (D.2)
a:||§||:1<kp [ Bd’f] V2m (5)

In the last step, we used a standard Chernoff-Hoeffding bound. We now bound ) el <k Pp[lx*| > 3 dk]
Recall that D = N(0, I;) and therefore the worst case for « regarding concentration is the case o1 = k. We
therefore obtain the following via Gaussian concentration.

> P [’Xa’ = Bjc; ] <d'P [’Xl‘ = Bj;k}

a:||alli <k
1 Tk
<dexp(— 5 =) .
< d"exp 5 Bi/kg (D.3)
It remains to bound the term Ep,,,,[(y — p(x))? - 1{3q € 73 |q( )| > T'}]. By applying the Cauchy-
Schwarz inequality, it is sufficient to bound \/Ep,.,[(y — p(x))¥] - \/Pp[3q € P : ¢(x)| > T]. For the

second term, we use Equation (D.3). For the first term, we have the following for some sufficiently large
constant C' > 0.

El(y - p(x))"] < 8 + SE[p*(x)

< 4 4k Qv : 4 < 4 < 4 g4k
<8+ B ” %% | EO%[XZ ] (since deg(p*) < 4k and |(p*)o| < B*d*")
o)1 <4k t:a;

< BB (Ck)? (since D = N(0, 1), see Proposition 2.5.2 in [Ver18])
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Using the above inequality along with (D.1), (D.2) and (D.3) we obtain that Ep ., [(y—p(x))?] —Es[(y—
p(x))?] is upper bounded by the following quantity for some sufficiently large universal constant C' > 0

B+ /log(1 L/k
o, BEVIBU/O) | opage g (L (ik) +
/m/C 2 \ Bd

dk 10 1 [/ T \Yk
2 2 4k k k/2 1
+2T\/2_log(5>+Bd (Ck)*d exp< 1 <Bd’f> ,

which is at most € when we choose m, T as follows for some universal constant C' > 0 (possibly larger than
the previously defined constants for which we used the same letter) for the choice T' = C' B(4d)*k log(BTdk)
and m = 6%(BZ +log(§))B%(4d)% k8 log (B2 = O(g) -O(d)® -log(1/6).

In order to bound the symmetric difference, we also need to bound the quantity Eg[(y — p(x))?] —
Ep., [(y—p(x))?], which we may do following a similar reasoning, but requiring, at times, bounds on quan-
tities that correspond to empirical expectations (instead of expectations over the population distribution). In
particular, we will require a bound on Eg[(yy — p(x))*], which can be reduced to bounding Eg[p*(x)], for
which we may use part (ii), demanding m > d°®*) /9 to obtain

E[p ()] < 2B*a*(Ch)*

Overall, this step will introduce the additional requirement that m > %lek(C’ k)4k log2(%). Therefore,
overall, for m > Mmge, = O(g%) - dO) . log2(%), we have the desired result. O

D.2 Properties of Uniform Distribution
We prove the following fact about the uniform distribution.

Lemma D.2 (Properties of the Uniform Distribution). Let D be the uniform distribution over the hypercube
Unif ({jzl}d) and C > 0 some sufficiently large constant. Then the following are true.

(i) (Coefficient Bound) Suppose that for some € € (0,1], k > 0 and some concept class C C R — {£1},
the e-approximate Lo sandwiching degree of C w.r.t. D is at most k. Then, the coefficients of the
sandwiching polynomials for C are absolutely bounded by B = 2.

(ii) (Concentration) For any § € (0,1),A > 0and k > 0, if X is a set of independent samples from D
with size at least Mcone = % log(%) then, with probability at least 1 — § over the randomness of X,
N

we have that for any o € N® with |||y < k it holds | Ex [x] — Ep[x®]| < A.

(iii) (Generalization) Forany e > 0,6 € (0,1), B > 0, k > 0, and any distribution Dy over R% x {£1}
whose marginal on R% is D, if S is a set of independent samples from Dyy with size at least mgen, =
O(?lz) - BOM) . qO(k) . log(%) then, with probability at least 1 — § over the randomness of S, we have
that for any polynomial p of degree at most k and coefficients that are absolutely bounded by B it

holds | Es((y — p(x))?] — Ep,y [(y — p(x))’]| < e

Proof. We will prove each part of the Lemma separately.
Part (i). Suppose that pyp, Pdown are 1-sandwiching polynomials for some concept f € C with degree at
most k. Then, we have the following.

[Pdownll 2o (D) < llPup = fllzo0) + 1 fll 22D
< Hpup _pdown||2 +1<2
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Since D is the uniform distribution, the quantity deown|’2L2 (D) equals to the sum of the squares of the
coefficients of pyown (see e.g. [0’D14]). Therefore, each coefficient of pyowy is absolutely bounded by 2.
Part (ii). Suppose that o € {0,1}% with ||a||; < k. For a sample X from D, we apply Hoeffding’s
inequality on the random variable z = |Ex [x%] — Ep[x?]| and by observing that x* € {£1} we have that
the probability that z > A is at most 2 exp(—| X |A2/10). We obtain the desired result by a union bound.
Part (iii). We define P to be the class of polynomials over {41}? with degree at most k and coefficients
that are absolutely bounded by B. Let T' > 0 to be disclosed later and m = |S|. We will show that with
probability at least 1 — § over the choice of S, we have

B [y~ p(x))*] — El(y — p(x))’]| < e forallp € P

We apply some standard uniform convergence argument, by observing that (y — p(x))? < 2 + 2B2dF.
In particular by standard arguments using Rademacher complexity bounds for bounded losses (see, e.g.,
Theorems 5.5 and 10.3 in [MRT18]) we obtain the desired result. |
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