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Abstract
Nowadays, light sensors are frequently utilized as wearables for

assessing personal light exposure or installed in indoor environ-
ments for measuring ambient lighting at areas of interest. Interest-
ingly, light emitted by computer screens records distinct patterns
when such sensors are placed nearby. The phenomenon requires
analysis for passive sensing and also raises critical privacy concerns.
In this paper, we introduce ScreenSense, an innovative approach
that leverages data from existing framework for detecting screen
utilization. For that, we first collect a diversified dataset by placing a
light sensor in close proximity to computer screen. We then classify
captured dataset into five general categories: Mail, Social, Read-
ing, Video, and No Activity. Our insight is that existing low-power,
inexpensive light sensors can be an energy-efficient, low-cost al-
ternative for collecting screen information over extended periods.
However, we also observe that for to be effective in real-world, it
needs to be robust against several practical factors, including the
ambient room lighting where the user device is situated, transi-
tioning between different activities, and examples from unfamiliar
arrangements. To overcome these challenges, we propose dataset
augmentation including realistic lighting conditions, transition fil-
ters, and time series-based augmentation. The system achieves a
detection accuracy upto 91.25% in real world testbed scenarios.
ScreenSense also uncovers critical privacy issues inherent in simple
IoT based light sensors deployed so commonly in smart buildings.

CCS Concepts
• Computer systems organization→ Embedded systems, Sen-
sor networks.

Keywords
Screen Activity Detection, Passive Sensing, Indoor Light Sensors
ACM Reference Format:
Tushar Routh, Nurani Saoda, Fateme Nikseresht, Md Fazlay Rabbi Masum 
Billah, Jiechao Gao, Viswajith Govinda Rajan, Bradford Campbell, University
of Virginia, Charlottesville, Virginia, USA, tkr2w,saoda,fn5an,masum@ 
virginia.edu, jg5ycn,gyx4bw,bradjc@virginia.edu. 2024. ScreenSense: Screen 
Activity De-tection in Real-World Environments with Indoor Light 
Sensors. In The 11th ACM International Conference on Systems for Energy-

This work is licensed under a Creative Commons Attribution International 4.0 
License.
BUILDSYS ’24, November 7–8, 2024, Hangzhou, China
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0706-3/24/11
https://doi.org/10.1145/3671127.3698167

Efficient Buildings, Cities, and Transportation (BUILDSYS ’24), November 
7–8, 2024, Hangzhou, China. ACM, New York, NY, USA, 11 pages. https://
doi.org/10.1145/3671127. 3698167

1 Introduction
For studying screen time influence, gathering information only 

regarding how many hours viewers have spent on screen can be 
insufficient, as the effects of different platforms on people may differ 
widely [21]. Instead, specific information regarding how much time 
has been spent on which platforms is useful for many use cases 
including evaluating employee productivity, observing individuals’ 
digital lives engagement, identifying physical and mental health 
risks among both children and adults and so on [8, 11].

People today are increasingly adopting indoor light sensors, due 
to their capacity to prioritize user convenience, energy efficiency, 
environmental sustainability, and calculating daily exposure hours 
on different types of lights for human wellness [7, 25]. The pop-
ularity and demand for these devices have grown in commercial 
and residential spaces, and are projected to grow at a compound 
annual growth rate (CAGR) of 12%, in both wearable and fixed-
point formats [29]. Basic indoor light sensors operate by detecting 
fundamental color parameters, such as RGB values, and the inten-
sity of light in the surrounding environment. Regardless of the 
purpose, when worn by a user near a monitor or placed close to 
a workstation, these sensors intriguingly detect unique variations 
in screen color parameters associated with user engagement on 
various platforms ( Figure 1).

Leveraging color-based data from computer screens for activ-
ity classification isn’t entirely novel. Experts utilized light sensors 
as smart eyeglass [34], lux meters from tablets [9] or RGB cam-
era [3] for passive screen sensing. So why do we need to study the 
possibility of screen sensing with indoor light sensors?. The answer 
is two-fold. In indoor environments, these sensors are often de-
ployed for maintaining consistent lighting near workstations or 
carried by an individual as a personal smart health gadget while 
sitting in front of the screen. When intended, professionals can 
analyze the near-screen recorded data from these sensors to extract 
screen usage information for further investigation. This method 
leverages the existing setup, whereas the approaches mentioned 
above require additional devices or arrangements for sensing. On 
the flip side, when users operate devices near screens or someone 
places such sensors intentionally near workstations, they may un-
willingly expose their on-screen activities, making them vulnerable 
to eavesdropping. That is why the experts should have a better 
understanding of the capabilities of indoor light sensors for passive 
sensing in indoors and analyze the possible security issues from
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is based on the patterns rather than absolute values of vari-
ables. Considering one device per machine, ScreenSense provides
distinct advantages for mass deployment due to its low cost, flex-
ibility, and energy efficiency compared to the majority of sensors.
Additionally, it provides flexibility in deployment within a meter
with minimum gain settings, allowing it to be worn, placed at
the desk, or positioned near monitors. It supports off-board
storage and classification for long-term analysis. As a result,
ScreenSense will be helpful for the physiological and psychologi-
cal study related to on-screen behavior, associating social website
hours on learning/social interactions/sleep duration, prediction of
human personalities and so on.

In the future, we plan to analyse the maximum ratio of in-
door intensity light to screen light for successful classification.
As ScreenSense runs the classifier to a distant device, we plan to
calculate off-board parameters, such as processing time, daylong
memory requirement, latency, and power consumption. On-board
classification approach is also planned for places like commercial
buildings and offices, where resource availability may not be an
issue and activity detection may be intended only during business
hours.
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