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Abstract

Nowadays, light sensors are frequently utilized as wearables for
assessing personal light exposure or installed in indoor environ-
ments for measuring ambient lighting at areas of interest. Interest-
ingly, light emitted by computer screens records distinct patterns
when such sensors are placed nearby. The phenomenon requires
analysis for passive sensing and also raises critical privacy concerns.
In this paper, we introduce ScreenSense, an innovative approach
that leverages data from existing framework for detecting screen
utilization. For that, we first collect a diversified dataset by placing a
light sensor in close proximity to computer screen. We then classify
captured dataset into five general categories: Mail, Social, Read-
ing, Video, and No Activity. Our insight is that existing low-power,
inexpensive light sensors can be an energy-efficient, low-cost al-
ternative for collecting screen information over extended periods.
However, we also observe that for to be effective in real-world, it
needs to be robust against several practical factors, including the
ambient room lighting where the user device is situated, transi-
tioning between different activities, and examples from unfamiliar
arrangements. To overcome these challenges, we propose dataset
augmentation including realistic lighting conditions, transition fil-
ters, and time series-based augmentation. The system achieves a
detection accuracy upto 91.25% in real world testbed scenarios.
ScreenSense also uncovers critical privacy issues inherent in simple
IoT based light sensors deployed so commonly in smart buildings.
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1 Introduction

For studying screen time influence, gathering information only
regarding how many hours viewers have spent on screen can be
insufficient, as the effects of different platforms on people may differ
widely [21]. Instead, specific information regarding how much time
has been spent on which platforms is useful for many use cases
including evaluating employee productivity, observing individuals’
digital lives engagement, identifying physical and mental health
risks among both children and adults and so on [8, 11].

People today are increasingly adopting indoor light sensors, due
to their capacity to prioritize user convenience, energy efficiency,
environmental sustainability, and calculating daily exposure hours
on different types of lights for human wellness [7, 25]. The pop-
ularity and demand for these devices have grown in commercial
and residential spaces, and are projected to grow at a compound
annual growth rate (CAGR) of 12%, in both wearable and fixed-
point formats [29]. Basic indoor light sensors operate by detecting
fundamental color parameters, such as RGB values, and the inten-
sity of light in the surrounding environment. Regardless of the
purpose, when worn by a user near a monitor or placed close to
a workstation, these sensors intriguingly detect unique variations
in screen color parameters associated with user engagement on
various platforms ( Figure 1).

Leveraging color-based data from computer screens for activ-
ity classification isn’t entirely novel. Experts utilized light sensors
as smart eyeglass [34], lux meters from tablets [9] or RGB cam-
era [3] for passive screen sensing. So why do we need to study the
possibility of screen sensing with indoor light sensors?. The answer
is two-fold. In indoor environments, these sensors are often de-
ployed for maintaining consistent lighting near workstations or
carried by an individual as a personal smart health gadget while
sitting in front of the screen. When intended, professionals can
analyze the near-screen recorded data from these sensors to extract
screen usage information for further investigation. This method
leverages the existing setup, whereas the approaches mentioned
above require additional devices or arrangements for sensing. On
the flip side, when users operate devices near screens or someone
places such sensors intentionally near workstations, they may un-
willingly expose their on-screen activities, making them vulnerable
to eavesdropping. That is why the experts should have a better
understanding of the capabilities of indoor light sensors for passive
sensing in indoors and analyze the possible security issues from
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Figure 1: (a) A RGB based indoor sensor was installed near the user’s workstation to maintain preferred lighting environment.
Due to proximity to a computer screen, it picks up RGB variations over time samples for (b) Blog titled ‘Introduction to Attention
Mechanism by Kemal Ardem", (c) Facebook with "Dark Mode off" setting, (d) Movie sequence from "Bourne Ultimatum"

the arbitrary usage/deployments. Only then can they take a proac-
tive data-driven approach during indoor deployments remaining
vigilant about potential security and privacy threats.

This paper concentrates on addressing two straightforward ques-
tions in our contribution: Is it possible to utilize basic color infor-
mation from a general light sensor for the classification of screen
activities? And with the provided information, how can we effectively
navigate real-world factors that might jeopardize the integrity of this
approach.? We propose ScreenSense, an innovative platform for
detecting users’ activities through passive sensing. The platform
leverages existing light sensing framework, which can provide in-
formation regarding surrounding lighting environments, as well as
unfold users’ screen engagement. It not only terminates additional
components/arrangements for tracking daily hours on digital so-
cial platforms, but also eliminates the need for installing custom
software, third-party data sources, and cookie-matching technolo-
gies, which can reveal excessive browsing information or capture
intricate screen details.

In ScreenSense, we deploy the indoor light sensor in a custom
PCB consisting of RGB sensor, a MCU and BLE radio. This board
can function as a smart gadget or fixed point device to simulate
indoor light sensor usage. The board is optimized for extremely
low power consumption to enable long-term screen usage data
acquisition without frequent power replacements and to support
operations in energy harvesting scenarios. As on-board classifi-
cation can demand additional resources, it transmits the sensed
data to a remote platform, such as a nearby cloud computer, for
post-processing. After placing the board in controlled indoor envi-
ronments and near the screen, we collect screen usage information
from selected categories in various settings. We find that although
the magnitude of the raw data can vary based on the sensor place-
ments, the patterns are independent of the distances and an-
gular variations.

To evaluate the effectiveness across different screen activities,
ScreenSense design is divided into two crucial phases: dataset gen-
eration and dataset augmentation. During the dataset generation
phase, we recognize that analysing the true distribution of RGB vari-
ations from screen data require an exceptionally extensive dataset,
involving numerous sensors deployed across diverse screen set-
tings/indoor environments for an extended duration. ScreenSense
first consider a few non-complex and most practical RGB varia-
tions over controlled environments, including different screen
settings and operational variations.
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To reduce calculation complexity, rapid processing, and avoid
unnecessary data storage, ScreenSense simply utilizes raw vari-
ables from sensors for classification. After analysing recorded
data to categorize, we notice that various on-screen activities record
non-linear data for classification, where classification accuracy
can vary based on the number of advertised packets considered
for classification. Based on this, we aim to optimize ScreenSense’s
classification performance by minimizing the number of the data
packets advertisements required, thereby reducing the overall en-
ergy consumption of sensor nodes without compromising system
accuracy.

After deploying ScreenSense in realistic scenarios, we observe
that the performance of the top-performing classifier can decline
significantly. We identify three major drawbacks, classifying un-
der room light, random switching in between activities and simply
identifying examples from unseen environments. To navigate these
performance limiting factors, ScreenSense proposes several data
augmentation techniques. First, we mix the light data from light
sources and screen to mimic light pollution at the screen. Second,
we apply filters of variable window size to replace parts of an activ-
ity with other activities to capture activity transitioning. Lastly, we
adopt time-series GAN to represent the samples from the unseen
environments. We discover that substantial improvements in clas-
sification accuracy can be achieved by retraining the classifier
with an augmented training dataset that accounts for realistic
variations.

Besides enabling passive activity monitoring, ScreenSense raises
a privacy implication of indoor light sensors which are mostly
installed naively without considering the possibility of leaking
privacy-sensitive information. This opens the door to further re-
search regarding how to minimize color data side-channel effects
during design, deployment, and data communication process. Below
we summarize the contribution of the paper:

e We propose ScreenSense, which utilizes existing architecture
for light sensing to detect and categorize users’ on-screen ac-
tivities into five distinct classes:Mail, Social, Reading, Video
and No activity. For activity classification, we leverage only
raw information advertised through BLE packets after placing
the device in front of the screen.

e We consider several practical factors including activity data
from different users, various types of screens, screen settings,
operational settings, and nearby light source effect to design a
detailed and realistic screen activity database. To classify captured
non-linear RGB information from screens, we study several
machine learning-based approaches including neural networks,
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Figure 2: RGB violin plot of activity data (top) (x-axis:source
type, y-axis: recorded values). Separate activities generate
common readings and cannot be segregated solely based on
threshold values. 2D tSNE plot with first two principal com-
ponents exhibit linear inseparability (bottom)

and time series-based architectures with fine tuning to find the
best performing classifier model with a minimum number of
data packets.

e We implement several data augmentation techniques to ad-
dress real-world performance limiting factors. Our experiment
demonstrates a significant performance improvement across all
testbed scenarios up to 7.5% after performing the augmentation.

2 Related Work and Limitations

In this section, we discuss related approaches to monitor users’
screens activity. We categorize major screen monitoring techniques
as follows:

2.1 Self-reporting and Software based

approaches

Self reporting activities like [15] were largely found to be in-
accurate and confusing, which questions the credibility of this
approach [12]. Utilization of customized software/platforms such
as third-party data sources and cookie-matching technologies have
also been adopted because of more precise and accurate track-
ing [1, 2]. Unfortunately, this requires additional installation for
every device a specific user comes across during the day, potentially
disclosing superfluous browsing information and even posing the
security risk for the classified information within a device if not
implemented carefully [24].

2.2 Indirect Sensing Mechanisms

Researchers have also shown that characterising online activity
can be accomplished with specially designed eyeglass [22], head-
mounted color light sensor [20] and Keyboard extraction, [33]. Such
indirect methods have multiple disadvantages. For sensing, these
devices require additional setups or must be used in a manner that
can cause discomfort for continuous, daylong operation. Addition-
ally, they need to be synchronously switched on and off with the
monitor’s activity status. In addition, the eye level sensor is not
quintessential for computer activity usage detection.

2.3 Screen Recording and Snapshots

Screen activity recognition through screen recording and tak-
ing snapshots have been attempted in [23, 28]. However, storing
high-resolution snapshots of the screen over a prolonged period is
memory intensive and privacy compromising. [18, 33]. They also
demand complex framework design and post processing, which
makes them unsuitable for mass deployment.
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2.4 Choice of parameters for classification

Classifying activities based on lux information was attempted
in [16]. As lux intensity can vary based on screen size, placement of
sensors, and sensor configuration, classification based on it is going
to be incorrect. Within the same setup, we discover that different
activities share common RGB spectra and magnitudes, which makes
it challenging to differentiate solely based on RGB thresholds as
shown in Figure 2. t-SNE visualization of RGB values also reveals
that dissimilar light sources are linearly inseparable. This necessi-
tates careful classifier architecture selection like Machine Learning,
Neural Network or Time Series Classifiers based algorithms, which
are efficient in classifying non-linear time-varying signals.

2.5 Memory/Power Inefficiency

Spectra from mini spectrometers can reveal specific activities
running on the screen [8]. However, such devices are expensive,
power-hungry through unnecessary components like accelerome-
ter, and unsuitable for mass deployment. For screen activity sensing
to be practical and ubiquitously adopted, the sensor should be cost-
effective, small, and standalone. For IoT devices as sensors, they
are expected to optimize available resources to facilitate energy
harvesting. For long-term recording and memory friendliness, clas-
sification should be based on minimum parameters.

2.6 Real-world Variations

In previous works, screen data has been collected in controlled
environments like in a dark room or considering a single screen for
the source of emitting color light [20, 22]. In real world, a single
computer screen may not be the only RGB source, particularly in
workplaces or classroom scenarios. RGB values from a single screen
can be polluted with nearby monitors or indoor light source. More-
over, performances in unseen scenarios like with a new monitor,
or old monitor but with new setting have not been reported.

2.7 On device Classification

Some approaches used time series-based features for activity
classification [34]. However, these methods expect computations
to be performed on the sensor node, which is memory-intensive
and cause unnecessary delay in classification.

3 ScreenSense for Real-World Applications

Within this section, we illustrate practical, real-world scenarios
where ScreenSense can be adopted.

Scenario 1: Consider the scenario where the office authority
has gone through renovation and wants to uncover whether that
has any impact on the productivity of office staff through analysing
the employee’s screen duration in a particular platform [26]. In
such a case, the authority would like to compare employees on
screen behavior pre and post renovation to study the effectiveness
of the action. To study this, the authority may desire general screen
activity rather than exact details to draw inferences. A simple color
sensor, placed near the working area, can generate platform based
signature patterns, which then can be analysed to unfold time
specific screen usage information.

Scenario 2: Attention Deficit/Hyperactivity Disorders (ADHD)
are neurodevelopmental conditions that are prevalent among 2-10%
of the total population, where switching screens from one platform
to another over long period at abnormal frequencies is considered
one of the prime indicators [30]. To detect such disorders, sensing



Systems Activity- Installation Sensor require- | Range Power Parameters for classification
specific requirement | ment limitation
detection considered
Tiger [22] Screen View vs | User-worn (eye- | RGB, IMU, Lidar 80 cm No RGB, Hue, Saturation, Intensity
Non-view glass)
LuxLeak [16] | Ten  popular | User-worn (eye- | RGB light sensor | 60 cm No Lux
websites glass)
WISEG]ass [34]| Watching User-worn Light intensity 30 cm No 13 statistical features from 23 virtual
Movie/Browsing | (smartwatch) channels
Head Document User-worn RGB light sensor | cm-scale | No Same as above
Mount [20] Reading (forehead-
mounted)
ScreenSense | Activity class | User- RGB light sen- | 1m Yes Only RGB and Brightness
(This paper) worn/Fixed sor
deploy

Table 1: A comparison of ScreenSense with the most relevant approaches

and studying users’ on-screen behavior over a long period is crucial.
Nevertheless, the process needs to be completed by acknowledging
privacy and significant user attention for device installation. As
light sensors are omnipresent nowadays, a simple indoor light
sensor placed near the screen can act as a camouflaging device to
uncover users’ behavioral switching-over patterns.

4 Implementation of ScreenSense System
Architecture

4.1 System Overview
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Figure 3: An overview of the ScreenSense framework

ScreenSense design consists of a very low power color sensor de-
ployed near a device user and an activity classification framework
that aims to design a high performing real-world activity detection
platform. Figure 3 illustrates the basic blocks of operations. Our
design consists of two major parts: dataset collection and dataset
augmentation. After sensing, ScreenSense is designed to transfer
the sensed parameters to a distant platform to minimize on-board
resource requirements (like, cloud). Major resource-intensive tasks,
like pre-training of the classifier with the diversified dataset, along
with identifying recent observations is performed at the distant
device. The upper block of Figure 3 depicts the scope of data diver-
sity incorporated within the training set, while the lower section
illustrates the approaches used to acquaint that classifier with the
real-world variations of the collected diverse dataset. Table 1 com-
pares our proposed method against similar approaches. ScreenSense
excels in several areas than similar approaches: it effectively ad-
dresses relevant screen activity categories, offers energy efficient
passive operation with a wider range and employs significantly
fewer parameters for data-efficient classification, thereby minimiz-
ing computational complexity and avoiding unnecessary delays.
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Data collection process with the sensor in realistic indoor environ-
ments have been discussed in the Experimental Methodology section.
Unless otherwise specified, the plots exhibit recorded decimal
values (y-axis) against time samples (x-axis).

4.2 Dataset Overview with Labeling

At first, we try to utilize the existing database of screen sensing.
Unfortunately, all the RGB based databases were either purpose
specific (e.g., TV on off with distance in [14] or with limited cate-
gories/ inappropriate with our purpose (e.g., 800 images from five
educational categories in [13, 28]). For that, we decide to collect our
dataset and select the top four screen activity classes: Mail, Video,
Social, Reading, along with inactive hours class: No Activity
based on screen usage report [17]. We argue that detecting these
classes of activities instead of identifying specific applications or
websites (Facebook or Gmail) is more insightful for many applica-
tions including personal productivity tracking, work-life balance,
and attention span of users.

In training dataset generation, we identify inherent variations
in the RGB recordings even in dark room environments related to
the screen, screen setting, operating nature etc. that can impact
any passive screen activity identification approach and need to be
addressed for better classification. Including these variations in the
dataset aims to acquaint the classifier with realistic scenarios as
comprehensively as possible. However, it is not feasible to encom-
pass all these variations in the dataset. Therefore, our approach
emphasizes analysing and incorporating RGB variations associated
with selected events into the training set to enhance robustness,
marking a novel exploration in this area.

Labeling datasets can be confusing for multiple reasons. There is
a wide diversity in screen activities, making it challenging to draw
clear boundaries (for example, determining whether "watching a
video on Facebook" should be categorized as Video or Social?).
In addition, multiple activities occur simultaneously. To simplify
matters, we assign an activity to its primary platform (like playing
a video on Facebook is labeled as "Social") and displays only one
activity on one screen at any given time (e.g. [27]).

4.3 Composing Training Dataset
To consider inter and intra-class variability of different on screen
activity scenarios, ScreenSense identifies and categorizes several



sources of variations that are crucial in practical use-case scenar-
ios. These variations are depicted as recorded RGB decimal value
variations over time (figure 4-12, 14, 18, 20 & 22).

4.3.1 Generalizing across User, Device, and Activity In this
section, we consider realistic diversification of screen RGB infor-
mation that can derive from various screens, screen settings, user
operation and screen content.

Video: Small Screen Video: Medium Screen
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Figure 4: Same video sequence played on different devices
have dissimilar RGB patterns. We plot the data collected from
Lenovo Ideapad S145 laptop with 15" monitor (left), Dell 32"
computer monitor (middle), and LG 55" display (right)

Screen to screen variation: Dimensions and features of dif-
ferent screen can result in variation of sensed values for the same
activity. As seen from Figure 4, the same activity sensed at dif-
ferent screens differs from each other. Although the individual
color-magnitude varies, for a particular activity, the fluctua-
tion patterns over timeframes were observed as similar on
different screen settings.

200
180
160
140

120 e 120
100 100 100
80 80 80
60 60 60
40 a0 a0
20 ﬁ 20 5

o

| ’ | ol.
o 500 1000 1500 2000 ° o 500 1000 1500 2000 o

500 1000 1500 2000

Figure 5: Different users were provided with the same doc-
ument and were asked to go through it in their usual ways.
As seen, RGB patterns generated by User 1, User 2 and User 3
were different from each other.

User to user variation: We observe that individual persons go
through similar content in different ways, based on their style of
engagement and preference. This can result in variation of sensed
data. To capture them, we ask different individuals to operate their
social/email accounts with the same settings and some predefined
content (after IRB approval). Figure 5 demonstrates the difference
in recorded patterns across different users.

No activity: Cool No activity: Neutral No activity: Warm
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Figure 6: No activity RGB variation of 300 samples, collected
from a HP 32" monitor set on four different color modes (left
to right): Cool, Neutral and Warm

Screen settings variation: People can use different screen set-
tings (brightness, theme, inverted color etc.) based on their necessity
and preferences, which results in variability of sensed values. To
capture this, we collect data by setting the screen with different

26

color themes. We consider common color themes including cool,
neutral, warm and custom settings. We also recognize the impact
of different display types including LCD and LED. Figure 6 shows
how the RGB data differentiates across changing color modes.

Inter class variations: Activities within the same class can derive

50 No activity: Ribbon 50 No activity: Picture 50 No activity: Bubbles

40 40 40

30/ 30 30 o —
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10{ VZ’\R 10 10
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(b) ©
Figure 7: Analysing RGB variation of different screensaver
setup: (a) Ribbons, (b) Pictures (c) Bubbles.

from different sources (like platforms, websites etc.). For example,
social interactions can be performed using platforms like Facebook,
LinkedIn etc., which we cluster as social class. This goes the same
for other categories (Mail: Gmail, Outlook, Yahoo Mail etc., Video:
Movie, Gaming, News, Songs etc.) and so on. Even with screensaver
mode, different settings like random flyers, bubbles etc., can gener-
ate contrasting patterns. We have captured the variations above in
our training set as intra-class variations (Figure 7).

4.3.2 Factoring Operational Activity Variations Operating
style of an activity can influence the recorded RGB patterns. We
consider the following tvpes of variation:

120
110

[ 50

100
Sample No.

(b) (d)

Figure 8: Analysing effect of zooming with various page setup
(a) 50% zoom, (b) RGB readings with 50% zoom, (c) 100% zoom,
(d) RGB readings with 100% zoom.
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Zooming the screen: Zooming users’ screen may record dif-
ferent patterns, as they cause variation in screen contents’, their
shapes and sizes. However, based on our observation, varying zoom
settings while reading have not generated any new pattern ( Fig-
ure 8).

Action speed variation: Different actions can be played at
various paces. We vary the playback speed of actions and analyse
patterns. As observed, RGB fluctuations within a specific timeframe
become faster/slower (like increasing the playback speed or scrolling
a document), which significantly differs from than original speed
version. To capture the effect, we attempt to re-generate alternate
patterns by resampling the original speed data. We expect the up-
sampled version to have an accurate representation of the actual
version played at a faster rate. As shown with a video play, Figure 9
(b) confirms this expectation. However, the reconstructed version
have slight deviations from the actual action. We created such vari-
ations for different categories and included them in the training
set.

Action in reverse: Screen actions may not follow the same se-
quence of the data acquisition. That is why we observe what hap-
pens when the action takes place in reverse order, which is the
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Figure 9: Comparing RGB variations of real vs library gen-
erated examples over time (x-axis). (a) Playing a video at a
faster speed, (b) Resampling with scipy, (c) Playing the same
video in reverse, (d) Inverting samples with Numpy.
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Figure 10: Analysing activity under light (a) CFL ("natu-
ral daylight", 13 W), located 150 cm screen, (b) Mailing
(c)Reading, (d) Watching Video under light. As seen, finally
recorded values were dominated by the light source, where
RGB influence from video activity was the least.

highest level of dissimilarity (like scrolling a page from bottom to
top). We replicate those reverse actions using python library and
include them in the training set. An example has been depicted
in Figure 9 (c and d), where we played the same video in the prior
example in reverse, where the library-generated version has nearly
replicated the real word reverse playback.

4.3.3 Nearby Screen Influence We place our sensor in multi-
display environments, placing displays side by side, and observe
RGB variation of the primary screen. In practice, the influence will
depend on the positioning of the sensor relative to the secondary
screen and its orientation towards that screen. As we point the
sensor towards the primary screen, we observe that the primary
signal amplitude varies randomly within 2%- 5% in the presence of
a background second screen. To model this effect, we add a random
RGB noise (5% of components amplitude) to our dataset.

4.4 Realistic Dataset Augmentation

After training our classifier with a diversified database under
controlled scenarios, we shift our best-performing classifier in re-
alistic scenarios. Based on our inspection of several testbeds, we
monitor that even after training the best model with fine-tuning
and wide-ranging examples, performance has deteriorated substan-
tially. Later, we address three major mis-classification incidents.
The incidents, along with the approaches we take to encounter
them, have been discussed below:

4.4.1 Effect of Indoor Light Sources Common indoor sensors
capture both RGB and the Clear component, which is the unfiltered
version of light and represents the brightness information of the
source(s) in the surroundings. In the presence of ambient light, there
is an interaction in between indoor light and the light coming from
the screen. The resultant can differ significantly from the version
which is originating solely from the screen, leading to incorrect
predictions ( Figure 10). [32] did similar work with background
lighting, but only with the single resultant at the sensor point with
a single type of light. However, in the real world, sources can be of
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Figure 11: Mixing original (a)no activity window with inter-
fering (b)video data window. (c), and (d) exhibit addition of
interfering signal randomly (in a 5 sample point duration)
to mimic multi-event window in real world.

multiple types and the resultant at the sensor, however, depends
on multiple measurements: (a) the relative distance between two
sources, (b) the positioning of the sensor. To enable activity clas-
sification under light, we collect samples from 5 different types of
major indoor artificial lights from 3 different categories: LED, Inc
and CFL and natural light at different conditions (Morning, Noon,
Evening, Rainy Day, and Overcast). In all scenarios, color param-
eters recorded only with light sources were significantly higher in
magnitudes than the activity values, to simulate the real-world sce-
narios. We mix data from light and screen to mimic scenarios under
the light. The highest possible deviations can be for constructive
and destructive interference, where the resultant patterns were
significantly dissimilar from the darkroom setup. For that, we have
considered both extremes by adding and subtracting signals from
Light Source and Screen, which represent the highest possibilities for
misclassification.

4.4.2 Switching between Activities Within the sampling win-
dow, switching from one platform to another or sometimes frequent
movement within the same activity generate transitional patterns
that are unalike signals captured without switching. These patterns
can occur randomly and for an unknown duration and classifiers
tend to misidentify when asked for identification. While moving
back and forth within a single activity (like closing an email and
opening another), we want our classifier not to get perplexed. For
windows containing multi-activity observations (like movement
from Mail to Video and coming back to Mail), we want to tag such
time frames with the activity that contains the highest number of
points within those time frames. For that, we have designed and
developed filters for specific variable size window. When applied to
regular patterns, these filters are capable of mimicking real-world
transitional scenarios. For multi-actions scenarios, we implement
these windows in a primary action and replace those points with
a secondary action. We keep in mind that the secondary action
duration never surpasses the primary one within that particular
timeframe and label the frame as the primary category (like 15
samples of yahoo mail and 10 samples of a video song, will be labeled
as "Mail") ( Figure 11).

4.4.3 Unfamiliar Activity Pattern With a limited dataset, ma-
chine learning models are prone to overfitting, making universal
classification problematic. It is also impractical to train models on
all possible activity variations a user might encounter. Therefore,
we include synthetic examples in our dataset, generated based on
the original data distribution, to represent the absent real-world sce-
narios in the current training set. While there are various methods
to generate synthetic data, our time-varying RGB dataset includes
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Figure 12: Wrong predictions events for during roaming
around multiple platforms.

both static (e.g., constant values during screensaver mode) and dy-
namic (erratic variations) features, which need to be considered.
To tackle the complexity of generating time series data with intri-
cate temporal dependencies, we employ the TimeGAN architecture.
This approach captures irregular and random fluctuations, as well
as constant attributes, providing more challenging examples for
models compared to simpler methods like autoregressive models
(details have been discussed in [35]). To the best of our knowledge,
for color information based real-world passive sensing of on-screen
activities,consideration of constructive and destructive inter-
ference from nearby light sources, special filter designing to
generate transitional patterns during switching, and fabri-
cating time series synthetic examples for universal classifi-
cation have been implemented for the first time for screen activity
identification in real world. Now we include all those examples
(under light, switch-over, and synthetic examples) and retrain our
best classifier. Accuracy before and after the introduction of the
augmented training set were compared under different real world
scenarios.

4.5 Classifier Selection

After collecting original and real world variation data sets, we
study several ML, NN, and Time Series based classifiers. For ML
based classification, we select Decision Tree (DT), Random Forest
(RF), K-Nearest Neighbour (KNN) and Support Vector Machines
with radial (SVM-Rad) and polynomial (SVM-poly) kernels. How-
ever, with dataset having a small set of examples with high variation,
classifiers can behave as weak learners and may tend to overfit.
To improve prediction in general, we introduce ensemble-based
boosting algorithms and select Adaboost (Ada) and Extreme Gradi-
ent Boosting (Xboost) for classification. To extract diverse features
from our time-series observations, we use Random Convolutional
Kernel Transform (Rocket) and its faster variant Minimally Ran-
dom Convolutional Kernel Transform (MiniRocket). As signals from
BLE devices are multi-channel time series data, we have included
both Neural Networks (Feedforward Multilayer Perceptron Models
(MLP), Convolutional Neural Networks for classification. In activity
data, we expect some underlying relationship among samples. For
that, we have also included Recurrent Neural Network (RNN) and
Long Short Term Memory (LSTM) for classification.

As our goal was to minimize parameters for classification, we
scale, normalize and divide only the RGB dataset into training,
test, and validation sets (80%, 10% and 10% respectively). For better
evaluation of the built model, we have implied stratified 10-fold
cross validation by tuning to their best hyper parameters using
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Figure 13: ScreenSense color sensor PCB (top), Deploying the
board in a personal workspace as a fixed-point installation
(bottom-left) and as a handheld device (bottom-right) during
data collection

Gridsearch. After reporting mean accuracy with standard devia-
tion, we analyze the mis-classified examples for betterment. After
discovering certain patterns of wrong predictions, we decide to in-
clude brightness in our dataset and re-record accuracy in controlled
environments.

5 Implementation
5.1 ScreenSense RGB Sensor Design

To collect the screen activity data, we implement a small, custom-
made prototype PCB accommodating a low power color sensing
chip. An ultra-low power MCU interfaces with the color sensor to
periodically sense, process, and transmit the color data over BLE.
The board adopts TCS34725 color sensor with high sensitivity and
wide dynamic range. The active current consumption while sam-
pling the internal ADC channel is 235 pA, which can be reduced
to 2.5pA during the sleep mode. The PCB is powered through a
micro-USB B-type connector and a 3.3V linear regulator. The MCU
periodically samples the red, green, blue, and clear channels of the
sensor, calculates the color temperature and lux value, and trans-
mits these values with raw color data as BLE advertisements. The
dimension of the PCB is 24mm X 39.5mm, allowing it to be ubiqui-
tously deployed in indoor environments. With an advertisement
interval of 12 ms (5 adv/second), the sensor can run upto 45 days
on a 3.3V lithium coin battery. The overall cost per board ranges be-
tween $10-$15 which can be mass-produced on a reasonable budget
( Figure 13) [31].

5.2 Experimental Methodology

To collect the BLE advertisements, we use a BLE receiver [6] con-
nected to a nearby computer. This computer also processes sensed
parameters and runs the classifier. The sensor transmits BLE data
packets containing an ID and raw data including three different
color filters (red, green, and blue) and no filter clear component.
Recorded decimal numbers are proportional to the intensity of each
component. Before collecting the data, we configure the advertis-
ing rate of BLE packets for ScreenSense. Considering statistics on
average people’s stopovers on a website [19], the persistence of
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Figure 14: (a) Analysing angular and distance variation in
wearable fashion, Recorded Blue components while playing
the same video and placing the sensor at different angles (b)
and distances (c). Pointing the hand horizontally and plac-
ing the hand at a distance of 20 cm from screen records the
largest values. As observed, both the angular and distance
variation record similar RGB variations with different am-
plitudes. With 1X gain, sensor records RGB variations upto
1m . Accuracy with variable length window is shown with
violin plots (d). Higher mean accuracy was recorded with 25
and 150 samples.

human vision and recording adequate fluctuations of RGB values
for activity identification, we configure the device to transmit 5 ad-
vertisements per second. We place the sensor near the screen in
a dark room to get the true patterns first. We collect 2000 samples
for each activity.

Regarding sensor placement, our goal was to verify multiple is-
sues: the operational range (distances/angles) of typical indoor light
sensors, whether placement variation causes dissimilar patterns
or not, and finally, for best output, in what fashion the sensors
should be installed/used. Based on [5, 34], we placed the sensor
at a distance ranging from 10 cm to 100 cm and at an angular
variation from 0-90 degrees relative to the screen (both screen
tilted and wrist tilted). As seen,sensor below 15 cm distance and
20 degree angle records too low magnitude to analyze with 1X gain
setting to analyse [ Figure 13].

To determine the number of samples required for classification,
We start by randomly picking up a fixed number of observations
from the training set. Next, we divide the original time series obser-
vation into multiple equal-length sub-sequences by choosing six
different length slicing windows (consisting of 25,50,75,100,125,150
RGB samples). With overlapping and non-overlapping samples, all
those windows contain an equal number of examples. To the best of
our knowledge, no previous research has explored variations
of classification accuracy based on the number of sensed ob-
servations and optimizing the number for energy efficient
classification.

6 Evaluation
To evaluate the proposed system, we evaluate the system in a

controlled environment by turning off the light sources and in real
testbeds without changing the lights. Specifically, We compare the
accuracy of the classifiers and determine the number of samples
required without compromising classification accuracy. We discuss
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Figure 15: Comparing first two principal components of Cap-
tured (left) and TimeGAN generated examples (right). As
observed, maximum variation occurred in social platforms,
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Figure 16: Variation of Mean Accuracy along with Standard
Deviations for tuned classifiers.

the efficacy of the timeGAN-based dataset augmentation. We also
highlight the importance of incorporating clear filter data for some
activity classes.

6.1 Sensor Setup and Classification Window

Selection

After setting our sensor at various distances (range: 15cm-100cm)
and angle (range:20-90 degrees), we observe that variation in sensor
placement generates similar patterns and the recorded values are
not inversely proportional to distance but proportional to
the angle ( Figure 14). Highest amplitudes were recorded with
the sensor facing towards the screen at a distance 20cm. The best
performance was observed with the window of 150 samples. How-
ever, accuracy with the window of 25 samples was the second best,
which offers classification with significantly less time and
power requirements. We fix the sample size to 25 for the next
experiments.

6.2 Analysing Synthetic Examples

For generating synthetic examples, we first gather examples
from controlled environments and their transitional and under light
variations and use them to generate an equal number of synthetic
examples utilizing TimeGAN architecture. Figure 15 demonstrates
the distribution of the first two principal components of real and
synthetic examples generated using TimeGAN. To measure the
utility of the data, we build a dataset using synthetic and original
data (70% synthetic, 30% original) and train KNN with previously
determined best parameters. The accuracy with 10% random testset,
after training with rest of the 90%, was 92%.

6.3 Performance in Controlled Environments

As observed ( Figure 16), the overall classifying performance
of ML algorithms are better than NN in the controlled scenario.
The first and second best results are achieved with KNN (mean
accuracy: 97.67%, F1 score= 0.89) and Xboost (mean accuracy:
97.25%, F1 score= 0.88).

6.4 Performance Boost with Screen Brightness
We analyze some of the misidentifying examples from a ran-
dom test set and with the highest performing classifiers: KNN and
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Figure 17: Confusion matrices for random test examples for
KNN (left) and Xboost (right) with only RGB Data
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Figure 18: Certain patterns of misidentifying when KNN was
trained with only RGB Data

Xboost. As discovered from confusion matrices of those classifiers
(Figure 17), some of the wrong predictions display certain patterns.
For instance, during screensaver Ribbon mode, the classifier would
sometimes misclassify the event as a video due to the similarities
in their RGB variations, leading to confusion (Figure 18). In spite
of having similarities in RGB patterns, screen’s brightness differs
between screensaver mode and playing a video. For that, we have
brightness information (represented by unfiltered clear channel in
the sensor) in training set and re-train our classifier from scratch.
As seen from Figure 19, still KNN (accuracy: 98.875%, F1 score=
0.93) and Xboost (accuracy: 98.91%, F1 score= 0.94) were the best
performers with elevated accuracy/F1 score. We proceed with our
analysis with KNN trained with 4-channel information (R,G,B and
Clear components), considering ease of deployment on resource-
constrained edge devices than Xboost.

6.5 Performances at Realistic Testbeds

We conduct three experiments at three different realistic testbeds
(Figure 21). They include samples taken in a dark room with unseen
user, not included in the training set (Testbed-1 (top)), under un-
known room light single display with a completely unseen screen
settings (Testbed-2 (middle)), and unknown room light multi-display
scenario (Testbed-3 (bottom) ). All testbeds contain five activity types
for classification, with the first having seen the content and the
others having unseen content with practical variations (zooming,
varying playback speed).

Following the segmentation of the observations into 25 RGB-C
sample sub-sequences, we employ our top-performing KNN classi-
fier, which has been trained using RGB and Clear components in
controlled scenarios, to determine the activity type represented by
these sub-sequences. We observe that the classification accuracy
has been degraded significantly in all the testbeds (as low as 72.5%).
In the dark room scenario, the classifier failed to identify time-
frames where the user was switching from one activity to another.
At other testbeds, the classifier simply gets confused with patterns
under light and practical variations of activities.
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Figure 19: Recalculated Accuracy after addition of brightness
information.

6.6 Performance after augmentation-retraining

We then add augmented data in the present training set and
retrain our KNN classifier with this augmentation. Accuracy of
KNN classifier pre and post-implementation of augmented data
were recorded. As seen from Figure 22, in all three scenarios, per-
formances were elevated (upto 7.5%) with the extraneous training
set, and the with highest accuracy recorded was for Testbed-1 (ac-
curacy: 91.25%, F1 score= 0.81), compared to test set accuracy
of 79.3% with Random forest and 70.1% with Naive Bias reported
n [20]. Figure 23 (top) depicts a few examples where the intro-
duction of extraneous training sets aid in accurate predictions of
activity class, which were previously misidentified with the lim-
ited training set. However, there were a few timeframes that were
still misidentified (bottom). After analysis, no common patterns of
inaccurate predictions were observed.

6.7 Sensor Energy Consumption

To understand the energy requirement of ScreenSense sensor,
we computer the average current consumption of the device. Figure
20 shows the current trace during one compute and transmission
cycle For each screen event transmission, the device consumes an
average current of only around 0.22mA. With an advertisement
interval of 12 ms (5 adv/second), the sensor can run upto 45 days
on a 3.3V lithium coin battery [31].

7 Discussion

Data acquisition setup: For ScreenSense, we set TCS3475 sen-
sor with 1X ADC gain with an integration time of 700 ms, which
allowed us to read color values up to value 65535. For low light con-
ditions or activity detection beyond 1 m, tuning ADC gain settings
achieve this, though with the trade-off of higher energy consump-
tion. The average current consumption can be reduced by reducing
the sampling and transmission frequency. However, the frequency
should be high enough to capture enough variations and enable
real-time data acquisition.

Performance limiting factors: With ScreenSense, we have not
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Figure 20: Current draw of the ScreenSense color sensor
board
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Figure 21: RGB signals at different test beds from screen
activities. Each testbed comprises of 2000 samples including
five activities with realistic variations. Collecting signal: (top)
as wearable at dark conference room at Im distance from
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Figure 22: Comparing Testbed accuracy with training with
and without augmented dataset

considered what happens when the sensor is positioned at mid-
point and equal distance from two displays. We assume that while
carrying as a smart device, user hand was not in motion, which
can impact the final recordings. With low RGB amplitudes from
screen, too bright room light in many scenarios may entirely over-
shadow on-screen information. ScreenSense can be arranged to
be auto-synchronous with the active screen. However, additional
arrangements may be called for to ensure users’ actual involvement
on a particular screen, like gaze control or face detection arrange-
ments [4, 10], as the user may easily switch in between monitors
or looking places other than monitor in realistic scenarios. Our
training set includes a limited type of screen setting variations. For
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Figure 23: Correct Predictions with extraneous training set
(top), Miscategorized examples recorded after retraining with
extraneous set (bottom)

customized/specific settings, the performance of the classifier can
be elevated by introducing few examples in the training set with
that setting. With limited examples and features, ML algorithms
have outperformed neural networks, but as the dataset and features
expand, neural networks may surpass traditional ML algorithms. Fi-
nally, in real world, screen usage is highly dynamic, which demands
augmentation/modification of the number of categories.

8 Conclusion and Future work

ScreenSense platform elicits the fact that, whether self-deployed
or an open source RGB dataset from an indoor light sensor posi-
tioned near a screen, can be revealing of the on-screen activities of
a digital user. ScreenSense will help experts understand the risks
associated with the expected widespread indoor deployment of
smart color sensor systems and establish guidelines for their place-
ment in smart buildings. It also alerts users to permit their daylong
exposure for open analysis. On the flip side, ScreenSense offers
enhanced privacy compared to software-based identification or
screen recording/snapshot methods. It acknowledges several draw-
backs of at present indoor light sensors for passive screen sensing,
including energy and memory inefficiency for long-term data collec-
tion, accumulating needless derivatives or statistical features, lack
of knowledge regarding the impact of sensor positioning/orientation
on classifying performance, choice of best performing classifier with
appropriate parameters for such dataset and finally, addressing perfor-
mance depreciation in realistic scenarios. ScreenSense explores the
multi-modality of indoor light sensors, where the existing
framework can provide information regarding daylong light-
source exposure [31]. In considering the privacy implications of
ScreenSense, we assume smart indoor environments where contin-
uous light-sensitive data is collected in close proximity to screens,
with the potential for this information to be accessed by individuals
other than the user, such as facility managers or cybercriminals.
The applicability of the system is constrained in scenarios where
light sensors are positioned at a greater distance from the screens
or where data collection occurs at extended intervals.

Given that KNN demonstrated strong performance, ScreenSense
offers insights like similar on-screen activities within basic
color-brightness feature spaces are likely to exhibit signifi-
cant localities. For exhibiting superior performance in unfamiliar
atmospheres, ScreenSense is anticipated to classify screen content
independent of particular sensing device, as the classification



is based on the patterns rather than absolute values of vari-
ables. Considering one device per machine, ScreenSense provides
distinct advantages for mass deployment due to its low cost, flex-
ibility, and energy efficiency compared to the majority of sensors.
Additionally, it provides flexibility in deployment within a meter
with minimum gain settings, allowing it to be worn, placed at
the desk, or positioned near monitors. It supports off-board
storage and classification for long-term analysis. As a result,
ScreenSense will be helpful for the physiological and psychologi-
cal study related to on-screen behavior, associating social website
hours on learning/social interactions/sleep duration, prediction of
human personalities and so on.

In the future, we plan to analyse the maximum ratio of in-
door intensity light to screen light for successful classification.
As ScreenSense runs the classifier to a distant device, we plan to
calculate off-board parameters, such as processing time, daylong
memory requirement, latency, and power consumption. On-board
classification approach is also planned for places like commercial
buildings and offices, where resource availability may not be an
issue and activity detection may be intended only during business
hours.
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