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Abstract

In the recent literature on machine learning and decision making, calibration has emerged as
a desirable and widely-studied statistical property of the outputs of binary prediction models.
However, the algorithmic aspects of measuring model calibration have remained relatively less
well-explored. Motivated by [BGHN23a|, which proposed a rigorous framework for measuring
distances to calibration, we initiate the algorithmic study of calibration through the lens of
property testing. We define the problem of calibration testing from samples where given n draws
from a distribution D on (predictions, binary outcomes), our goal is to distinguish between the
case where D is perfectly calibrated, and the case where D is e-far from calibration.

We make the simple observation that the empirical smooth calibration linear program can be
reformulated as an instance of minimum-cost flow on a highly-structured graph, and design an
exact dynamic programming-based solver for it which runs in time O(nlog?(n)), and solves the
calibration testing problem information-theoretically optimally in the same time. This improves
upon state-of-the-art black-box linear program solvers requiring Q(n*) time, where w > 2 is the
exponent of matrix multiplication. We also develop algorithms for tolerant variants of our
testing problem improving upon black-box linear program solvers, and give sample complexity
lower bounds for alternative calibration measures to the one considered in this work. Finally, we
present experiments showing the testing problem we define faithfully captures standard notions
of calibration, and that our algorithms scale efficiently to accommodate large sample sizes.
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1 Introduction

Probabilistic predictions are at the heart of modern data science. In domains as wide-ranging as
forecasting (e.g. predicting the chance of rain from meteorological data [MW84, Mur98]), medicine
(e.g. assessing the likelihood of disease [Doi07]), computer vision (e.g. assigning confidence values
for categorizing images [VDDP17]), and more (e.g. speech recognition [AAAT16] and recommender
systems [RRSK11]), prediction models have by now become essential components of the decision-
making pipeline. Particularly in the context of critical, high-risk use cases, the interpretability of
prediction models is therefore paramount in downstream applications. That is, how do we assign
meaning to the predictions our model gives us, especially when the model is uncertain?

We focus on perhaps the most ubiquitous form of prediction modeling: binary predictions, repre-
sented as tuples (v,y) in [0,1] x {0,1} (where the v coordinate is our prediction of the likelihood
of an event, and the y coordinate is the observed outcome). We model prediction-outcome pairs
in the binary prediction setting by a joint distribution D over [0, 1] x {0, 1}, fixed in the follow-
ing discussion. In this context, calibration of a predictor has emerged as a basic desideratum. A
prediction-outcome distribution D is said to be calibrated if

[E(v,y)N'D[y | v = t] =tforallte [O7 1] (1)

That is, calibration asks that the outcome is 1 exactly 60% of the time, when the model returns a
prediction v = 0.6. While calibration (or approximate variants thereof) is a relatively weak require-
ment on a meaningful predictor, as it can be achieved by simple models,' it can still be significantly
violated in practice. For example, interest in calibration in the machine learning community was
spurred by [GPSW17|, which observed that many modern deep learning models are far from cali-
brated. Moreover, variants of calibration have been shown to have strong postprocessing properties
for fairness constraints and loss minimization [HKRR18, DKR ™21, GKR*22|, which has garnered
renewed interest in calibration by the theoretical computer science and statistics communities.

The question of measuring the calibration of a distribution is subtle; even a calibrated distribution
incurs measurement error due to sampling. For example, consider the expected calibration error,

used in e.g. [NCH15, GPSW17, MDR*21a, RT21b] as a ground-truth measure of calibration:

ECE(D) := Equy)op [[Eqrgynn [y |0 = 0] = o]].

Unfortunately, the empirical ECE is typically meaningless; if the marginal density of v is continuous,
we will almost surely only observe a single sample with each v value. Further, [KF08| observed that
ECE is discontinuous in v. In practice, binned variants of ECE are often used as a proxy, where a
range of v is lumped together in the conditioning event. However, hyperparameter choices (e.g. the
number of bins) can significantly affect the quality of binned ECE variants as a distance measure
[KLM19, NDZ*19, MDR*21a].? Moreover, as we explore in this paper, binned calibration measures
inherently suffer from larger sample complexity-to-accuracy tradeoffs, and are less faithful to ground
truth calibration notions in experiments than the calibration measures we consider.

Recently, [BGHN23a| undertook a systematic study of various measures of distance to calibration
proposed in the literature. They proposed information-theoretic tractability in the prediction-only

!The predictor which ignores features and always return the population mean is calibrated, for example.
2For example, [NDZ"19] observed that, in their words, “dramatic differences in bin sensitivity” can occur “depend-
ing on properties of the (distribution) at hand,” a sentiment echoed by Section 5 of [MDR*21a].



access (PA) model, where the calibration measure definition can only depend on the joint prediction-
outcome distribution (rather than the features of training examples),® as a desirable criterion for
calibration measures. Correspondingly, [BGHN23a] introduced Definition 1 as a ground-truth notion
for measuring calibration in the PA model, which we also adopt in this work.*

Definition 1 (Lower distance to calibration). Let D be a distribution over [0,1] x {0,1}. The lower
distance to calibration (LDTC) of D, denoted dCE(D), is defined by

Q(D) = Heiegf(D) [E(u,v,y)wﬂ |’LL - U’ ’

where ext(D) is all joint distributions I1 over (u,v,y) € [0,1] x [0,1] x {0, 1} satisfying the following.
e The marginal distribution of (v,y) is D.
e The marginal distribution (u,y) is perfectly calibrated, i.e. Erly|u] = u.

Definition 1 has various beneficial aspects: it is convex in v, computable in the PA model, and
(as shown by [BGHN23a|) polynomially-related to various other calibration measures, including
some which require feature access, e.g. the distance to calibration (DTC, Eq. (1), [BGHN23a]).
Roughly, the DTC of a distribution is the tightest lower bound on the ¢; distance between v and
any calibrated function of the features, after taking features into account. The LDTC is the analog
of this feature-aware measure of calibration when limited to the PA model, so it does not depend
on features. We focus on Definition 1 as our ground-truth measure in the remainder of the paper.

1.1  Our results
We initiate the algorithmic study of the calibration testing problem, defined as follows.

Definition 2 (Calibration testing). Let ¢ € [0,1]. We say algorithm A solves the e-calibration
testing problem with n samples, if given n i.i.d. draws from a distribution D over [0,1] x {0,1}, A
returns either “yes” or “no” and satisfies the following with probability > %.5

o A returns “no” if dCE(D) > e.
o A returns “yes” if dCE(D) = 0.
In this case, we also call A an e-calibration tester.

To our knowledge, we are the first to formalize the calibration testing problem in Definition 2,
which is natural from the perspective of property testing, an influential paradigm in statistical
learning [Ron08, Ron09, Gol17]. In particular, there is an &, = ©(n~1/2) so that it is information-
theoretically impossible to solve the e,-calibration testing problem from n samples (see Lemma 1),

3This access model is practically desirable because it abstracts away the feature space, which can lead to significant
memory savings when our goal is only to test the calibration of model predictions. Moreover, this matches conventions
in the machine learning literature: for example, loss functions are typically defined in the PA model.

“We note that [BGHN23a| introduced an wupper distance to calibration, also defined in the PA model, which
they showed is quadratically-related to the dCE in Definition 1. However, the upper distance does not satisfy basic
properties such as continuity, making it less amenable to estimation and algorithm design.

5As is standard in property testing problems, the success probability of either a calibration tester or a tolerant
calibration tester can be boosted to 1 — ¢ for any § € (0,1) at a k = O(log(})) overhead in the sample complexity.
This is because we can independently call k copies of the tester and output the majority vote, which succeeds with

probability > 1 — ¢ by Chernoff bounds, so we focus on ¢ = %



so a variant of Definition 2 with an exact distinguishing threshold between “calibrated /uncalibrated”
is not tractable. Hence, Definition 2 only requires distinguishing distributions D which are “clearly
uncalibrated” (parameterized by a threshold ¢) from those which are perfectly calibrated.

We note that a variant of Definition 2 where dCE is replaced by variants of the ECE was recently
proposed by [LHHD23|. However, due to the aforementioned discontinuity and binning choice is-
sues which plague the ECE, [LHHD23] posed as an explicit open question whether an alternative
calibration metric makes for a more appropriate calibration testing problem, motivating our Defi-
nition 2. Indeed, Proposition 9 of [LHHD23| shows that without smoothness assumptions on the
data distribution, it is impossible to solve the ECE calibration testing problem from finite samples.®

Our first algorithmic contribution is a nearly-linear time algorithm for calibration testing.

Theorem 1 (Informal, see Theorem 3, Corollary 2). Let n € N, and let ¢ = Q(ey,), where €, =
@(nil/z) is minimal such that it is information-theoretically possible to solve the ey-calibration
testing problem (Definition 2) with n samples. There is an algorithm which solves the e-calibration
testing problem with n samples, running in time O(nlog?(n)).

We prove Theorem 1 by designing a new algorithm for computing smCE(ﬁn), the smooth calibration
error (Definition 3), an alternative calibration measure, of an empirical distribution D,,.

Definition 3 (Smooth calibration error). Let W be the set of Lipschitz functions w : [0,1] — [—1,1].
The smooth calibration error of distribution D over [0,1] x {0,1}, denoted smCE(D), is defined by

smCE(D) = sup |Eqw,y)~pl(y — v)w(v)]].

It was shown in [BGHN23a| that smCE(D) is a constant-factor approximation to dCE(D) for all D
on [0,1] x {0,1} (see Lemma 12). Additionally, the empirical smCE admits a representation as a
linear program with an O(n) x O(n)-sized constraint matrix encoding Lipschitz constraints.” Thus,
[BGHN23a| proposed a simple procedure for estimating smCE(D): draw n samples from D, and
solve the associated linear program on the empirical distribution. While there have been significant
recent runtime advances in the linear programming literature [L.S14, CLS21, vdBLSS20, vdBLL*21],
all state-of-the-art black-box linear programming algorithms solve linear systems involving the con-
straint matrix, which takes Q(n“) time, where w > 2.371 [WXXZ23] is the current exponent of
matrix multiplication. Even under the best-possible assumption that w = 2, the strategy of exactly
solving a linear program represents an (n?) quadratic runtime barrier for calibration testing.

We bypass this barrier by noting that the smCE linear program is highly-structured, and can be
reformulated as minimum-cost flow on a planar graph. We believe this observation is already
independently interesting, as it opens the door to using powerful software packages designed for
efficiently solving flow problems to measure calibration in practice. Moreover, using recent theoreti-
cal breakthroughs in graph algorithms [DGG122, CKL'22] as a black box, this observation readily
implies an O(n - polylog(n))-time algorithm for solving the smooth calibration linear program.

5The work [LHHD23] considered k-class prediction tasks, extending our focus on the setting of binary classification
(k = 2), which we believe is an exciting future direction. However, their Proposition 9 holds even when k = 2.

"Formally, the number of constraints in the smCE linear program is O(nQ), but we show that in the hard-constrained
setting, requiring that “adjacent” constraints are met suffices (see Lemma 2).



However, these aforementioned algorithms are quite complicated, and implementations in practice
are not available, leaving their relevance to empirical calibration testing unclear at the moment.
Motivated by this, in Section 3 we develop a custom solver for the minimum-cost flow reformu-
lation of empirical smooth calibration, based on dynamic programming. Our theoretical runtime
improvement upon [DGG122, CKL"22] is by at least a large polylogarithmic factor, and moreover
our algorithm is simple enough to implement in practice, which we evaluate in Section 6.

We next define a tolerant variant of Definition 2 (see Definition 4), where we allow for error thresholds
in both the “yes” and “no” cases; “yes” is the required answer when dCE(D) < g9, and “no” is
required when dCE(D) > ¢7. Our algorithm in Theorem 1 continues to serve as an efficient tolerant
calibration tester when €; > 4eo, with formal guarantees stated in Theorem 3. This constant-factor
loss comes from a similar loss in the relationship between smCE and dCE, see Lemma 12. We make
the observation that a constant factor loss in the tolerant testing parameters is inherent following this
strategy, via a lower bound in Lemma 13. Thus, even given infinite samples, computing the smooth
calibration error cannot solve tolerant calibration testing all the way down to the information-
theoretic threshold 1 > €5. To develop an improved tolerant calibration tester, we directly show how
to approximate the LDTC of an empirical distribution, our second main algorithmic contribution.

Theorem 2 (Informal, see Theorem 4, Corollary 4). Let n € N, and let e1 — e = Q(ey,), where
En = @(n_1/2) s minimal such that it is information-theoretically possible to solve the e, -calibration
testing problem with n samples. There is an algorithm which solves the (g1, e3)-tolerant calibration

testing problem (Definition 4) with n samples, running in time O(M) = O(n?log(n)).

(e1—e2)?

While Theorem 2 is slower than Theorem 1, it directly approximates the LDTC, making it applicable
to tolerant calibration testing. We mention that state-of-the-art black-box linear programming based
solvers, while still applicable to (a discretizeation of) the empirical LDTC, require ©(n?®) time
[vdBLL 21|, even if w = 2. This is because the constraint matrix for the e-approximate empirical
LDTC linear program has dimensions O(2) x O(n), resulting in an ~ 1 = Q(y/n) overhead in the
dimension of the decision variable. We prove Theorem 2 in Section 4, where we use recent advances
in minimax optimization [JT23| and a custom combinatorial rounding procedure to develop a faster
algorithm, improving state-of-the-art linear programming runtimes by an (y/n) factor.

In Section 5, we complement our algorithmic results with lower bounds (Theorems 5, 6) on the
sample complexity required to solve variants of the testing problem in Definition 2, when dCE
is replaced with different calibration measures. For several widely-used distances in the machine
learning literature, including binned and convolved variants of ECE [NCH15, BN23|, we show that
6(5_2‘5) samples are required to the associated e-calibration testing problem. This demonstrates a
statistical advantage of our focus on dCE as our ground-truth notion for calibration testing.

We corroborate our theoretical findings with experimental evidence on real and synthetic data in
Section 6. First, on a simple Bernoulli example, we show that dCE and smCE testers are more
reliable measures of calibration than a recently-proposed binned ECE variant. We then apply our
smCE tester to postprocessed neural network predictions to test their calibration levels, validating
against the findings in [GPSW17]|. Finally, we implement our method from Theorem 1 on our
Bernoulli dataset, showing that it scales to high dimensions and runs faster than both a linear
program solver from CVXPY for computing the empirical smCE, as well as a commercial minimum-



cost flow solver from Gurobi Optimization (combined with our reformulation in Lemma 3).8

1.2 Our techniques

Theorems 1 and 2 follow from designing custom algorithms for approximating empirical linear
programs associated with the smCE and dCE of a sampled dataset ﬁn = {(vi,¥i) }iepn) ~iia. D- In
both cases, generalization bounds from [BGHN23a| show it suffices to approximate the value of the
empirical calibration measures to error € = Q(n~'/2), though our solver in Theorem 1 will be exact.

We begin by explaining our strategy for estimating smCE(ﬁn) (Definition 3). By definition, the
smooth calibration error of D,, can be formulated as a linear program,

Ier[rjilr’ll}n % Z zi(v; — y;), where |z; — x| < |v; —vj| for all (z,7) € [n] X [n]. (2)
i€[n]

Here, x; € [—1,1] corresponds to the weight on v;, and there are 2(3) constraints on the decision
variable x, each of which corresponds to a Lipschitz constraint. We make the simple observation that
every Lipschitz inequality constraint can be replaced by two constraints of the form z; —x; < |v; —v;|
(with 4, j swapped). Moreover, the box constraints € [—1,1]" can be handled by introducing a
dummy variable 41 and writing max(x; — 41, Tn+1—x;) < 1, after penalizing z,,41 appropriately
in the objective. Notably, this substitution makes every constraint the difference of two decision
variables, which is enforceable using the edge-vertex incidence matrix of a graph. Finally, the
triangle inequality implies that we only need to enforce Lipschitz constraints in (2) corresponding
to adjacent i, j. After making these simplifications, the result is the dual of a minimum-cost flow
problem on a graph which is the union of a star and a path; this argument is carried out in Lemma 3.

Because of the sequential structure of the induced graph, we show in Section 3.2 that a dynamic
programming-based approach, which maintains the minimum-cost flow value after committing to the
first ¢ < n flow variables in the graph recursively, succeeds in computing the value (2). To implement
each iteration of our dynamic program in polylogarithmic time, we rely on a generalization of the
classical segment tree data structure that we develop in Section 3.3; combining gives Theorem 1.

On the other hand, the linear program corresponding to the empirical dCE is more complex (with
two types of constraints), and to our knowledge lacks the graphical structure to be compatible
with the aforementioned approach. Moreover, it is not obvious how to use first-order methods, an
alternative linear programming framework suitable when only approximate answers are needed, to
solve this problem more quickly. This is because the empirical dCE linear program enforces hard
constraints to a set that is difficult to project to under standard distance metrics. To develop our
faster algorithm in Theorem 2, we instead follow an “augmented Lagrangian” method where we lift
the constraints directly into the objective as a soft-constrained penalty term. To prove correctness
of this lifting, we follow a line of results in combinatorial optimization [Shel3, JST19|. These
works develop a “proof-by-rounding algorithm” framework to show that the hard-constrained and
soft-constrained linear programs have equal values, summarized in Section 4.1 (see Lemma 14).

To use this augmented Lagrangian framework, it remains to develop an appropriate rounding al-
gorithm to the feasible polytope for the empirical dCE linear program, which enforces two types

80ur code can be found at: https://github.com/chutongyang98/Testing-Calibration-in-Nearly-Linear-Time.
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of constraints: marginal satisfaction of (v,y), and calibration of (u,y) (using notation from Defini-
tion 1). In Section 4.3, we design a two-step rounding procedure, which first fixes the marginals on
the (v,y) coordinates, and then calibrates the u coordinates without affecting any (v,y) marginal.
One interesting feature of our dCE rounding algorithm, compared to prior works [Shel3, JST19]|,
is that it is cost-sensitive: we take into account the metric structure of the linear costs ¢ to argue
rounding does not harm the objective value, rather than naively applying Holder’s inequality.

Finally, our sample complexity lower bounds in Section 5 for alternative calibration measures fol-
low from an information-theoretic analysis using LeCam’s two-point method [LeC73| and Ingster’s
method [IS03|. We construct a perfectly-calibrated distribution as well as a family of miscalibrated
distributions with large calibration error (> ¢) in the alternative calibration measures (convolved
ECE and interval CE). A testing algorithm for these measures needs to distinguish these two cases.
We show that the distinguishing task has high sample complexity (= ~2%) by bounding the total
variation distance between the two joint distributions of the input examples from the two cases.
Our proof is inspired by a similar analysis showing a sample complexity lower bound for identity
testing in the distribution testing literature (see e.g. Section 3.1 of [Can22|).

1.3 Related work

The calibration performance of deep neural networks has been studied extensively in the literature
(e.g. [GPSW17, MDR"21b, Rt21a, BGHN23b|). Measuring the calibration error in a meaningful
way can be challenging, especially when the predictions are not naturally discretized (e.g. in neu-
ral networks). Recently, [BGHN23a| addresses this challenge using the distance to calibration as a
central notion. They consider a calibration measure to be consistent if it is polynomially-related
to the distance to calibration. Consistent calibration measures include the smooth calibration error
[KF04], Laplace kernel calibration error [KSJ18]|, interval calibration error [BGHN23a|, and con-
volved ECE [BN23].? On the algorithmic front, substantial observations were made by [BGHN23a]
on linear programming characterizations of calibration measures such as the LDTC and smooth cal-
ibration. While there have been significant advances on the runtime frontier of linear programming
solvers, current runtimes for handling an n x d linear program constraint matrix with n > d remain
Q(min(nd + d?5,n%)) [CLS21, vdBLL*21]. Our constraint matrix is roughly-square and highly-
sparse, so it is plausible that e.g. the recent research on sparse linear system solvers [PV21, Nie22]
could apply to the relevant Newton’s method subproblems and improve upon these rates. Moreover,
while efficient estimation algorithms have been proposed by [BGHN23a| for (surrogate) interval
calibration error and by [BN23| for convolved ECE, these algorithms require suboptimal sample
complexity for solving our testing task in Definition 2 (see Section 5). To compute their respective
distances to error € from samples, these algorithms require Q(¢7°) and Q(¢73) time. As compari-
son, under this parameterization Theorems 1 and 2 require O(e~2) and O(e~*) time, but can solve
stronger testing problems with the same sample complexity, experimentally validated in Section 6.

9The calibration measure we call the convolved ECE in our work was originally called the smooth ECE in [BN23].
We change the name slightly to reduce overlap with the smooth calibration error (Definition 3), a central object
throughout the paper.



2 Preliminaries

Throughout this paper, we use D to denote a distribution over [0,1] x {0,1}. When D is clear
from context, we let D, = {(vi,¥i) }iefn) denote a dataset of n independent samples from D and,
in a slight abuse of notation, the distribution with probability % for each (v;,y;). We say d is a
calibration measure if it takes distributions on [0, 1] x {0,1} to the nonnegative reals R>g, so dCE
(Definition 1) and smCE (Definition 3) are both calibration measures.

We denote matrices in boldface throughout. For any matrix A € R™*" we refer to its i'" row by

A, and its jth column by A.;. Moreover, for a set S identified with rows of a matrix A, we let A,
denote the row indexed by s € S, and use similar notation for columns.

For a directed graph G = (V, E), we define its edge-vertex incidence matrix B € {—1,0,1}¥*V
which has a row corresponding to each e = (u,v) € E with B, = 1 and B., = —1. When G is
undirected, we similarly define B € {—1,0,1}”*V with arbitrary edge orientations.

We use O and € to hide polylogarithmic factors in the argument. When applied to a vector, we
let [|-[|, denote the £, norm for p > 1. We denote [n] := {1 € N [ i < n}. We let 04 and 14 denote
the all-zeroes and all-ones vectors in dimension d. We let A4 := {x € R, | ||z||, = 1} denote the
probability simplex in dimension d. The i** coordinate basis vector is denoted e;. We say & € R is
an e-additive approximation of z € R if |z — x| < e. For a set S C R, we say another set ' C R
is an e-cover of S if for all s € S, there is t € T with |s — ¢| < e. For a,b € R with a < b, we let
clipp 4 (t) := min(b, max(a,t)) denote the result of projecting ¢ € R onto [a, b].

We next define a tolerant variant of the calibration testing problem in Definition 2.

Definition 4 (Tolerant calibration testing). Let 0 < g9 < g1 < 1. We say algorithm A solves the
(e1,€2)-tolerant calibration testing problem with n samples, if given n i.i.d. draws from a distribution
D over [0,1] x {0,1}, A returns either “yes” or “no” and satisfies the following with probability > %

o A returns “no” if dCE(D) > €.
o A returns “yes” if dCE(D) < es.
In this case, we also call A an (e1,e2)-tolerant calibration tester.

Note that an algorithm which solves the (g1, €2)-tolerant calibration testing problem with n samples
also solves the e;-calibration testing problem with the same sample complexity. Moreover, we give
a simple impossibility result on parameter ranges for calibration testing.

Lemma 1. Let 0 < g9 < g7 < % satisfy €1 — eg = €. There is a universal constant Ceoin Such
that, given n < % samples from a distribution on [0,1] x {0,1}, it is information-theoretically
impossible to solve the (e1,¢e9)-tolerant calibration testing problem.

Proof. Suppose ¢ < 1—10, else we can choose Cioin small enough such that n < 1. We consider two
distributions over [0,1] x {0,1}, D and D', with dCE(D) > &1 but dCE(D’) < &9, so if A succeeds
at tolerant calibration testing for both D and D', we must have dpy(D®", (D')®") > 1, where we
denote the n-fold product of a distribution with -©". Else, A cannot return different answers from

n samples with probability > 2, as required by Definition 4. Specifically, we define D, D’ as follows.
e To draw (v,y) ~ D, let v = 3 + &1 and y ~ Bern(3).



e To draw (v,y) ~ D', let v = % +e1 and y ~ Bern(% +e).

We claim that dCE(D) = e1. To see this, let II € ext(D) and (u,v,y) ~ II, so Egypyy~mlu] = :
because u is calibrated. By Jensen’s inequality, we have:

1
[E(u,v,y)NH HU - UH > ‘[E(u,v,y)wl'[ [u] - (2 + €1> ‘ =€1.

The equality case is realized when u = % with probability 1, proving the claim. Similarly, dCE(D’) =
go. Finally, let 7 := Bern(3), 7 := Bern(} +¢), and 7®", (7/)®" denote their n-fold product
distributions. Pinsker’s inequality shows that it suffices to show that dkp(7®"[|(7/)®") < 1 to
contradict our earlier claim dry((D)®", (D')®") > &. To this end, we have

1 1
1 2 +1 2
o8 %—i—e o8 %—5

where the first line used tensorization of dkp,, and the last chose C.on small enough. O

We also generalize Definitions 2 and 4 to apply to an arbitrary calibration measure.

Definition 5 (d testing). Let d be a calibration measure. Fore € R>g, we say algorithm A solves the
e-d-testing problem (or, A is an e-d tester) with n samples, if given n i.i.d. draws from a distribution
D over [0,1] x {0,1}, A returns either “yes” or “no” and satisfies the following with probability > %

1. A returns “no” if d(D) > ¢.
2. A returns “yes” if d(D) = 0.

For 0 < &9 < g1, we say algorithm A solves the (g1,e2)-tolerant d testing problem (or, A is an
(e1,€2)-tolerant d tester) with n samples, if given n i.i.d. draws from a distribution D over [0, 1] x
{0,1}, A returns either “yes” or “no” and satisfies the following with probability > %

1. A returns “no” if d(D) > €.
2. A returns “yes” if d(D) < eq.

3 Smooth calibration

In this section, we provide our main result on approximating the smooth calibration of a distribution
on [0,1] x {0,1}. In Section 3.1, we show that the linear program corresponding to the smooth
calibration of an empirical distribution can be reformulated as an instance of minimum-cost flow on
a highly-structured graph. We then develop our custom solver for this flow problem in Sections 3.2
(where we give a dynamic programming-based solution to our problem, and implement it assuming
existence of an appropriate data structure) and 3.3 (where we implement said data structure).
Finally, we give our main result on near-linear time calibration testing in Section 3.4.

10



3.1 Empirical smooth calibration is minimum-cost flow

Throughout this section, we fix a dataset under consideration,
Dy, := {<vi7yi)}i€[n} - [07 1] X {07 1}7

and the corresponding empirical distribution (which, in an abuse of notation, we also denote ﬁn),
i.e. we use (v,y) ~ Dy to mean that (v,y) = (v;,y;) with probability L for each i € [n]. We also
assume without loss of generality that the {Ui}ie[n] are in sorted order, so 0 < v; < ... <wv, < 1.
Recalling Definition 3, the associated empirical smooth calibration linear program is

smCE(D,) := max b'z,
ze[—1,1]"™
where |z; — x| < wv; —v; for all (4, j) € [n] x [n] with 7 < j, (3)

1
and b; := g(yz — ;) for all i € [n].

We first make a simplifying observation, which shows that it suffices to replace the Lipschitz con-
straints in (3) with only the Lipschitz constraints corresponding to adjacent indices (i, j).

Lemma 2. If x,v € R", where v has monotonically nondecreasing coordinates, and |x; — xjt1| <

Vit1 — v for all i € [n— 1], then |x; — x| < vj —v; for all (4,7) € [n] x [n] with i < j.

Proof. This follows from the triangle inequality:

7j—1 7j—1
2 — 2] < g — T ) ver — vp = vj — ;.
k=i k=i

We now reformulate (3) as a (variant of a) minimum-cost flow problem.

Lemma 3. Consider an instance of (3). Let G = (V, E) be an undirected graph on n + 1 vertices
labeled by V := [n+ 1], and with 2n — 1 directed edges E defined and with edge costs as follows.

e For alli € [n— 1], there is an edge between vertices (i,i + 1) with edge cost vy — v;.
e For alli € [n], there is an edge between vertices (i,n + 1) with edge cost 1.

Let ¢ € RF be the vector of all edge costs, let d € R™1 be the demand vector which concatenates —b
in (3) with a last coordinate set to > .. 1 b;, and let B € {—1,0,1}*V be the edge-vertex incidence
matriz of G. Then the problem

i€[n]

: T R
fnel[lR% c'|f] .—Zce’f6| (4)

BT f=d eck

has the same value as the empirical smooth calibration linear program (3).

Proof. By Lemma 2, solving (3) is equivalent to solving

I[nin} b'z, where |z; — 41| < vip1 — v; for all i € [n — 1]. (5)
re[—1,1]"
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Figure 1: Example graph G for n =5 with n 4+ 1 = 6 vertices and 2n — 1 = 9 edges.

We create a dummy variable x,,11, and rewrite (5) as

miri1 bi(x; — Tpy1), where |z; — zi41| < vigq1 — v; for all i € [n — 1],
reR e (6)

and — 1 <x; —x,41 <1 forallié€n].

In other words, (6) replaces each variable z; in (5) with x; — x,,4+1. Next, consider a directed graph
G = (V, E) with 4n—2 edges which duplicate the undirected edges described in the lemma statement
in both directions. Let B € {—1,0,1}P*V be the edge-vertex incidence matrix of G ,and let ¢ € RF
be the edge cost vector so that both edges in E corresponding to e € E have the same cost c.. Then
(6) is equivalent to the linear program

max d 'z,
z€ERHL
Bz<é

where d is described as in the lemma statement. The dual of this linear program is

min &' f,
feRE, (7)
BT f=d

a minimum-cost flow problem on G. Next, for each pair of directed edges (¢/,€") in G corresponding
to some e € F, note that an optimal solution to (7) will only put nonzero flow on one of €’ or e”| else
we can achieve a smaller cost by canceling out redundant flow. Therefore, we can collapse each pair
of directed edges into a single undirected edge, where we allow the flow variable f to be negative
but charge its magnitude |f| in cost, proving equivalence of (7) and (4) as claimed. O

3.2 Dynamic programming

In this section, we give our dynamic programming approach to solving (4). The graph G in (4)
is the union of a path P on n vertices and a star S to the (n + 1)™ vertex. Let us identify the
edges in P with [n — 1] (where edge ¢ corresponds to vertices (i,7 + 1)), and the edges in S with
[2n — 1]\ [n — 1]. We first make a simplifying observation, which is that given the coordinates of a
flow variable f € RF on the edges in the path P, there is a unique way to set the values of f on the
edges in the star S so that the demands BT f = d are satisfied. Concretely, we require

Jnoiyi =di + fi — fizi forall 2 <i <n—1,
fo=di+ f1, and for,_1 =dp — fr1.

12



Hence, minimizing the constrained problem in (4) is equivalent to minimizing the following uncon-
strained problem on the first n — 1 flow variables,

min A(f) = |di+ fil +|dn = fooal + D |fi = fin —dinal+ > alfil- (8)

fern—t ic[n—2] i€[n—1]
We now solve (8). We first define a sequence of partial functions {A4; : R — R} cf—1) by

A1(z) == |d1 + z| + c1]7],

Aj(z) = mhg |dy + fi| + Z |fi — fit1 — div1| + Z ¢ilfil forall 2 <j <n-—2
o iel—1] ief—1) 9)
Ay (2) 1= min A(f).
ferRI
fi=z
In other words, A;(z) asks to minimize the partial function in (8) over the first j flow variables
{ fi}ie[j], corresponding to all terms in which these flow variables participate, subject to fixing f; = z.

We make some preliminary observations about the partial functions {Aj}j eln—1]°

Lemma 4. For all j € [n — 2|, A; is a convex, continuous, piecewise linear function with at most
j 42 pieces, and Ap—_1 is a convex, continuous, piecewise linear function with at most n + 2 pieces.

Proof. We first establish convexity by induction; the base case j = 1 is clear. We next observe that

Aj(z) = ¢jlz| +miﬁ%|w —z—dj|+ A1 (w) for all 2 < j <n—2,
we

10
An—1(z) = |dp — 2| + cp—1|2| + melg |lw— 2z —dp—1| + Ap—2(w). (10)
w

In other words, each partial function A; can be recursively defined by first minimizing the first
J — 2 flow variables for a fixed value f;j_; = w, and then taking the optimal choice of w. Moreover,
supposing inductively A;_; is convex, A; is the sum of a convex function and a partial minimization
over a jointly convex function of (w, z), so it is also convex, completing the induction.

To see that A; is continuous (assuming continuity of A;_; inductively), it suffices to note A; is the
sum of a continuous function and a partial minimization over a continuous function in two variables.

We now prove the claims about piecewise linearity, and the number of pieces. Clearly, A; is con-
tinuous and piecewise linear with at most 3 pieces. Next, for some 2 < j < n — 2, suppose A;_1 is
piecewise linear with vertices {v;};c[;] in nondecreasing order (possibly with repetition) and slopes

{ti}gzo, so t; is the slope of the segment of A;_; between v; and v;41, and ¢y and ¢; are the leftmost

and rightmost slopes. For convenience we define vy := —00 and v;11 := oo. Consider the function
min |w — z — d;| + A;_1(w). (11)
weR

For all values z satisfying v; < z + dj < viy1 where 0 < ¢ < j, the function |w — 2z — d;| + Aj_1(w)
is piecewise linear with vertices v1,...,v;,z + dj, vi41,...,v;j, and correspondingly ordered slopes
to—1,t1 —1,...,t; — 1,t; +1,...,t; + 1. The minimizing w in (11) corresponds to any v €
{vi}ie[jjU{# +d;} where the slope switches from nonpositive to nonnegative, which is either a fixed
vertex v = vy, for the entire range v; < 2z +d; < vi41, or the new vertex z + d; for this entire range.
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In the former case, we have

min [0 — 2 = dj| + Aj1(w) = o — 2 — dj| + A1 (w8), (12)
which up to a constant additive shift is |z — (v — dj)|, a linear function in z in the range v; <
z +dj < viq1 because the sign of z — (v, — d;) does not change. In the latter case, we have
rnei%|w—z—dj[ +Aj_1(w) :Aj_l(z+dj), (13)
w
which again is a linear function in z in the range v; < z+d; < v;11 by induction. In conclusion, (11)
is linear in each range z € [v; —d;, vi41 —dj], so it is piecewise linear with at most j+1 pieces; adding
¢j|#|, which introduces at most 1 more piece, completes the induction. An analogous argument holds
for j = n — 1, but we potentially introduce two more pieces due to adding |d,, — z| + ¢—1]z|.

For convenience, we now describe how to update the slopes and vertices going from the piecewise
linear function A;_; to A;. Also, as above suppose the vertices of Aj_1 are {v;};c[;) and the

corresponding slopes are {ti}gzo. Then because we argued (11) is linear in each range z € [v; —
dj, viy1 — dj], it has vertices {v; — d;}icj- If 2 € [v; — dj,viy1 — dj] and ¢; € [—1,1], then we are
in the case of (13) and the corresponding slope in this range is ;. Otherwise, if t; < —1 we are in
the case of (12) with slope —1, and if ¢; > 1 the slope of the piece is similarly 1. We then add c;|z|
(and |d,, — z|] if j = n — 1). In summary, the new slopes and vertices are as follows.

e If j < n — 2, the new vertices are {v; — d;}ic[;) U{0}. If vy —d; <0 < vgqq — dj for some
0 < k < j, using our convention vy = —oo and v;41 = 0o, the new slopes are
{clipi_1,1(t:) — ¢j}o<ick U{clipi_y 1y(tk) — ¢}

. . (14)
U{Chp[_m} (te) + ¢} U {Chp[—l,l} (ti) + ¢j}r<i<y-

e If j =n — 1, the new vertices are {v; — d; };ic(;) U{0} U{dn}. If vy —dj <0 < vpqq —dj and
vy, —dj < dp < vpg1 — dy for some 0 < h, k < j, the new slopes are

{clip_11)(ti) — Cjloir<d; + Cjlu>d; } o<i<
ig{hk}

U {Clip[fl’l} (tg) — cj} U {clip[,lyl] (tx) + Cj} (15)
U {Chp[_L” (th> — 1} U {Clip[_m] (th) + 1} )
where we let tg denote the 0-1 indicator variable of an event £.

The ordering of these vertices and their slopes are uniquely determined, because they are sorted
similarly due to convexity, which implies nondecreasing slopes as z increases. Finally, we note
that assuming the invariant that at least one {ti}gzo is nonnegative and at least one is nonpositive
(which holds in the first iteration), in either of the cases (14) or (15) this invariant is preserved,
since clipping preserves signs, the smallest slope decreases, and the largest slope increases. O

We require one additional property of the slope updates (14).

Lemma 5. Forj € [n—1], let {ti}gzo be the nondecreasing slopes of A;. Thenty < —1 andt; > 1.
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Proof. By observation, the smallest and largest slopes of 4; (9) are —1 — ¢; and 1 + ¢;. Hence,
assuming inductively the lemma statement is true for A;_1, the slope updates (14) result in smallest
and largest slopes —1 — ¢; and —1 + ¢; in A;, completing the induction. O

We next observe that, by storing a constant amount of information in each iteration, we can work
backwards from an optimal solution to A,,_1 and recover all flow variables which realized this value.

Lemma 6. Let {Ui}ie[j} and {t; g:o be the nondecreasing vertices and slopes of Aj_1 for some
2 <j<n-—1. Suppose we know vy and v, for £,r € [j], defined such that t;_3 < —1 but t; > —1,
and similarly t,—1 <1 but t, > 1. Then given a value of z, we can compute in O(1) time

argmin,cglw — z — d;| + Aj_1(w).

Proof. Note that existence of vy, v, is guaranteed by Lemma 5. We consider three cases.

First, if z+d; € [vg, vy], we claim w = z+d;. To see this, recall that if z +d; € [v;, v;11], we proved
in Lemma 4 that the slopes of jw—z—d;|+A;_1(w) (inw) are tg—1,t1—1,...,t;—1,t;+1,...,t;+1.
Hence, the assumptions imply ¢; € [—1,1], so a vertex of |w — z — d;| + Aj_1(w) where the slope
changes from nonpositive to nonnegative (i.e. the minimizing argument w) is w = z+d;, as claimed.

To handle the other two cases, if z + d; < vy, then the above calculation shows the new optimal
vertex is w = vy; similarly, if z + d; > v, the new optimal vertex is w = v,. O
We now describe an interface for a data structure that we use to efficiently implement the up-

dates (14) and (15), whose existence we prove in the following Section 3.3.

Lemma 7. There is a data structure, SegmentTree, which initializes a vector t € R™ to t <+ 0,
and supports the following operations each in O(logn) time.

o Query(i): Return t;.

o Add({,r,c): Update t; < t; + ¢ for all £ < i <.

e Set({,r,c): Update t; < c for all £ <1 <.
Given access to SegmentTree, we now describe how to solve (8) in nearly-linear time.
Proposition 1. There is an algorithm which computes a minimizer f € R"~! to A in (8), as well

as the minimizing value A(f), in time O(nlog?(n)).

Proof. We first describe how to compute all of the vertices and slopes {v; }ic[n—1]; {ti}?z_ol of A, 9
in time O(nlog?(n)). The proof of Lemma 4 shows that the vertices are

"9 n—2
k=j+1 j=0

where we treat the empty sum as 0. Moreover, the vertex — ZZ;? 1 dk is the new vertex which
was inserted (as 0) when computing A;, and then advanced through the remaining iterations.
We sort the vertices (16) into nondecreasing order, keeping track of the resulting permutation
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7 [n—2]U{0} = [n—1], i.e. if the vertex — ZZ;JQ-_H dy, is the i smallest in (16), then 7(j) = i.
This step takes time O(nlogn) and does not dominate.

We next initialize a SegmentTree (Lemma 7) with n vertices. We update it through the first n — 2
recursive computations of slopes, via (14), keeping track of a time counter j, i.e. after we are done
updating the slopes of A; the time counter increments. The state of SegmentTree at the end of time
J is as follows. For all k € [j], letting 7(h) be the next largest value after 7(k) amongst {7 (k') }rrefj,
we require that ¢; equals the slope of the segment to the right of the vertex inserted at time % in A;
for all the coordinates m(k) + 1 < i < mw(h). In other words, SegmentTree stores all of the slopes of
Aj; in its coordinates (with redundancies due to vertices which will be inserted after time j), and 7
maps the times vertices are inserted to their coordinate values in SegmentTree.

We next show how to maintain this state in O(log?(n)) time per time increment. In iteration j, the
update (14) requires us to clip all previous slopes to the range [—1, 1], subtract ¢; from all slopes in
the range [1,7(j)], and add ¢; to all slopes in the range [7(j) 4+ 1,n]. We first use Query to perform
binary searches for the values ¢, r as defined in Lemma 5. We then sequentially apply

Set(1,/, —1), Set(r + 1,n,1), Add(1,7(5), —¢;), Add(x(j) + 1,n, ¢;).

The dominant runtime term is the cost of O(log(n)) calls to Query to perform the binary search,
giving the claimed O(log®(n)) runtime per time increment. We can now call Query n times to
compute all slopes and vertices of A,,_o. We will also store the values of vy and v, at time j, which
takes O(1) time given ¢, 7, 7, and partial sums which can be precomputed in time O(n).

Given these slopes and vertices, it is straightforward to apply (15) to compute all slopes and vertices
of A,,—1 in time O(n), at which point we can find z := argmin,cgA,—1(2). Next, by using our stored
values of vy and v, in every iteration, we can then use Lemma 6 to compute all the optimal flow
values realizing A,_1(z). Finally, we can compute the optimal value (8) in time O(n). O

We complete this section by stating a guarantee for computing smCE(D,,) in (3).
Corollary 1. There is an algorithm which computes the value of (3) in time O(nlog?(n)).

Proof. This is immediate from Lemma 3, the equivalence between the constrained problem (4) and
the unconstrained problem (8), and Proposition 1. O

3.3 Implementation of SegmentTree

In this section, we develop a data structure known as a segment tree which plays a vital role in our
main algorithm. In particular, it allows us to prove Lemma 7. While this data structure is well-
known folklore in the competitive programming community (see e.g. an overview of this technique
in [QM22]), we provide a full description and proof for completeness.

For integers ¢ and r satisfying ¢ < r, we use [¢ : r| to denote the set {¢,£+1,...,7}.

Lemma 8 (Segment tree). Let G be a semigroup with an identity element e, where the semigroup
product of a,b € G is denoted by a - b or ab and is not necessarily commutative. Let v be an array
of length n, where each element of v is initialized to be the identity element e of G. There is a data
structure D, called a segment tree, that can perform each of the following operations in O(logn)
time (assuming a semigroup product can be computed in constant time).
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1. Access(i): given i € [1 : n], return the i element in v.

2. Apply(g,€,r): given £,r € [1 : n] satisfying £ < r, and given a semigroup element g € G, for
each index i € [ : 7], replace v]i] with g - v[i].

Before proving Lemma 8, we first use it to prove Lemma 7.

Proof of Lemma 7. We apply the data structure in Lemma 8 to a specific semigroup G defined as
follows. The elements of G are functions 7 : R — R, where the identity element e is the identity
function e(u) = u for every u € R, and the semigroup product is defined as function composition:
(a-b)(u) = a(b(u)) for every a,b € G and u € R. The semigroup G consists of the following
functions: add. and set. for every ¢ € R. These functions are defined as follows:

add.(u) =u+c, set.(u)=c, foreveryuéeR.
It is easy to check that these functions are closed under composition:

add. - addy = add.«,
set, - sety = set,
add, - set. = set.1,

set. - add. = set..

Therefore, G is a valid semigroup. We can now implement the operations Query, Add, Set in Lemma 7
using the operations Access and Apply in Lemma 8 as follows.

To implement Query(i), we run Access(i) to obtain its output g = v[i] € G, and return g(0).
To implement Add(¢,r, c), we run Apply(add,, ¢, 7).
To implement Set(¢,r,c), we run Apply(setc, ¢, 7).

The correctness of this implementation can be shown inductively. At initialization, v[i] = e, and
thus Query(i) returns e(0) = 0, which is the correct value of ¢; at initialization. It remains to
show inductively that after each Add and Set operation, the output of Query(i), i.e., v[i](0), is the
intended value of ¢;. Indeed, after an Add operation, for any i € [¢ : 7], the element v[i] is updated
to v[i]’ := (add. - v[i]), and thus

oli)/(0) = (add, - v[i])(0) = add.(v[i}(0)) = v[i](0) + ¢ = t; +c,

which is the intended new value of ¢;. For i ¢ [¢: r], the element v[i] remains unchanged, and thus
v[i](0) remains unchanged. This is as desired because the new value of ¢; is intended to be the same
as the old value. Combining these two cases, we have shown that the Add operation maintains that
v[i](0) is the intended value of ¢; for every ¢ € [1 : n]. We can similarly show that the Set operation
also has this property, and thus our implementation is correct. The running time guarantee of the
implementation follows directly from the running time guarantee in Lemma 8. 0l

We prove Lemma 8 by describing the construction of the segment tree data structure and analyzing

its correctness (Lemma 9) and efficiency (Lemma 10). By appending to the array an appropriate
number of auxiliary entries, we can assume without loss of generality that the array length n is a
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power of 2, i.e., n = 2" for a positive integer r. The data structure is implemented using a complete
binary tree T' with depth r, where the 2" leaves correspond to the n = 2" entries in the array.

More specifically, we use seg(7) C [1 : n] to denote the set of indices i that a node 7 € T is associated
with. For the root 7y of the tree T, we set seg(79) = [1 : n] = [1 : 2"], and for its two children 7, 7o
we set seg(my) = [1: 2] = [1:2""!] and seg(2) = [+ 1:n] = [2""! 4+ 1:27]. In general, for any
non-leaf node 7 and its two children 71, 72, we set seg(71) as the first half of seg(7), and set seg(72)
as the second half. In particular, for every leaf 7, seg(7) is a singleton set consisting of a unique
index 7 € [1 : n|, and we say 7 is the (unique) leaf corresponding to index i. See Figure 2 for an

example with depth r = 3.

Figure 2: Example of segment tree with depth r = 3.

At every node 7 of the tree, we maintain a semigroup element g € G initialized to the identity e.

Access. We implement Access(i) as follows. Let 79 — --- — 7, be the directed path from the root
7o to the leaf 7, corresponding to index ¢. We return the semigroup product g-,g-, - - - gr,-

Apply. We implement Apply(g, ¢,r) recursively. That is, we implement Apply(g, ¢, r,7) in Algo-
rithm 1 which takes a node 7 € T' as an additional input. We then define Apply(g, ¢, ) in Lemma 8
to be Apply(g, ¢, r,79) in Algorithm 1, where the additional input is set as the root 7y of the tree T.

Correctness. At initialization, each array element v[i] is initialized to be the identity element e.
The semigroup element g, stored at each tree node 7 is also initialized to be e, so Access(i) returns
the correct value e. It remains to show that Access(i) still returns the correct value of v[i] after each
Apply operation. This is established in the following lemma.

Lemma 9. For somei € [1:n], let 79 — ... — 7, be the directed path from the root Ty to the leaf T,
corresponding to index i. Let Gr,,...,qr. € G denote the current states of the semigroup elements
Gros - - - » Gz, Stored in the data structure. Then after we call Apply(g,l,7), we have

Gro " Gr = g‘gm“'@rm ifie[ﬁzr],
0 r gTo"'gTrv Zfl¢ [er]

Proof. It is clear that [1 : n] = seg(m9) D --- D seg(r,) = {i}. If i € [ : r], let 7; be the first node
among 7o, ..., 7, such that seg(r;) C [¢,r]. We can inductively show that for every ;' =1,...,,
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Algorithm 1 Apply(g,¥,r,7)
1: if seg(t)N[¢: 7] =0 then
2 return
3: end if

4: if seg(7) C [¢: r| then

5: gr < G- gr

6:

7

8

9

: return
: end if
: Let 1, ™ be the two children of 7
2 0n S 9r9n
10: gy <= Gr * Gmy
11: gr < ¢
12: Apply(g, ¥, r, 1)
13: Apply(g, ¢, 7, 72)

right before we make the recursive call to Apply(g, ¢,7,7j), we have

e, if i < 7§/,
gr; = QTQ"'gij le:]/>
Jri) if 2 > j'.

When we call Apply(g,¢,7,7;), since seg(7;) C [¢ : r], Line 5 is executed and the function returns
after that. Now we have

e, if 1 < g,
9, = g'gTo"'gTju 1fl:]7
Gres ifi> 7.

This implies gy - gr, =9 Gry - - * G, as desired.

Similarly, if ¢ ¢ [¢,7], let 7; be the first node among 79, ..., 7, such that seg(r;) N [¢ : r] = 0. We
can show that

e, if 1 < 4,
9rs = gTO"'gij 1fl:]>
Jr;s if¢ > 7.
This implies gr, - - - gr. = Gz, * - * G,., as desired. O

Efficiency. The following result establishes the running time guarantee in Lemma 8.

Lemma 10. Both Access and Apply run in O(logn) time.
Proof. 1t is clear that Access runs in time O(r) = O(logn). When we run Apply(g,¥,r,7), the
recursive calls at Lines 12-13 are made only when [ : 7] intersects but does not contain seg(7), i.e.,

0 C seg(t)N[¢:r] C seg(r). There are at most 2 such nodes 7 at each level of the binary tree, so
the total number of such nodes 7 is O(logn). This implies that Apply runs in time O(logn). O
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3.4 Testing via smooth calibration

In this section, we build upon Corollary 1 and give algorithms that solve the testing problems in
Definitions 2 and 4. We begin with a result from [BGHN23a| which bounds how well the smooth
calibration of an empirical distribution approximates the smooth calibration of the population.

Lemma 11 (Corollary 9.9, [BGHN23a|). For any ¢ € (0,1), there is an n = O(E%) such that if Dy,
is the empirical distribution over n i.i.d. draws from D, with probability > 2,

smCE(D) — smCE(D,)| < e.

Further, we recall the smooth calibration error is constant-factor related to the LDTC.

Lemma 12 (Theorem 7.3, [BGHN23a|). For any distribution D over [0, 1] x {0,1}, we have

1
5@(D) < smCE(D) < 2dCE(D).

For completeness, we make the simple (but to our knowledge, new) observation that, while the
constants in Lemma 12 are not necessarily tight, there is a constant gap between dCE and smCE.

Lemma 13. Suppose for constants B > A > 0, it is the case that A - dCE(D) < smCE(D) <
B - dCE(D) for all distributions D over [0,1] x {0,1}. Then, % > %

Proof. First, we claim that A < 1. To see this, let (v,y) ~ D be distributed where v = % with

probability 1, and y ~ Bern(3 + ¢) for some ¢ € [0,3]. Clearly, smCE(D) = |3 — (3 +¢)| = e
Moreover, dCE(D) = ¢, which follows from the same Jensen’s inequality argument as in Lemma 1,

so this shows that A < 1. Next, we claim that B > %, concluding the proof. Consider the joint

distribution over (u,v,y) in Table 3.4, and let D be the marginal of (v,y). It is straightforward to

Probability mass u v y  w(v)
% RPN

1 T 1

2 7 2 0 1-¢

check (u,y) is calibrated and Elu—v| = £, so dCE(D) < . Moreover, smCE(v,y) > 2, as witnessed
by the Lipschitz weight function w(v) in Table 3.4, finishing our proof that B > %

smCE(w) > Elly ~ wl = 5 ((5+¢) 1) +5 ((-3) -0-9) =5,

Using these claims, we now give our tolerant calibration tester in the regime ;1 > 4e,.

Theorem 3. Let 0 < g9 < g1 < 1 satisfy e1 > 4eq, and let n > Cig - m for a universal

constant Cier. There is an algorithm A which solves the (€1,e2)-tolerant calibration testing problem
with n samples, which runs in time

O (nlog?(n)) .
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Proof. Throughout the proof, let a := & — 2e5 > 0. Consider the following algorithm.

1. Sample n > =5t samples to form an empirical distribution ﬁn, where Cic is chosen large

enough so that Lemma 11 guarantees [smCE(D) — smCE(D,,)| < 2 with probability > 2.

Cy
«

2. Call Corollary 1 to obtain /3, the value of smCE(D,,).

3. Return “yes” if 3 < 29 + §, and return “no” otherwise.

Conditioned on the event |smCE(D) — smCE(D,)| < 5, we show that the algorithm succeeds in
tolerant calibration testing. First, if dCE(D) < &9, then smCE(D) < 2e3 by Lemma 12, and therefore
by the assumed success of Lemma 11, the algorithm will return “yes.” Second, if dCE(D) > €1, then
smCE(D) > % by Lemma 12, and similarly the algorithm returns “no” in this case. Finally, the
runtime is immediate from Corollary 1; all other steps take O(1) time. O

Theorem 3 has the following implication for (standard) calibration testing.

Corollary 2. Let n € N and let €, € (0,1) be minimal such that it is information-theoretically
possible to solve the ey,-calibration testing problem with n samples. For some € = O(gy,), there is an
algorithm A which solves the e-calibration testing problem with n samples, which runs in time

O (n log? (n)).

Proof. Recall from Lemma 1 that ¢, = Q(n_l/ 2). The conclusion follows by applying Theorem 3
with €1 < O(gy,) and g9 < 0. O

4 Lower distance to calibration

In this section, we provide our main result on approximating the lower distance to calibration of
a distribution on [0, 1] x {0,1}. We provide details on a framework for lifting constrained linear
programs to equivalent unconstrained counterparts in Section 4.1. In Section 4.2, we next state
preliminary definitions and results from [BGHN23a| used in our algorithm. In Section 4.3, we then
develop a rounding procedure compatible with a linear program which closely approximates the
empirical lower distance to calibration. Finally, in Section 4.4, we use our rounding procedure to
design an algorithm for calibration testing, which solves the problem for a larger range of parameters
than Theorem 4 (i.e. the entire relevant parameter range), at a quadratic runtime overhead.

4.1 Rounding linear programs

In this section, we give a general framework for approximately solving linear programs, following
similar developments in the recent combinatorial optimization literature [Shel3, JST19]|. Roughly
speaking, this framework is a technique for losslessly converting a constrained convex program to
an unconstrained one, provided we can show existence of a rounding procedure compatible with the
constrained program in an appropriate sense. We begin with our definition of a rounding procedure.
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Definition 6 (Rounding procedure). Consider a convex program defined on the intersection of
convex set X with linear equality constraints Ax = b:

min ¢' . (17)
zeX
Az=b

We say Round is a (A, b, p)-equality rounding procedure for (A,b,c,X) if p > 1, and for any x € X,
there exists ©’ := Round(z) € X' such that Az’ =b, Az’ = b, and

' <cle+ sz — l~)H . (18)
p

Intuitively, rounding procedures replace the hard-constrained problem (17) with its soft-constrained
variants, i.e. the soft equality-constrained

minc' z + HKQ;—EH , (19)
TEX D
for some (A, b, p) constructed from the corresponding hard-constrained problem instance (parame-

terized by A, b, ¢, X). Leveraging the assumptions on our rounding procedure, we now show how to
relate approximate solutions to these problems, generalizing Lemma 1 of [JST19).

Lemma 14. Let x be an e-approzimate minimizer to (19), and let Round be a (A,E,p)—equality
rounding procedure for (A,b,c, X). Then x' := Round(x) is an e-approzimate minimizer to (17).

Proof. We first claim that a minimizing solution to (19) satisfies the constraints Az = b. To see
this, given any x € X, we can produce 2’ € X with Az’ = b and such that z’ has smaller objective
value in (19). Indeed, letting 2’ := Round(z’), (18) guarantees
' =cd + H;‘x/ — i)H < clx+ H;&x — BH ,
P P
as claimed. Now let z* € X satisfying Az* = b minimize (19). Then, if x is an e-approximate
minimizer to (19) and ' = Round(x), we have the desired claim from Az’ = b, and

e =cta + HA@“’ — ZBH <clz+ HAJJ — l;H <clzr+ H.Kx* — IBH =c'z* +e.
P p P

O

In the remainder of the section, we apply our rounding framework to a hard-constrained linear
program, in the p = 1 geometry. To aid in approximately solving the soft-constrained linear
programs arising from our framework, we use the following procedure from [JT23|, building upon
the recent literature for solving box-simplex games at accelerated rates [Shel7, JST19, CST21]. In
the statement of Proposition 2, we use the notation

Al max _[[Az], .

P74 geRn||laf],<1

Notice that in particular, ||A[|,_,; is the largest ¢; norm of any column of A.
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Proposition 2 (Theorem 1, [JT23|). Let A € R™*? b € R? ¢ € R*, and ¢ > 0. There is an
algorithm which computes an e-approzimate saddle point to the box-simplex game

min maxz Ay —b'y+ec'a, (20)

ze[-1L1]" yeAd

9] (HHZ(A) . ||AH1~>1 IOgd) )
e

m time

We also require a standard claim on converting minimax optimization error to error on an induced
minimization objective. To introduce our notation, we say that x € X’ is an e-approximate minimizer
of f: X = Rif f(x) —ming ey f(2) <e. Wecall (z,y) € X x Y an e-approximate saddle point to
a convex-concave function f: X x )Y — R if its duality gap is at most ¢, i.e.

maxf(x,y’) — min f(x/ay) <e.
y'ey r'eX

Lemma 15. Let f : X x)Y — R be convex-concave for compact X,Y, and let g(x) := maxyecy f(z,y)
forx € X. If (x,y) is an e-approximate saddle point to f, x is an e-approrimate minimizer to g.

Proof. Let y' := argmax,cy f(x,y) and 2’ := argmin, ¢y f(2',y). The conclusion follows from

: * — : * * — : * * > : /
min g(a”) gl&g;{lgf(w »y") ;glgﬁpég(f(x y") 2 min f(a',y),

where we used strong duality (via Sion’s minimax theorem), so that

9(x) — min g(z") < g(x) - f@,y) = f(z,y) — f(@',y) <e.

O

The following corollary of Proposition 2 will be particularly useful in our development, which is
immediate using Lemma 15, upon negating the box-simplex game (20), exchanging the names of
the variables (x,¥), (b, c), and explicitly maximizing over y € [—1,1]", i.e.

min (¢, z) + ||[Az —b||, = min max (c,z) +y' (Az—b).
min, (e,0) + [ Az b, = min max (e.o) +y7 (Ax D

Corollary 3. Let A € R™*? b e R, ¢ € R%, and € > 0. There is an algorithm which computes an
e-approzimate minimizer to mingeaa c' T + ||Az — bl|,, in time

@) (nnz(A) : ”Alel logd> .
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4.2 LDTC preliminaries

In this section, we collect preliminaries for our testing algorithm based on estimating the LDTC.
First, analogously to Lemma 11, we recall a bound from [BGHN23a| on the deviation of the empirical
estimate of dCE(D) from the population truth which holds with constant probability.

Lemma 16 (Theorem 9.10, [BGHN23a|). For any € € (0,1), there is an n = O(e%) such that, if
ﬁn is the empirical distribution over n i.i.d. draws from D, with probability > %,

dCE(D) — dCE(D,)| < e.

Next, given a set U C [0, 1], we provide an analog of Definition 1 which is restricted to U.

Definition 7 (U-LDTC). Let U C [0,1], and let D be a distribution over [0,1] x {0,1}. Define
extV (D) to be all joint distributions I1 over (u,v,y) € Ux[0,1]x{0, 1}, with the following properties.

e The marginal distribution of (v,y) is D.
e The marginal distribution (u,y) is perfectly calibrated, i.e. Erly|u] = u.
The U-lower distance to calibration (U-LDTC) of D, denoted dCEY (D), is defined by

U — ;
dCE (D) " HEelxI:lf;(D) [E(u,v,y)NH ‘u - U| :

Note that if we require {0,1} C U, then extV(D) is always nonempty, because we can let u = y
with probability 1. We also state a helper claim from [BGHN23a|, which relates dCEY to dCE.

Lemma 17 (Lemma 7.11, [BGHN23a|). Let D be a distribution over [0,1] x {0,1}, and let U be a
finite §-covering of [0,1] satisfying {0,1} C U. Then, dCE(D) < dCEY (D) < dCE(D) +¢.

To this end, in the rest of the section we define, for any € € (0, 1),

U, = {0,1}U{i26|ie Hi”} (21)

which is an £-cover of [0, 1] satisfying |U:| = O(2). Finally, we state a linear program whose value
is equivalent to dCEU(D), when the first marginal of D is discretely supported.

Lemma 18 (Lemma 7.6, [BGHN23al|). Let U,V C [0,1] be discrete sets, where {0,1} C U, and
let D be a distribution over V. x {0,1}, where for (v,y) € V x {0,1} we denote the probability
of (v,y) ~ D by D(v,y). The following linear program with 2|U||V| wvariables TI(u,v,y) for all
(u,v,y) € U x V x {0,1}, is feasible, and its optimal value equals dCEY (D):

min Z lu —v|(u,v,y)

2|U| V|
HERS G (uyw,y)eUxV x{0,1}

such that Z (u,v,y) = D(v,y), for all (v,y) €V x{0,1},
uelU

and (1 —u) Z I(u,v,1) =u Z II(u,v,0), for allu e U.
veV veV
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4.3 Rounding for empirical U-LDTC

Analogously to Section 3.1, in this section we fix a dataset under consideration,
Dy = {(vi, ¥i) }iepm) € 10,1] x {0, 1},

and the corresponding empirical distribution, also denoted @n, where (v,y) ~ ﬁn means (v,y) =
(vi, y;) with probability L for each i € [n]. We let V := {vi}igjn) be identified with [n] in the natural
way. Moreover, for a fixed parameter ¢ € (0, 1) throughout, we let U := U, defined in (21). Finally,
we denote m := [U| = O(2), and let U € [0,1]™*™ be the diagonal matrix whose diagonal entries
correspond to U. We also identify elements of U with j € [m] in an arbitrary but consistent way,
writing u; € [0, 1] to mean the 5 element of U according to this identification.

We next rewrite the linear program in Lemma 18 into a more convenient reformulation.

Lemma 19. The linear program in Lemma 18 can equivalently be written as:

~ mn
dCEY(D,) = min ¢z, where X := A*™" and we denote x = (i(l) 2 Emn> , (22)
Mac:l]ln

UBozo=I,,—U)B1iz1
where we define ¢ € R?™* M € R™?™ and By, B; € R™X™" by
C(i,j,k) = |u] - Ui| fOT’ all (iajv k) € [n] X [m] X {07 1}7

0 else

1 Y, = k‘, ’i/ =1 . ..
My (i jk) = { for all ' € [n], (1,7, k) € [n] x [m] x {0,1},

1 j=73,k=0

and [Bol; ;i) = {0 for all §' € [m], (4,7, k) € [n] x [m] x {0,1},

else
1 j=jk=1 , iy
[Bl]j'a(i7j7k) = {0 else Jor all j/ € [m]v (Z’])k) € [n] X [m] X {07 1}

Proof. This is clear from observation, but we give a brief explanation of the notation. First, x € X
represents the density function of our joint distribution IT over U x V x {0,1}, and has 2mn
coordinates identified with elements (i, j,k) € V x U x {0,1} = [n] x [m] x {0,1}. We let the subset
of coordinates with & = 0 be denoted zyo € R™", defining x; similarly. Recalling the definition of
the linear program in Lemma 18, z; ; 1) is indeed reweighted by c(; ; ry = u; — vil.

Next, M represents the marginal constraints in Lemma 18, and enforcing Mz = %ln is equivalent
to the statement that, for each i’ € [n], the sum of all entries (7,7, k) of  with ¢ = ¢’ and k = y; is
L “since that is the probability density assigned to (vy,yy) by the distribution D,,.

n?
Lastly, the j* calibration constraint in Lemma 18 is enforced by the j* row of the equation
UBgzg = (I, — U)Bjx1, which reads u; ((Bo];., z0) = (1 — u;) ((B1];:,x1). We can check by the

definitions of [By);:, [B1];: that this is consistent with our earlier calibration constraints.

O
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We give a convenient way of visualizing the marginal and calibration constraints described in
Lemma 19. For convenience, we identify each x € A?™" with an m x 2n matrix

mat(;p) =X = (XO c Rmxn }(1 c [Rm><n) ’ (23)

where X consists of entries of o arranged in a matrix fashion (with rows corresponding to [m] = U
and columns corresponding to [n] = V), and similarly X; is a rearrangement of x, recalling (22).
When explaining how we design our rounding procedures to modify X to satisfy constraints, it will
be helpful to view entries of X as denoting an amount of physical mass which we can move around.

There are 2n columns in X, corresponding to pairs (i, k) € V' x{0, 1}; among these, we say n columns
are “active,” where column (i, k) is active iff y; = k, and we say the other n columns are “inactive.”
Following notation (23), the marginal constraints X = %]ln simply ask that the total amount of

mass in each active column is %, so there is no mass in any inactive column since z € A?™",

Moreover, there are m rows in X, each corresponding to some j € U. If we let £; denote the amount
of mass on [Xg];: and r; the amount of mass on [X;];., the j' calibration constraint simply asks
that u;j¢; = (1 — u;)rj, i.e. it enforces balance on the amount of mass in each row’s two halves.

Finally, for consistency with Definition 6, the linear program in (22) can be concisely written as

M 11
: T o R R n-—n
gggflbc x, where A := (B) , B:= (UBO —(L,, — U)Bl) , b= <®m> (24)

and ¢, X are as defined in (22). In the rest of the section, following Definition 6, we develop an
equality rounding procedure for the equality-constrained linear program in (24) in two steps.

1. In Lemma 20, we first show how to take z € X with [[Mxz — 11,[|; = A, and produce 2’ € X
such that Ma’ = 11, (i.e. 2/ now satisfies the marginal constraints) and ||z — 2/||; = O(A).

2. In Lemma 22, we then consider x € X such that, following the notation (22), ||UBgzo — (I,,, —
U)Biz1|1 = A. We show how to produce 2’ € X’ such that Mx = Mz’ (i.e. the marginals of
z’ are unchanged), UBgz( = (I, — U)B2} (i.e. 2’ is calibrated), and (¢, 2’ — z) = O(A).

Our rounding procedure uses Lemma 20 to satisfy the marginal constraints in (22), and then applies
Lemma 22 to the result to satisfy the calibration constraints in (22) without affecting the marginal
constraints. By leveraging the stability guarantees on these steps, we can show this is indeed a valid
rounding procedure in the sense of (18). We now give our first step for marginal satisfication.

Lemma 20 (Marginal satisfaction). Following notation in (22), let x € X satisfy [|[Mz — 11, =
A. There is an algorithm which runs in time O(mn), and returns ' with

My = 1, o], <2

Proof. Recall for i € [n], we say column i of Xy is active if y; = 0, and similarly column ¢ of X is
active if y; = 1. We call I the set of n inactive columns, and partition A, which we call the set of n
active columns, into three sets A~, A=, and A<, where A~ are the columns whose sums are > %,
A< are the columns whose sums are < %, and A= are the remaining columns. Hence, every column
of X belongs to I, A>, A=, or AS. Note that until |[A~| = n, we can never have A< = (J, since this
means all column sums in A are > % (with at least 1 strict inequality), contradicting = € X'.

26



We first take columns i € A~ one at a time, and pair them with an arbitrary column in ¢/ € A<,
moving mass from column 7 arbitrarily to column 7’ until either column 7 or column 7’ enters A=.
We charge this movement to the marginal constraints corresponding to i and 4, since the constraints
were violated by the same amount as the mass being moved. After this process is complete, A~ is
empty, and we only moved mass from columns originally in A~ to columns originally in A<.

Next, we take columns 7 € I one at a time, and pair them with an arbitrary column i/ € A<,
moving mass until either column ¢ is 0, or column 4’ enters A=. We can charge half this movement
to the marginal constraint corresponding to ¢, since the sign of the marginal violation stays the
same throughout. Hence, the overall movement is < 2A. After this is complete, all columns in I are
0,,, and all columns in A are in A=, so we can return ' € A?™ corresponding to the new matrix.

It is clear both steps of this marginal satisfaction procedure take O(mn) time, since we can sequen-
tially process columns in A~ until they enter A=, and will never be considered again. O

We next describe a procedure which takes x € A?™" and modifies it to satisfy the calibration
constraints UByx = (I,,, — U)Bjx without changing the marginals Mxz. We first provide a helper
lemma used in our rounding procedure, which describes how to fix the j* marginal constraint.

Lemma 21. Let x € A?*™ and X := mat(z) as defined in (23). Let j € [m] correspond to an
element uj € U, let {; = ||[Xol;:|[1, rj := ||[X1];:]l1, and let Aj :=|u;l; — (1 —u;)r;j|. There exists
J’ € [m] such that we can move mass from only X;. to X, resulting in R™*?" 3 X' = 2/ € A?™"
such that Mz’ = Mz, u;||[X(]:ll = (1 —wj)|[[[Xi]:l1, and (¢, 2" —z) < A;.

Proof. Without loss of generality, suppose that the row j = 1 corresponds to u; = 0, and j = m
corresponds to u; = 1. We split the proof into two cases, depending on the sign of u;jl; — (1 —u;)r;.

Case 1: ujl; > (1 —uj)rj. We let j' = 1, i.e. we only move mass from the 5 row to the first row.
Specifically, we leave [X;];. unchanged, and move mass from [Xg];: to [Xo]:., making sure to only
move mass in the same column. The total amount of mass we must delete from [Xg];. is

P L Bl ) L
oy u; uj

Our strategy is to arbitrarily move mass within columns until we have deleted % total mass. If we
J

denote the mass moved in column i € [n] as d;;, and let 2’ be the result after the move,

(e.a’ =) <> e — cagoldiy = Y lluj —vil = Jur = vil[ 65 < Y uidyy = A

i€[n] i€[n] i€[n]
Here, the first inequality was the triangle inequality, the first equality used the definition of ¢ in (22),
the second inequality used u; = 0 and the triangle inequality, and the last used Zie[n] 0ij = ﬁ

Uj

Case 2: ujl;j < (1 —u;)r;. This case is entirely analogous; we move mass arbitrarily from row j to
row m, i.e. the last row with u,, = 1. The amount of mass we must move is

u]' (1 — uj)rj — Ujfj . Aj

1—u]' _1—u]"

T

t=

_1—Uj
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Again denoting the amount of mass moved from column ¢ € [n] as §;;, the claim follows:

(c.a! =) <> luy = vil = [um — 0il| 65 < Y (1 —uy)di; = A;.

i€[n] i€[n]

By iteratively applying Lemma 21, we have our marginal-preserving calibration procedure.
Lemma 22 (Marginal-preserving calibration). Following the notation (24), given x € A%™ with

IBz|; = A, we can compute ' with Ma' = Mz, Bz’ = 0,,, and (¢,2’ —z) < A in O(mn) time.

Proof. 1t suffices to apply Lemma 21 to each row i € [m]. All of the movement in the rows
i € [2,m — 1] are independent of each other, and do not affect the imbalance in the rows i € {1, m}
when we have finished applying Lemma 21, since e.g. u1f; = 0 regardless of how much mass is
moved to [Xgli., and a similar property holds for the m' row. The total change in (c,z’ — ) is
thus boundable by Zje[m] Aj; <A, and applying Lemma 21 to each row takes O(n) time. Finally,
Mz = Mz’ follows because we only move mass within the same column, so no marginal changes. [
By combining Lemma 20 with Lemma 22, we can complete our rounding procedure.

Lemma 23. Let (A,b,c,X) be defined as in (22), (24), and let (A,b) := (4A,4b). There exists
Round, a (A,b,1)-equality rounding procedure for (A,b,c, X), running in O(mn) time.

Proof. Throughout the proof, let App := ||Mz — %LLHI and Ap := ||Bz||;, following the notation
(24). We also denote the total violation by

A= Az —8|| =42 +44p.
We first apply Lemma 20 to x to produce 7 satisfying ||z — Z||; < 2Am and M# = 11, in O(mn)
time. Note that, because ||B||;_,; <1 since all columns of B are 1-sparse, we have
Bz[l, < [[Ball, +[Bllis1 [z — 2], < Ap +2Am.

Next, we apply Lemma 22 to , resulting in 2’ with Ma' = %]ln, Bz’ = 0O, and {(c,2' — &) <
AB + 2An, in O(mn) time. Recalling the definition (19), we have the conclusion from ¢/, < 1,
SO

(@ —z)<c(@—2)+c (2 — i)
< el 17 =2l + ¢ (2" — &) < 2AMm + A + 240 < A.
O

We conclude by applying the solver from Corollary 3 to our resulting unconstrained linear program.

Proposition 3. Let ¢ > 0. We can compute x € X, an e-approzimate minimizer to (22), in time

0 <nlog2(n)> .
€
Further, the objective value of x in (22) is a 2e-additive approzimation of dCE(ﬁn).
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Proof. Observe that for A = 4A, we have ||A]|1; < 8 and nnz(A) = O(mn), since no column is
more than 2-sparse and all entries of A are in [—1,1]. Further, recalling the definition of U from
(21), we have m = O(%) So, Corollary 3 shows we can compute an e-approximate minimizer to

min ¢z + H;&m — I;H
xeAZmn 1

within the stated runtime. The rest of the proof follows using Round from Lemma 23, where we
recall [dCE(D,,) — dCEY(D,)| < ¢ due to our definition of U and Lemma 17. O

4.4 Testing via LDTC

We now give analogs of Theorems 3 and Corollary 2, using our solver in Proposition 3.

Theorem 4. Let 0 < g9 < &1 < 1 satisfy e1 > €9, and let n > Ciet - ﬁ for a universal constant
Cict- There is an algorithm A which solves the (£1,e2)-tolerant calibration testing problem with n

samples, which runs in time
O ( nlog(n)2> '
(e1 —&2)

Proof. Throughout the proof, let a := €1 — €2 > 0. Consider the following algorithm.

1. For [U| =m > g, sample n > % samples to form an empirical distribution ﬁn, where Ciet

is chosen so Lemma 11 guarantees |dCE(D) — dCE(ﬁn)| < 2 with probability > 2.

2. Call Proposition 2 with € <~ & to obtain 3, an $-additive approximation to |dCE(D,)|.

3. Return “yes” if 3 < e3 + §, and return “no” otherwise.

Conditioned on the event that |dCE(D) — dCE(D,)| < 5> we show that the algorithm succeeds.
First, if dCE(D) < &9, then dCE(ﬁn) < &2+ § by assumption, and SOAﬁ < g2 + § by Proposition 2,
so the tester will return “yes.” Second, if dCE(D) > €1, then dCE(D,,) > &1 — % by assumption,
so 3 > g1 — 5 by Proposition 2 and similarly the tester will return “no” in this case. Finally, the

runtime is immediate from Proposition 3 and the definition of «. O

Theorem 4 has the following implication for (standard) calibration testing.

Corollary 4. Let n € N and let €, € (0,1) be minimal such that it is information-theoretically
possible to solve the e,,-calibration testing problem with n samples. For some € = O(gy,), there is an
algorithm A which solves the e-calibration testing problem with n samples, which runs in time

O (n®log(n)) .

Proof. This claim follows analogously to Corollary 2. O
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5 Sample complexity lower bounds for calibration measures

Recent works [BN23, BGHN23a| have introduced other calibration measures (e.g. the convolved
ECE and interval CE), given efficient estimation algorithms for them, and showed that they are
polynomially related to the lower distance to calibration dCE. Therefore, an alternative approach to
the (non-tolerant) testing problem for dCE is by reducing it to testing problems for these measures.
The main result of this section is that this approach leads to suboptimal sample complexity: the
testing problems for these measures cannot be solved given only O(e2) data points {(vi, ¥i) }iefn)-

To establish this sample complexity lower bound, we construct a perfectly calibrated distribution
Dy and a family of miscalibrated distributions Dy parameterized by € belonging to a finite set. We
use D" (and D§™) to denote the joint distribution of n independent examples from Dy (and Dy).
In Lemma 24, we show that the total variation distance between D§™ and the mixture [E[’Dgi’”]
of Dg@" is small unless n is large, and thus distinguishing them requires large sample complexity.
Consequently, the testing problem for a calibration measure has large sample complexity if it assigns
every Dy a large calibration error. Finally, we show every Dy indeed has large convolved ECE and
interval CE, establishing sample complexity lower bounds for these measures in Theorems 5 and 6.

To construct Dy and Dy, we consider ¢ values {u;}icp € 2, 2] where u; = + + & for i € [t]. We will
determine the value of ¢t € N later. We also define the following distribution, a perfectly calibrated
distribution which is related to the miscalibrated synthetic dataset used in Section 6.

Definition 8. The distribution Dy of (v,y) € [0,1] x {0,1} is defined such that the marginal
distribution of v is uniform over {u;};c[y and Epy[ylv] = v.

Fix o € (0,3). For 6 € {—1,1}!, we define distribution Dy of (v,y) € [0,1] x {0,1} such that the
marginal distribution of v is uniform over {u;};c[ and Ep,[ylv = u;] = u; + ;. In other words,
each conditional distribution given v is miscalibrated by «, but the bias takes a random direction.
We now follow a standard approach by [IS03| to bound the total variation between our distributions.

Lemma 24. For anyt € N and o € (0, 3),

1 11a4n?2
drv(DF", Eg[DF"]) < 2\/exp ( - ) -1

Here, to construct the mizture distribution Eg[Dy"], we first draw 6 ~uie. {—1,1}, and then draw
n independent examples from Dy. We denote the distribution of the n examples by Egy [D‘;@"].

Proof. By a standard inequality between the total variation distance and the y? distance, we have

dTV(D®n [E@ D®n \/X D®n ||D®n) (25)

By Ingster’s method [IS03] (see also Section 3.1 of [Can22|),

Dy(ui, 7) Dy (i,
CEADGIDEN = Eo | (30 Y DeltsdPotusd)) |y (26)
i=1 je{0,1} 0(wi, j)
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where the expectation is over 0,0’ drawn i.i.d. ~uur. {—1,1}!. For every i € [t], we have

u;+60;« U'H”e,lb-a
Dy(ui, 1)Der (ui, 1) ; [ U N 0; +6) N 0,0'a>

Do (us, 1) o t t wit

and similarly

t t (1 — )t

(1—u;—b;c) (1-u;—0ja)
D@(ui,O)DG/(ui,O) N ( t ) ( t ) N 1-— (' (92 — 9;) n (91'9;&2
'Do(ui, 0) 1—u

Adding up the two equations, we get

Do(ui, §) Do (ui, j 1 6,0a® (1 1 1 90,002
Z o(ui, j) Do (u ])_7_~_ i 4 <-4 Za7
U; 1—’LLZ‘ t 2t

jE{O,l} DO(U’MJ) t t

where the last inequality uses the fact that u; € [%, %] Plugging this into (26), we get

902 , "
1+ — 0,0, -1
tgr 200
9a2n o ,
< Loy [exp ( 57 ;Gﬁl)] -1

t
9a%n
= Eg o 00 || -1
Lo e (*55"0)

X’ (Eg[DFM|DF™) < Egr

L 8la’n?
< H Ey [exp < 52 012)] -1 (by Hoeffding’s lemma)
=1
8la’n? 1
=ex -
P\ st
Plugging this into (25) completes the proof. O

5.1 Lower bound for convolved ECE

We now introduce the definition of convolved ECE from [BN23|, and show that for every 6 €
{—1,1}!, Dy has a large convolved ECE in Lemma 26. This allows us to prove our sample complexity
lower bound for convolved ECE in Theorem 5, by applying Lemma 24.

Definition 9 (Convolved ECE [BN23|). Let g : R — [0, 1] be the periodic function with period 2
satisfying mr(v) = v if v € [0,1], and Tr(v) =2 —v if v € [1,2]. Consider a distribution D over
[0,1] x{0,1}. For (v,y) ~ D, define random variable v := wr(v+n), where n is drawn independently
from N'(0,0?) for a parameter o > 0. The o-convolved ECE is defined as follows:

cECE, (D) := E|E[(y — v)|9]],

where the outer expectation is over the marginal distribution of U, and the inner expectation is over
the conditional distribution of (y,v) given 0. It has been shown in [BN23| that cECE,(D) € [0,1]
is a nonincreasing function of o > 0 and there exists a unique o* > 0 satisfying cECE,«(D) = o*.

The convolved ECE cECE(D) is defined to be cECE,«(D).
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We also mention that the following relationship is known between cECE and dCE.

Lemma 25 (Theorem 7, [BN23|). For any distribution D over [0,1] x {0,1}, it holds that

1
54CE(D) < cECE(D) < 2\/dCE(D).

We have the following lower bound on cECE(Dy):

. _ 1 _ t
Lemma 26. For integer t > 3, choose a = Ve Then for every 6 € {—1,1}*,

1
100tv/Int

1 1
Proof. 1t suffices to show that cECE,(Dy) > 00tV whenever o < VT

Consider (v,y) ~ D and © = mg(v+n), where 7 is drawn independently from N(0, ¢2). By standard
Gaussian tail bounds, we have

cECE(Dy) >

1 1
P [|n| > m] <L (27)

Next, consider a function £ : [0, 1] — [¢] such that £(9) € argmin;cpg|u; — 9|. Let £ denote the event
that v = uy(;). Let lg and [-¢ be the indicators of £ and its complement, respectively. We have

El(y — v)lg | 0,v] = lgEly — v | D, v] (I is fully determined by v and 0)
= lgEly — v | v] (y is independent of © given v)
= e[y — v | v = uyey] = leby) .
Taking expectation over v conditioned on ¥, we have
[El(y —v)le | 0]] = [Pr[€ | 0]0,5)a] = Pr[€ | d]a.
We also have
E[y—v)te | 9] | < E[|(y = v)iel | 9] < Pr{- | 9]

Therefore,
|E[y — v | 0]| > Pr[&|0]a — Pr[=€ | 0].

Taking expectations over ¢, we have
cECE,(Dy) = E[|E[y — v | ?]|] > Pr[€]a — Pr[=€&]. (28)
t

Whenever € does not occur, it must hold that [v — 9| > &, which can only hold when |n| > &.

Therefore, by plugging (27) into (28), we get
1 1

1
CECE,(D) > (1-=-)a—2>— -
(o) ( t2) 2 = 100tvInt

Theorem 5. If A is an e-cECE tester with n samples (Definition 5), for € € (0, %), then

1
=0 —Fs—|.
n <€2_5 1n0.25(3:>>
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Proof. Without loss of generality, assume that ¢ < 1073, Let ¢t > 3 be the largest integer satisfying
1 _ 1

e < TOINETA We choose o = e

By Lemma 26, we have cECE(Dy) > ¢ for every 6 € {—1,1}!. By the guarantee of the tester, we

have

1
drv(D§", Eg[Dg"]) > 3
Combining this with Lemma 24, we get n = Q(a"2v/t) = Q(t*?Int), so the claim holds. O

5.2 Lower bound for (surrogate) interval CE

The interval calibration error was introduced in [BGHN23a| as a modified version of the popular
binned ECE to obtain a polynomial relationship to the lower distance to calibration (dCE). To give
an efficient estimation algorithm, [BGHN23a| considered a slight variant of the interval calibration
error, called the surrogate interval calibration error, which preserves the polynomial relationship.
Below we include the definition of the surrogate interval calibration error, and its polynomial rela-
tionship with dCE. We then establish our sample complexity lower bound (Theorem 6) for surrogate
interval CE by showing that every Dy has a large surrogate interval CE (Lemma 28).

Definition 10 ([BGHN23a|). For a distribution D over [0,1] x {0,1} and an interval width param-
eter w > 0, the random interval calibration error is defined to be

RintCE(D,w) :=E, | Y |Eqypl(y — v)i(w € L)) . (29)
JjEZ

where the outer expectation is over r drawn uniformly from [0,w) and I;f’j is the interval [r + je, v+
(j + 1)e). Note that although the summation is over j € Z, there are only finitely many j that
can contribute to the sum (which are the j that satisfy LN [0,1] # 0). The surrogate interval
calibration error is defined as follows:

SintCE(D) := _inf (RintCE(D, 27k) 4 2*’“).
€L>0

Lemma 27 (Theorem 6.11, [BGHN23a|). For any distribution D over [0,1] x {0,1}, it holds that

dCE(D) < SintCE(D) < 6+/dCE(D

Lemma 28. Fort e N, let o = &

5. Then for every 6 € {—1,1}', it holds that SintCE(Dy) > > L

3t

Proof. 1t suffices to prove that RintCE(Dg, w) > % whenever w < é, where we recall the definition
(29). Fix some r € [0, 1]. Every u; belongs to the interval I, for a unique j; € Z. Since the interval
width w is smaller than the gap between u; and u; for distinct 7,4, we have j; # ji. Therefore,

Z ’[E(u,y)ND[(y ) v E Iw ’ > Z \[E v,y) ~D )|](U c [1}0]1)”
jez 1€(t]
- Z |E(o)~p[(y — 0)I(v = )]
1€[t]
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= Z Pr{v = w]E[y — v|v = u]

Plugging this into (29), we get RintCE(Dg, w) > +. O

Theorem 6. If A is an e-SintCE tester with n samples (Definition 5), for € € (0,1), then

1

Proof. Choose t > 1 to be the largest integer satisfying é > ¢, and choose o = % By Lemma 28,
SintCE(Dy) > ¢ for every 8 € {—1,1}'. By the guarantee of the tester, we have

drv(Dy", Eo[Dg™]) >

Combining this with Lemma 24, we get n = Q(a~2v/t) = Q(e729). O

6 Experiments

In this section, we present experiments on synthetic data and CIFAR-100 supporting our argument
that dCE and smCE are reliable measures of calibration for use in defining a testing problem. We
then evaluate our custom algorithms from Section 3, showing promising results on their runtimes
outperforming standard packages for linear programming and minimum-cost flow.

Synthetic dataset. In our first experiment, we considered the ability of e-d-testers (Definition 5)
to detect the miscalibration of a synthetic dataset, for various levels of € € {0.01, 0.03,0.05,0.07,0.1},
and various choices of d € {smCE,dCE, ConvECE}.!° The synthetic dataset we used is n indepen-
dent draws from D, where a draw (v,y) ~ D first draws v ~yyir. [0,1 — &*], and y ~ Bern(v + £*),
for e* := 0.01.'' Note that dCE(D) = £* = 0.01, by the proof in Lemma 13. In Table 1, where the
columns index n (the number of samples), for each choice of d we report the smallest value of € such
that a majority of 100 runs of an e-d-tester report “yes.” For d = ConvECE, we implemented our
tester by running code in [BN23| to compute ConvECE and thresholding at 5. For d € {smCE, dCE},
we used the standard linear program solver from CVXPY [DB16, AVDB18] and again thresholded
at 5. We remark that the CVXPY solver, when run on the dCE linear program, fails to produce
stable results for n > 29 due to the size of the constraint matrix. As seen from Table 1, both smCE
and dCE testers are more reliable estimators of the ground truth calibration error ¢* than ConvECE.

In Figure 3, we plot the median error with error bars for each calibration measure, where the x axis
denotes log,(n — 1), and results are reported over 100 runs.

"We implemented ConvECE using code from [BN23], which automatically conducts a parameter search for .
"This is a slight variation on the synthetic dataset used in [BGHN23a].
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n 2641 2741 2841 2941 210471 2l
smCE 0.07 005 0.03 0.03 0.01 0.01
dCE 0.03 001 0.01
cECE 0.1 0.1 0.07  0.07 0.05 0.03
Ground Truth | 0.01 0.01  0.01 0.01 0.01 0.01

Table 1: Calibration testing thresholds (smallest passed on half of 100 runs).
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Figure 3: The 25% quantile, median, and 75% quantile (over 100 runs) for smCE, dCE and cECE
respectively. The z-axis is for dataset with size 2* + 1.

Postprocessed neural networks. In [GPSW17|, which observed modern deep neural networks
may be very miscalibrated, various strategies were proposed for postprocessing network predictions
to calibrate them. We evaluate two of these strategies using our testing algorithms. We trained
a DenseNet40 model [HLvdMW17| on the CIFAR-100 dataset |Kri09|, producing a distribution
Drase, Where a draw (v, y) ~ Dpase selects a random example from the test dataset, sets y to be its
label, and v to be the prediction of the neural network. We also learned calibrating postprocessing
functions fiso and fiemp from the training dataset, the former via isotonic regression and the latter
via temperature scaling. These induce (ideally, calibrated) distributions Diso, Diemp, Where a draw
from Dis, samples (v,y) ~ Dpase and returns (fiso(v),y), and Diemp is defined analogously. The
neural network and postprocessing functions were all trained by adapting code from [GPSW17].

We computed the median smooth calibration error of 20 runs of the following experiment. In
each run, for each D € {Dpase; Piso, Dtemp }, We drew 256 random examples from D, and computed
the average smooth calibration error smCE of the empirical dataset using a linear program solver
from CVXPY. We report our findings in Table 2. We also compared computing smCE using the
CVXPY solver and a commercial minimum-cost flow solver from Gurobi Optimization [Opt23] (on
the objective from Lemma 3) in this setting. The absolute difference between outputs is smaller than
1079 in all cases, verifying that minimum-cost flow solvers accurately measure smooth calibration.

Qualitatively, our results (based on smCE) agree with findings in [GPSW17| (based on binned vari-
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D Dbase Diso Dtemp
Empirical smCE | 0.2269 0.2150 0.1542

Table 2: Empirical smCE on postprocessed DenseNet40 predictions (median over 20 runs)

n 210 211 212 213 214 215

CVXPY LP solver 0.105 0.370 1.58 6.51  45.7 245

Gurobi minimum-cost flow solver | 0.063 0.179 0.238 0.539 1.45 3.19
Solver from Corollary 1 0.177 0.389 0.899 2.01 4.66 10.6
Solver from Corollary 1 with PyPy | 0.079 0.115 0.176 0.307 0.621 2.05

Table 3: Runtimes (in seconds) for computing the value of (3), using various solvers

ants of ECE), in that temperature scaling appears to be the most effective postprocessing technique.

smCE tester. Finally, we evaluated the efficiency of our proposed approaches to computing the
empirical smooth calibration. Specifically, we measure the runtime of four solvers for computing
the value (3): a linear program solver from CVXPY, a commercial minimum-cost flow solver from
Gurobi Optimization, a naive implementation of our algorithm from Corollary 1 using Python, and
a slightly-optimized implementation of said algorithm using the PyPy package [PyP19].

We use the same experimental setup as in Table 1, i.e. measuring calibration of a uniform predictor
on a miscalibrated synthetic dataset, with e* = 0.01.'2 In Table 3, we report the average runtimes
for each trial (across 10 runs), varying the sample size. Again, the absolute difference between
the outputs of all methods is negligible (at most 10~ in all cases). As seen in Table 3, our
custom algorithm (optimized with PyPy) outperforms standard packages from CVXPY and Gurobi
Optimization starting from moderate sample sizes. We believe that Table 3 demonstrates that our
new algorithms are a scalable, reliable way of testing calibration, and that these performance gains
may be significantly improvable by further optimizing our code.
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12WWe found similar runtime trends when using our algorithms to test calibration on the postprocessed neural
network dataset, but the runtime gains were not as drastic as the sample size n = 2 was smaller in that case.
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