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Abstract

In this paper, we focus on simple bilevel optimization problems, where we minimize a con-
vex smooth objective function over the optimal solution set of another convex smooth con-
strained optimization problem. We present a novel bilevel optimization method that locally
approximates the solution set of the lower-level problem using a cutting plane approach and
employs an accelerated gradient-based update to reduce the upper-level objective function over
the approximated solution set. We measure the performance of our method in terms of sub-
optimality and infeasibility errors and provide non-asymptotic convergence guarantees for both
error criteria. Specifically, when the feasible set is compact, we show that our method re-
quires at most O(max{1/,/€f,1/e,}) iterations to find a solution that is €s-suboptimal and
eg-infeasible. Moreover, under the additional assumption that the lower-level objective satis-
fies the r-th Holderian error bound, we show that our method achieves an iteration complexity

_2re1 _2rd
of O(max{e, * ,e4 > }), which matches the optimal complexity of single-level convex con-
strained optimization when r = 1.
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1 Introduction

In this paper, we investigate a class of bilevel optimization problems known as simple bilevel
optimization, in which we aim to minimize an upper-level objective function over the solution set of a
corresponding lower-level problem. Recently this class of problems has gained great attention due to
their board applications in continual learning [BMK20], hyper-parameter optimization [FFSGP18;
SCHB19], meta-learning [RFKL19; BHTV18], and over-parameterized machine learning [JAMH23;
CJAYM24; SBY23|. Specifically, we focus on the following bilevel optimization problem:

min f(x) s.t. x € argmin g(z), (1)

x€R™ zEZ
where Z is a convex set and f,¢g : R” — R are convex and continuously differentiable functions
on an open set containing Z. We assume that the lower-level objective function ¢ is convex but
may not be strongly convex. Hence, the lower-level problem may have multiple optimal solutions.
Throughout the paper, we will use x* to denote an optimal solution of problem (1). Further, we
define f* £ f(x*) and g* £ g(x*), which represent the optimal value of problem (1) and the optimal
value of the lower-level objective g, respectively. This class of problems is often referred to as the
“simple bilevel problem” in the literature [DDD10; DP20; SVZ21] to distinguish it from general
settings where the lower-level problem is parameterized by some upper-level variables.

The main challenge in solving problem (1) arises from the fact that the feasible set, i.e., the optimal
solution set of the lower-level problem, lacks a simple characterization and is not explicitly provided.
Consequently, direct application of projection-based or projection-free methods is infeasible, as
projecting onto or solving a linear minimization problem over such an implicitly defined feasible set
is intractable. Instead, our approach begins by constructing an approximation set that possesses
specific properties, serving as a surrogate for the true feasible set of the bilevel problem. In Section 3,
we delve into the details of how such a set is constructed. By using this technique and building
upon the idea of the projected accelerated gradient method, we establish the best-known complexity
bounds for solving problem (1).

To provide a clearer context for our results, note that the best-known complexity bound for achiev-
ing an e-accurate solution in single-level convex constrained optimization problems is O(e=%-%); as
demonstrated in [BT09]. This bound is optimal and was achieved using the accelerated proximal
method or FISTA (Fast Iterative Shrinkage-Thresholding Algorithm), which plays a canonical role
in the development of our algorithm as well.

While the literature on bilevel optimization is not as extensive as that for single-level optimization,
there have been recent non-asymptotic results for solving this class of problems, which we summa-
rize in Table 1. Specifically, these results aim to establish convergence rates on the infeasibility
gap g(x) — ¢* and the suboptimality gap f(xp) — f* after k iterations. Kaushik and Yousefian
[KY21] demonstrated that an iterative regularization-based method achieves a convergence rate
of O(1/k%>?) in terms of suboptimality and a rate of O(1/k®) in terms of infeasibility, where
b € (0,0.5) is a user-defined parameter. Therefore, if we set b = 0.25 to balance these two rates, it
would require an iteration complexity of O(max{1/ e;%, 1/€3}) to find a solution that is ef-optimal
and e -infeasible. Later, the Bi-Sub-Gradient (Bi-SG) algorithm was proposed by Merchav and
Sabach [MS23] to address convex simple bilevel optimization problems with nonsmooth upper-
level objective functions. They showed convergence rates of O(1/k'~%) and O(1/k%) in terms
of suboptimality and infeasibility, respectively, where o € (0.5,1) serves as a hyper-parameter.
This implies that if we balance the rates by setting @ = 0.5, the iteration complexity of Bi-SG
is O(max{1/ e?p, 1/ eg}). Additionally, Shen, Ho-Nguyen, and Kilin¢-Karzan [SHK23| introduced a
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Table 1: Non-asymptotic results on simple bilevel optimization. ((I): with a first-order Holderian
error bound assumption on g; (1): with an rth-order (r > 1) Hoélderian error bound assumption
on g; A): with an additional assumption implying that the projection onto the sublevel set of f is
easy to compute.)

References Upper level Lower level Convergence
Objective f Objective g Feasible set Z  Upper level Lower level
a-IRG [KY21] Convex, Lipschitz Convex, Lipschitz Closed o(1/ 6;%) o1/ 63)
Bi-SG [MS23] Convex, Nonsmooth Convex, Composite Closed O(l/e}%‘*) O(l/egi),a € (0.5,1)
SEA [SHK23| Convex Convex, Smooth Compact (’)(1/6;) O(l/eﬁ)
CG-BiO [JAMH23] Convex, Smooth Convex, Smooth Compact O(1/ey) O(1/ey)
R-APM [SBY23| Convex, Smooth Convex, Composite Closed O(1/ey) O(1/eq)
AGM-BiO (Ours) Convex, Smooth Convex, Smooth Compact o(1 /e(}'s) O(1/eq)
R-APM (D) [SBY23] Convex, Smooth Convex, Composite Closed 0(1/6(}'5) 0(1/62'5)
Bisec-BiO @) [WSJ24]  Convex, Composite Convex, Composite Closed O(max{1 /6?{5, 1/e9°})
AGM-BiO D (Ours) Convex, Smooth Convex, Smooth Closed O(l/e(}ﬁ) @(1/62‘5)
PB-APG (1) [CSJW24]  Convex, Composite Convex, Composite Compact O(l/e(}“r”) +O(1/e5°
AGM-BiO () (Ours) Convex, Smooth Convex, Smooth Closed (’5(1/5;7‘2%1) @(1/6;2:1)

structure-exploiting method and presented an iteration complexity of O(max{1/ e%, 1/ eg}) for it,
when the upper-level objective is convex and the lower-level objective is convex and smooth. Note
that imposing additional assumptions on the upper-level function, such as smoothness or strong
convexity, does not result in faster rates for their method.

Recently, [JAMH23] presented a projection-free conditional gradient method (CG-BiO) that uses
a cutting plane to approximate the solution set of the lower-level problem. Assuming both upper-
and lower-level objective functions are convex and smooth, CG-BiO achieves a complexity of
O(max{1/ef,1/e4}). Since the suboptimality gap f(%) — f* may be negative for an infeasible
point X, a more desirable metric is the absolute suboptimality gap |f(x) — f*|. To ensure this,
[JAMH23| introduced the Holderian error bound condition on g. Specifically, under the r-th order
Holderian error bound condition, CG-BiO finds a solution x with | f(%x)— f*| < ef and g(%x)—g* < ¢,
after O(max{1/€},1/e,}) iterations. More recently, [SBY23] introduced the regularized proximal
accelerated method (R-APM), which runs the proximal accelerated gradient method on a weighted
sum of the upper- and lower-level objective functions. Assuming both functions are convex and
smooth, they established a complexity bound of O(max{1/es,1/€e,}) to find an (ey,e,) solution.
This bound is worse than the O(max{1/,/€s,1/¢;}) complexity achieved by our proposed AGM-
BiO method, assuming the feasible set Z is compact. Additionally, [SBY23] showed that when the
lower-level objective function g satisfies the weak sharpness property (equivalent to the Holderian
error bound condition with » = 1), R-APM finds an (ey,¢€4)-absolute optimal solution after at
most O(max{1/,/€f,1/,/€;}) iterations. This result is comparable to our convergence result for
AGM-BiO, which considers a more general Holderian error bound condition.

Contribution. In this paper, we present a novel accelerated gradient-based bilevel optimization
method with state-of-the-art non-asymptotic guarantees in terms of both suboptimality and in-
feasibility. At each iteration, our proposed AGM-BiO method uses a cutting plane to linearly
approximate the solution set of the lower-level problem, and then runs a variant of the projected
accelerated gradient update on the upper-level objective function. Next, we summarize our theo-



retical guarantees for the AGM-BiO method:

e When the feasible set Z is compact, we show that AGM-BiO finds %X that satisfies f(x)— f* <
er and g(X) — g* < €, within O(max{1/,/€f,1/ey}) iterations, where f* is the optimal value
of problem (1) and ¢g* is the optimal value of the lower-level problem.

e With an additional r-th-order (r > 1) Holderian error bound assumption on the lower-
level problem, AGM-BiO finds x satisfying f(x) — f* < €5 and g(x) — g* < ¢, within
2r—1  _2r—1
> .eg " })iterations. Moreover, it achieves the stronger guarantee that |f(x)—
2r—1 2r—1

[*| <€ and g(x) — g* < €4 within O(maX{E;T,e;T}) iterations.

O(max{e;

These bounds all achieve the best-known complexity bounds in terms of both suboptimality and
infeasibility guarantees for the considered settings. All the non-asymptotic results are summarized
and compared in Table 1.

Discussions on two concurrent works. The authors in [WSJ24] proposed a bisection algorithm
with a total operation complexity of @(max{e;o"r’, 6;0'5}) to find an (ey, €4)-optimal solution, assum-
ing the upper-level objective f meets specific criteria. Specifically, Assumption 1(iv) in [WSJ24]
implies the ability to compute the projection onto the sublevel set of the upper-level function
f. However, this assumption may not hold for general functions, such as the mean squared loss
function in our over-parameterized regression example in Section 5. In [CSJW24], the authors
introduced the penalty-based accelerated proximal gradient method (PB-APG) for solving sim-
ple bilevel optimization problems with the r-th order Holderian error bound assumption on the
lower-level objective g. Their algorithm, similar to [SBY23], runs the accelerated proximal gradient
method on a Weight0e5d sum of the upper and lower-level objective functions. PB-APG achieves a
—Vu.or

complexity of O(e; ") + O(e, %) to find an (ef, €5)-optimal solution. The term O(l/e?yw) can

become significantly large as the order of the Holderian error bound r increases. In contrast, our
2r—1 2r—1

algorithm, AGM-BiO, avoids this issue, requiring at most (’j(max{e;T,e;T}) iterations to
achieve an (e f,eg)-optimiml solution. Therefore, regardless of how large r is, the worst-case com-
plexity for AGM-BiO is (’)(max{e;l, e;l ). Thus, our method achieves a better rate than PB-APG
when r > 1.

Additional related work. Previous work has explored “asymptotic” results for simple bilevel
problems, dating back to Tikhonov-type regularization introduced in [TA77]. In this approach, the
objectives of both levels are combined into a single-level problem using a regularization parameter
o > 0 and as 0 — 0 the solutions of the regularized single-level problem approaches a solution to
the bilevel problem in (1). Further, Solodov [Sol07a] proposed the explicit descent method that
solves problem (1) when upper and lower-level functions are smooth and convex. This result was
further extended to a non-smooth setting in [Sol07b]. The results in both [Sol07a] and [Sol07b] only
indicated that both upper and lower-level objective functions converge asymptotically. Moreover,
Helou and Simoes [HS17] proposed the e-subgradient method to solve simple bilevel problems and
showed its asymptotic convergence. Specifically, they assumed the upper-level objective function
to be convex and utilized two different algorithms, namely, the Fast Iterative Bilevel Algorithm
(FIBA) and Incremental Iterative Bilevel Algorithm (IIBA), that consider smooth and non-smooth
lower-level objective functions, respectively.

Some studies have only established non-asymptotic convergence rates for the lower-level problem.
One of the pioneering methods in this category is the minimal norm gradient (MNG) method, in-
troduced by Beck and Sabach [BS14]. This method assumes that the upper-level objective function
is smooth and strongly convex, while the lower-level objective function is smooth and convex. The



authors showed that the lower-level objective function reaches an iteration complexity of O(1/e?).
Subsequently, the Bilevel Gradient SAM (BiS-SAM) method was introduced by Sabach and Shtern
[SS17], and it was proven to achieve a complexity of O(1/¢) for the lower-level problem. A similar
rate of convergence was also attained in [Mall7].

2 Preliminaries

In this section, we state the necessary assumptions and introduce the notions of optimality that we
use in the paper.

2.1 Assumptions and Definitions

We focus on the case where both the upper and lower-level functions f and g are convex and smooth.
Formally, we make the following assumptions.

Assumption 2.1. Let || - || be an arbitrary norm on R? and || - ||. be its dual norm. We assume
these conditions hold:

(i) Z C R is convex and compact with diameter D, i.e., |[x —y|| < D for all x,y € Z.

(ii) g is convex and continuously differentiable on an open set containing Z, and its gradient is
Lgy-Lipschitz, i.e., |[Vg(x) — Vg(y)|l« < Lgl|x —y|| for all x,y € Z.

(iit) f is convex and continuously differentiable and its gradient is Lipschitz with constant Ly.

In this paper, we denote the optimal value and the optimal solution set of the lower-level problem
as ¢g* £ mingcz g(z) and Xy £ argmin,, z g(z), respectively. By Assumption 2.1, the set Xy
is nonempty, compact, and convex, but in general, not a singleton since g could have multiple
optimal solutions on Z, as ¢ is only convex but not strongly convex. Moreover, we use f* to denote
the optimal value and x* to denote an optimal solution of problem (1).

Note that in the simple bilevel problem, the suboptimality of a solution X is measured by the
difference f(x) — f*. Similarly, its infeasibility is indicated by g(X) — g*. Since it is necessary to
control both of these error terms to ensure minimal suboptimality and infeasibility, we formally
define an (ey, €5)-optimal solution as follows.

Definition 2.1. ((ef,¢y)-optimal solution). A point X € Z is (ef,€q4)-optimal for problem (1) if
f(X) = f* <ep and g(%) —g* < ¢,.

This definition is commonly used in simple bilevel optimization literature [JAMH23; MS23; CJAYM24;
SBY23]. Due to the special structure of bilevel optimization, it is not guaranteed that f(x) — f*
will always be positive. To address this, we propose the following definition, utilizing |f(x) — f*|
as the absolute optimal criterion.

Definition 2.2. ((ef,¢€4)-absolute optimal solution). A point x € Z is (ef,€4)-absolute optimal for
problem (1) if |f(X) — f*| < €r and [g(%x) — g*| < €.



3 Algorithm

Before presenting our method, we first introduce a conceptual accelerated gradient method for
solving the simple bilevel problem in (1). The first step is to recast it as a constrained optimization
problem:
min f(x) st x€ X, (2)
xER™
where X7 £ argmin,.z g(z) denotes the solution set of the lower-level objective. Thus, conceptu-
ally, we can apply Nesterov’s accelerated gradient method (AGM) to obtain a rate of O(1/k?) on
the upper-level objective f. Several variants of AGM have been proposed in the literature; see, e.g.,
[dST+21]. In this paper, we consider a variant proposed in [Tse08]. It involves three intertwined
sequences of iterates {x}r>0, {¥k}£>0, {2k }x>0 and the scalar variables {a}r>0 and {Ag}r>0. In
the first step, we compute the auxiliary iterate y; by

Ak Qg
= X + Zj - 3
Yk Ak+ak k Ak+ak k ()
Then in the second step, we update zx1 by
zp+1 = ay (21, — apV f (yi)), (4)

where HX;(-) denotes the Euclidean projection onto the set X;. Finally, in the third step, we
compute Xp1 and Agiq
Ay ag

X + Z 5
A+ ay, K Ap + ayg k1 ()

Xk+1 =

and
Ak+1 = Ay + ay, (6)

It can be shown that if the stepsize is selected as ay = ]ZTJF;, then the suboptimality gap f(xx)— f(x*)

of the iterates generated by the method above converges to zero at the optimal rate of O(1/k?). In
this case, indeed all the iterates are feasible as it is possible to project onto the set X;;. However, the
conceptual method above is not directly implementable for the simple bilevel problem considered
in this paper, as the constraint set X is not explicitly given. As a result projection onto the set
X, is not computationally tractable.

To address this issue, our key idea involves replacing the implicit set X7 in (4) with another set, X,
which can be explicitly characterized. This approach makes it feasible to perform the Euclidean
projection onto Xj. Additionally, X} must possess another important property: it should encompass
the optimal solution set X

Inspired by the cutting plane approach in [JAMH23], we let the set X} be the intersection of Z
and a halfspace:

X 2{z € Z:g(yr) + (Valyr),z — yi) < gi}- (7)

Here, the auxiliary sequence {gi}r>0 should be selected such that g > ¢* and g — ¢*. One
straightforward way to generate this sequence is by applying an accelerated projected gradient
method to the lower-level objective g separately. The loss function of the iterates generated by this
algorithm can be considered as {gi} for the above halfspace. Note that in this case, it is known
that i

Oggk_g* < 2L9”X0_x ”

<= ko (8)



Algorithm 1 Accelerated Gradient Method for Bilevel Optimization (AGM-BiO)

1: Input: A sequence {gk}szo, a scalar v € (0, 1]
2: Imitialization: Ay =0, xg = zg € R"
3: for k=0,...,K do
E+1
4:  Set =y—
et ap=v 17,
A ar
Xi +
Ap+a " At a

6: Compute zjy1 = Iy, (21 — arV f(yr)), where

5. Compute yp = ZJ;

Xy = {z € Z: g(yr) +(Vy(yr) 2z — yr) < g}
B Ak ag
Xi+1 = A, +aka + A, +akzk+1
8:  Update Agy1 = A + ag
9: end for
10: Return: xg

7. Compute

Hence, the above requirements on the sequence {g;} are satisfied. Two remarks on the set X} are
in order. First, the set X} in (7) has an explicit form, and thus computing the Euclidean projection
onto X} is tractable. It also can be verified that the set X} always contains the lower-level problem
solution set X. To prove this, let x* be any point in X;. By using the convexity of g, we obtain
that g(yx) + (Va(yr), X* —yi) < g(x*) = ¢* < gr. Thus x* indeed satisfies both constraints in (7)
and we obtain that x* € Xj,.

Now that we have identified an appropriate replacement for the set Xy, we can easily implement
a variant of the projected accelerated gradient method for the bilevel problem using the surrogate
set Ak. We refer to our method as the Accelerated Gradient Method for Bilevel Optimization
(AGM-BiO) and its steps are outlined in Algorithm 1. It is important to note that the iterates,
when projected onto the set Xy, may not belong to the set X, as X} is an approximation of the
true solution set. Consequently, the iterates might be infeasible. However, the design of X}, allows
us to control the infeasibility of the iterates, as we will demonstrate in the convergence analysis

section.

Remark 3.1. The design of the halfspace as specified in (7) should be recognized as a nuanced
task. Various alternative formulations of halfspaces could fulfill the same primary conditions, such
as {z € R%: g(xp) +(Vg(xx),z2 — xi) < gr} and {z € R?: g(zp) + (Vg(z1), 2 — z1,) < gr}. However,
the selection of the gradient at y for constructing the halfspace is not arbitrary but essential as we
characterize in the convergence analysis of our method.

Remark 3.2. While our paper focuses on the smooth setting, our algorithm can be extended to
the composite setting with an additional assumption and some proof modifications. Due to limited
space, please refer to Section B in the Appendix for more details.

4 Convergence Analysis

In this section, we analyze the convergence rate and iteration complexity of our proposed AGM-BiO
method for convex simple bilevel optimization problems. We choose the stepsize a, = (k+1)/(4Ly),



which is inspired from our theoretical analysis. The main theorem is as follows,

Theorem 4.1. Suppose Assumption 2.1 holds. Let {xj}i>0 be the sequence of iterates generated
by Algorithm 1 with stepsize a, = (k4 1)/(4Ly) for k > 0 and suppose the sequence gy, used for
generating the cutting plane satisfies (8). Then, for any k > 0 we have,

(i) The function suboptimality is bounded above by
ALy ||xo — x*||?

foa) = fx) < HEET

(9)

(ii) The infeasibility term is bounded above by
4Lg4llx0 — x*||*(Ink +1) 2L,D?

— )< 10
(iii) Furthermore, if the condition f(xy) > f(x*) holds, then the infeasibility term is bounded above
by
N 8Ly|Ixo — x*|?(Ink + 1
olo0) — o) < Ll XTEL D (1)

k(k+ 1)

Theorem 4.1 shows the upper-level objective function gap is upper bounded by O(1/k?), which
matches the convergence rate of the accelerated gradient method for single-level optimization prob-
lems. On the other hand, the suboptimality of the lower-level objective which measures infeasibility
for the bilevel problem in the worst case is bounded above by O(1/k). In cases where the f(xx) > f*
this upper bound could be even improved to O(1/k?). As a corollary of the worst-case bounds,
Algorithm 1 will return an (ef, €5)-optimal solution after at most the following number of itera-

tions O (max{\/%, %}) We should emphasize that, under the assumptions being considered,
this complexity bound represents the best-known bound among all previous works summarized in
Table 1. It is worth noting that concurrent work by [SBY23] achieves O(max{%, é ) under similar
assumptions. They can only improve their complexity bound with the additional assumption that

g satisfies the weak sharpness condition.

Remark 4.1 (The necessity of compactness of Z). For the lower-level objective, we show that
Arlg(xr) = 9(x)) < X725 ailgi — 9°) + 475 g Iz — zl® ((33) in Section 4). The main
challenge in obtaining an accelerated rate of O(1/k?) for g is controlling Z?:_ol |zit1—2|*. Without
a lower bound on f, this term cannot be bounded by the upper-level suboptimality alone. If f(xg) >

f(x*), we can achieve the rate of O(1/k?) for g. Otherwise, we use the compactness of Z to achieve
O(1/k) for g. Please refer to Section 4 for more details.

Remark 4.2 (Removable log terms). The log terms in all the complexity results can be removed by
choosing the auxiliary sequence g = gi for all 0 < k < K, which satisfies the condition (8). This
eliminates the log term in (33) and all subsequent results. However, this choice of {gi}r>0 requires
predetermining the total number of iterations K.

Since the algorithm’s output X may fall outside the feasible set A7y, the expression f(x) — f* may
not necessarily be non-negative. On the other hand, under the considered assumptions, proving
convergence in terms of |f(x) — f*| is known to be impossible due to a negative result presented
by [CXZ23]. Specifically, for any first-order method and a given number of iterations k, they
demonstrated the existence of an instance of Problem (1) where |f(xx) — f*| > 1 for all & > 0.
Thus, to provide any form of guarantee in terms of the absolute value of the suboptimality, i.e.,
|f (%) — f*|, we need an additional assumption to obtain a lower bound on suboptimality and to
provide a convergence bound for |f(x) — f*|. We will address this point in the following section.



4.1 Convergence under Holderian Error Bound

In this section, we introduce an additional regularity condition on ¢ to establish a lower bound for
f(x) — f*. Formally, we assume that the lower-level objective function, g, satisfies the Holderian
Error Bound condition. This condition governs how the objective value g(x) grows as the point x
moves away from the optimal solution set X, . Intuitively, since our method’s output x is €g-optimal
for the lower-level problem, it should be close to the optimal solution set X7 when this regularity
condition on g is met. Consequently, we can utilize this proximity to establish a lower bound for
f(x) — f* by leveraging the smoothness property of f.
Assumption 4.1. The function g satisfies the Holderian error bound for some o > 0 and r > 1,
i.€,

= dist (x, &))" < g(x) —g", Vx€Z, (12)

where dist (x, X;) = infyrexs [[x — x|

We note that the Holderian error bound condition in (12) is well-studied in the optimization lit-
erature [Pan97; BNPS17; Rd17]| and is known to hold in general when function g is analytic and
the set Z is bounded [LP94]. There are two important special cases of the Holderian error bound
condition: 1) g satisfies (12) with » = 1 known as the weak sharpness condition [BF93; BDO05]; 2)
g satisfies (12) with » = 2 known as the quadratic functional growth condition [DL18].

By using the Holderian error bound condition, Jiang, Abolfazli, Mokhtari, and Hamedani [JAMH23|
established a stronger relation between suboptimality and infeasibility, as shown in the following
proposition.

Proposition 4.2 ([JAMH23, Proposition 1]). Assume that f is conver and g satisfies Assump-
VF(x)|l«. Then it holds that f(X) — f* > —M(H2E=9Dy5 for

tion 4.1, and define M = MaXxe xr
any X € Z.

Hence, under Assumption 4.1, Proposition 4.2 shows that the suboptimality f(x) — f* can also be
bounded from below when % is an approximate solution of the lower-level problem. As a result, we
can establish a convergence bound on |f(x;) — f*| by combining Proposition 4.2 with the upper
bounds in Theorem 4.1. Moreover, it also allows us to improve the convergence rate for the lower-
level problem. To prove this claim, we first introduce the following lemma which establishes an
upper bound on the weighted sum of upper and lower-level objectives.

Lemma 4.3. Suppose conditions (ii) and (iii) in Assumption 2.1 hold. Let {xy} be the sequence
of iterates generated by Algorithm 1 with stepsize a, = y(k+1)/(4Ly), where 0 <~ < 1. Moreover,
suppose the sequence gi used for generating the cutting plane satisfies satisfies (8). Then, for any

Az(z/ﬁigl)handkEOweh(we

ALgllxo — x*|2(Ink +1)  4ALs|xo — x*|?
k(k+ 1) vk(k + 1)

A (xx) = F(X)) + 9(xx) — 9(x7) < (13)

This result characterizes and upper bound of O(1/k?) on the expression A\(f(xy) — f(x*)) + g(xx) —
g(x*). That said, the first term in this expression, a.k.a., A(f(xx) — f(x*)) may not be non-negative
for a bilevel problem as discussed earlier. Hence, we cannot simply eliminate A(f(xx) — f(x*)) to
show an upper bound of O(1/k?) on infeasibility, a.k.a., g(xz) — g(x*). Instead, we leverage the
Holderian error bound on g and apply Proposition 4.2 to the first term. As a result, we can eliminate
the dependence on f in (13). In this case, we can establish an upper bound on infeasibility.



Theorem 4.4. Suppose conditions (ii) and (iii) in Assumption 2.1 hold and the lower-level function

g satisfies the Holderian error bound with r>1. Let {xy} be the iterates generated by Algorithm 1
2r—2

with stepsize aj, = yij{; , where v = 1/(%Tm +2) and T is the total number of iterations that we

run the algorithm. Moreover, suppose the sequence g used for generating the cutting planelsatisﬁes

(8). If we define the constants Cy = 8Ly||xo — x*||?, Cy £ 12Lg||x0 — x*||* and C £ M (L)~ , where

M £ MaXxe vy IVf(x)|l, @ and r are the parameters in Assumption 4.1, then the following results

hold:

(i) The function suboptimality is bounded above by

N Cg (ln T+ 1) Cf
f(XT)—f(X)§W+ﬁ (14)
(ii) The function suboptimality is bounded below by
1 1

fxr) — f(xF) Z—C’max{(2cg(ln€+1)) 4 (2CJ;) - (2C)2ﬁ}
T2r—1 T+ Tt

(iii) The infeasibility term is bounded above by

2C,(InT + 1) 2QfQCV%} 15)

_ *) <
g(XT) g(X ) = max{ T2r/(2r—1) + T2’ Tzf%l

Before unfolding this result, we would like to highlight that unlike the result in Theorem 4.1, the
above bounds in Theorem 4.4 do not require the feasible set to be compact. Since r» > 1, the first

result shows f(x7) — f(x*) has an upper bound of O((# )2f2 1) and the second result guarantees a

lower bound of —O((% )2T 7). These two bounds together lead to an upper bound of O((+ )2r2 1) for
the absolute error |f (XT) f(x*)|. Moreover, the third result implies that the lower-level problem

suboptimality which measures infeasibility is bounded above by O((# )2T2 ).

The previous result presented in Theorem 4.4 is applicable when r» > 1. However, for the case that
1st-order Holderian error bound condition on ¢ holds (i.e., weak sharpness condition), we require
a distinct analysis and a different choice of « to achieve the tightest bounds. In the subsequent
theorem, we present our findings for this specific scenario.

Theorem 4.5. Suppose conditions (ii) and (iii) in Assumption 2.1 are met and that the lower-
level objective function g satisfies the Holderian error bound with r = 1. Let {x}} be the sequence
of iterates generated by Algorithm 1 with stepsize aj, = VIZZ;, where 0 < v < min{ 2MLa€rJ:fo 1}.
Moreover, suppose the sequence gy used for generating the cutting plane satisfies (8), and recall

M = maxxex; |Vf(x)| and o in Assumption j.1. If we define the constants Cy £ 4Ly||xo — x*||?
and Cy = 8Ly||xo — x*||?, then for any k > 0:
(i) The function suboptimality is bounded above by

Cy
_ NN <
(ii) The function suboptimality is bounded below by
. CoM(Ink +1 C
Flo) — ) > ~CoMnka D) G a7)

ak(k+1) Ak(k+1)
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Figure 1: Comparison of a-IRG, CG-BiO, Bi-SG, SEA, R-APM, PB-APG, and AGM-BiO for
solving the over-parameterized regression problem.

(iii) The infeasibility term is bounded above by

Cyk+1)  aCy
k(k+1)  yMk(k+1)

9(xk) —g(x*) < (18)

Theorem 4.5 shows that under the Holderian error bound with r = 1, also known as weak sharpness
condition, the absolute value of the function suboptimality | f(xx)— f(x*)| approaches zero at a rate
of O(1/k?) — ignoring the log term. The lower-level error g(xj) — g(x*), capturing the infeasibility
of the iterates, also approaches zero at a rate of O(1/k?). As a corollary, Algorithm 1 returns
an (ey, €g)-absolute optimal solution after (’)(max{\/le_f, \/15—9 ) iterations. This iteration complexity
matches the result in a concurrent work [SBY23| under similar assumptions.

5 Numerical Experiments

In this section, we evaluate our AGM-BiO method on two different bilevel problems using real
and synthetic datasets. We compare its runtime and iteration count with other methods, includ-
ing a-IRG [KY21], CG-BiO [JAMH23|, Bi-SG [MS23|, SEA [SHK23|, R-APM [SBY23|, PB-APG
[CSJW24], and Bisec-BiO [WSJ24].

Over-parameterized regression. We examine problem (1) where the lower-level problem corre-
sponds to training loss, and the upper-level pertains to validation loss. The objective is to minimize
the validation loss by selecting an optimal training loss solution. This method is also referred to
as lexicographic optimization [GL21]. A common example of that is the constrained regression
problem, where we aim to find an optimal parameter vector 8 € R? for the validation loss that
minimizes the loss /i, (3) over the training dataset Di,. To represent some prior knowledge, we
constrain B to be in some subset Z C R? e.g., Z = {B|f1 <--- < B4} in isotonic regression
and Z = {8 ||B||, < A} in L, constrained regression. Without explicit regularization, an over-
parameterized regression over the training dataset has multiple global minima, but not all these
optimal regression coefficients perform equally on validation or testing datasets. Thus, the upper-
level objective serves as a secondary criterion to ensure a smaller error on the validation dataset
Dyal- The problem can be cast as

min f(B) = lw1(B8) st. B € argmin g(z) £ 4, (2)
BeR4 z€EZ
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(a) Infeas. (n = 3) (b) Subopt. (n = 3) (c) Infeas. (n = 100) (d) Subopt. (n = 100)

Figure 2: Comparison of a-IRG, Bi-SG, SEA, R-APM, PB-APG, Bisec-BiO, and AGM-BiO for

solving the linear inverse problem.

In this case, both upper-level and lower-level objectives are convex and smooth if the loss /¢ is
smooth and convex. Since projections onto the sublevel set of f are difficult to compute, Bisec-BiO
is excluded from this experiment.

We apply the Wikipedia Math Essential dataset [Roz+21] which is composed of a data matrix
A € R™¥ with n = 1068 samples and d = 730 features and an output vector b € R". We use
75% of the dataset as the training set (A, by) and 25% as the validation set (Ayar, bya). For
both upper- and lower-level loss functions, we use the least squared loss. Then the lower-level
objective is g(8) = ||AsB — by, ||3, the upper-level objective is f(8) = 3||AyuB — byal3, and the
constraint set is chosen as the unit Lo-ball Z = {3 | ||3]|2 < 1}. Note that this regression problem
is over-parameterized since the number of features d is larger than the number of data points in
both the training set and validation set.

In Figures 1(a) and 1(c), we observe that the three accelerated gradient-based methods (R-APM,
PB-APG, and AGM-BiO) converge faster in reducing infeasibility, both in terms of runtime and
number of iterations. In terms of absolute suboptimality, shown in Figures 1(b) and 1(d), AGM-BiO
achieves the smallest absolute suboptimality gap among all algorithms. Unlike the infeasibility plots,
R-APM and PB-APG underperform compared to AGM-BiO. Note that the lower-level objective
in this problem does not satisfy the weak sharpness condition, so the regularization parameter 7
in R-APM is set as 1/(K + 1). Consequently, the suboptimality for R-APM converges slower than
AGM-BIiO0, as suggested by the theoretical results in Table 1.

Linear inverse problems. In the next experiment, we concentrate on a problem that fulfills
the Holderian Error Bound condition for some r > 1. We aim to evaluate the performance of our
method in this specific context and verify the validity of our theoretical results for this scenario.
Specifically, we focus on the so-called linear inverse problems, commonly used to evaluate convex
bilevel optimization algorithms, which originate from [SS17]. The goal of linear inverse problems
is to obtain a solution x € R™ to the system of linear equation Ax = b. Note that if A is rank-
deficient, there can be multiple solutions, or there might be no exact solution due to noise. To
address this issue, we chase a solution that has the smallest weighted norm with respect to some
positive definite matrix Q, i.e., [|x|lq := v/x"Qx. This problem can be also cast as the following
simple bilevel problem:

min f(x) £ Lxl st x € argming(z) £ LAz — b|3

x€R™ 2 zE€Z 2
For this class of problem, if Q, A, and b are generated randomly or by the “regularization tools”
like [SS17; SHK23], we are not able to obtain the exact optimal value f*. To the best of our
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knowledge, no existing solver could obtain the exact optimal value f* for this bilevel problem.
Specifically, the existing solvers either fail to solve this bilevel problem or return an inaccurate
solution by solving a relaxed version of the problem. Hence, in [SS17; SHK23] they only reported
the upper-level function value. However, in this paper, we intend to obtain the complexity bounds
for finding (ef, €4)-optimal and (ey, €4)-absolute optimal solutions. Without knowing f*, we can not
characterize the behavior of |f(xx) — f*|. Therefore, we choose an example where we can obtain
the exact solution. Specifically, we set Q = 1,,, A = 1; , b =1, and the constraint set Z = R’}.
In this case, the optimal solution x* = %ln and optimal value f* = % This specific example
essentially involves seeking the minimum norm for an under-determined system. Note that the
lower-level objective in this problem satisfies the Holderian Error Bound condition with order r = 2
[NNG19]. Hence, we do not need the constraint set Z to be compact as shown in Theorem 4.4. Due
to the unbounded nature of the constraint set, Frank-Wolfe-type methods are not viable options.

Consequently, we have opted not to incorporate CG-BiO in this experiment.

We explored examples with two distinct dimensions: n = 3 and n = 100, evaluating a total of 2000
gradients. In Figures 2(a) and 2(c), AGM-BiO shows superior performance in terms of infeasibility.
In Figures 2(b) and 2(d), we compare methods in terms of absolute error of suboptimality. The
gap between R-APM and AGM-BiO is smaller for n = 3, but for n = 100, AGM-BiO significantly
outperforms all other methods, including R-APM. Since the regularization and penalty parameters
in R-APM and PB-APG are fixed, they might get stuck at a certain accuracy level, as seen in
Figures 2(a) and 2(c). In contrast, AGM-BiO uses a dynamic framework for minimizing the upper
and lower-level functions, consistently reducing both suboptimality and infeasibility. Although
Bisec-BiO theoretically has the best complexity results due to the ease of projecting onto the
sublevel set of f, its performance in the last iteration is inconsistent, as shown in Figure 2.

6 Conclusion

In this paper, we introduced an accelerated gradient-based algorithm for solving a specific class of

bilevel optimization problems with convex objective functions in both the upper and lower levels.

Our proposed algorithm achieves a computational complexity of O(max{e}o"f’,e;l ). When an

additional weak sharpness condition is applied to the lower-level function g, the iteration complexity
—0.5

improves to @(max{e;0‘5,eg ), matching the well-known fastest convergence rate for single-

level convex optimization problems. We further extended this result to an iteration complexity of
2r—1 2r—1

(’j(max{e;T ,€g 2 }) when the lower-level loss satisfies the Holderian error bound assumption.
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Appendix

A Proof of the Main Results

A.1 Proof of Theorem 4.1

To prove Theorem 4.1, we start with the following general lemma that holds for any choice of the
step sizes {ag}.

Lemma A.1. Let {xy} be the sequence of iterates generated by Algorithm 1 with stepsize a > 0
for k > 0. Then we have

A (FOona1) = S0 + 3l =2 = (A Oxw) = S + 5l — x°[?)

19
< Lfa% . 1 ”Zk—i—l . ZkH2 ( )
T\ 2441 2
Apr1(9(Xpg1) — 9(x)) — Ar(9(xx) — 9(x*)) < ar(gr — g(x*)) + s lZre1 —zell”. (20)

Proof of Lemma A.1. Let x* be any optimal solution of (1). We first consider the upper-level
objective f. Since f is convex, we have

Fyr) = F() < (Vf(ye)ye —x), fye) = FxR) < (VF(Yr), yr — X% - (21)

Now given the update rule Ax.11 = Ay + ag, we can write

Apr(fyw) = F(x7)) = Ap(f(xi) — F(x7)) = an(f (i) — f(x7)) + Ap(f(ye) — f(xx)  (22)

Combining (21) and (22), we have

A1 (f(yr) — F(x) = Ap(f(xx) — (X)) < an((Vf(ye) yi — %)) + Ae((V F(YE), YE — X&)
= (Vf(yr): axyr + Au(yr — xx) — apx")

= Qg <vf(yk)7 Zp — X*> )
(23)
where the last equality follows from the definition of y,. Furthermore, since f is Ly-smooth, we
have

f(xky1) < fye) +(VF(YE), Xkt1 — yi) + %”Xlﬁ-l - YkH2~ (24)

If we multiply both sides of (24) by Ax11 and combine the resulting inequality with (23), we obtain

A1 (f(e1) = F(X7)) = A(f (%) = F(X7))

L;A
< a (VF(¥r) 2 = x7) + Apr (V)X = i) + =5 i — vl
. Lya} 25
= ap (Vf(yr), 2k — X°) + ar (Vf(yr), Zkt1 — 2x) + Z/{k kl |2kt — 2l? (25)
+

Lyaj,

2Ak+1

=a (Vf(yr), Zxet1 —X7) + |Zks1 — zal|%
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where we used the fact that ag(zxr1 — 2zr) = Akr1(Xk1 — yk) in the first equality. Moreover, since
x* € Zj, we obtain from the update rule in (4) that

(Zh41 — 2k + arV f(yr), X" — 241) > 0
< ap (VI(ye), zre1 — X) < (Zhg1 — 2, X" — Zpy1) (26)

1 L, 1 L, 1
& ap (VI(ye), 2o —x7) < =z — x| - §|!Zk+1 —x*|? - §|!Zk+1 — z|)*.

Combining (25) and (26) leads to

A (FO41) = F0) + gl =17 = (Au(F05) = 7)) + gl = 1P )
Lyaj 2
Ik g _

(52 1)l -,

which proves the claim in (19).

Next, we proceed to prove the claim in (20). To do so, we first leverage the convexity of g which
leads to

9(yr) — 9(xx) <(Vg(yr), y& — X) - (27)

Also, since g is Lg-smooth, we have

L
9(xk1) < g(ye) + (Vo) X1 = yr) + P lPxess = yill* (28)

By multiplying both sides of (27) and (28) by Ay and A1, respectively, and adding the resulted
inequalities we obtain

Apr1(9(xk+1) — 9(yk)) + Ak(9(yr) — 9(xx))
Ag11

L
< Aps1 (Vo(yn), Xe1 — i) + Ak (Vo(yi), yie — xi) + =2 5 %41 — yi®
Lga% 2
= ar (V9(yr), Zbt1 — z) + A (Va(yr), yr — Xi) + |Zkt1 — 2z |
24541
L,a?
= a (Vg(yi), Zks1 — YE) + =" zpr1 — 2|2
24541

where the first equality holds since ag(zg11 — 2zg) = Akr1(Xk+1 — Yk ), and the second equality holds
since ag(zr — yr) = Ag(yr — xx). Lastly, by the definition of the constructed cutting plane, we
know that g(yx) + (Vg(yk),z — yi) < g for any z. Hence, (Vg(y),zx+1 — Yk) is upper bounded
by gx — g(yx) which itself is upper bounded by gx — g(x*). Applying this substitution into to the
above expression would lead to the claim in (20). O

Now we are ready to prove Theorem 4.1.

Proof of Theorem /.1. To begin with, note that by our choice of a, we have

k41 k4 1)k +2
Tlond Ay, = FFDERD

=L, 8L;
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Thus, it can be verified that L fai < %Ak+1. Then it follows from Lemma A.1 that

A (Fok1) = 10N + gllzin — 7 = (Au(F00) = ) + gl —x°[12) < Gl — 2
(30)

A1 (9(xp1) — 9(x*)) — Ap(g(xk) — 9(x*)) < ar(ge — 9(x*)) + == ||zp1 — zl>.  (31)

4Ly

We first prove the convergence guarantee for the upper-level objective. By using induction on (30),
we obtain that for any k£ > 0

AR(FOx) = )+ gl = X7 < Ag(fx0) = FON) + 3l =2 = Sllao X", (32)

which implies
lzo —x*2  4Lylz0 — x|

We proceed to establish an upper bound on g(x;) — ¢g(x*). By summing the inequality in (31) from
0 to k — 1 we obtain

k—1
* * L
Ap(g(xx) —9(x%)) < D ailgi—g") + ﬁ Z 1241 — 2|
i=0 j
k—1 2
s 4Lf (’L + 1 4Lf
L, 9 L
= 9 |xo — x*||?(Ink + 1) + —L D?k.
oo = xP(nk o+ >+4Lf

Note that the second inequality holds due to the condition in (8). Thus, we obtain

4Ly|x0 — x*||*(Ink +1) 2L,D?
_ *\ < 9 g )
90xk) = 9(x7) = k(k+ 1) k+1

The above upper bound on g(xj) — g(x*) without any additional condition, but next we show
that if f(xx) > f(x*) the above upper bound can be further improved as we can upper bound
Zk ! ||zi41 — 2i||? by a constant independent of k instead of kD?. To prove this claim, by summing
the 1nequal1ty in (19) from 0 to kK — 1 we obtain

k-1
=Dz — il <
i=0

Hence, if f(xj) > f(x*), then it holds

k—1

D lzis — zil® < 2120 — x| (35)
=0

—_

B~
N —

oo 1P = (An(F6x0) = P + glm—x ). (3

Thus if replace Zf:_ol |Ziv1 — zi||? in (33) by 2||zg — x*||?, we would obtain the following improve
e ALylxo — '[Pk 1) | AL, — x|
—x* 1 zg — X"
B ) < gllXo — X nk -+ gllZo
g(xk) g(X ) = k?(k+1) k‘(k’—|—1)
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Recall Remark 4.1. The main difficulty in obtaining an accelerated rate of O(1/K?) for g is that
it is unclear how to control Zsz_ol |Zrs1 — zx||?. This, in turn, is because we don’t know how to
prove a lower bound on f. Instead, we used the compactness of Z to achieve the O(1/K) for g.

A.2 Proof of Lemma 4.3

Proof of Lemma 4.3. Note that by multiplying both sides of (19) by A > 0 we have

A N7 Gok) = SN + s = T2 = (A0 = 16N + e -1

A(Lya
< 3 (2% 1) s -
k+1

(k+1)(k+2)

(36)

Further note that in this case we have a; = ﬁ’(f;; D and Agi1 = v

. Hence, ai/AkH is

bounded above by 57— L . Therefore, we can replace ay 2 /Aj41 in the above expression by 57 37 to obtain

A NF00) = 16N + s = x T2 = (A5 = 16N + 5w =1

) (1)
<3 (5 - 1> |1Zk11 — 2 ®
Similarly, we can replace aj /A1 in (20) by % to obtain
* 3 * L
Ap1(9(Xns1) — 9(x7)) = Ap(g(xk) — 9(x7)) < arlgr — 9(x7)) + oy oz —zl? (38)
Note if we add above up the above inequalities in (36) and (37) we obtain
* * A *
Apr(A(f (K1) = f(x7)) + 9(xp41) — 9(x7)) + §sz+1 - x*|?
* * )\ *
— (A0 = £ +l05) = 90D + Sl 1) (39)
vl vy * .
<Ay -3)+ ZL_)sz+1 — 2| + ar(gr — 9(x*)) < ar(gr — 9(x"))
!

Note that the last inequality holds since the first term is negative due to the choice of A\. By
summing the inequalities from 0 to k — 1 we obtain

k—1

ApA(f (xx) = f(X) + 9(x) — 9(x7)) + 5 /\IIZk—X 1<) ailei (x*))+%/\||z0—x*\|2 (40)
1=0

Now using the condition on g; in (8) and the definition of a; we have

k—1 k—
(i + 1) 2Lg|Jx0 — x*||? 2
; <7 (lnk + 1 41
> oiloi =g §:Oj RV ERE 79 g — 2 4 1) (41)

By applying this upper bound into (40) we obtain

Ak()‘(f(xk)_f(X*))+9(Xk)_9(X*))+%)‘sz_X*||2 < ;TLiIIXo—X*Hz(ln k‘+1)+%AHZo—X*H2 (42)
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If we drop the $A||z; — x*||? in the left-hand side and divide both sides of the resulted inequality

(k-i—l)

by A which is equal to A = y=5— we obtain

ALg|lxo — x*||*(Ink +1)  4ALys|zo — x*|?
k(k+1) yk(k+1)

and the proof is complete. ]

Af (k) = F(x7)) +9(xk) — g(x7) < (43)

A.3 Proof of Theorem 4.4

Proof of Theorem 4.4. Recall the result of Lemma 4.3 that if ap, = y(k+1)/(4Ls), where 0 < v <1

and \ > W then after T iterations we have

ALgllxo —x* 20T 4 1)  4ALgllzp — x|

A(f(er) = F(x7)) + glxr) = g(x") < (T +1) V(T +1)

(44)

2r—2
Now if we replace v by 1/ (%Tm + 2) as suggested in the statement of the theorem, we would
obtain

L 2r—2 "
ALy|xo — x*|2(nT +1) S(F2T> 1 + ALg|lzo — x|

A(f(x7)— f(x*)+g(x)—g(x*) < T(T +1) T(T +1)

. (45)

Now we proceed to prove the first claim which is an upper bound on f(x7) — f(x*). Note that
given the fact that g(xr) — g(x*) > 0 and A > 0 we can show that

L 2r—2 "
ALy|xo — x |2 T +1)  SUFET> T +1))Lgllzo — x|

— ) < 4
fler) = J(x7) < NT(T + 1) T(T +1) (46)
If we select A\ which is a free parameter as A =T = > CA=DL; S - 0L; then we obtain
. 4L xo—x InT+1 8L,|lzo — x*||2  8L¢||zo — x*||?
) - sy < el X PWT 1Y) | Syl x| Sty —x
Tzr (T +1) T27“ (T+1) (T'+1)
Given the fact that xg = zy we can simplify the upper bound to
o 12L4|x0 — x*||2(InT 4+ 1) 8Ly||zo — x*||?
Fn) — o) < 12Lalx0 =X T 1) 8Lz x| "

T2

T2'r

Next, we proceed to establish an upper bound on g(x7)—g(x*). We will use the following inequality
that holds due to the HEB condition and formally stated in Proposition 4.2:

1
N r(g(xr) —g(x))\ "
_ > _
o) = = —r (ML (19)
Now if we replace this lower bound into (45) we would obtain
Tl o 1 «
= AM(Z)7 (g(x) = 9(x7))7 + g(x7) — 9(x7)
Lg p2=2 * 50
< ALglxo —x"|P(nT +1) | 8((£2T>1 +1))ALyllzo — x HZ. (50)

= T(T + 1) T(T + 1)
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Next we consider two different cases: In the first case we assume AM (g)%(g(xT) - g(x*))% <

$(g9(x7) — g(x*)) holds and in the second case we assume the opposite of this inequality holds.

1

If we are in the first case and AM (%) (9(x7) — g(x*))% < 3(g(xr) — g(x*)), then the inequality in
(50) leads to

L 2r—2 «
ey — ey < ALl =X P T+ 1) SETETE DAL g =P
—(g(xr) — g(x
g \ET) — 9% ) = T(T +1) T(T+1)
Since A\ =T _%, it further leads to the following upper bound
. 8Ly|lxo — x*||?(InT 4+ 1)  16L,||zo — x*||> 16L¢||zo — x*||?
g(xr) — g(x") € =T e I - (52
(T'+1) (T'+1) T>1(T +1)
Now given the fact that xg = zg, we obtain
oo 24L4|Ix0 — x*||2(InT + 1)  16L¢|jxo — x*||?
g(xp) — g(x*) < gll [1%( ) + f” - I ‘ (53)

T2 Tar=1

If we are in the second case and )\M(&)%(Q(XT) — g(x*))* > (g(xr) — g(x*)) then this inequality
is equivalent to

(9(xr) = g(x))' 1" < 2AM(2)7, 5
leading to | |
oot < (B GO
@ T2r—1

By combining the bounds in (53) and (55) we realize that

r

2Ly |lx0 —x[P(In T +1) | 16LslJxo x| (2M)7T(5)7
17 T3t ’ T

b (56)

g9(xr) — g(x7) < max{

Finally by using the above bound in (56) and the result of Proposition 4.2 we can prove the the
second claim and establish a lower bound on f(xr) — f* which is

T 1/7‘
) ry: 924L,||x0 — x*|2(InT + 1)  16LglJx0 — x*|2 (2M)71 (L)
fxr)=f"=-M (—> (max{ glxo T2H ( )+ /1 0 H , - 1
[0} Tar=1 Ta2r=1
(57)
leading to
fxr)—f*>
Ty 2L, %0 — X |2(InT + 1)V7 (1614 ]xo — x*[|2)Y/7 ((2M)7T (L)1)
—m(2) (max{< ol T|2|/T< D, (6Ll — [ 10 }
(e T2r=1 T2r—1
(58)
O
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A.4 Proof of Theorem 4.5

Proof of Theorem /.5. To upper bound f(xj)— f(x*), we follow a similar analysis as in Theorem 4.1.

Specifically, first note that by our choice of aj, we have ay = 7%'; and Ay = 7%, where

v € (0,1). Hence, we can obtain that Lfa% < JAj41. By using Lemma A.1 and the fact that
~v € (0,1), we have

Apa (FOors) = SO0 + a2 = (Al 0) = F6) + 5l = xP)

v 1
<(3-3) tmn -l <o

By using induction, we obtain that for any k£ > 0

Al () = FE) + gllaw — X1 < Ao(F o) — F() + ka0 — x| = g llzo X% (59)

Since A = ’yk(:z; D and 7y = Xg, this further implies that

N |zo — x*|? 4L¢||x0 —x*|?
— < =
Flxe) = f(<7) < 2Ay vk(k +1)

Next, we will prove the upper bound on g(x;) — g(x*). By Lemma 4.3, we have for any k£ > 0

4)\Lf”X0 — X*”2
vk(k +1)

ALg||x0 — x*||?

Af (k) = F(xX7)) + 9(xi) — g(x7) < k(k+1)

(Ink+1)+

(60)

Moreover, since g satisfies the weak sharpness condition, we can use Proposition 4.2 with r =1 to
write

Fos) = I =~ (glxi) — g°). (61)
Combining (60) and (61) leads to

ALg||x0 — x*|?
k(k+ 1)

4)\LfHX() — X*H2
vk(k +1)

A (goxe) — 0(x)) + (1) — 9(x") < (nk+1) + (62)

Note that we can choose A to be any number satisfying A > (2/#75’1)” (cf. Lemma 4.3). Specifically,

since v < %, we can set A = a/(2M) and accordingly (62) can be simplified to

8Lg||x0 — x*|?
k(k+1)

daLy|xo —x*|
YME(k+1)

g9(xk) —g(x") < (Ink+1) +

Finally, we use (61) again together with the above upper bound on g(x;) — g(x*) to obtain

ALyxo0 — X*||2>
vk(k +1)

8MLy|[xo — x*|?
ak(k+1)

o) = £) 2 =2 (atx0) — 9D = - (nk+1)+
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B Extension to the Non-smooth/Composite Setting

In this section, we would like to mention the possible extension to the non-smooth/composite
setting. In the general non-smooth settings, we believe it is not possible to extend our results and
achieve the purpose of the acceleration. This is because, even in the single-level setting, the best
achievable rate in the general non-smooth setting is O(1/v/K) achieved by sub-gradient method.
That said, it should be possible to extend our accelerated bilevel framework to a special non-smooth
setting where the upper- and lower-level objective functions have a composite structure, i.e., they
can be written as the sum of a convex smooth function and a convex non-smooth function that is
easy to compute its proximal operator.

Then we consider the composite counterpart of Problem (1):

min f(x) := fi(x) + f2(x) st x € argmin g(z) := g1(2) + 92(2), (63)
xeRn zeR™
where f1,g1 : R™ — R are smooth convex functions and fs,¢92 : R®™ — R are nonsmooth convex
functions, respectively.

To analyze and implement the proximal gradient-based methods, we need the following definition
concerning the property of the proximal mapping.

Definition B.1. Given a function h : R™ — (—o0,+0o0], the prozimal map of h is defined for all

x €R" andn >0 as

1
Proz,;,(x) £ argmin{— |lu — x||* + h(u)} (64)
ucR”® 2n

To handle the upper-level nonsmooth part fs, we need to change the projection step in Step 6 of
Algorithm 1 to a proximal update (outlined in the Step 6 of Algorithm 2), which is similar to the
accelerated proximal gradient method for single-level problems in [BT09]. On the other hand, to
deal with the lower-level nonsmooth part gs, it is necessary to modify the approximated set of the
lower-level solution set Xj. Specifically, since go is nonsmooth, Vg may not be obtained over the
whole domain. Hence, we utilize g1 and g9 separately in the construction of X} by summing a
linear approximation of g; and go up as a lower bound of g;. Note that the constructed set A} is
no longer a hyperplane in this setting due to the possibly non-linear nature of go. We refer to our
method as the Proximal Accelerated Gradient Method for Bilevel Optimization (P-AGM-BiO) and
its steps are outlined in Algorithm 2.

Different proximal-friendly assumptions are commonly used in the literature of composite single-
level /bilevel optimization [BT09; SBY23; WSJ24; CSJW24]. The following proximal-friendly as-
sumption is necessary for our method in the composite setting.

Assumption B.1. The function fo 4 dx, in the Step 6 of Algorithm 2 is proximal-friendly, i.e.
the prozimal mapping in Definition B.1 is easy to compute, for all k, where 0x, (-) is the indicator
function.

This assumption implies that fs is proximal-friendly and projecting onto the constructed set X}, is
easy. Moreover, The function fo+dy, is the sum of two convex functions, and the study of proximal
mapping for sums of functions can be found in the literature [Yul3; PC17; BBW18; ABC19].

Note that the properties of smoothness of f and g have only been used in the proof of Lemma A.1
in Section 4. None of the other results will break if (19) and (20) in Lemma A.1 still hold in the
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Algorithm 2 Proximal Accelerated Gradient Method for Bilevel Optimization (P-AGM-BiO)

1: Input: A sequence {gk}szo, a scalar v € (0, 1]
2: Imitialization: Ay =0, xg = zg € R"
3: for k=0,...,K do

k+1
7m

Ay a
A t+ax " * Ag + ag
6: Compute zpi1 = Proa:ak(fﬁ(;xk)(zk —arV fi(yr)), where

4:  Set a =

5. Compute yp = ZJ;

X = {z €R" : g1(yr) + (Vor(yr), 2 — y) + 92(2) < gi}
A a

Xi+1 = A, +aka + A+ ar Zi+1

8:  Update Agy1 = A + ag

9: end for

10: Return: xg

7. Compute

composite setting. Now, we present and prove the counterpart of Lemma A.l in the composite
setting.

Lemma B.1. Suppose f1, f2, 91, g2 are convez and f1, g1 are L¢-smooth and L4-smooth, respectively.
Let {x1} be the sequence of iterates generated by Algorithm 2 with stepsize ap > 0 for k > 0.
Moreover, suppose Assumption B.1 holds. Then we have

Apaa (fOoke) = SO0 + g lznes =% P= (Ar(7006) = £ + 5w = x7]2)

< _Z _
< <2Ak+1 5 |Zk+1 — 2%,

(65)

2

Lgaj 2
2Ak+1HZk+1 z||”.  (66)

Ap1(9(xpkt1) — 9(x7)) — Ap(g(xk) — 9(x7)) < ar(gr — 9(x7)) +

Proof of Lemma B.1. Let x* be any optimal solution of (63).

We first consider the upper-level objective f. Since f; is convex, we have

filye) = A1(x7) <(Vfilye)ye — x5, filye) = fi(xe) < (Vlye), yre — xx) - (67)

Now given the update rule Ay,1 = Ay + ag, we can write

A1 (fiye) = 1(x7) = Ap(fi(xk) = [1(x7) = ar(filyr) — [1(X7)) + Ae(filyr) — f1(xx)) (68)
Combining (67) and (68), we have
A1 (filyr) = 1(x7)) = Ap(fi(xk) — [1(x7) < a((V filye), ye —x7) + AV fi(yn), yi — xx)

= (Vfi(yr), axyr + Ar(yr — Xx) — apx”)

= ap (Vfi(yr),zr —x"),
(69)
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where the last equality follows from the definition of y;. Furthermore, since f; is Ls-smooth, we
have

L
i) < (i) + (VAR X1 = Vi) + =Ll — vl (70)

If we multiply both sides of (70) by Ag41 and combine the resulting inequality with (69), we obtain
A1 (fr(xps1) = [1(x7)) = Ae(fr(xp) — f1(x7))

L:A
< ar (Vfi(yr), zx — X)) + Apr1 (V1(YR), Xpp1 — Vi) + %HMH — yi|?
. Lya? 71
= o0 (V)1 = x) + ak (V1 900,311 = 72 + 51— i
_l’_
. L:a?
= ap (Vf1(Yk)s Zhpr — X5) + =2 2y — 2|2,
24541

where we used the fact that ay(zx11 —zr) = Ag+1(Xgr1 — Yk ) in the first equality. Moreover, from
the step 6 in Algorithm 2, we have z; — a;V f1(yr) — Zk+1 € ax0(f2(Zk+1) + dx, (Zk+1)). Using this,
from the definition of subgradients for fy 4 dx, , we have

(x* = zpy1, 20 — axV1(ye) — zry1) < ar(fo(X7) + 02, (X7) — f2(Zry1) — O, (Zr1))
& (Zrt1 — 2k + V[ (Yr), X" — 2k41) > apfo(zer1) — axfo(x¥)
& ap (V) Ze1 —X7) < (Zps1 — 2, X — Zpt1) — apfo(211) + apf2(x7) (72)
& (VF(yr) 2z —X7) < gllze —x I - gllzr+ —x I” - 5 lZhe1 — zi
— ak fo(Zr41) + ar fo(x7).
The first step holds since x*,z41 € Ay, i.e. dx, (X*) = dx, (2zk+1) = 0. Combining (71) and (72)

leads to

Acsa(F0k) = £ + gl =17 = (A1) = A6 + e~ x1°)

1 [/ Lsa? (73)
< 5 (52 1) oo — mal? — ool + anfalx),
2 \ Ags1
Then we add (Agy1fo(Xkr1) — apfo(x*) — Agfo(xx)) on both sides to obtain,
A (FO41) = F0) + gl =17 = (Au(F05) = F6) + gl = I )
2 (74)
1 (Lyaj 2
<3 — 1) [|Zp41 — zill” — anfo(Zrs1) + Akrr fo(Xng1) — Apfo(x),
2 \ Ak

Finally, by the convexity of fo, Ap+1 = Ag+ag, and X141 = Alﬁfak xk—l—A:ﬁak Ziy1,1.6. —agfo(Zpy1)+

Agi1fa(Xk11) — A fa(xk) < 0, the first inequality of this Lemma can be obtained.

Next, we proceed to prove the claim for the lower-level objective g. To do so, we first leverage the
convexity of the smooth part g; which leads to

91(yk) — 91(xk) < (Va1 (yk), ¥k — Xk) - (75)

Also, since g1 is Lg-smooth, we have
L
91(%k41) < 91(yk) + (Va1 (Yr), k41 = ya) + 5 %kt1 — il (76)
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By multiplying both sides of (75) and (76) by Ay and A1, respectively, and adding the resulted
inequalities we obtain

Ar1(91(Xk+1) — 91(yk)) + Ak(91(yE) — 91(xx))
LgAk—i-l

2
2

L
= ar (V91 (Yk), k1 — 2k) + Ak (Vo1 (Yr), Y — Xk) + Ar, ||Zk+1 — zg)?
2

2A

< Apr1 (Vor(Ye), Xe1 — Ye) + A (Va1 (Ye), Y — Xi) + %41 — yi|?

= ar (Va1(yk)s Zk+1 — ¥k) + sz-i-l — ||,
where the first equality holds since ag(zg11 — 2g) = Akr1(Xk11 — Yk), and the second equality holds
since ag(zr — yx) = Ax(yr — Xx). Lastly, by the definition of the constructed approximated set A,
we know that g1(yx) + (Vg1 (yk):z2 — yk) + g2(2) < g for any z € X Hence, (Vg1(yr), Zk+1 — Y)
is upper bounded by g — g1(yx) — 92(zr+1). Applying this substitution into to the above expression
to obtain,
Ap+1(91(%k+1) — 91(Yx)) + Ak(91 (V) — 91(xk))
L, a2 (77)
< argrk — axg1(yr) — arg2(zr+1) + s, sz+1 — z?

By adding axg1(yx) — arg1(x*) on both sides, we have,

Ay 1(91(%ng1) — 91(x7)) + Ap(g1(x*) — g1(xx))
N L a2 (78)
< apgr — arg1(x") — arg2(zi41) + 2A sz+1 — z)?

Lastly, we add (Ags192(Xg+1) — arge(x*) — Arga(xx)) on both sides to obtain,
Ap41(9(xpt1) — 9(x7)) + Ap(9(x") — g(xx))
2 (79)

. L
< apgr — arg(x") + Arp192(Xpt1) — Apge(Xk) — arg2(Zr+1) + Ar, ||Zk+1 — z)?

By the convexity of g2, Ap11 = Ap+ag, and xp 1 = A:‘fak X+ A:jak Zk+1 (outlined in Algorithm 2),
ie. Apr192(Xpr1) — Akga(Xk) — arga(zg+1) < 0, the second inequality of this Lemma can be
achieved. O

Hence, with the additional Assumption B.1, by replicating the analysis outlined in Section 4, we
can derive identical complexity results for Algorithm 2 in either the compact domain setting or
with the Holderian error bounds on g.

C Connection with the Polyak Step Size

In this section, we would like to highlight the connection between our algorithm’s projection step
(outlined in Step 6 of Algorithm 1) and the Polyak step size. To make this connection, we first
without loss of generality, replace g, with g*. It is a reasonable argument, as g, values are close to
g%, a point highlighted in (8). In addition, we further assume that the set Z = R" to simplify the
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expressions. Given these substitutions, the projection step in our AGM-BiO method is equivalent
to solving the following problem:

min  [Jx — ;P

sit. g(xk) + (Vg(xk),x —xx) < g*

In other words,xj, 1 is the unique solution of the above quadratic program with a linear constraint.
By writing the optimality conditions for the above problem and considering A as the Lagrange
multipliers associated with the linear constraint, we obtain that

Xp+1 = X — AVg(xy)
Mg(xx) +(Vo(xk), Xpr1 —Xk) —g*) =0
A>0

Given the fact that xj; 1 # X, we can conclude that A # 0, and hence we have

Xkt+1 = Xk — AVg(Xg)
9(xk) +(Vg(xp), Xpp1 —Xx) —g* =0
A>0

By replacing xj4+1 in the second expression with its expression in the first equation we obtain that

*

_9xk) —yg
IV (x)lI*

which is exactly the Polyak step size in the literature [Pol87]. To solve a bilevel optimization
problem, we intend to do gradient descent for both upper- and lower-level functions. Tuning the
ratio of upper- and lower-level step size is generally hard. However, by connecting the projection
step with the Polyak step size, we observe that the stepsize for the lower-level objective is auto-
selected as the Polyak stepsize in our method. In other words, it is one of the advantages of
our algorithm that we do not need to choose the lower-level stepsize or ratio of the upper- and
lower-level stepsize theoretically or empirically.

A

D Experiment Details

In this section, we include more details of the numerical experiments in Section 5. All simulations
are implemented using MATLAB R2022a on a PC running macOS Sonoma with an Apple M1 Pro
chip and 16GB Memory.

D.1 Over-parametrized Regression

Dataset generation. The original Wikipedia Math Essential dataset [Roz+21] composes of a
data matrix of size 1068 x 731. We randomly select one of the columns as the outcome vector
b € R'9%8 and the rest to be a new matrix A € R068x730 We set the constraint parameter \ = 1
in this experiment, i.e., the constraint set is given by Z = {8 | ||8|]2 < 1}.

Implementation details. To be fair, all the algorithms start from the origin as the initial
point. For our AGM-BiO method, we set the target tolerances for the absolute suboptimality
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and infeasibility to ¢y = 10~* and €g = 10, respectively. We choose the stepsizes as aj =
1072(k +1)/(4Ly). In each iteration, we need to do a projection onto an intersection of a Lo-ball
and a halfspace, which has a closed-form solution. For a-IRG, we set 19 = 1073 and 79 = 1073. For
CG-BiO, we obtain an initial point with FW gap of the lower-level problem less than ¢,/2 = 5x 107
and choose stepsize v = 1072/(k + 2). For Bi-SG, we set i, = 1072/(k + 1)° and t;, = 1/L, =
1/ )\max(A;Atr) = 1.5 x 107*. For SEA, we set both the lower- and upper-level stepsizes to be
10~*. For R-APM, since the lower-level problem does not satisfy the weak sharpness condition, we
set n=1/(K+1)=1.25x107% and v = 107* < 1/(L, + nLy). For PB-APG, we set the penalty
parameter v = 10%. Note that the lower-level problem in this experiment does not satisfy Hoderian
error bound assumption, so there is no theoretical guarantee for PB-APG.

D.2 Linear inverse problems

Dataset generation. We set Q = I,,, A = 1,TL , and b = 1. The constraint set is selected as
Z = R’}. We choose a low dimensional (n = 3) and a high dimensional (n = 100) example and
run K = 10° number of iterations to compare the numerical performance of these algorithms,

respectively.

Implementation details. To be fair, all the algorithms start from the same initial point randomly
chosen from R”. For our AGM-BiO method, we set the stepsizes as a, = y(k + 1)/(4Ly), where
v=1/ (%K 2/3 4 2) as suggested in Theorem 4.4. In each iteration, we need to project onto an
intersection of a halfspace and R’{. Since halfspaces and R’} are both convex and closed set, the
projection subproblem can be solved by Dykstra’s projection algorithm in [Bau+11]. For a-IRG,
we set 79 = 1072 and 9 = 1072, For Bi-SG, we set n, = 1/(k +1)%™ and t;, = 1/L,. For SEA, we
set the lower-level stepsize to be 1072 and the upper-level stepsize to be 1072. For R-APM, since
the lower-level problem does not satisfy the weak sharpness condition, we set n = 1/(K + 1) and
v =1/(Lg+nLy¢). For PB-APG, we set the penalty parameter v = 10*. For Bisec-BiO, we choose
the target tolerances to €y = ¢4 = 10~%. For comparison purposes, we limit the maximum number
of gradient evaluations for each APG call to 102. In this experiment, L r=1and Ly = n, where n
is the number of dimensions.
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