
Astronomy
&

Astrophysics

A&A, 681, A86 (2024)
https://doi.org/10.1051/0004-6361/202347118
© The Authors 2024

Scalable stellar evolution forecasting

Deep learning emulation versus hierarchical nearest-neighbor interpolation

K. Maltsev1,2 , F. R. N. Schneider1,3 , F. K. Röpke1,2 , A. I. Jordan1 , G. A. Qadir1 , W. E. Kerzendorf4,5 ,

K. Riedmiller1 , and P. van der Smagt6,7

1 Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
e-mail: kiril.maltsev@h-its.org

2 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Philosophenweg 12, 69120 Heidelberg,
Germany

3 Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut, Mönchhofstr. 12–14, 69120 Heidelberg,
Germany

4 Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
5 Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI 48824, USA
6 Machine Learning Research Lab, Volkswagen AG, Munich, Germany
7 Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary

Received 7 June 2023 / Accepted 5 October 2023

ABSTRACT

Many astrophysical applications require efficient yet reliable forecasts of stellar evolution tracks. One example is population synthesis,
which generates forward predictions of models for comparison with observations. The majority of state-of-the-art rapid population
synthesis methods are based on analytic fitting formulae to stellar evolution tracks that are computationally cheap to sample statistically
over a continuous parameter range. The computational costs of running detailed stellar evolution codes, such as MESA, over wide and
densely sampled parameter grids are prohibitive, while stellar-age based interpolation in-between sparsely sampled grid points leads
to intolerably large systematic prediction errors. In this work, we provide two solutions for automated interpolation methods that offer
satisfactory trade-off points between cost-efficiency and accuracy. We construct a timescale-adapted evolutionary coordinate and use
it in a two-step interpolation scheme that traces the evolution of stars from zero age main sequence all the way to the end of core
helium burning while covering a mass range from 0.65 to 300 M⊙. The feedforward neural network regression model (first solution)
that we train to predict stellar surface variables can make millions of predictions, sufficiently accurate over the entire parameter space,
within tens of seconds on a 4-core CPU. The hierarchical nearest-neighbor interpolation algorithm (second solution) that we hard-code
to the same end achieves even higher predictive accuracy, the same algorithm remains applicable to all stellar variables evolved over
time, but it is two orders of magnitude slower. Our methodological framework is demonstrated to work on the MESA ISOCHRONES

AND STELLAR TRACKS (Choi et al. 2016) data set, but is independent of the input stellar catalog. Finally, we discuss the prospective
applications of these methods and provide guidelines for generalizing them to higher dimensional parameter spaces.

Key words. stars: evolution – stars: fundamental parameters – catalogs – time – methods: numerical – methods: statistical

1. Introduction

Several fields of astrophysics require fast and cost-efficient pre-
dictive models of stellar evolution for their deployment at scale.
These include stellar population synthesis, N-body dynamics
models of stellar clusters (e.g., Kamlah et al. 2022), iterative
optimization-based stellar parameter estimation methods (e.g.,
Bazot et al. 2012), and large-scale galactic and cosmic evolu-
tion simulations (e.g., Springel et al. 2018) that require a stellar
sub-grid physics.

For example, the BONN STELLAR ASTROPHYSICS

INTERFACE (BONNSAI; Schneider et al. 2014) is a Bayesian
framework that allows for the testing of stellar evolution models
and (if the test is passed) to infer fundamental stellar model
parameters given the observational data. Determination of
fundamental stellar parameters that best match the observa-
tion requires costly iterative optimization procedures, such as
Markov chain Monte Carlo nested sampling techniques, which
need a large number of evaluations over a quasi-continuous
parameter space for convergence to the best-fit model. In order

to reduce systematic estimation errors, BONNSAI requires a
stellar parameter grid to be as dense as possible.

However, there are costly computational demands arising
from the traditional method of running a detailed stellar evo-
lution code over a dense rectilinear grid in a stellar param-
eter space: for a fixed grid spacing, the number of stellar
tracks to evolve scales to the power of the dimensionality
of the fundamental stellar parameter space. The most impor-
tant parameters of single star evolution are the: age, τ; initial
mass, Mini, at the zero age main sequence (ZAMS); initial
metallicity, Zini; and initial rotation velocity, vini. For stars of
Mini > 8 M⊙, the binary interaction effects become increas-
ingly important: 71% of all O-stars interact with a companion
and for over half of them, this takes place during the main
sequence evolution (Sana et al. 2012). Therefore, in order to
evolve massive stars, the parameter space needs be expanded to
cover eight dimensions (τ1,Mini,1,Mini,2, vini,1, vini,2,Zini, Pini, ϵ)
in general, where Pini is the initial period, ϵ the eccen-
tricity of the binary orbit, and τ1 ≃ τ2 to a good
approximation.

A86, page 1 of 21

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.

Maltsev, K., et al.: A&A, 681, A86 (2024)

MODULES FOR EXPERIMENT IN STELLAR ASTRO-
PHYSICS (MESA; Paxton et al. 2011) is an example of a detailed
one-dimensional (1D) stellar evolution code with a modular
structure, which allows us to update the adopted physics when
generating stellar evolution tracks; for instance, the equation of
state, the mass loss recipe, and the opacity tables. When evolv-
ing stars numerically over a wide and densely sampled parameter
grid with MESA, there are two main computational challenges:
1) the computational cost associated with running the code over
the large grid size and 2) the numerical instabilities. To overcome
the latter, substantial manual effort is required to push a simula-
tion past failure points by reconfiguring the code and by checking
for unphysical results. The manual action mainly involves the
adaptation of spatial mesh refinement and time step control
strategy, as well as of the error tolerance thresholds in stellar
model computation, to make sure the solvers converge over each
evolutionary phase within a reasonable computation time.

The problem of prohibitive computational costs has been
addressed in three different ways: 1) the stellar evolution tracks
have been approximated by analytic fitting formulae; 2) the out-
put of detailed stellar evolution codes over a discrete parameter
grid has been interpolated; and 3) cost-efficient surrogate models
of stellar evolution have been constructed. Below, we summarize
these main approaches.

The SINGLE STAR EVOLUTION (SSE) package (Hurley
et al. 2000) consists of analytic stellar evolution track formulae
predicting stellar luminosity, radius and core mass as functions
of the age, mass and metallicity of the star. Separate formu-
lae are applied to each evolutionary phase and the duration of
each phase is estimated from physical conditions. Along with
analytical expressions from stellar evolution theory, the SSE
package was obtained by fitting polynomials to the set of stel-
lar tracks by Pols et al. (1998). The fitting formulae method
has been extended to predict the evolution of binary systems by
including analytical prescriptions for mass transfer, mass accre-
tion, common-envelope evolution, collisions, supernova kicks,
angular momentum loss mechanisms and tides (Hurley et al.
2002). At present, the fitting formulae are often used in connec-
tion with rapid binary population synthesis codes, for example
COMPACT OBJECT MERGERS: POPULATION ASTROPHYSICS

& STATISTICS (COMPAS; Riley et al. 2022), and stellar N-body
dynamics codes. However, there are two main drawbacks: 1) the
fixed (rather than modular) input physics and 2) the limited set
of predicted output variables, which (depending on the astro-
physical application) may be not all the variables of interest. A
re-derivation of analytic fitting formulae for a new set of stellar
tracks is non-trivial (Church et al. 2009; Tanikawa et al. 2020).
Overall, the analytic approach is not sustainable, since it would
need to be reiterated after each update in stellar input physics.

The interpolation of tracks pre-computed by a detailed code
is an alternative to analytic fitting. Brott et al. (2011) interpo-
late stellar variables in a (Mini, vini, τ) parameter space. For each
stellar age, the two nearest neighbors (from above and from
below) in initial mass are selected first, and then, for each of the
two initial masses, the two nearest neighbors in initial rotational
velocity are chosen. The values of stellar evolution variables,
at each stellar age, are computed from these four neighboring
grid points by a sequence of linear interpolations in the sam-
pled parameter space. The scope of the interpolation method
is restricted to the main sequence evolution of stars. Instead of
the stellar age, the fractional main sequence lifetime is used as
interpolation variable.

Following a different approach to interpolation of stel-
lar tracks, the METHOD OF INTERPOLATION FOR SINGLE

STAR EVOLUTION code (METISSE; Agrawal et al. 2020)
takes as its input a discrete single-star parameter grid and uses
interpolation by a piece-wise cubic function to generate new
stellar tracks in-between the sampled initial mass grid points at
fixed metallicity. The parameter space covers the initial mass
range from 0.5 to 50 M⊙, and stars are evolved up to the late
stages beyond core helium burning. Instead of stellar age, the
interpolation scheme uses a uniform basis known as EQUIVA-
LENT EVOLUTIONARY POINTS (EEP; Dotter 2016) to model
the evolutionary tracks. The EEP coordinate quantifies the evo-
lutionary stage of a star based on physical conditions, derived
from numerical values of evolutionary variables (e.g., depletion
of central hydrogen mass fraction to a threshold value), which
are readily identifiable for different evolutionary tracks. For
any given stellar age, an isochrone is constructed by identifying
which EEP coordinate values are valid for that age as function
of Mini. For each fixed EEP value, an ordered Mini − τ relation is
constructed over the available grid points and interpolated over.
In a second step, Mini is used as independent variable to obtain
stellar properties by another round of interpolation. Reliable
and fast stellar track interpolation with the EEP method has
originally been demonstrated upon MESA ISOCHRONES AND

STELLAR TRACKS (MIST; Choi et al. 2016), a catalog of stellar
evolution tracks over a grid space covering the age, initial mass
and initial metallicity parameters. METISSE is a more general
alternative to SSE, because it may take any single star grid (at
fixed initial metallicity), produced as output of a detailed stellar
evolution code, as its input; namely, it is not tied to specific input
physics adopted to generate the stellar tracks.

Apart from METISSE, there are the COMBINE (Kruckow
et al. 2018), SEVN (Iorio et al. 2023, in its latest version), and
POSYDON (Fragos et al. 2023) population synthesis codes that
interpolate grids of detailed single or binary evolution simu-
lations. Interpolation in COMBINE is based on the method of
Brott et al. (2011) while in SEVN, single star evolution is divided
into sub-phases analogous to the EEP method, and interpola-
tion is performed over each sub-phase using a fractional time
coordinate relative to duration of each sub-phase. Evolution of
the binary companion and interaction effects are approximated
using analytic fitting formulae. Since the procedure to con-
struct the uniform EEP basis cannot be trivially automatized,
the pre-processing steps to identify EEPs, to define appropriate
interpolation functions and also to down-sample the stellar evo-
lution catalog to reduce memory costs need to be re-iterated after
each stellar grid update (see, e.g., the TRACKCRUNCHER pre-
processing modules, Iorio et al. 2023, in the context of SEVN).

In contrast, POSYDON interpolates output of detailed binary
evolution simulations with MESA. The EEP-based interpola-
tion method is not directly applicable to binary evolution tracks,
because EEPs must be strictly ordered a priori while binary
interaction, which can set on at any time, may change their
order. Therefore, in POSYDON interpolation needs to be pre-
ceded by classification of binary evolution phase and separate
interpolation schemes are to be applied over each of them.

Finally, the third way is to build a prediction-making tool
that allows for the replacement of the output of cost-intensive
detailed up-to-date stellar evolution code such MESA with a
cost-efficient imitation model (emulator or surrogate) of the
original. Emulation, or surrogate modeling, is a pragmatic but
reliable reproduction of the output generated by an expen-
sive computer experiment. The predictive surrogate model is
constructed by training a supervised machine learning (ML)
algorithm on a stellar evolution tracks data base pre-computed
with the original code over a discrete parameter grid. A

A86, page 2 of 21

Maltsev, K., et al.: A&A, 681, A86 (2024)

well-trained model will not only efficiently reproduce stellar
tracks at the parameter grid points it has seen during training,
but it will be capable of generating accurate predictions of tracks
in-between the grid points, thanks to the capability to general-
ize it acquired by training. Once constructed, the emulator can
be used as a package to generate predictions of stellar variables
of interest, instead of running the original detailed stellar evo-
lution code such as MESA over a quasi-continuous parameter
range or storing the catalog data in computer memory for inter-
polation. Using the emulator package saves energy costs, speeds
up generation of output predictions over a dense grid by several
orders of magnitude and reduces human effort of running mod-
els. The speed-up is owed to the efficiency of input-to-output
mapping by machine learning algorithms. The disadvantage is
the introduction of prediction errors by the trained model, which
reproduces stellar tracks with a finite precision. Therefore, when
training machine learning models, the main task is to achieve
reliable generalization over the parameter space with a predic-
tion inaccuracy of stellar variables of interest that is tolerable for
inference and astrophysical applications.

Surrogate modeling of stellar evolution has yet not been
explored extensively at widths of the parameter range neces-
sary for more general applicability. Li et al. (2022) used a
Gaussian process regression (GPR) to emulate stellar tracks in
a five-dimensional (5D) parameter space, but the initial mass
range covered by the predictive models is restricted to the
solar-mass neighborhood Mini ∈ (0.8, 1.2) M⊙ and to evolution-
ary sequences from the Hayashi line onward through the main
sequence up to the base of the red giant branch. Also, GPR-
based emulators have been used, for example, for parameter
space exploration of state-of-art rapid binary population synthe-
sis codes such as COMPAS (Barrett et al. 2017; Taylor & Gerosa
2018). Due to the data set size limitation for the applicability of
GPR, it is not the ideal tool for emulating a large stellar model
grid. Thus, we seek for other ML based models instead. The
feedforward neural network algorithm proved itself as promising
in previous surrogate modeling works, for instance: Scutt et al.
(2023) emulated 25 stellar output variables (classic photometric
variables, asteroseismic quantities, and radial and dipole mode
frequencies) over a (Mini,Zini) grid space of stars in or near the δ
Scuti instability strip using neural networks, along with a princi-
pal component analysis to reduce the output dimension to nine.
Lyttle et al. (2021) emulated five variables of red dwarfs, sun-
like stars, and subgiants in a 5D input parameter space. While
these are high-dimensional problems that have been success-
fully addressed by neural networks, aspects that the problem
settings have in common include: the mass range considered is
relatively narrow, Mini ∈ (1.3, 2.2) M⊙ and Mini ∈ (0.8, 1.2) M⊙,
respectively; and the evolutionary sequences cover the pre-main
sequence and only part of the main sequence, or main sequence
and subgiant phase, respectively. More widely in context of stel-
lar astrophysics, supervised machine learning has been applied
to solve the inverse problem of mapping observables to models.
For example, a variant of the random forest regression model
(Bellinger et al. 2016) and invertible neural networks (Ksoll
et al. 2020) have been trained to predict fundamental stellar
parameters in a high-dimensional parameter space given a set
of observational variables. Again, however, the predictive mod-
els were restricted to an initial mass range and evolutionary
sequences of stars narrower (e.g., main sequence evolution of
Mini ∈ (0.7, 1.6) M⊙ stars in Bellinger et al. 2016) than those pre-
sented in this work, where we consider an initial mass range from
red dwarfs to very massive stars evolved from the ZAMS up to
the end of core helium burning.

In this work, we provide two proof-of-concept solutions of
automated single star interpolation schemes over a wide param-
eter span, which (in contrast to the EEP-based interpolation
method) do not require mapping out points of interest in stel-
lar parameter space; this is because they are constructed based
on a timescale-adapted evolutionary coordinate that we intro-
duce, whose computation can be easily automated. Using the
latter for constructing more general interpolation models has a
potential applicability to larger parameter spaces, such as those
found in stellar binaries. The first solution we develop is a sur-
rogate model of stellar evolution, constructed with supervised
machine learning. The second is a stellar-catalog-based hier-
archical nearest-neighbor interpolation (HNNI) method. These
feature two different trade-off points between efficiency and
accuracy of predictions: depending on astrophysical application,
either the one or the other is preferable.

This paper is organized as follows. In Sect. 2, we describe
the methods common to both interpolation scheme solutions that
we have developed: the regression problem that is addressed, the
data base used for constructing predictive models, the timescale-
adapted evolutionary coordinate (which is used as the primary
interpolation variable), and the performance scores that assess
the quality of the predictions. In Sect. 3, we outline how the
two interpolation scheme solutions are set up. For the surrogate
model, we report on the choice of loss function, the selection
of machine learning model class, and its hyperparameter opti-
mization. For the interpolation-based solution, we explain how
HNNI works and how it differs from interpolation models from
previous work. In Sect. 4, we present our results, obtained with
both the supervised machine learning and the HNNI. The paper
is concluded in Sect. 5 with a summary of results, limitations,
and an outlook on possible future developments.

2. Methods

In Sect. 2.1, we define the problem which is addressed by two
different predictive frameworks (surrogate modeling of stellar
evolution and catalog-based hierarchical nearest neighbor inter-
polation) and we motivate the two-step approach to fitting stellar
evolution tracks. In Sect. 2.2, the timescale-adapted evolution-
ary coordinate is introduced, which we used to set up reliable
predictive frameworks in the two-step interpolation scheme. In
Sect. 2.3, the methods to prepare the data base are described:
a nonlinear sampling density segmentation of the initial mass
parameter space and a data augmentation routine for the core
helium burning phase. This data base is used as catalog for inter-
polation of tracks by HNNI and as training data for constructing
surrogate models. Finally, Section 2.4 outlines how we evaluate
predictive performance of our models based on error metrics.

2.1. Regression problem formulation

In 1D stellar evolution codes such as MESA, stellar evolution
is modeled as a deterministic initial value problem and observ-
ables are predicted by cost-intensive numerical time integration
of differential equations. Instead, we formulated the prediction
of observables as a regression problem, which is to be addressed
by supervised machine learning or by catalog-based interpo-
lation. In a regression problem, the goal is to predict output
target variables from input regressor variables. But in the sur-
rogate modeling case, the data-driven approach is used to learn
the mapping, instead of programming the rules that map the
input to the output. We constrained the problem to predicting

A86, page 3 of 21

Maltsev, K., et al.: A&A, 681, A86 (2024)

three stellar surface observables, namely, log-scaled luminosity,
YL = log L/L⊙; effective temperature, YT = log Teff/K; and sur-
face gravity, Yg = log g/[cm s−2]. These are the target variables
to be predicted for a given input of age, τ, and initial mass, Mini,
of an isolated non-rotating single star, at a fixed solar-like initial
metallicity Zini = Z⊙.

Stars evolve on different timescales, depending on the evolu-
tionary phase they undergo, on their masses as well as on other
stellar parameters. Therefore, stellar track fitting across different
evolutionary phases and initial masses is a temporal multiscale
problem. We confirm the conclusion of Li et al. (2022), namely,
that the naive approach of training a machine learning surrogate
model fML : (τ,Mini) 7→ Y to predict the observable Y , by operat-
ing directly on (scaled) age, τ, does not result in accurate enough
predictions of the post-main sequence evolution (see Fig. A.1
for an illustration). Instead, we set up a two-step interpolation
scheme:

Step 1 (age proxy fit) f1 : (log τ, log Mini) 7→ s,

Step 2 (observables fit) f2 : (s, log Mini) 7→ (YL,YT,Yg).

Here, the evolution of stellar surface variables is modeled as
function of a timescale-adapted evolutionary coordinate s (an
age proxy) instead of the age, τ (step 2). The transition from stel-
lar age to the age proxy is accomplished by a second predictive
model (step 1).

We find that the fits of the post-main sequence evolution-
ary stages resulting from this two-step interpolation scheme are
orders of magnitude more accurate, as assessed by standard sta-
tistical performance scores, than the direct naive fit. We take the
logarithm of initial mass values, in order to exploit the approx-
imate mass-luminosity power law relation, which is a linear
variable dependence in log-log space.

2.2. The timescale-adapted evolutionary coordinate

The method of using a timescale-adapted evolutionary coordi-
nate, or age proxy, instead of the age variable for fitting stellar
evolution tracks has been explored before in stellar astrophysics
(e.g., Jørgensen & Lindegren 2005; Li et al. 2022). The motiva-
tion for this re-parametrization is to reduce timescale variability.
Stellar age at computation step, i,

τi =

i
∑

j=1

δt j,

is a monotonically increasing function which grows cumulatively
at an adaptive step size, δt j, after each step j = 1, . . . , i of numer-
ical time integration of the differential equations describing
stellar structure and evolution. The age proxy variable,

si =

i
∑

j=1

δs j,

is constructed analogously, but here δs j is the increment in the
star’s Euclidean displacement in a diagram spanned by a set of
its physical variables, obtained after the numerical time integra-
tion step j = 1, . . . , i. For a parametric form of δs, Jørgensen &
Lindegren (2005) used the ansatz

δs j =

√

∣

∣

∣

∣

∣

∆ j, j−1 log
L

L⊙

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∆ j, j−1 log
Teff

K

∣

∣

∣

∣

∣

2

,

where ∆j,j−1X = X j − Xj−1. By construction, this age proxy mea-
sures the increase in Euclidean path length of a star along its
evolutionary track in the Hertzsprung–Russell (HR) diagram.
More recently, Li et al. (2022) suggested another prescription

δs j =

(
∣

∣

∣

∣

∣

∆j,j−1 log
g

[cm s−2]

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∆j,j−1 log
Teff

K

∣

∣

∣

∣

∣

2
)c

,

which they tailored to their problem formulation and parame-
ter range. Their age proxy measures the displacement of the
star in the Kiel diagram to the power of a parameter, c. After
experimentation, they conclude that c = 0.18 yields the most
uniform distribution of the data they trained their models on.
At the same time, the authors report fit inaccuracies at transition
regions between consecutive evolutionary phases and over the
fast ascension of the red giant branch. Over these phases (in con-
trast to the MS evolution) target variables change rapidly in time
and vary unsteadily even as function of the age proxy. To cure
this problem, we re-defined the timescale-adapted evolutionary
coordinate by an altered prescription, whose effect is to not only
smooth out transitions in-between stellar phases, but, addition-
ally, to resolve the CHeB phase in a way that allows for reliable
stellar track fitting; this is done by keeping the resolution of vari-
ability on the same numerical age proxy scale as the previous two
phases. To get there, we found a promising approach in returning
to the original formulation by Jørgensen & Lindegren (2005),
but extending it by a third variable that spans another dimension
of the diagram, in which the Euclidean path length is calculated:

δs̃ j =

√

∣

∣

∣

∣

∣

∆j,j−1 log
L

L⊙

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∆j,j−1 log
Teff

K

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∣

∆j,j−1 log
ρc

[g cm−3]

∣

∣

∣

∣

∣

∣

2

.

The motivation for introducing another variable into the
computational prescription of the path length stems from the fact
that during the stable CHeB, stars hardly displace in the HR
diagram, although their nuclear composition and hydrodynamic
properties undergo substantial changes. In order to adjust the
path length prescription, we therefore sought for a suitable
stellar-core-related variable. After experimental tests, we found
that adding the log-scaled core density log ρc/[g cm−3] has the
desirable effect of casting the variability of all target variables of
interest onto a unified numerical scale across the three consec-
utive phases MS, RGB, CHeB, and across the wide initial mass
range that we work with1.

We normalize the age proxy of each initial mass to the range
(0, 1). The star is on the ZAMS when s = 0, while s = 1, when
the star has reached the end of core helium burning2.

2.3. Data base

Stellar evolution catalog. Here, we use MIST (Choi et al.
2016) as an example data set upon which we formulate and

1 This age proxy computation prescription has the aforementioned
desirable effects not only during these phase, but also during the pre-MS
and post-CHeB phases, as shown in Fig. A.2. Our age proxy construc-
tion therefore is a promising general candidate solution to the multiscale
problem of stellar evolutionary track fitting beyond the evolutionary
sequences considered in this work. It resolves prominent features (e.g.,
the Henyey MS hook, MS turnoff, the Hertzsprung gap, the base and
tip of the RGB, dredge-ups, helium flashes, blue loops, thermal pulsa-
tions on the asymptotic giant branch, and white dwarf cooling) across
all evolutionary phases we tested over the wide initial mass span.
2 The end of core helium burning is determined by the condition
XHe,central ≤ 10−3, where XHe,central is the central helium mass fraction.

A86, page 4 of 21

Maltsev, K., et al.: A&A, 681, A86 (2024)

quantify overall predictive performance across the three surface
variables: the Mean Squared Error (MSE) and the Mean Abso-
lute Error (MAE). These scores are calculated from the squared
residuals and from the absolute residuals, respectively, by tak-
ing the average variable by variable and over the three surface
variables. We choose the MSE and the MAE, because these are
standard choices for evaluating point forecasts generated by sta-
tistical learning models, but the physical significance is largely
lost by averaging across surface variables.

For model testing on the held-back test tracks at the 16 Mini

grid points stated above, we define and use the following error
scores based on HR and Kiel diagrams: L2+

HR
and L2+

K
. For a

single track in HR or in Kiel diagram at a particular initial mass,
Mini, the L2 score measures the cumulative deviation between
predicted track and held-back track,

L2(Mini) =
1

N(Mini)

N(Mini)
∑

i=1

||ui − ûi||
2,

computed as the mean squared Euclidean distance in a 2D plane
of target variable pairs: ui = (log Li, log Teff,i) for the HR diagram
and ui = (log gi, log Teff,i) for the Kiel diagram. This measure-
ment agrees reasonably well with the visual assessment of how
closely a predicted track aligns with the true test track. As
summary measures of predictive performance on the test data,

we take the maximum L2 measure, L2+ = max
{

L2(Mtest
ini
/M⊙)

}

among the 16 initial masses of the test set, for each type of
diagram, namely, L2+

HR
and L2+

K
.

3. Interpolation scheme solutions

In this section, we describe the methodology behind the devel-
opment of the two solutions to cost-efficient stellar evolution
forecasting over continuous parameter spaces. For the construc-
tion of a stellar evolution emulator with supervised machine
learning, we treat the selection of the surrogate model class in
Sect. 3.1. Then, we discuss loss function choice (Sect. 3.2), and
outline our training and hyperparameter optimization methods
to obtain the best-fit model (Sect. 3.3), which is a feedforward
neural network. The hierarchical nearest-neighbor interpolation
method is subject of Sect. 3.4.

3.1. Model selection

There are different surrogate model class candidates available
for tackling the regression problem defined in Sect. 2.1. For
selection of statistical learning algorithms, the following three
requirements apply in our problem case: 1) applicability to a
large data set (N > 150k), 2) multiple output6, and 3) fast
computational speed in forecast generation, for applicability of
the surrogate model at scale. Below, we discuss a number of
available options, and justify our choices.

Choice of statistical learning model. GPR has been con-
sidered the standard model choice for emulation tasks (Sacks
et al. 1989). However, because of memory limitations, the default

6 The multiple output condition (three target variables predicted by a
single surrogate model) is motivated by pragmatic considerations: pre-
dicting a multitude of stellar variables each with a separate surrogate
model requires substantially more effort, if the desired number of output
variables of interest is large.

implementation of global GPR is not applicable to large training
data sets. While there are approaches to improve the scalability
of GPR, we did not opt for GPR-based emulators for reasons
discussed in Appendix C. Instead, we tested the performance
of a number of regression models that satisfy the aforemen-
tioned constraints. After a series of manual tests, we found a
satisfactory starting performance with the k-nearest neighbors
(Fix & Hodges 1989), random forest (Ho 1995), and feed-
forward neural network (Ivakhnenko & Lapa 1967; Rumelhart
et al. 1985) regression models classes, all of which are efficient
statistical learning algorithms that qualify as scalable predic-
tive models with multiple outputs. Among them, in order to
identify which model class is the best choice for the construc-
tion of a sufficiently accurate surrogate model, we performed
a hyperparameter optimization of each of these three to cross-
compare their performance, as assessed by the scores defined
in Sect. 2.4. We performed hyperparameter optimization of k-
nearest neighbors (KNN) and random forest (RF) regression
models by a grid search, with a sampling of numerical hyper-
parameters over a log scale, and carried out a model selection
based on three-fold cross-validation. For the feedforward neural
network (ffNN) model, which has a much larger space of options
for hyperparameter choices, we determined a preliminary best-fit
hyperparameter configuration after training hundreds of models
over a high-dimensional, but coarsely sampled hyperparameter
grid. We then took it as a starting configuration, which we fur-
ther optimized in terms of the hyperparameter selection over
a series of manual experiments. The result is that a manually
tuned feedforward neural network (ffNN) outperforms KNN and
RF models that have been optimized through a grid search, as
assessed by the majority of error metrics defined above (see
Table 3). The KNN and RF best-fit models therefore serve us
primarily as benchmarks for ffNN performance.

Deep learning models. ffNN is one out of many avail-
able deep learning architectures. We opt for a ffNN architecture
because in our regression problem, the input is a vector of fixed
dimension. To discriminate, we did not train a recurrent neural
network based architecture, which is the model class of choice if
the input is a sequence of variable length; nor did we choose a
convolutional neural network architecture, which is the model
class of choice if the input is a higher dimensional topologi-
cal data array. A motivation for choosing a ffNN architecture
is the established theoretical result that a ffNN with a number of
hidden layers ≥1 is capable of universal function approximation
(Hornik et al. 1989).

3.2. Choice of loss function

Choosing a loss function appropriate to the problem is a crucial
step because it defines the training goal for supervised machine
learning. During the optimization of a ffNN, its trainable param-
eters are iteratively updated, after each batch, to minimize the
loss score. Choosing one error score over another is a trade-off
to compromise which type of error is least tolerable against other
types of errors. Common choices of scoring rules (for a more
detailed reference on scoring rules for point forecast evaluation,
see Gneiting 2011) for model training as well as for point fore-
cast evaluation are the MAE and MSE. Other choices include
the mean squared logarithmic error (MSLE) and the mean abso-
lute percentage error (MAPE). For our problem case, the loss
function selection was guided by the following considerations.

A86, page 7 of 21

Maltsev, K., et al.: A&A, 681, A86 (2024)

MAPE is not the appropriate loss function since, for instance,
changes in log-scaled luminosity of massive stars in HR diagram
happen on a smaller relative numerical scale than for low-mass
stars and prediction errors in that range would therefore hardly
be penalized. Furthermore, we chose not to opt for MAPE for
additional reasons that are outlined in Tofallis (2015). When
choosing MSLE as loss function, we observed an inefficient
learning procedure, with an overly slow decline of MSE, MAE,
and our physical performance scores over the validation data.
However, we also found neither MAE nor MSE to be optimal
choices for our problem. Using MAE allowed the mean averaged
error scores to remain low but admitted considerable prediction
outliers. Conversely, using MSE reproduced the global shape
of the distribution of values of the target variables, but predic-
tions of stellar tracks were often not precise enough locally, and
overfitting occurred at epochs much earlier than when minimiz-
ing MAE. Instead, we opted for the Huber loss (Huber 1964),
which seeks a trade-off between MAE and MSE minimization.
It penalizes MSE-like for small prediction errors, and MAE-like
for large prediction errors, using the parameter d for the tran-
sition threshold (for a recent discussion and generalization, see
Taggart 2022):

Ld(Y, Ŷ) =

{

1
2
(Y − Ŷ)2 for |Y − Ŷ | ≤ d,

d |Y − Ŷ | − 1
2
d2 otherwise.

During supervised learning, the Huber loss Ld(Y, Ŷ) issues a
penalty for each point prediction error, given the prediction, Ŷ,
by the surrogate model and the true label, Y, it is compared
against. When training deep learning models to predict multiple
output, the mean Huber loss is computed as the average across
target variables, that is, over the set of labels and over multiple

output predictions {Y j, Ŷ j} j=1,...,nb
that are obtained from one ran-

domly sampled data batch of size nb. We find our best results, as
assessed by the physically meaningful performance scores out-
lined in Sect. 2.4, with d = 0.75. Once a desired target value
of the validation loss score is set, which goes in hand with low
enough physical performance scores over the validation data,
what is left is to seek a suitably configured deep learning model
that reaches this target value7.

3.3. Hyperparameter optimization

There are two types of hyperparameters that ought to be opti-
mized when constructing ffNN-based emulators: the architecture
and learning hyperparameters. The most important architecture
hyperparameters are: the number of layers, number of neurons
per layer, choice of activation function, and the kernel initial-
ization. The typical important learning hyperparameters are: the
learning rate, batch size, choice of optimizer, and the choice of
regularization method. There are three different ways to optimize
hyperparameters: first, by manual ffNN learning engineering;
second, by automated brute-force search methods (for instance,
grid or random search); third, by sophisticated search algorithms
(e.g., Bayesian optimization or genetic evolutionary search). We
opt for manual ffNN learning engineering instead of automated
searches, because for deep learning models, the optimal stage
when (i.e., at which epoch8) to stop training cannot be faithfully
decided a priori, and it requires a careful consideration of numer-
ical criteria for stopping training if models are optimized in an

7 See Appendix E for caveats regarding choice of the loss function.
8 One single epoch is over, once the entire training data set – presented
to the network in batch subsets – has been propagated through the
network.

Table 2. Summary of loss function choice, architecture and learn-
ing hyperparameters adopted for training our best-fit ffNN model,
compared to those adopted by Scutt et al. (2023).

Hyperparameter Our choice Scutt et al. (2023)

of hidden layers 6 6
of neurons per layer 128 64
Activation function ReLU ELU
Kernel initializer GU
Regularization LN –

Batch size 512 6 × 104

Optimizer Adam Adam
lr schedule Exp. decay Fixed lr

lr range (10−3, 5 × 10−6) 7 × 10−5

Loss function Huber loss MSE

automated pipeline. Most reliably, it is determined a posteriori
by inspection of the fluctuating training and validation data loss
curve declines during the runtime. Then, we continue training
so long as the degree of overfitting is tolerable. We consider
the overfitting to be tolerable so long as the validation loss –
even though it may be decaying slower than the training loss at
advanced learning stages (i.e. at large epoch numbers) – has not
reached the flattening plateau stage, nor started to increase.

Best-fit model. For theoretical considerations regarding
hyperparameter tuning and the selection criteria we used, the
reader is referred to Appendix D. In practice, we found a suc-
cessful hyperparameter tuning strategy (guided by Goodfellow
et al. 2017) with the following configurations (see Table 2
for a summary). First, a symmetric many-layer (6 hidden lay-
ers) architecture with a moderate number of neurons per layer
(128), rectified linear unit (ReLU; Hahnloser et al. 2000) acti-
vation, Glorot uniform (GU; Glorot & Bengio 2010) kernel
initialization, and layer normalization (LN; Ba et al. 2016) reg-
ularization after each layer. Layer normalization counteracts
overfitting while the eight-layer architecture with 128 neurons
per hidden layer yields a large enough model capacity to prevent
underfitting by over-parametrization. Second, long-term training
(∼ 70k epochs) at relatively small (512) batch size. Observation
of the degree of fluctuation of the loss curves is a means to
assess exploration of the high-dimensional trainable parameter
space spanned by the biases and by the weighted connections
between neurons from neighboring layers in each backpropaga-
tion step. The small batch size (as compared to the size of N′

train
)

adds stochasticity to the learning, and thereby ensures enough
exploration, which is aimed to prevent an early flattening of the
validation loss curve. Third, a learning rate schedule of slow
exponential decay in the Adam optimizer (Kingma & Ba 2014):
starting with a large enough initial learning rate lri = 10−3 (to
accelerate the gradient descent at beginning stages of learning)
and decreasing the learning rate down to a final lr f ∼ 5 × 10−6

toward the end of training (in order to target global rather local
minima in the value space of trainable network parameters). The
slow gradual decrease is aimed to improve on subtle prediction
errors.

3.4. Hierarchical nearest-neighbor interpolation

In this section, we present a second method to solve the problem
by a HNNI scheme. Our construction of the HNNI algorithm

A86, page 8 of 21

Maltsev, K., et al.: A&A, 681, A86 (2024)

Fig. 7. GPR fits of the log τZAMS(log Mini/M⊙) and log τTACHeB(log Mini/M⊙) relations (a), and the scatter plots of the age proxy predictions
ŝ(log τ, log Mini) against the validation data, stest, obtained with the HNNI (b) and KNN (c) methods, for performance comparison.

Fig. 8. Best ((a) and (c)) and worst ((b) and (d)) fits of age proxy tracks for unseen test initial masses, with the HNNI and KNN methods, respectively.

with the pre-MS phase. Therefore, the values of ages at ZAMS,
τZAMS(Mini), quantify its duration. Instead of τ, we use a scaled
age variable τ̃ ∈ (0, 1) for the age proxy fit with both the HNNI
and the supervised ML methods:

τ̃i(Mini) =
log τi(Mini) − log τZAMS(Mini)

log τTACHeB(Mini) − log τZAMS(Mini)
.

To obtain back the actual non-normalized age values (in
units of years), the supply of the ZAMS log τZAMS(Mini)
and the TACHeB log τTACHeB(Mini) functions is needed. The
τZAMS (Mini) values are available from the MIST data set at the
discretely sampled initial mass grid points. In order to be able
to predict ZAMS and TACHeB ages of stars over a continuous
Mini range, we fit a Gaussian process regression model to the
discretely sampled catalog ZAMS and TACHeB grid points (see
Fig. 7a), respectively.

4.2.1. HNNI

The HNNI routine for the age proxy fit operates in the same way
as outlined in Sect. 3.4, with the sole difference that the primary
regressor variable now is τ̃ (instead of the age proxy used in step
2), while s is itself the target variable of the fit. As Fig. 7b shows,
HNNI predicts the values of the age proxy reliably throughout
evolution of stars from s = 0 up to s = 1 over the validation
data set. The mean residual error ϵres is of order 10−5. The only
clustered scatter regions off the diagonal are around s ≃ 0.25 and
s ≃ 0.6, but the scatter offsets are low in amplitude. The most
extremal over- and underprediction outliers are of order 10−2 in
absolute value.

The performance evaluation based on the test data assesses
the predictive accuracy of mapping the stellar age onto the
timescale-adapted evolutionary coordinate over the course of the
entire evolution from ZAMS up to TACHeB for unseen initial
masses.

The outcome is that HNNI predicts the value of the age
proxy reliably throughout the evolution from ZAMS to TACHeB
except at fast-timescale transitions, which make up little stellar
lifetime but manifest themselves as sharp increases in age proxy
values as function of age. Figures 8a and b show the best and
the worst fit, respectively, assessed by the MSE metric, among
all the test initial masses. The scatter plot of the best fit (for
Mtest

ini
= 41 M⊙) has no considerable spread, since ŝ aligns with

stest over course of the full evolution. In the scatter plot of the
worst fit (for Mtest

ini
= 0.91 M⊙), the local deviations of ŝ from

stest are apparent: the age proxy is first reproduced accurately up
to s ≃ 0.47. Then a gap in the output range forms, such that the
next predicted age proxy value is at s ≃ 0.6 and continues to be
overpredicted up to s ∼ 0.7, from where it transitions onward to
an underprediction phase. A second domain gap forms and the
predicted age proxy aligns back with its actual test data value at
s ∼ 0.9 up to the end. The physical implications on the prediction
of HR and Kiel diagrams in effect of the two-step interpolation
scheme are discussed in Sect. 4.3.1. Age proxy prediction errors
imply that the evolutionary state of the star is either under- or
overpredicted, since a wrong evolutionary coordinate value has
been assigned to a given stellar age of reference. However, as has
been shown in Sect. 4.1, sampling target variables at homoge-
neously distributed δs increments (e.g., an equidistant spacing)
in the step 2 scheme ensures that no significant changes in target
variability will have been jumped over. In other words, artifact
gap formation along curves in HR and Kiel diagrams is avoided
by the fitted age proxy parametrization of stellar evolutionary
tracks (step 2 fit), independent of the age proxy forecasts (step 1
fit).

4.2.2. KNN

Analogously to the procedure for the observables fit, we con-
structed another solution to the age proxy fit with supervised
machine learning. The reason is that we would like to obtain

A86, page 13 of 21

Maltsev, K., et al.: A&A, 681, A86 (2024)

Fig. 9. Outcome of the two-step interpolation scheme with supervised ML. Stellar tracks in the HR (top left) and Kiel diagram (top right) for
unseen test initial masses are predicted as function of age τ. For comparison with the true test HR and Kiel tracks, see Fig. 4. For better visibility,
the best- (bottom left) and worst-fit (bottom right) of tracks in the HR diagram, as assessed by the L2 measurement, are displayed separately.

a more cost-efficient interpolation model than HNNI, which
nevertheless is sufficiently accurate for astrophysical applica-
tion purposes. The age proxy fit is a univariate regression
problem distinct from the observables fit and for which the pro-
cedure of surrogate model class selection and hyperparameter
optimization needs be re-iterated. For comparing and select-
ing ML surrogate models, we used performance scores that are
defined analogously to the performance scores for the step 2 fit
(Sect. 2.4), but applied to the univariate output of age proxy pre-
diction. After a series of tests of a number of model classes,
including ffNN, we obtained the best performance with the KNN
algorithm. After a preliminary grid search for hyperparameter
optimization of KNN, we manually fine-tuned hyperparameters
for best-fit results. We obtained these with two neighbors to
query, a Minkowski metric, a p = 2 power parameter for distance
calculation, the BallTree algorithm, distance-based weighting,
and a leaf size of 300. The predictive quality is lower, but error
scores are on the same order of magnitude compared to the
HNNI case (see Fig. 7c for the summary statistics of the age
proxy prediction errors over the validation data). Therefore, we
evaluated the solution with the KNN algorithm as sufficiently
accurate. For a performance assessment over the test data set,
Fig. 8 (c and d) show the best and worst fits of the age proxy,
respectively. HNNI and KNN agree on the worst fit to be at the
low-mass end, for Mtest

ini
= 0.91 M⊙. Here, the KNN worst-fit has

a characteristic similar to the HNNI case: the age proxy is first
reproduced accurately up to s ≃ 0.52. Then a gap in the output
range forms, such that the subsequent predicted age proxy value
is at s ∼ 0.76. The gap is larger than in the HNNI case. Hereafter,

the age proxy is overpredicted, and aligns with the stest values
from s ∼ 0.93 onward up to the end.

4.3. Predicting stellar evolution

Consecutively putting together two predictive models for the age
proxy and for the stellar observables, respectively, allows for the
prediction of stellar evolution tracks in HR and Kiel diagrams as
function of stellar age, and of isochrones showing stars of same
age. In this section, we use the integral two-step interpolation
scheme to predict complete stellar evolution tracks in HR and
Kiel diagrams over the set of test initial masses (see Sect. 4.3.1)
and to predict stellar observables at fixed values of stellar age
over a densely sampled initial mass range (see Sect. 4.3.2).

4.3.1. Evolutionary tracks

For the input of age (log τ) and initial mass (log Mini) of the
star, the value of the age proxy (ŝ) is predicted first by the
step 1 method. Then, ŝ is used as input variable for the step 2
method, together with again the initial mass (log Mini). Here,
we present the two-step pipeline interpolation results that are
obtained with the supervised machine learning models (KNN
and ffNN), which is a less accurate method compared to HNNI
in both fitting tasks. We find that the predictive quality of stel-
lar surface variables reaches the desired accuracy level (see the
predictions of evolutionary tracks in HR and Kiel diagrams for
unseen test initial masses in Fig. 9). The net effect the step 1 fit

A86, page 14 of 21

Maltsev, K., et al.: A&A, 681, A86 (2024)

models close to ZAMS, but not the MS width at the highest
masses within the tested range Mini/M⊙ ∈ (10, 80). The slope
of model red supergiants is too shallow compared to observa-
tions; however, no observed red supergiants lie in the forbidden
zone cooler than the limit at the Hayashi line. Comparing the
observed to predicted ratio of WC- to WN-type11 stars, of WR
to O-type, and of blue- to red supergiant stars allows us to test
mass loss, semiconvection, and convective overshoot models. At
Z⊙, model ratios and observed ratios broadly agree on the order
of magnitude, but the deviation is substantial in particular for
the ratio of WC- to WN-type stars. For a more detailed analysis,
the reader is referred to the original paper (Choi et al. 2016) and
references therein.

5. Conclusions and outlook

We develop two method classes for interpolation of stellar evo-
lution tracks over an initial mass range from red dwarfs to very
massive stars, evolved from the zero age main sequence (ZAMS)
up to terminal age of core helium burning (TACHeB). The two
interpolation methods are: 1) a surrogate model of stellar evo-
lution constructed with supervised machine learning and 2) a
catalog-based hard-coded hierarchical nearest-neighbors inter-
polation (HNNI) algorithm. Both of these invoke a two-step
interpolation procedure that makes use of a timescale-adapted
evolutionary coordinate s (age proxy) that we introduce to
re-parametrize the evolution of stars. This re-parametrization
reduces the timescale variability of evolutionary variables,
thereby allowing for more accurate predictions across timescale-
separated evolutionary phases.

For the predictive two-step pipeline constructed with super-
vised machine learning, we optimized a k-nearest neighbors
model to predict the age proxy for the input of (scaled) stel-
lar age, τ̃, and initial mass, Mini. The predicted age proxy
value, together with initial mass, is then used as input by a
hyperparameter-tuned feedforward neural network model to pro-
duce the multiple output prediction of the log-scaled surface
variables luminosity, log L, effective temperature, log Teff , and
surface gravity, log g. These predictions allow tracing the evo-
lution of stars in the HR and Kiel diagrams over the dominant
duration of their lifetimes.

For the predictive two-step pipeline constructed with HNNI,
we use the same syntax in the algorithmic prescription for both
the age proxy prediction and for the prediction of observables.
It operates by selecting the two nearest neighbors, from above
and from below, in each parameter space direction, and then
performing a sequence of linear interpolations, according to a
hierarchical ordering of parameters.

Depending on the astrophysical application, one method
is preferable over the other. The supervised machine learning
approach is more cost-efficient (by two orders of magnitude in
seconds) but more difficult to develop. The hard-coded HNNI is
more accurate by one order of magnitude on the MAE and by
two orders of magnitude on ϵT, while all other error scores are
on the same scale), but less handy, since continued access to the
stellar evolution catalog is required.

With a wide initial mass range and with a sequence of
evolutionary phases from the ZAMS up to TACHeB, astrophys-
ical application of our models is of interest, first, in context

11 WC stars are WR subtype stars that reveal helium-burning products
in the outer layers, while WR stars of subtype WN reveal hydrogen-
burning products.

of rapid single star population synthesis. The second promis-
ing application prospect is the incorporation of stellar evolution
emulators as stellar microphysics sub-grid models in large-scale
stellar N-body dynamics or galactic evolution simulations. The
third prospect for application is the usage of our interpolation
methods to infer fundamental stellar parameters (given multiple
observables of a single star) or the initial mass function (given
the observation of a stellar population). The latter astrophysi-
cal application prospect could follow the DALEK (Kerzendorf
et al. 2021) working example in context of spectral modeling
of Type Ia supernovae. DALEK is a deep learning based emu-
lator of the output of the TARDIS (Kerzendorf & Sim 2014)
radiative transfer code. A variant thereof has been used in a
Bayesian framework, where it represents the output of TARDIS,
to infer supernova progenitor parameters from the observation of
its spectrum (O’Brien et al. 2021). The variant has been trained
from scratch on a training data set which has been generated over
a reasonably constrained parameter range given likely properties
of the progenitor system. Reliable inference on the parameters of
the progenitor system without the emulator, with the traditional
grid-based methods instead, is impossible; it would take thou-
sands of years of clock time to evaluate the high-dimensional
parameter space by the classical Bayesian inference approach
of running TARDIS models at all those parameter space grid
points as selected by iterative optimization that typically requires
millions of evaluations.

Sampling a stellar evolution track as function of the age
proxy instead of the stellar age, for instance at equidistant δs
increments, facilitates the adequate resolution of all significant
changes in the stellar output variables. This applies not only
to the ZAMS–TACHeB sequence, but also to the pre-MS and
post-CHeB evolution (up to white dwarf cooling for low-mass
stars).

For the generalization of our methods to a higher dimen-
sional space of fundamental parameters, additional consider-
ations need to be taken into account. Sampling of a high-
dimensional parameter space to generate the grid data needs to
be efficient: sparse enough to keep the computational expenses
low, but dense enough to maintain the predictive accuracy sat-
isfactory locally across all directions in parameter space. The
MIST single star grid space sampling density distribution, which
we used to construct our models, has been decided upon by the
makers of the catalog, based on physical insight from domain
expertise. We have expanded the data set in parameter ranges
of interest based on inspection of local fit results obtained with
the surrogate model, to locally improve the predictive perfor-
mance where needed, by supplying more training data in those
regions. An alternative approach to determining the optimal
parameter space sampling goes by using active learning (AL;
Settles 2009). By pre-defined heuristics, decision-making with
AL is automated and, therefore, better adapted to high dimen-
sional parameter spaces for finding an optimized distribution of
grid points. In the context of stellar astrophysics, Rocha et al.
(2022) applied AL in a case study involving the mapping of ini-
tial binary star parameters to the final orbital period and show
that it can be used to reduce the training data grid size.

For stellar parameter spaces greater than those tested here,
we recommend using HNNI as the predictive interpolation
model as far as it is applicable given computational cost con-
straints. The HNNI method generalizes to higher dimensions: for
clarity, we have provided the recipe for a 3D (s,Mini,Zini) formu-
lation of HNNI in order to show the systematic of its dimensional
extension. In the case that either the HNNI method we devel-
oped will break down or be computationally too inefficient

A86, page 16 of 21

Maltsev, K., et al.: A&A, 681, A86 (2024)

in the high-dimensional parameter space (given the impracti-
cally large cumulative number of 1D interpolations to make),
we recommend using supervised machine learning, in particu-
lar deep learning, to train univariate surrogate models of stellar
evolution on segments of the initial mass parameter space. For
training deep learning models, we have provided basic guid-
ance on selection of feedforward neural network architecture and
learning hyperparameters and on the choice of the loss func-
tion. Finally, we have found a successful training strategy that,
in its basic design, could (since it has been adjusted to data base
specifics of a stellar evolution catalog) continue to produce sat-
isfactory fit results when trained on data in a higher dimensional
parameter space.

Acknowledgements. We thank Tilmann Gneiting, Giuliano Iorio, Saskia Hekker,
Ralf Klessen, Frauke Gräter, Sebastian Lerch and Evgeni Ulanov for help-
ful advice and discussions, and the anonymous referee for useful suggestions.
The authors acknowledge support by the Klaus Tschira Foundation. This work
has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (Grant
agreement No. 945806). This work is supported by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy EXC 2181/1-390900948 (the Heidelberg STRUCTURES Excellence
Cluster). W.E.K was supported by NSF AST-2206523, HST-AR-16613.002-A.

References

Achille, A., Paolini, G., Mbeng, G., & Soatto, S. 2021, Inform. Inference, 10, 51
Agrawal, P., Hurley, J., Stevenson, S., Szécsi, D., & Flynn, C. 2020, MNRAS,

497, 4549
Ba, J. L., Kiros, J. R., & Hinton, G. E. 2016, ArXiv e-prints [arXiv:1607.06450]
Barrett, J. W., Mandel, I., Neijssel, C. J., Stevenson, S., & Vigna-Gómez, A.

2017, in Astroinformatics, eds. M. Brescia, S. G. Djorgovski, E. D. Feigelson,
G. Longo, & S. Cavuoti, 325, 46

Bazot, M., Bourguignon, S., & Christensen-Dalsgaard, J. 2012, MNRAS, 427,
1847

Bellinger, E. P., Angelou, G. C., Hekker, S., et al. 2016, ApJ, 830, 31
Brott, I., Evans, C. J., Hunter, I., et al. 2011, A&A, 530, A116
Choi, J., Dotter, A., Conroy, C., et al. 2016, ApJ, 823, 102
Church, R. P., Tout, C. A., & Hurley, J. R. 2009, PASA, 26, 92
Creevey, O. L., Sordo, R., Pailler, F., et al. 2023, A&A, 674, A26
Dingle, K., Camargo, C. Q., & Louis, A. A. 2018, Nat. Commun., 9, 761
Dotter, A. 2016, ApJS, 222, 8
Eldan, R., & Shamir, O. 2016, in Proceedings of Machine Learning Research, 49,

29th Annual Conference on Learning Theory, eds. V. Feldman, A. Rakhlin,
& O. Shamir (Columbia University, New York, USA: PMLR), 907

Fix, E., & Hodges, J. L. 1989, Int. Stat. Rev., 57, 238
Fragos, T., Andrews, J. J., Bavera, S. S., et al. 2023, ApJS, 264, 45
Glorot, X., & Bengio, Y. 2010, in Proceedings of Machine Learning Research,

9, Proceedings of the Thirteenth International Conference on Artificial Intel-
ligence and Statistics, eds. Y. W. Teh & M. Titterington (Chia Laguna Resort,
Sardinia, Italy: PMLR), 249

Gneiting, T. 2011, J. Am. Stat. Assoc., 106, 746
Goodfellow, I., Bengio, Y., Courville, A., & Bach, F. 2017, Deep Learning (MIT

Press)
Hahnloser, R. H. R., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., & Seung,

H. S. 2000, Nature, 405, 947
Ho, T. K. 1995, in Proceedings of 3rd International Conference on Document

Analysis and Recognition, 1, 278

Hornik, K., Stinchcombe, M., & White, H. 1989, Neural Netw., 2, 359
Huber, P. J. 1964, Ann. Math. Stat., 35, 73
Hurley, J. R., Pols, O. R., & Tout, C. A. 2000, MNRAS, 315, 543
Hurley, J. R., Tout, C. A., & Pols, O. R. 2002, MNRAS, 329, 897
Iorio, G., Mapelli, M., Costa, G., et al. 2023, MNRAS, 524, 426
Ivakhnenko, A. G., & Lapa, V. 1967, Cybernetics and Forecasting Techniques, 8

(American Elsevier Publishing Company)
Jacot, A., Gabriel, F., & Hongler, C. 2018, ArXiv e-prints [arXiv:1806.07572]
Jørgensen, B. R., & Lindegren, L. 2005, A&A, 436, 127
Kamlah, A. W. H., Leveque, A., Spurzem, R., et al. 2022, MNRAS, 511, 4060
Kaufman, C. G., Schervish, M. J., & Nychka, D. W. 2008, J. Am. Stat. Assoc.,

103, 1545
Kennedy, M. C., & O’Hagan, A. 2001, J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.),

63, 425
Kerzendorf, W. E., & Sim, S. A. 2014, MNRAS, 440, 387
Kerzendorf, W. E., Vogl, C., Buchner, J., et al. 2021, ApJ, 910, L23
Kingma, D. P., & Ba, J. 2014, ArXiv e-prints [arXiv:1412.6980]
Kolmogorov, A. N. 1963, Sankhyā, 25, 369
Kruckow, M. U., Tauris, T. M., Langer, N., Kramer, M., & Izzard, R. G. 2018,

MNRAS, 481, 1908
Ksoll, V. F., Ardizzone, L., Klessen, R., et al. 2020, MNRAS, 499, 5447
Lee, J., Xiao, L., Schoenholz, S., et al. 2019, in Advances in Neural Informa-

tion Processing Systems, 32, eds. H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, & R. Garnett (Curran Associates, Inc.)

Li, T., Davies, G. R., Lyttle, A. J., et al. 2022, MNRAS, 511, 5597
Liu, H., Ong, Y.-S., Shen, X., & Cai, J. 2020, IEEE Trans. Neural Netw. Learn.

Syst., 31, 4405
Lyttle, A. J., Davies, G. R., Li, T., et al. 2021, MNRAS, 505, 2427
McKay, M. D., Beckman, R. J., & Conover, W. J. 1979, Technometrics, 21, 239
Ni, W., Tan, S. K., Ng, W. J., & Brown, S. D. 2012, Ind. Eng. Chem. Res., 51,

6416
Nichani, E., Radhakrishnan, A., & Uhler, C. 2020, ArXiv e-prints

[arXiv:2010.09610]
O’Brien, J. T., Kerzendorf, W. E., Fullard, A., et al. 2021, ApJ, 916, L14
Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3
Pols, O. R., Schröder, K.-P., Hurley, J. R., Tout, C. A., & Eggleton, P. P. 1998,

MNRAS, 298, 525
Riley, J., Agrawal, P., Barrett, J. W., et al. 2022, ApJS, 258, 34
Rocha, K. A., Andrews, J. J., Berry, C. P. L., et al. 2022, ApJ, 938, 64
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. 1985, Learning Internal Rep-

resentations by Error Propagation, Tech. rep., California Univ San Diego La
Jolla Inst for Cognitive Science

Ryabchikova, T., Piskunov, N., Pakhomov, Y., et al. 2016, MNRAS, 456,
1221

Sacks, J., Welch, W. J., Mitchell, T. J., & Wynn, H. P. 1989, Stat. Sci., 4, 409
Sana, H., de Mink, S. E., de Koter, A., et al. 2012, Science, 337, 444
Schneider, F. R. N., Langer, N., de Koter, A., et al. 2014, A&A, 570, A66
Schneider, F. R. N., Ramírez-Agudelo, O. H., Tramper, F., et al. 2018a, A&A,

618, A73
Schneider, F. R. N., Sana, H., Evans, C. J., et al. 2018b, Science, 359, 69
Scutt, O. J., Murphy, S. J., Nielsen, M. B., et al. 2023, MNRAS, 525, 5235
Settles, B. 2009, Active Learning Literature Survey, Computer Sciences, Tech

rep. 1648, University of Wisconsin-Madison
Springel, V., Pakmor, R., Pillepich, A., et al. 2018, MNRAS, 475, 676
Taggart, R. J. 2022, Electron. J. Stat., 16, 201
Tanikawa, A., Yoshida, T., Kinugawa, T., Takahashi, K., & Umeda, H. 2020,

MNRAS, 495, 4170
Taylor, S. R., & Gerosa, D. 2018, Phys. Rev. D, 98, 083017
Tofallis, C. 2015, J. Oper. Res. Soc., 66, 1352
Van Tooren, C., & Haas, T. 1993, in Contaminated Soil’93: Fourth Interna-

tional KfK/TNO Conference on Contaminated Soil, 3–7 May 1993, Berlin,
Germany, Springer, 609

Varin, C., Reid, N., & Firth, D. 2011, Statistica Sinica, 21, 5

A86, page 17 of 21

Maltsev, K., et al.: A&A, 681, A86 (2024)

Appendix C: GPR

Ever since pioneering work by Sacks et al. (1989), GPR has been
considered standard method choice for emulation tasks because
of flexibility of the fitting model and regulatory effect of the
Gaussian assumption (for a detailed discussion of application of
GPR, see Kennedy & O’Hagan 2001). In general, GPR becomes
increasingly time-prohibitive and computationally expensive as
the size of training data grows. Particularly, GPR involves the
Cholesky factorization and inversion of the covariance matrix,
which are computationally costly operations for a large data set.

The literature on GPR includes multiple approaches to
improve scalability (Liu et al. 2020), which can be broadly clas-
sified into global approximation and local approximation of the
GPR. While approaches to global approximation tend to focus
on methods based on sparse kernels (Kaufman et al. 2008) and
approximate likelihoods (Varin et al. 2011), approaches to local
approximation center around inference and prediction on local
subsets of data, such as moving-window GPR (Van Tooren &
Haas 1993; Ni et al. 2012).

Following the local approximation approach, Li et al. (2022)
solved the forward problem of stellar evolutionary track forecasts
for given fundamental input parameters with separate GPR mod-
els that each cover a subspace of the narrow but five dimensional
stellar parameter space. However, using a separate GPR on sub-
spaces is likely to ignore the potential dependence across them,
which in turn can lead to suboptimal predictions. We expect this
to become problematic upon extension of the input space, when
exploring parameter spaces of binary star systems. For these rea-
sons, we investigate machine learning models that can be trained
on the full data set more closely.

Appendix D: ffNN hyperparameter tuning

Architecture design. There are a number of relevant theoreti-
cal considerations that guided our approach to ffNN architecture
design. The main role of the activation function is to intro-
duce non-linearities into the information processing pipeline of
the neural network. We adopt the standard recommendation of
choosing the ReLU activation function, and instead focus on
tuning the model capacity.12 There are approaches to tuning the
model capacity based on complexity of the learning task (Achille
et al. 2021), which can be estimated using the Kolmogorov com-
plexity measure (Kolmogorov 1963). However, its estimation is
more a theoretical, less a practical enterprise, due to its non-
trivial computation. Instead, there is a body of theoretical hint
suggesting that over-parametrization of the deep learning model
is required in order to overcome an inherent bias of learning
simple (rather than complex) input-output mapping rules (Din-
gle et al. 2018; Nichani et al. 2020). The model capacity ought
to be chosen large enough to prevent underfitting, however not
overly large to avoid overfitting. The model capacity, once fixed,
can be built up in two contrasting ways: 1) by few hidden lay-
ers and many neurons per hidden layer or 2) by many hidden
layers and few neurons per hidden layer. An incentive toward
the first approach is the success of GPR as emulation method:
a first-order Taylor approximation to the output of a wide net-
work, initialized with independent and identically distributed
weights and trained for a large number of epochs, approximates

12 The model capacity corresponds to the number of free trainable
parameters. In a fully connected ffNN without regularization layers, the
model capacity is given by the total number of weighted connections
between neural nodes plus the total number of biases in the network.

the predictions of a GPR model, and the selection of activation
functions corresponds to a particular kernel (the neural tangent
kernel) in GPR (Jacot et al. 2018; Lee et al. 2019). The other
approach to building up a fixed model capacity, by choosing a
higher number of layers, can, on the other hand, be more valuable
than increasing the width. For example, Eldan & Shamir (2016)
show that approximating certain functions requires an exponen-
tially higher number of neurons in a wide network configuration
to achieve the same accuracy as that of a deeper network, and the
result holds irrespective of the choice of activation function. We
tested both approaches on our problem and found the best result
by building up model capacity through a many-layer architecture
with a moderate number of neurons. When training deep learn-
ing models, we tested dropout, batch normalization, and layer
normalization as regularization techniques, in order to push the
validation loss further down past stagnation phases.

Selection criteria. We performed empirical tests of manually
designed hyperparameter (HP) combinations and then applied
selection criteria to decide whether or not to train the con-
figured model up to the end. The main HP that we varied
were the number of hidden layers, the number of neurons per
layer (assuming a symmetric network architecture), learning rate
schedule parameters and the batch size. For each HP combi-
nation, we evaluated the loss curve decline during the runtime
of learning, and applied the following selection criteria at the
{500, 103, 2×103, 5×103} epoch stages: First, the speed of learn-
ing (judged upon by cross-comparison of validation loss scores
at the aforementioned epoch stages for different HP combina-
tions, and estimation of the slopes). Second, the degree of overfit
(judged upon by visual assessment of departure of the validation
from the training loss curve with increasing epoch number). Sub-
sequently, we manually adjusted the HP choice for the next series
of empirical tests, informed by performance of HP combinations
from the previous trials. Promising models (with fast validation
loss curve decline and tolerable overfit over long training peri-
ods) were trained until the validation loss curve either flattened
out or started to oscillate over epoch scales of order 5 − 10k. Out
of those promising models, the "best" deep learning model was
selected as the one that had the least error scores on the valida-
tion data. This procedure was iterated until we trained a surrogate
model that attained a threshold value of the validation loss, with
the lowest error scores among all the deep learning models we
tested over a series of generations. Training our best-fit ffNN
model lasted around 8 h on a Nvidia RTX 3060 GPU machine.

Randomness and reproducibility. A trained deep learning
model is the outcome of a stochastic computer experiment. In
order to obtain reproducible results, the random seed needs to
be fixed twice: first, before the train-test split of the total data
set Ntotal = Ntrain + Nval and second, before initializing the ffNN
kernel at model compilation.

Appendix E: Alignment problem

Globally defined loss functions. What remains an issue when
building stellar evolution surrogate models with supervised
machine learning models to approach the regression problem we
formulated, is what we refer to as the alignment problem (AP):
our expectation of the surrogate model’s predictive capability
(characterized by locally accurate performance over all three tar-
get variables, across all three evolutionary phases and across
the entire initial mass range) does not align with the formalized

A86, page 20 of 21

Maltsev, K., et al.: A&A, 681, A86 (2024)

numerical condition (characterized by the minimization of one
single global error score) that is optimized during training of
machine learning models. We find that none of the standard loss
function choices optimally match our problem setting. 13 The
reason for the AP is that the evolution of stars, traced in the HR
diagram, does neither happen over the same absolute nor relative
numerical scale range for different initial masses. However, the
surrogate model learns by minimizing a globally defined error
score, which means by improving to reproduce the overall global
shape of the three-dimensional hypersurface of the target vari-
ables over the two-dimensional input parameter space. While
training deep learning models, we encountered cases when the
statistical MSE scores on training and validation data decreased
further (i.e., no overfitting in the statistical learning sense of the
term), but our physical performance scores, which are locally
defined, worsened. In essence, this means that the surrogate
model continued to learn, but not that what we appreciate. It
may happen that the emulator will have improved predictive
capability globally, as assessed by the global loss score, by sub-
stantial gains in predictive accuracy in those parameter space
regions where the accuracy was already good enough accord-
ing to our physical performance metrics – but at the sacrifice
of losing predictive accuracy in other parameter space regions
admitted by statistical fluctuations. That latter loss in local pre-
dictive accuracy, however, may manifest itself in a decrease of
physical performance scores over the target variables, adverse
to expectations. Nevertheless, this performance loss is not con-
sidered problematic by the surrogate model based on the global
error score that insufficiently penalizes the prediction errors in
relevant parameter regions of concern.
The AP is only partially addressed by choosing a ffNN model
class, which minimizes the loss of —not the global data set in
a single step, but of— a sequence of randomly selected data
batches14), by choosing the Huber loss score (which seeks a
trade-off between MSE and MAE minimization) and by locally

13 MSE is the average squared residual, where the squared penalization
incentivizes to avoid large absolute residuals in model training. Clearly,
this behavior is globally desirable for stellar evolutionary track fitting,
but leads to too much leniency when a surface variable does not vary
much over a star’s lifetime. Then, residuals would be small compared
to the global range, but large as perceived in HR or Kiel diagrams for a
given initial mass. MAE is the average absolute residual, where penal-
ization is linear, and the behavior is reversed in comparison to the MSE.
Common scale-free measures, such as MSLE and MAPE, essentially
penalize multiplicative errors. MSLE evaluates squared penalties on a
log scale (that is, squared log ratios), and MAPE is the average ratio of
the absolute residual over the actual value of predicted target variable.
In a nutshell, both of these measures tolerate larger absolute residuals as
the observed value increases, but we require the opposite for luminosity,
which tends stay in a smaller range for tracks at overall high values of
luminosity (see top-left panel of Fig. 9).
14 This point is best understood by comparison of ffNN optimization to
that of another statistical learning algorithm. For instance, a RF model
is optimized in a single step: a loss score (such as MSE) is minimized
after the complete data set is fed into the RF by the bagging technique
that distributes the input data onto the individual decision trees. A RF
forecast is an ensemble forecast from an ensemble of decision trees,
each of which receives a random split of data samples. For this subset
of training data (which differs from one tree to another), the decision
tree finds its own hierarchically conditioned numerical rules during the
supervised machine learning. However, during training the minimiza-
tion of the loss score happens globally, not locally for each subset of
the total training data set. In contrast, ffNN minimizes the loss score for
each batch (a small, randomly selected chunk of the total training data
set) and repeatedly over a large number of iterations.

increasing the initial mass parameter space sampling (which, sta-
tistically, increases the importance of specific parameter space
regions by the increased amount of data for that region). If super-
vised ML is to be applied in high dimensional parameter space
for stellar track fitting, this issue requires adequate resolution.

Solution approaches. For future extensions of our surrogate
modeling method to wide high-dimensional parameter spaces,
we propose the following approaches:
(i) To train a separate ffNN model for each target variable,

instead of training a single ffNN model with multiple output.
(ii) To segment the initial mass parameter space into parts, and

train a different ffNN model on each segment of the initial
mass range.

(iii) To tailor a loss function (parameterized by input variables,
in particular the initial mass) to account for differences in
numerical scale range over which stellar variables change
across the initial mass range, across evolutionary phases
and (in the case of multiple output) across different target
variables.
Approaches (i) and (ii) are the most common and straight-

forward. Li et al. (2022) employed both of them when modeling
stars by a set of global GPR models. Here, approach (ii) facili-
tated a splitting of the total training data set of size ∼300k into
subsets of size ∼20k, which is their stated limit of computational
feasibility for applying global GPR models on a training subset.
With approaches (i) and (ii), the learning task is simplified and
that can lead to more accurate individual interpolations.
However, all three approaches to solving the AP, which can be
employed individually or in concert, do have their drawbacks:
For approaches (i) and (ii), many separate models need to be
trained, and the capability to capture dependence structures is
impaired. Approach (iii) is the only solution that leads to truly
multivariate predictions, but is the most difficult to realize. If
the training target loss does not account for inter-variable depen-
dence, then any loss-based training lacks the required guidance.
The first step in accounting for dependence is accounting for
variability and covariance. Already that initial step is a chal-
lenge since the range of a single stellar surface variable over a
star’s lifetime can be drastically different depending on initial
mass alone. Possibly, creating a suitable multivariate loss func-
tion, tailored to stellar evolution tracks, is similarly complex as
the multivariate interpolation task itself.

For future research toward extending stellar evolution emula-
tors to wide high-dimensional parameter spaces, we believe that
a good starting approach is to build a separate deep learning
model for each target variable and to segment the initial mass
range into parts to train sets of univariate deep learning models
on each initial mass segment, in an otherwise high-dimensional
parameter space.

A86, page 21 of 21

	Scalable stellar evolution forecasting
	1 Introduction2.8pt
	2 Methods
	2.1 Regression problem formulation
	2.2 The timescale-adapted evolutionary coordinate
	2.3 Data base
	2.4 Performance evaluation

	3 Interpolation scheme solutions
	3.1 Model selection
	3.2 Choice of loss function
	3.3 Hyperparameter optimization
	3.4 Hierarchical nearest-neighbor interpolation

	4 Results
	4.1 Observables fit
	4.1.1 Deep learning emulation
	4.1.2 HNNI
	4.1.3 Method comparison

	4.2 Age proxy fit
	4.2.1 HNNI
	4.2.2 KNN

	4.3 Predicting stellar evolution
	4.3.1 Evolutionary tracks
	4.3.2 Isochrones
	4.3.3 Comparison with observations

	5 Conclusions and outlook
	Acknowledgements
	References
	Appendix A: Stellar evolution re-parametrization and HNNI
	Appendix B: HNNI in three dimensions or higher
	Appendix C: GPR
	Appendix D: ffNN hyperparameter tuning
	Appendix E: Alignment problem

