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ABSTRACT

Many astrophysical applications require efficient yet reliable forecasts of stellar evolution tracks. One example is population synthesis,
which generates forward predictions of models for comparison with observations. The majority of state-of-the-art rapid population
synthesis methods are based on analytic fitting formulae to stellar evolution tracks that are computationally cheap to sample statistically
over a continuous parameter range. The computational costs of running detailed stellar evolution codes, such as MESA, over wide and
densely sampled parameter grids are prohibitive, while stellar-age based interpolation in-between sparsely sampled grid points leads
to intolerably large systematic prediction errors. In this work, we provide two solutions for automated interpolation methods that offer
satisfactory trade-off points between cost-efficiency and accuracy. We construct a timescale-adapted evolutionary coordinate and use
it in a two-step interpolation scheme that traces the evolution of stars from zero age main sequence all the way to the end of core
helium burning while covering a mass range from 0.65 to 300 M,,. The feedforward neural network regression model (first solution)
that we train to predict stellar surface variables can make millions of predictions, sufficiently accurate over the entire parameter space,
within tens of seconds on a 4-core CPU. The hierarchical nearest-neighbor interpolation algorithm (second solution) that we hard-code
to the same end achieves even higher predictive accuracy, the same algorithm remains applicable to all stellar variables evolved over
time, but it is two orders of magnitude slower. Our methodological framework is demonstrated to work on the MESA ISOCHRONES
AND STELLAR TRACKS (Choi et al. 2016) data set, but is independent of the input stellar catalog. Finally, we discuss the prospective

applications of these methods and provide guidelines for generalizing them to higher dimensional parameter spaces.

Key words. stars: evolution — stars: fundamental parameters — catalogs — time — methods: numerical — methods: statistical

1. Introduction

Several fields of astrophysics require fast and cost-efficient pre-
dictive models of stellar evolution for their deployment at scale.
These include stellar population synthesis, N-body dynamics
models of stellar clusters (e.g., Kamlah et al. 2022), iterative
optimization-based stellar parameter estimation methods (e.g.,
Bazot et al. 2012), and large-scale galactic and cosmic evolu-
tion simulations (e.g., Springel et al. 2018) that require a stellar
sub-grid physics.

For example, the BONN STELLAR ASTROPHYSICS
INTERFACE (BONNSAI; Schneider et al. 2014) is a Bayesian
framework that allows for the testing of stellar evolution models
and (if the test is passed) to infer fundamental stellar model
parameters given the observational data. Determination of
fundamental stellar parameters that best match the observa-
tion requires costly iterative optimization procedures, such as
Markov chain Monte Carlo nested sampling techniques, which
need a large number of evaluations over a quasi-continuous
parameter space for convergence to the best-fit model. In order

to reduce systematic estimation errors, BONNSAI requires a
stellar parameter grid to be as dense as possible.

However, there are costly computational demands arising
from the traditional method of running a detailed stellar evo-
lution code over a dense rectilinear grid in a stellar param-
eter space: for a fixed grid spacing, the number of stellar
tracks to evolve scales to the power of the dimensionality
of the fundamental stellar parameter space. The most impor-
tant parameters of single star evolution are the: age, 7; initial
mass, My, at the zero age main sequence (ZAMS); initial
metallicity, Zi,;; and initial rotation velocity, vy,;. For stars of
M > 8 M, the binary interaction effects become increas-
ingly important: 71% of all O-stars interact with a companion
and for over half of them, this takes place during the main
sequence evolution (Sana et al. 2012). Therefore, in order to
evolve massive stars, the parameter space needs be expanded to
cover eight dimensions (Tl . Mini,l , Mini,Za Vini, 15 Vini,2» Zini’ Pinia 6)
in general, where Pj, is the initial period, € the eccen-
tricity of the binary orbit, and 7 ~ 7, to a good
approximation.
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MODULES FOR EXPERIMENT IN STELLAR ASTRO-
PHYSICS (MESA; Paxton et al. 2011) is an example of a detailed
one-dimensional (1D) stellar evolution code with a modular
structure, which allows us to update the adopted physics when
generating stellar evolution tracks; for instance, the equation of
state, the mass loss recipe, and the opacity tables. When evolv-
ing stars numerically over a wide and densely sampled parameter
grid with MESA, there are two main computational challenges:
1) the computational cost associated with running the code over
the large grid size and 2) the numerical instabilities. To overcome
the latter, substantial manual effort is required to push a simula-
tion past failure points by reconfiguring the code and by checking
for unphysical results. The manual action mainly involves the
adaptation of spatial mesh refinement and time step control
strategy, as well as of the error tolerance thresholds in stellar
model computation, to make sure the solvers converge over each
evolutionary phase within a reasonable computation time.

The problem of prohibitive computational costs has been
addressed in three different ways: 1) the stellar evolution tracks
have been approximated by analytic fitting formulae; 2) the out-
put of detailed stellar evolution codes over a discrete parameter
grid has been interpolated; and 3) cost-efficient surrogate models
of stellar evolution have been constructed. Below, we summarize
these main approaches.

The SINGLE STAR EVOLUTION (SSE) package (Hurley
et al. 2000) consists of analytic stellar evolution track formulae
predicting stellar luminosity, radius and core mass as functions
of the age, mass and metallicity of the star. Separate formu-
lae are applied to each evolutionary phase and the duration of
each phase is estimated from physical conditions. Along with
analytical expressions from stellar evolution theory, the SSE
package was obtained by fitting polynomials to the set of stel-
lar tracks by Pols et al. (1998). The fitting formulae method
has been extended to predict the evolution of binary systems by
including analytical prescriptions for mass transfer, mass accre-
tion, common-envelope evolution, collisions, supernova kicks,
angular momentum loss mechanisms and tides (Hurley et al.
2002). At present, the fitting formulae are often used in connec-
tion with rapid binary population synthesis codes, for example
COMPACT OBJECT MERGERS: POPULATION ASTROPHYSICS
& STATISTICS (COMPAS; Riley et al. 2022), and stellar N-body
dynamics codes. However, there are two main drawbacks: 1) the
fixed (rather than modular) input physics and 2) the limited set
of predicted output variables, which (depending on the astro-
physical application) may be not all the variables of interest. A
re-derivation of analytic fitting formulae for a new set of stellar
tracks is non-trivial (Church et al. 2009; Tanikawa et al. 2020).
Overall, the analytic approach is not sustainable, since it would
need to be reiterated after each update in stellar input physics.

The interpolation of tracks pre-computed by a detailed code
is an alternative to analytic fitting. Brott et al. (2011) interpo-
late stellar variables in a (Miy;, vini, T) parameter space. For each
stellar age, the two nearest neighbors (from above and from
below) in initial mass are selected first, and then, for each of the
two initial masses, the two nearest neighbors in initial rotational
velocity are chosen. The values of stellar evolution variables,
at each stellar age, are computed from these four neighboring
grid points by a sequence of linear interpolations in the sam-
pled parameter space. The scope of the interpolation method
is restricted to the main sequence evolution of stars. Instead of
the stellar age, the fractional main sequence lifetime is used as
interpolation variable.

Following a different approach to interpolation of stel-
lar tracks, the METHOD OF INTERPOLATION FOR SINGLE
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STAR EVOLUTION code (METISSE; Agrawal et al. 2020)
takes as its input a discrete single-star parameter grid and uses
interpolation by a piece-wise cubic function to generate new
stellar tracks in-between the sampled initial mass grid points at
fixed metallicity. The parameter space covers the initial mass
range from 0.5 to 50 M., and stars are evolved up to the late
stages beyond core helium burning. Instead of stellar age, the
interpolation scheme uses a uniform basis known as EQUIVA-
LENT EVOLUTIONARY POINTS (EEP; Dotter 2016) to model
the evolutionary tracks. The EEP coordinate quantifies the evo-
lutionary stage of a star based on physical conditions, derived
from numerical values of evolutionary variables (e.g., depletion
of central hydrogen mass fraction to a threshold value), which
are readily identifiable for different evolutionary tracks. For
any given stellar age, an isochrone is constructed by identifying
which EEP coordinate values are valid for that age as function
of M;,;. For each fixed EEP value, an ordered M;,; — 7 relation is
constructed over the available grid points and interpolated over.
In a second step, Miy,; is used as independent variable to obtain
stellar properties by another round of interpolation. Reliable
and fast stellar track interpolation with the EEP method has
originally been demonstrated upon MESA ISOCHRONES AND
STELLAR TRACKS (MIST; Choi et al. 2016), a catalog of stellar
evolution tracks over a grid space covering the age, initial mass
and initial metallicity parameters. METISSE is a more general
alternative to SSE, because it may take any single star grid (at
fixed initial metallicity), produced as output of a detailed stellar
evolution code, as its input; namely, it is not tied to specific input
physics adopted to generate the stellar tracks.

Apart from METISSE, there are the COMBINE (Kruckow
et al. 2018), SEVN (Torio et al. 2023, in its latest version), and
POSYDON (Fragos et al. 2023) population synthesis codes that
interpolate grids of detailed single or binary evolution simu-
lations. Interpolation in COMBINE is based on the method of
Brott et al. (2011) while in SEVN, single star evolution is divided
into sub-phases analogous to the EEP method, and interpola-
tion is performed over each sub-phase using a fractional time
coordinate relative to duration of each sub-phase. Evolution of
the binary companion and interaction effects are approximated
using analytic fitting formulae. Since the procedure to con-
struct the uniform EEP basis cannot be trivially automatized,
the pre-processing steps to identify EEPs, to define appropriate
interpolation functions and also to down-sample the stellar evo-
lution catalog to reduce memory costs need to be re-iterated after
each stellar grid update (see, e.g., the TRACKCRUNCHER pre-
processing modules, Iorio et al. 2023, in the context of SEVN).

In contrast, POSYDON interpolates output of detailed binary
evolution simulations with MESA. The EEP-based interpola-
tion method is not directly applicable to binary evolution tracks,
because EEPs must be strictly ordered a priori while binary
interaction, which can set on at any time, may change their
order. Therefore, in POSYDON interpolation needs to be pre-
ceded by classification of binary evolution phase and separate
interpolation schemes are to be applied over each of them.

Finally, the third way is to build a prediction-making tool
that allows for the replacement of the output of cost-intensive
detailed up-to-date stellar evolution code such MESA with a
cost-efficient imitation model (emulator or surrogate) of the
original. Emulation, or surrogate modeling, is a pragmatic but
reliable reproduction of the output generated by an expen-
sive computer experiment. The predictive surrogate model is
constructed by training a supervised machine learning (ML)
algorithm on a stellar evolution tracks data base pre-computed
with the original code over a discrete parameter grid. A
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well-trained model will not only efficiently reproduce stellar
tracks at the parameter grid points it has seen during training,
but it will be capable of generating accurate predictions of tracks
in-between the grid points, thanks to the capability to general-
ize it acquired by training. Once constructed, the emulator can
be used as a package to generate predictions of stellar variables
of interest, instead of running the original detailed stellar evo-
lution code such as MESA over a quasi-continuous parameter
range or storing the catalog data in computer memory for inter-
polation. Using the emulator package saves energy costs, speeds
up generation of output predictions over a dense grid by several
orders of magnitude and reduces human effort of running mod-
els. The speed-up is owed to the efficiency of input-to-output
mapping by machine learning algorithms. The disadvantage is
the introduction of prediction errors by the trained model, which
reproduces stellar tracks with a finite precision. Therefore, when
training machine learning models, the main task is to achieve
reliable generalization over the parameter space with a predic-
tion inaccuracy of stellar variables of interest that is tolerable for
inference and astrophysical applications.

Surrogate modeling of stellar evolution has yet not been
explored extensively at widths of the parameter range neces-
sary for more general applicability. Li et al. (2022) used a
Gaussian process regression (GPR) to emulate stellar tracks in
a five-dimensional (5D) parameter space, but the initial mass
range covered by the predictive models is restricted to the
solar-mass neighborhood Mj,; € (0.8, 1.2) M and to evolution-
ary sequences from the Hayashi line onward through the main
sequence up to the base of the red giant branch. Also, GPR-
based emulators have been used, for example, for parameter
space exploration of state-of-art rapid binary population synthe-
sis codes such as COMPAS (Barrett et al. 2017; Taylor & Gerosa
2018). Due to the data set size limitation for the applicability of
GPR, it is not the ideal tool for emulating a large stellar model
grid. Thus, we seek for other ML based models instead. The
feedforward neural network algorithm proved itself as promising
in previous surrogate modeling works, for instance: Scutt et al.
(2023) emulated 25 stellar output variables (classic photometric
variables, asteroseismic quantities, and radial and dipole mode
frequencies) over a (Miy;, Zini) grid space of stars in or near the 6
Scuti instability strip using neural networks, along with a princi-
pal component analysis to reduce the output dimension to nine.
Lyttle et al. (2021) emulated five variables of red dwarfs, sun-
like stars, and subgiants in a 5D input parameter space. While
these are high-dimensional problems that have been success-
fully addressed by neural networks, aspects that the problem
settings have in common include: the mass range considered is
relatively narrow, Miy; € (1.3,2.2) My and My € (0.8, 1.2) Mo,
respectively; and the evolutionary sequences cover the pre-main
sequence and only part of the main sequence, or main sequence
and subgiant phase, respectively. More widely in context of stel-
lar astrophysics, supervised machine learning has been applied
to solve the inverse problem of mapping observables to models.
For example, a variant of the random forest regression model
(Bellinger et al. 2016) and invertible neural networks (Ksoll
et al. 2020) have been trained to predict fundamental stellar
parameters in a high-dimensional parameter space given a set
of observational variables. Again, however, the predictive mod-
els were restricted to an initial mass range and evolutionary
sequences of stars narrower (e.g., main sequence evolution of
My € (0.7, 1.6) M, stars in Bellinger et al. 2016) than those pre-
sented in this work, where we consider an initial mass range from
red dwarfs to very massive stars evolved from the ZAMS up to
the end of core helium burning.

A&A, 681, A86 (2024)

In this work, we provide two proof-of-concept solutions of
automated single star interpolation schemes over a wide param-
eter span, which (in contrast to the EEP-based interpolation
method) do not require mapping out points of interest in stel-
lar parameter space; this is because they are constructed based
on a timescale-adapted evolutionary coordinate that we intro-
duce, whose computation can be easily automated. Using the
latter for constructing more general interpolation models has a
potential applicability to larger parameter spaces, such as those
found in stellar binaries. The first solution we develop is a sur-
rogate model of stellar evolution, constructed with supervised
machine learning. The second is a stellar-catalog-based hier-
archical nearest-neighbor interpolation (HNNI) method. These
feature two different trade-off points between efficiency and
accuracy of predictions: depending on astrophysical application,
either the one or the other is preferable.

This paper is organized as follows. In Sect. 2, we describe
the methods common to both interpolation scheme solutions that
we have developed: the regression problem that is addressed, the
data base used for constructing predictive models, the timescale-
adapted evolutionary coordinate (which is used as the primary
interpolation variable), and the performance scores that assess
the quality of the predictions. In Sect. 3, we outline how the
two interpolation scheme solutions are set up. For the surrogate
model, we report on the choice of loss function, the selection
of machine learning model class, and its hyperparameter opti-
mization. For the interpolation-based solution, we explain how
HNNI works and how it differs from interpolation models from
previous work. In Sect. 4, we present our results, obtained with
both the supervised machine learning and the HNNI. The paper
is concluded in Sect. 5 with a summary of results, limitations,
and an outlook on possible future developments.

2. Methods

In Sect. 2.1, we define the problem which is addressed by two
different predictive frameworks (surrogate modeling of stellar
evolution and catalog-based hierarchical nearest neighbor inter-
polation) and we motivate the two-step approach to fitting stellar
evolution tracks. In Sect. 2.2, the timescale-adapted evolution-
ary coordinate is introduced, which we used to set up reliable
predictive frameworks in the two-step interpolation scheme. In
Sect. 2.3, the methods to prepare the data base are described:
a nonlinear sampling density segmentation of the initial mass
parameter space and a data augmentation routine for the core
helium burning phase. This data base is used as catalog for inter-
polation of tracks by HNNI and as training data for constructing
surrogate models. Finally, Section 2.4 outlines how we evaluate
predictive performance of our models based on error metrics.

2.1. Regression problem formulation

In 1D stellar evolution codes such as MESA, stellar evolution
is modeled as a deterministic initial value problem and observ-
ables are predicted by cost-intensive numerical time integration
of differential equations. Instead, we formulated the prediction
of observables as a regression problem, which is to be addressed
by supervised machine learning or by catalog-based interpo-
lation. In a regression problem, the goal is to predict output
target variables from input regressor variables. But in the sur-
rogate modeling case, the data-driven approach is used to learn
the mapping, instead of programming the rules that map the
input to the output. We constrained the problem to predicting
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three stellar surface observables, namely, log-scaled luminosity,
YL = log L/Lg; effective temperature, Y1 = log T /K; and sur-
face gravity, Y, = logg/[cm s72]. These are the target variables
to be predicted for a given input of age, 7, and initial mass, Mjy;,
of an isolated non-rotating single star, at a fixed solar-like initial
metallicity Ziy = Zo.

Stars evolve on different timescales, depending on the evolu-
tionary phase they undergo, on their masses as well as on other
stellar parameters. Therefore, stellar track fitting across different
evolutionary phases and initial masses is a temporal multiscale
problem. We confirm the conclusion of Li et al. (2022), namely,
that the naive approach of training a machine learning surrogate
model fyy: (1, Miy) = Y to predict the observable Y, by operat-
ing directly on (scaled) age, 7, does not result in accurate enough
predictions of the post-main sequence evolution (see Fig. A.l
for an illustration). Instead, we set up a two-step interpolation
scheme:

Step 1 (age proxy fit) fi: (logt,log Miy) = s,
Step 2 (observables fit) f>: (s,log Mini) = (Y1, Yr, Ye).

Here, the evolution of stellar surface variables is modeled as
function of a timescale-adapted evolutionary coordinate s (an
age proxy) instead of the age, 7 (step 2). The transition from stel-
lar age to the age proxy is accomplished by a second predictive
model (step 1).

We find that the fits of the post-main sequence evolution-
ary stages resulting from this two-step interpolation scheme are
orders of magnitude more accurate, as assessed by standard sta-
tistical performance scores, than the direct naive fit. We take the
logarithm of initial mass values, in order to exploit the approx-
imate mass-luminosity power law relation, which is a linear
variable dependence in log-log space.

2.2. The timescale-adapted evolutionary coordinate

The method of using a timescale-adapted evolutionary coordi-
nate, or age proxy, instead of the age variable for fitting stellar
evolution tracks has been explored before in stellar astrophysics
(e.g., Jorgensen & Lindegren 2005; Li et al. 2022). The motiva-
tion for this re-parametrization is to reduce timescale variability.
Stellar age at computation step, i,

i
T = Zél‘j,
J=1

is a monotonically increasing function which grows cumulatively
at an adaptive step size, 6t, after each step j = 1,...,7 of numer-
ical time integration of the differential equations describing
stellar structure and evolution. The age proxy variable,

i
Si = Zésj,
J=1

is constructed analogously, but here ¢s; is the increment in the
star’s Euclidean displacement in a diagram spanned by a set of
its physical variables, obtained after the numerical time integra-
tion step j = 1,...,i. For a parametric form of ds, Jgrgensen &
Lindegren (2005) used the ansatz

6Sj:\/
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where A;;_1X = X; — X;_;. By construction, this age proxy mea-
sures the increase in Euclidean path length of a star along its
evolutionary track in the Hertzsprung—Russell (HR) diagram.
More recently, Li et al. (2022) suggested another prescription
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which they tailored to their problem formulation and parame-
ter range. Their age proxy measures the displacement of the
star in the Kiel diagram to the power of a parameter, c. After
experimentation, they conclude that ¢ = 0.18 yields the most
uniform distribution of the data they trained their models on.
At the same time, the authors report fit inaccuracies at transition
regions between consecutive evolutionary phases and over the
fast ascension of the red giant branch. Over these phases (in con-
trast to the MS evolution) target variables change rapidly in time
and vary unsteadily even as function of the age proxy. To cure
this problem, we re-defined the timescale-adapted evolutionary
coordinate by an altered prescription, whose effect is to not only
smooth out transitions in-between stellar phases, but, addition-
ally, to resolve the CHeB phase in a way that allows for reliable
stellar track fitting; this is done by keeping the resolution of vari-
ability on the same numerical age proxy scale as the previous two
phases. To get there, we found a promising approach in returning
to the original formulation by Jgrgensen & Lindegren (2005),
but extending it by a third variable that spans another dimension
of the diagram, in which the Euclidean path length is calculated:

The motivation for introducing another variable into the
computational prescription of the path length stems from the fact
that during the stable CHeB, stars hardly displace in the HR
diagram, although their nuclear composition and hydrodynamic
properties undergo substantial changes. In order to adjust the
path length prescription, we therefore sought for a suitable
stellar-core-related variable. After experimental tests, we found
that adding the log-scaled core density log p./[g cm™] has the
desirable effect of casting the variability of all target variables of
interest onto a unified numerical scale across the three consec-
utive phases MS, RGB, CHeB, and across the wide initial mass
range that we work with!.

We normalize the age proxy of each initial mass to the range
(0, 1). The star is on the ZAMS when s = 0, while s = 1, when
the star has reached the end of core helium burning?.

2 T

eff
+ _—
K

Aj!j_l log Aj’j_l IOg
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2 2

Pc

’ [gem™?]
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Aj,j,l 10g %ﬁ' +

L
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©

2.3. Data base

Stellar evolution catalog. Here, we use MIST (Choi et al.
2016) as an example data set upon which we formulate and

! This age proxy computation prescription has the aforementioned

desirable effects not only during these phase, but also during the pre-MS
and post-CHeB phases, as shown in Fig. A.2. Our age proxy construc-
tion therefore is a promising general candidate solution to the multiscale
problem of stellar evolutionary track fitting beyond the evolutionary
sequences considered in this work. It resolves prominent features (e.g.,
the Henyey MS hook, MS turnoff, the Hertzsprung gap, the base and
tip of the RGB, dredge-ups, helium flashes, blue loops, thermal pulsa-
tions on the asymptotic giant branch, and white dwarf cooling) across
all evolutionary phases we tested over the wide initial mass span.

2 The end of core helium burning is determined by the condition
Xtecentral < 1073, where Xpge ceniral 18 the central helium mass fraction.
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Fig. 1. Luminosity series of a Sun-like star from the ZAMS up to TACHeB parametrized as function of stellar age, 7, (a) versus of the timescale-
adapted evolutionary coordinate, §, before (b) versus after (c) CHeB data augmentation and normalization to s. The original MIST data contains
phase labels for each model, which the predictive models (the surrogate model and HNNI) do not see.

demonstrate our method, as well as train and validate our pre-
dictive models. However, the method we develop is general and
not specific to the MIST data set. We restrict the scope of the
ages of stars to the evolutionary sequence from ZAMS to the ter-
minal age of core helium burning (TACHeB), which is expected
to account for ~99% of stellar observations (excluding compact
object sequences). The initial mass parameter range, from 0.65
to 300 My, is chosen as the entire initial mass span available
in the MIST data set, over which stars are evolved through all
three consecutive phases main sequence (MS), red giant branch
(RGB), and core helium burning (CHeB). The wide initial mass
range and, at the same time, the inclusion of the red giant as
well as core helium burning phases have not been explored
in previous work of stellar evolution surrogate modeling. We
acknowledge that the 2D input parameter space is small com-
pared to the size of the eight-dimensional (8D) parameter space
required for general cost-efficient binary star modeling. We see
our work as a first step toward a large-scale enterprise of stellar
evolution surrogate modeling and of hierarchical interpolation in
high-dimensional parameter space over wide parameter ranges,
however, as a layout of basic methodology toward this end.

CHeB data augmentation. The MIST data set is generated
with the MESA code, which by default outputs more stellar evo-
lution models than what is included in the MIST data set for each
M;pni-dependent track. The number of models per track is ~500,
with ~250 models on the MS, ~150 on the RGB before ignition
of helium burning in the core, and ~100 for the CHeB phase.
While the MIST data set includes phase labels for each stellar
model, the predictive models that we build are not exposed to
this information. All the input information they are exposed to
is the value of the age (proxy) and of initial mass of the star.
While in the MIST data set, the CHeB phase is the least sampled
among these three, it is the phase most difficult to fit. In partic-
ular, the helium flashes of low-mass stars, blue loops of upper
main-sequence stars, and fast timescale dynamics of Wolf-Rayet
stars during CHeB pose a challenge to fitting. To increase weight
and accuracy of interpolation fits during the CHeB phase, we
use local nearest-neighbor 1D linear interpolation of the train-
ing data (not of the test data) along the age proxy axis (for the
step 2 fit) or along the scaled age axis (for the step 1 fit) during
this phase. The net effect is an artificial increase in the CHeB
training data by insertion of a sample in-between each pair of
age proxy neighbors. Despite simplicity of this methodological
step, we find the predictive performance of our best-fit models to
be boosted by around half an order of magnitude decline in the
mean squared error over the validation data (to which CHeB data
augmentation is not applied) after switching on CHeB data aug-
mentation of the training data. In Fig. 1, the data pre-processing

consisting of age proxy re-parametrization, normalization, and
CHeB data augmentation is illustrated based on the example of
the Sun-like stellar model.

Parameter space grid sampling. A recommended stan-
dard routine for a homogeneous sampling of the parameter
space that produces the data for training surrogate models is
LATIN HYPERCUBE SAMPLING (LHS; McKay et al. 1979).
This is an efficient alternative to random uniform and recti-
linear sampling methods for achieving homogeneity. Random
sampling introduces sampling voids by consequence of statis-
tical random clumping effects, while dense rectilinear sampling
is too expensive in many problem settings. However, since the
stellar evolution dependence on the initial mass parameter is
strongly non-linear, a homogeneous population of parameter
space is not the optimal sampling scheme. We work with the
pre-computed MIST data set for which a segmented parame-
ter sampling density across the initial mass range has already
been pre-determined by the makers of the catalog, based on
physics-informed considerations.

In order to reach a high accuracy level of stellar track fore-
casts that is necessary for a general-purpose stellar evolution
emulator across the entire initial mass range, we found that we
need to locally increase the initial mass sampling. In practice,
we increased the initial mass sampling in those parameter space
sub-regions, where the fit quality was found to be worst, while
we kept the MIST stock sampling intact, where the local fit
accuracy was found to be satisfactory (see Fig. 2 and Table 1
for a summary). For generating the additional stellar tracks,
we used the MIST Web Interpolator®, which works by apply-
ing the EEP-based method referred to in Sect. 1. Our finding is
that the final sampling required to reach the predictive accuracy
goal varies substantially, depending on sub-region of parameter
space: a least OM;ni /Mo = 0.01 between Mini/ My € (1.16,1.5)
and a largest OMjni/ My = 25 between Mi,i/Ms € (150,300).
For the M,/ Mg € (0.65,0.9) interval, we double the sampling
to correct for a systematic under-representation of red dwarfs
in the stock MIST catalog as compared to the adjacent initial
mass intervals. For the M;,;/Ms € (1.16, 1.5) interval, we dou-
ble the sampling rate mainly because of complexity of shape
changes in HR diagrams due to the helium flashes. In the
interval Mi,i/ My € (1.5,40), we hardly increase the sampling,
except at transitions in-between neighbouring sampling seg-
ments at different rates, in order to smooth out transitions. The
biggest increase in this range is within the interval M;,; /M, €
(8,21). We stress that our densest sampling region (the solar
neighborhood initial mass range) is the same as in Li et al.
(2022), in Bellinger et al. (2016) and in Lyttle et al. (2021), while

3 https://waps.cfa.harvard.edu/MIST/interp_tracks.html
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Fig. 2. Original initial mass sampling in the MIST catalog (in blue)
and the locally increased sampling (in red) that we used for training the
surrogate models. The stock MIST catalog contains 177 solar metallic-
ity stellar evolution tracks within the initial mass range (0.65, 300) M.
For our purposes, we expanded it to 274 to achieve the desired quality
of predictive accuracy necessary for a general-purpose stellar evolution
emulator.

Table 1. Summary of the initial mass sampling density segmentation
before (09 M,y;) and after (0My,;) expanding the stock MIST data set.

Range (Miyi/Mo)  6oMini (Mo)  0Miyi (My) Ny,
(0.65,0.9) 0.05 0.025 10
(0.9,1.16) 0.02 0.02 13
(1.16,1.5) 0.02 0.01 34
(1.5,2.8) 0.02 0.02 65
(2.8.3) 02 0.1 2
(3.8) 02 0.2 25
(8,21) 1 0.5 26
(21,22) 2 1 1
(22,28) 2 2 4
(28, 40) 2 1 12
(40,45) 5 1.25 4
(45,70) 5 0.625 40
(70, 150) 5 2.5 32
(150,300) 25 25 6

at the same time our surrogate models evolve the stars further,
up to end of CHeB, and cover a much wider initial mass range.
Scutt et al. (2023) adopt a sampling of 6M;,; = 0.02 M, over the
range M,/ Mg € (1.3,2.2), comparable to ours.

At the high-mass end, the relative increase in sampling is
greatest within the interval M,/ M € (40,70), where the incre-
ment step size OMi,i /My was augmented from 5 to 0.625. We
suspect that numerical challenges are the reason for unexpect-
edly sharp, peculiarly shaped changes in HR diagrams. Never-
theless, for the proof-of-concept, we assume that MIST offers a
perfect data set, even when we suspect that it may be not.

Naturally, the denser the grid sampling, the more accurate are
the forecasts of surrogate models. We stress that depending on
minimal performance benchmarks (as quantified by error scores)
of a specific astrophysical application, the initial mass sampling
required to reach that benchmark can be significantly sparser.

With the initial-mass parameter space sampling as described
above, the total size Ny, of the data set amounts to 139 016.
Shuffling it, we do a uniform random split of the Ny into
85 % training (Nyain) and 15 % validation (N,,) data sets. To
the Ny.in data, we applied a CHeB data augmentation, which
yields additional Ny, = 32 143 samples, such that the expanded
training data set is of size N/_.. = Niin + Naug. This is the final

train
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data set on which we train different classes of surrogate mod-
els (for the first solution) or which we use as the catalog for
interpolation (for the second solution).

2.4. Performance evaluation

Validation and test data. 'We used two schemes to evaluate
performance of predictive models: the first (model validation)
based on the validation data set, and the second (model testing)
based on the test data set. The validation data consists of ran-
domly selected grid points over the input domain (initial masses
and evolutionary phases of stars). It is representative, since it has
similar statistical properties as the training data. In contrast, for
model testing, we aim to assess the trained model’s capability
to predict entire stellar tracks from ZAMS up to TACHeB for
initial masses unseen during training. We choose this method of
model testing since it is of main interest to obtain a predictive
model that is capable of accurate interpolation over the space
of fundamental stellar parameters. Only then can the traditional
method of running expensive simulations over densely sampled
grids be replaced by a surrogate model capable of sufficiently
accurate generalization. As test data, we prepared another set of
stellar tracks at 16 initial mass grid points, {Mi‘siSt /Ms} = {0.91,
1.51, 2.41, 4.1, 8.25, 16.25, 21.5, 31.5, 41, 51, 61, 83.75, 103.75,
155, 262.5, 295}, which we held back from training. These were
chosen at half of the grid step in the respective region of param-
eter space. This choice is motivated by the aim to test predictive
accuracy at parameter space points that are farthest away from
training grid points, where we likely probe the worst cases of
complete stellar track predictions®.

Performance scores. A crucial ingredient for the opti-
mization procedure of an automated interpolation method is a
set of appropriately designed scores that quantify performance
in a physically meaningful and numerically appropriate manner.
Only with an adequately defined quantitative performance
scoring, the automated interpolation scheme can be scaled up
to higher dimensional fundamental stellar parameter spaces,
which become too large for visual inspection based performance
evaluation for comparing the predicted against the held-back
test tracks.

For model validation on the validation data set, we look at
residuals for each observable independently and at measures of
overall predictive performance. A residual is a signed prediction
error, € = Y; — Y, of a given prediction-label pair (Y, Y;), and
we evaluate it for each of the surface variables. We consider
the following error scores that retain the physical significance of
residuals: the mean residual € = (€ + - - - + €y, )/Nval, the most
extremal under-prediction €t = max;__y,{€}, and the most
extremal over-prediction €~ = min;-;__y,{€}. If € and € are
close enough to zero over the entire set of validation data grid
points, then there is no need to further stratify the performance
evaluation’. Additionally, we use the following error scores to

4 An alternative approach to choosing test initial mass grid points is
to sample the initial mass range randomly, in order to obtain the sta-
tistically likely distribution of prediction errors of stellar tracks. Since
we quantitatively probe statistical error distribution already on the val-
idation data set by appropriate statistical error scores, we opt for the
half-grid step approach to probe the worst cases instead.

5 The statistical performance assessment can be further stratified by
applying the scoring prescriptions not globally over the entire initial
mass range and over the full evolutionary sequence, but to confined sub-
regions of parameter space. For instance, €' (1.2,4.5)rgg is the most
extremal under-prediction of log-scaled luminosity during the RGB
phase within the initial mass segment M, /M, € (1.2,4.5).
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quantify overall predictive performance across the three surface
variables: the Mean Squared Error (MSE) and the Mean Abso-
lute Error (MAE). These scores are calculated from the squared
residuals and from the absolute residuals, respectively, by tak-
ing the average variable by variable and over the three surface
variables. We choose the MSE and the MAE, because these are
standard choices for evaluating point forecasts generated by sta-
tistical learning models, but the physical significance is largely
lost by averaging across surface variables.

For model testing on the held-back test tracks at the 16 My
grid points stated above, we define and use the following error
scores based on HR and Kiel diagrams: L2}, and L2y. For a
single track in HR or in Kiel diagram at a particular initial mass,
M;ni, the L2 score measures the cumulative deviation between
predicted track and held-back track,

L2(M;y;) =

N(Miyi) 4

computed as the mean squared Euclidean distance in a 2D plane
of target variable pairs: v; = (log L;, log T.g ;) for the HR diagram
and v; = (logg;,log Teg;) for the Kiel diagram. This measure-
ment agrees reasonably well with the visual assessment of how
closely a predicted track aligns with the true test track. As
summary measures of predictive performance on the test data,

we take the maximum L2 measure, L27 = max {LZ(MAteSt /M@)}

ini

among the 16 initial masses of the test set, for each type of
diagram, namely, L2/, and L2}.

3. Interpolation scheme solutions

In this section, we describe the methodology behind the devel-
opment of the two solutions to cost-efficient stellar evolution
forecasting over continuous parameter spaces. For the construc-
tion of a stellar evolution emulator with supervised machine
learning, we treat the selection of the surrogate model class in
Sect. 3.1. Then, we discuss loss function choice (Sect. 3.2), and
outline our training and hyperparameter optimization methods
to obtain the best-fit model (Sect. 3.3), which is a feedforward
neural network. The hierarchical nearest-neighbor interpolation
method is subject of Sect. 3.4.

3.1. Model selection

There are different surrogate model class candidates available
for tackling the regression problem defined in Sect. 2.1. For
selection of statistical learning algorithms, the following three
requirements apply in our problem case: 1) applicability to a
large data set (N > 150k), 2) multiple output®, and 3) fast
computational speed in forecast generation, for applicability of
the surrogate model at scale. Below, we discuss a number of
available options, and justify our choices.

Choice of statistical learning model. GPR has been con-
sidered the standard model choice for emulation tasks (Sacks
et al. 1989). However, because of memory limitations, the default

6 The multiple output condition (three target variables predicted by a
single surrogate model) is motivated by pragmatic considerations: pre-
dicting a multitude of stellar variables each with a separate surrogate
model requires substantially more effort, if the desired number of output
variables of interest is large.

implementation of global GPR is not applicable to large training
data sets. While there are approaches to improve the scalability
of GPR, we did not opt for GPR-based emulators for reasons
discussed in Appendix C. Instead, we tested the performance
of a number of regression models that satisfy the aforemen-
tioned constraints. After a series of manual tests, we found a
satisfactory starting performance with the k-nearest neighbors
(Fix & Hodges 1989), random forest (Ho 1995), and feed-
forward neural network (Ivakhnenko & Lapa 1967; Rumelhart
et al. 1985) regression models classes, all of which are efficient
statistical learning algorithms that qualify as scalable predic-
tive models with multiple outputs. Among them, in order to
identify which model class is the best choice for the construc-
tion of a sufficiently accurate surrogate model, we performed
a hyperparameter optimization of each of these three to cross-
compare their performance, as assessed by the scores defined
in Sect. 2.4. We performed hyperparameter optimization of k-
nearest neighbors (KNN) and random forest (RF) regression
models by a grid search, with a sampling of numerical hyper-
parameters over a log scale, and carried out a model selection
based on three-fold cross-validation. For the feedforward neural
network (ffNN) model, which has a much larger space of options
for hyperparameter choices, we determined a preliminary best-fit
hyperparameter configuration after training hundreds of models
over a high-dimensional, but coarsely sampled hyperparameter
grid. We then took it as a starting configuration, which we fur-
ther optimized in terms of the hyperparameter selection over
a series of manual experiments. The result is that a manually
tuned feedforward neural network (ffNN) outperforms KNN and
RF models that have been optimized through a grid search, as
assessed by the majority of error metrics defined above (see
Table 3). The KNN and RF best-fit models therefore serve us
primarily as benchmarks for ffNN performance.

Deep learning models. ffNN is one out of many avail-
able deep learning architectures. We opt for a ffNN architecture
because in our regression problem, the input is a vector of fixed
dimension. To discriminate, we did not train a recurrent neural
network based architecture, which is the model class of choice if
the input is a sequence of variable length; nor did we choose a
convolutional neural network architecture, which is the model
class of choice if the input is a higher dimensional topologi-
cal data array. A motivation for choosing a ffNN architecture
is the established theoretical result that a ffNN with a number of
hidden layers >1 is capable of universal function approximation
(Hornik et al. 1989).

3.2. Choice of loss function

Choosing a loss function appropriate to the problem is a crucial
step because it defines the training goal for supervised machine
learning. During the optimization of a ffNN, its trainable param-
eters are iteratively updated, after each batch, to minimize the
loss score. Choosing one error score over another is a trade-off
to compromise which type of error is least tolerable against other
types of errors. Common choices of scoring rules (for a more
detailed reference on scoring rules for point forecast evaluation,
see Gneiting 2011) for model training as well as for point fore-
cast evaluation are the MAE and MSE. Other choices include
the mean squared logarithmic error (MSLE) and the mean abso-
lute percentage error (MAPE). For our problem case, the loss
function selection was guided by the following considerations.
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MAPE is not the appropriate loss function since, for instance,
changes in log-scaled luminosity of massive stars in HR diagram
happen on a smaller relative numerical scale than for low-mass
stars and prediction errors in that range would therefore hardly
be penalized. Furthermore, we chose not to opt for MAPE for
additional reasons that are outlined in Tofallis (2015). When
choosing MSLE as loss function, we observed an inefficient
learning procedure, with an overly slow decline of MSE, MAE,
and our physical performance scores over the validation data.
However, we also found neither MAE nor MSE to be optimal
choices for our problem. Using MAE allowed the mean averaged
error scores to remain low but admitted considerable prediction
outliers. Conversely, using MSE reproduced the global shape
of the distribution of values of the target variables, but predic-
tions of stellar tracks were often not precise enough locally, and
overfitting occurred at epochs much earlier than when minimiz-
ing MAE. Instead, we opted for the Huber loss (Huber 1964),
which seeks a trade-off between MAE and MSE minimization.
It penalizes MSE-like for small prediction errors, and MAE-like
for large prediction errors, using the parameter d for the tran-
sition threshold (for a recent discussion and generalization, see
Taggart 2022):

. Ly -1y for|Y - ¥ <d,
)

Lae ) = {dlY ~ 91— 1&* otherwise.

During supervised learning, the Huber loss L;(Y, ?) issues a
penalty for each point prediction error, given the prediction, ¥,
by the surrogate model and the true label, Y, it is compared
against. When training deep learning models to predict multiple
output, the mean Huber loss is computed as the average across
target variables, that is, over the set of labels and over multiple
domly sampled data batch of size n,. We find our best results, as
assessed by the physically meaningful performance scores out-
lined in Sect. 2.4, with d = 0.75. Once a desired target value
of the validation loss score is set, which goes in hand with low
enough physical performance scores over the validation data,
what is left is to seek a suitably configured deep learning model
that reaches this target value’.

3.3. Hyperparameter optimization

There are two types of hyperparameters that ought to be opti-
mized when constructing ffNN-based emulators: the architecture
and learning hyperparameters. The most important architecture
hyperparameters are: the number of layers, number of neurons
per layer, choice of activation function, and the kernel initial-
ization. The typical important learning hyperparameters are: the
learning rate, batch size, choice of optimizer, and the choice of
regularization method. There are three different ways to optimize
hyperparameters: first, by manual ffNN learning engineering;
second, by automated brute-force search methods (for instance,
grid or random search); third, by sophisticated search algorithms
(e.g., Bayesian optimization or genetic evolutionary search). We
opt for manual ffNN learning engineering instead of automated
searches, because for deep learning models, the optimal stage
when (i.e., at which epoch®) to stop training cannot be faithfully
decided a priori, and it requires a careful consideration of numer-
ical criteria for stopping training if models are optimized in an

7 See Appendix E for caveats regarding choice of the loss function.

8 One single epoch is over, once the entire training data set — presented
to the network in batch subsets — has been propagated through the
network.
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Table 2. Summary of loss function choice, architecture and learn-
ing hyperparameters adopted for training our best-fit ffNN model,
compared to those adopted by Scutt et al. (2023).

Hyperparameter Our choice Scutt et al. (2023)
# of hidden layers 6 6

# of neurons per layer 128 64
Activation function ReLU ELU
Kernel initializer GU

Regularization LN -

Batch size 512 6% 10*
Optimizer Adam Adam

Ir schedule Exp. decay Fixed Ir
Ir range (1073,5%x107% 7x1073
Loss function Huber loss MSE

automated pipeline. Most reliably, it is determined a posteriori
by inspection of the fluctuating training and validation data loss
curve declines during the runtime. Then, we continue training
so long as the degree of overfitting is tolerable. We consider
the overfitting to be tolerable so long as the validation loss —
even though it may be decaying slower than the training loss at
advanced learning stages (i.e. at large epoch numbers) — has not
reached the flattening plateau stage, nor started to increase.

Best-fit model. For theoretical considerations regarding
hyperparameter tuning and the selection criteria we used, the
reader is referred to Appendix D. In practice, we found a suc-
cessful hyperparameter tuning strategy (guided by Goodfellow
et al. 2017) with the following configurations (see Table 2
for a summary). First, a symmetric many-layer (6 hidden lay-
ers) architecture with a moderate number of neurons per layer
(128), rectified linear unit (ReLLU; Hahnloser et al. 2000) acti-
vation, Glorot uniform (GU; Glorot & Bengio 2010) kernel
initialization, and layer normalization (LN; Ba et al. 2016) reg-
ularization after each layer. Layer normalization counteracts
overfitting while the eight-layer architecture with 128 neurons
per hidden layer yields a large enough model capacity to prevent
underfitting by over-parametrization. Second, long-term training
(~ 70k epochs) at relatively small (512) batch size. Observation
of the degree of fluctuation of the loss curves is a means to
assess exploration of the high-dimensional trainable parameter
space spanned by the biases and by the weighted connections
between neurons from neighboring layers in each backpropaga-
tion step. The small batch size (as compared to the size of N;_. )
adds stochasticity to the learning, and thereby ensures enough
exploration, which is aimed to prevent an early flattening of the
validation loss curve. Third, a learning rate schedule of slow
exponential decay in the Adam optimizer (Kingma & Ba 2014):
starting with a large enough initial learning rate Ir; = 1073 (to
accelerate the gradient descent at beginning stages of learning)
and decreasing the learning rate down to a final Ir; ~ 5 x 107°
toward the end of training (in order to target global rather local
minima in the value space of trainable network parameters). The
slow gradual decrease is aimed to improve on subtle prediction
errors.

3.4. Hierarchical nearest-neighbor interpolation

In this section, we present a second method to solve the problem
by a HNNI scheme. Our construction of the HNNI algorithm
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Fig. 3. Validation data results for the ffNN-based stellar evolution emulator. The histograms and summary statistics of the residuals e, = Y, — ¥4,
over the validation data k = 1,..., Ny, are shown, for Y1, in panel a, for Yt in panel b, and for Y, in panel c. We calculate the mean €, the standard
deviation o, the most extremal underprediction €*, and the most extremal overprediction €. Overall, the distribution of residuals is globally
symmetric around near 0, with a sharper peak than a Gaussian, reminiscent of a Cauchy distribution.

was partly motivated by an attempt to customize the operation
of the KNN algorithm to our problem setting. In KNN, the
nearest neighbors are selected based on a pre-defined distance
metric (e.g., Euclidean or Manhattan) over the input parameter
space, without treating the regressor dimensions apart from one
another. The key principle behind the HNNI method is to select
the nearest available grid points (from above and from below)
in each parameter space direction to the location in parameter
space at which the interpolation prediction is to be made; and
then to apply a 1D interpolation prescription subsequently in
each parameter space direction according to a hierarchical order
of parameters. Our method works similarly to Brott et al. (2011)
in that it performs a sequence of linear interpolations separately
in each parameter space direction according to a hierarchical
ordering of stellar variables, but different from it in that it uses a
timescale-adapted evolutionary coordinate, instead of fractional
age, as the primary interpolation variable. We thereby show that
the method is applicable not only to the MS evolution, but to a
sequence of evolutionary phases. In this regard, our method is
analogous to Agrawal et al. (2020) in that it uses an adapted evo-
lutionary coordinate to trace the evolution of stars across phases,
but we use a prescription for it that allows for automatization of
its computation.

We prepare the data set for generating predictions with HNNI
under exactly the same conditions as in the supervised machine
learning case. The N/ is now used as a catalog data base,
upon which the hierarchical nearest neighbor interpolation is
performed, instead of serving as the training data for fitting a
surrogate model. The HNNI method requires continued access to
the pre-computed stellar evolutionary tracks catalog. The HNNI
method is applied separately to each of the three surface vari-
ables Y1, Yr, and Y,, for obtaining point forecasts at unseen
locations in parameter space.

As will be shown in Sect. 4.1, the HNNI is applicable reliably
over the entire initial mass range and over all three evolutionary
phases, including the transitions in between them, without the
need to map out points of interest for that purpose. The level of
predictive accuracy of HNNI is achieved for two main reasons.
First, HNNI operates on local parameter space regions imme-
diate to the test location at which a prediction is to be made.
Predictions are calculated by an interpolation scheme that treats
different dimensions apart from one another. This stands in con-
trast to the way ffNN, RF, and KNN operate. RF and ffNN take
the global properties of the input parameter space into account
to find their own rules for making predictions. Comprehension
of global patterns can be a great benefit in some problem set-
tings, but irrelevant in others. Similarly to HNNI, KNN also
operates on local environments but does not take hierarchy rela-
tions among input parameters into account. Second, HNNI uses

the normalized timescale-adapted evolutionary coordinate s as
primary interpolation variable, without which the interpolation
scheme would not produce accurate results. By virtue of using
the latter, interpolation-based predictions at transitions between
evolutionary phases are mostly accurate because meanwhile val-
ues of stellar log-scaled luminosity, effective temperature, or
core density variables change drastically. Therefore, the path
length increment ¢s, which is computed from absolute incre-
ments in these variables, increases significantly, resulting in a
higher resolution along the age proxy axis of the transition stages
between evolutionary phases.

Given the initial mass parameter space sampling used in this
work, a linear interpolator was sufficient for making accurate
forecasts. More generally, for each parameter space dimension, a
different (e.g., a quadratic or cubic polynomial) functional could
be applied instead.

For clarity, we outline the pseudo-code of HNNI in a 3D
(8, Mini, Zini) single star parameter space in Appendix B. We
believe that the HNNI method, in its basic principle, is applica-
ble to those higher dimensional parameter spaces that allow for
a sequential ordering of the parameters in importance of their
effect on the shape of resulting stellar evolutionary tracks.

4. Results

In this section, the prediction results, obtained with the deep
learning surrogate model and with the HNNI algorithm, are
analyzed. We treat the observables fit (step 2) first (Sect. 4.1)
because it yields the physically meaningful outcome: the predic-
tion of stellar evolution variables and tracks. Therefore, in our
two-step interpolation scheme, the observables fit needs to reach
a satisfactory level of accuracy first, which can be assessed phys-
ically, before approaching the age proxy fit (step 1). Then, the
performance baseline for the age proxy fit is set by the condition
that the predictive accuracy of the integral two-step interpola-
tion scheme is maintained on the same order of magnitude, as
assessed by the scores. We analyze the step 1 fit in Sect. 4.2.

4.1. Observables fit
4.1.1. Deep learning emulation

Validation data. The performance assessment on the vali-
dation data is presented in Fig. 3 by histograms of the residuals
and by the summary statistics, defined in Sect. 2.4, individually
for each of the three predicted surface variables. If we assume
that the prediction errors of Y1, Yr, and Y, were scored over the
same numerical scale, then the following conclusions could be
made. The mean residual, in absolute value, is largest for logg
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Fig. 4. Test data results, comparing the true (left) and the ffNN-predicted (right) stellar evolutionary tracks in HR (top) and Kiel (bottom) diagrams,
over the entire set of our test initial masses {M'<}'} unseen by the predictive model during training.
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and lowest for log L, while the most extremal overprediction
and underprediction are obtained for the logg target variable.
All three mean residuals take on low numerical values on the
order of 10™* or 1073. These error scores are comparable to those
found with the best-fit neural network model of Scutt et al. (2023;
8 x 10™* dex on log L and 2 x 10~* dex on log Terr), who address
a similar regression problem. Since € is negative for log L but
positive for log T and log g, the deep learning emulator tends
to over-predict the first, but to underpredict the latter two. The
most extreme prediction outliers are on the order of 10~! or 1072
in absolute value, namely, up to three orders of magnitude larger
than the mean residuals. To better characterize the distribution of
errors, we therefore computed an additional score, ¢, which is
the standard deviation of the residuals over each target variable.
It is a measure of the spread of the prediction errors around the
mean residual error, which we find to be on the order of 1073 for
each of the three target variables.

Comparison to observational uncertainties. 1t is of inter-
est to compare the mean residual errors on the target variables
to the typical uncertainties from observations of stars. For stel-
lar bolometric luminosity, the relative error is on the order of
OL/L o< 0.01 for Gaia observations of solar-like stars (Creevey
et al. 2023), which translates into é log L/Ls = % loge o 0.004.
For surface gravity, with dlogg/[cm-s72] o« 0.1 (see, e.g.,
Ryabchikova et al. 2016), it is comparatively large. For effec-
tive temperature of low-mass stars, the observational error is on
the order of ¢67x/K oc 50-100 depending on stellar class and
spectral method (Ryabchikova et al. 2016). For massive stars,
the observational uncertainty on the classical observables typ-
ically ranges between dlog L/ Ly = 0.1, 6T o< 500-2000 K and
ologg/[cm s72] oc 0.1-0.2 (Schneider et al. 2018b,a).
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In sum, the mean residual errors on all three target variables
are smaller than the typical observational errors on the same log-
scaled quantities. In the case of € and ¢, the mean residual
errors (note: not only these, but also the expected spreads o)
are smaller by one to three orders of magnitude depending on
statistical score. This means that the prediction errors from the
emulator are greater than the observational uncertainties only
when the prediction errors belong to the tail of their integral
empirical histogram, which comprises cases that are statisti-
cally rare. For er, the histogram of linear-scaled residual errors,
Totp — Tesr, yields a mean residual error of ~8.3 K, an expected
spread of ~85 K, a worst overprediction outlier of ~1385 K and a
worst underprediction outlier of ~2885 K in absolute values. The
expected spread is smaller than the observational uncertainty
0T /K but of a similar order of magnitude. Therefore, inference
on effective temperature of low-mass stars using the emulator is
(based on the assumption of the aforementioned observational
uncertainties) least reliable, out of the three surface variables, in
a practical setting.

Test data. For model testing on the test data, in order to
predict evolutionary tracks in the HR diagram, we compute the
values of target variables, log L;, log g;, and log Tes; at the evo-
lutionary coordinate grid points, {s;}i=1 . ne), contained in the
held-back series for each test initial mass M. We then plot
pairs of predicted target variables against one another to obtain
the predicted tracks in the HR and in the Kiel diagram, respec-
tively. These can now be compared with the test data held-back
tracks in the diagrams. As shown in Fig. 4, the shape of the stel-
lar tracks is reproduced by the deep learning surrogate models
across the entire initial mass range. For a closer inspection of
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Fig. 5. Test data results, showing the best (left) and the worst (right) predictions of stellar evolutionary tracks, as assessed by the L2 measure, in
the HR diagram, for unseen test initial masses, by the trained ffNN model (top) and by the HNNI algorithm (bottom). For comparison, the original

held-back tracks are underlain.

the predictive quality, Fig. 5 displays the best and worst predic-
tions, respectively, of stellar evolution tracks in the HR diagram
at unseen test data initial mass grid points. The biggest deviation
between predicted and held-back test stellar track is observed at
the low-mass end (worst fit for Mitsist = 0.91 M,). There are two
main reasons for this. First, as low-mass stars displace in the HR
diagram from ZAMS up to TACHeB, they cover a larger spread
in value range of log-scaled luminosity than higher mass stars,
due to the stretched-out (in the HR diagram) ascension of the
red giant branch. Second, the main contribution to cumulative
deviation of predicted to the actual test track for low-mass stars
arises during the unstable core helium burning, the sequence
of short-lived helium flashes. The helium flashes introduce the
most prompt transition in both the log L and the log Ty vari-
ables. Since these are physically uncertain from the modeling
perspective, it therefore is not as important to obtain high accu-
racy prediction of flashes compared to other parts of the stellar
evolution track. We evaluate our state-of-art worst fit as satis-
factory, since the more reliable (from the modeling perspective)
evolution before and after the flashes is well reproduced by the
surrogate model: the evolution up to the tip of the RGB and the
stable core helium burning after electron degeneracy in the core
is lifted.

4.1.2. HNNI

Stellar track predictions in the HR and Kiel diagram are obtained
in the same way as described above for the deep learning case.
The performance of the HNNI predictive model is assessed
using the same data bases, procedures, and metrics as the
supervised machine learning models. The outcome is that over
the validation and test data, HNNI even outperforms the deep

learning method in accuracy of predictions (although not sig-
nificantly) as is measured by the majority of statistical scores
(see Table 3). Over the test data, the HNNI method yields accu-
rate predictions of stellar evolutionary tracks across the entire
initial mass range and over all three evolutionary phases, includ-
ing the fast-timescale transition regions. For illustration, Fig. 5
shows the best and worst fit of a stellar track in HR diagram
over the test data. The HNNI and deep learning models agree on
the worst fit for M = 0.91 M, for reasons explained above.
In the HNNI case, the worst fit is resolved at higher accu-
racy than in the deep learning case, with a deviation from the
test track that is marginal throughout, except during the helium
flashes.

Furthermore, the HNNI scheme allows us to predict any
stellar evolution variable of interest we tested, by virtue of the
same algorithmic prescription for interpolation (see Fig. A.3 for
prediction of stellar-core related variables for unseen test data
initial masses). In contrast, by the current setting, the ffNN pre-
dicts only those three surface variables which it has been trained
upon, as set by the regression problem defined in Sect. 2.1. In
principle, a predictive framework with a large number of time-
evolved variables could also be achieved with a ffNN emulator
in two different ways. By the first way, the dimension of the
output would need to be expanded to match the total number
of stellar evolution variables of interest. For example, the val-
ues of six stellar variables would be produced as output of the
6 neurons in the outermost layer of the ffNN. However, opti-
mizing such a model by a single globally defined loss score is
cumbersome (for a discussion, see Appendix E). By the second
way, a separate ffNN model with univariate output would need
be trained to predict each additional stellar variable of interest.
This is the more promising approach out of the two, but requires
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Table 3. Ranking of the predictive models Hierarchical Nearest Neigh-
bor Interpolation (HNNI), feedforward neural network (ffNN), random
forest (RF) and k-nearest neighbors (KNN) regressors, according to the
performance scores outlined in Sect. 2.4 to assess predictive accuracy
of stellar observables.

Score HNNI ffINN RF KNN
Validation data set
€L 6.57E-05 —4.46E-05 2.612E-04*  2.506E-04
€T -4.94E-06 1.82E-04* -2.00E-05 —1.758E-05
€y —-9.22E-05 4.16E-04 —-4.77E-04* —4.55E-04
g 0.102 0.145 0.210 0.217*
€ 0.014 0.032 0.093 0.095%*
eg+ 0.169 0.165 1.05 1.08*
€ -0.115 -0.108 -0.700 —0.721*
€ -0.011 -0.016 -0.0378* -0.0375
€ -0.143 —-0.191 -0.286 —0.294*
MSE 1.11E-05 2.01E-05 2.39E-04 5.79E-04*
MAE 0.00041 0.00193 0.00479%* 0.00270
Test data set
L2f, 0.0166 0.0176 0.0319* 0.0237
L2; 0.0225 0.0283 0.0442* 0.0283

Notes. The best performance is marked in bold, the worst with a “*” tag.
The manually tuned ffNN outperforms the grid search hyperparameter
optimized RF and KNN models according to all scores except ér. HNNI
outperforms ffNN as assessed by all scores, except €, eg+ ,and g .

the construction of a separate hyperparameter-optimized model
for each output variable.

4.1.3. Method comparison

The two methods for stellar evolutionary track forecasting (deep
learning emulation versus HNNI) that we develop lie at differ-
ent trade-off points between cost-efficiency and accuracy of the
forecasts. To summarize, the advantages of HNNI are as follows.
First, the quality of predictions is reliable, with HNNI even out-
performing our best-fit deep learning model. Second, all evolved
stellar variables (i.e., not only log L;, log Teg;, log gi, whose pre-
diction has numerically been evaluated for comparison with out-
put of the surrogate model) are covered by the same interpolation
prescription. Third, HNNI works as a sustainable out-of-the-box
solution method. In contrast to the supervised machine learning
approach, there is no need to re-iterate the training and optimiza-
tion of a predictive model each time another stellar tracks data
base is used as the catalog being accessed by the algorithm.
The disadvantages of HNNI are as follows. First, continued
access to the catalog data base is required, which, depending on
the size of parameter space, sampling density and dimension of
the problem, is typically of ~GB size. Second, the computing
time to generate predictions is significantly slower compared to
the speed of the surrogate model. For the comparison, we have
computed scaling relations on a 4-core CPU (see Fig. 6): on
such a machine, it takes around 40 seconds to generate one mil-
lion point predictions of all the three surface variables, spread
randomly across the evolutionary phases and the initial mass
range, with ffNN, while making the same number of predic-
tions takes around 3 h 13 min for HNNI (the computing time
scales down linearly with the number of cores that are used to
generate the predictions). Third, the extension to higher dimen-
sional parameter space is not straightforward. Depending on
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Fig. 6. Cost-efficiency of forecast generation. Given our problem size
and software implementation of HNNI (see Appendix B for an outline
of the pseudo-code), the computing time scaling relation #(N) cc N with
the number, N, of multiple output predictions is around 360 times larger
for HNNI compared to that of the ffNN.

the set of stellar parameters, a hierarchical relation may not
always be identifiable. Moreover, in a high-dimensional param-
eter space, the required number of subsequent 1D interpolations
becomes large (see the discussion in Appendix B). Thereby,
prediction-generation is slowed down further.

In contrast, advantages of the supervised machine learning
method are as follows. First, casting predictions is fast, namely,
two orders of magnitude faster (in seconds) to generate than with
HNNI. Second, trained surrogate models are handy: a predictive
ffNN model is of file size ~3 MB. Third, the supervised machine
learning approach is very general: the extension to higher dimen-
sions (in contrast to HNNI) does not require any hierarchical
ordering of regressor variables, nor does casting predictions
face any significant increase in computing time with increasing
dimension.

The disadvantages of the method are as follows. First, the
optimization of deep learning models is a more entailed task than
a hard-coding adjustment of HNNI. Second, minimizing a sin-
gle global loss score during model training does not guarantee
locally accurate fit results consistently over the entire parame-
ter space (see Appendix E for a discussion thereof and proposed
solutions). Third, the scaling of ffNN output with the number of
target variables either comes under sacrifice of predictive accu-
racy (in the multiple output case) or implies considerably more
development effort (in the single output case).

4.2. Age proxy fit

The series of age proxy values from s = 0 (ZAMS) to s = 1
(TACHeB) are not known for initial masses over which no stel-
lar evolution tracks have been pre-computed, since s is calculated
from the log L, log T.g, and log p, time series which are then not
available at those initial mass grid points. Both our methods for
predicting stellar evolution tracks rely on the timescale-adapted
evolutionary coordinate, s, which we use to re-parametrize the
evolution of stars. Many astrophysical applications, however,
require an indication of the stellar ages; for instance, drawing
model isochrones into observed color-magnitude diagrams. We
therefore construct another duet of interpolation methods (with
HNNI and with supervised machine learning) that map the age
7 onto the value of a star’s timescale-adapted evolutionary coor-
dinate s(logt,log Miy;) € (0, 1) over a continuous initial mass
range, in order to accomplish the two-step interpolation scheme
as defined in Sect. 2.1. Time counting in the MIST data set starts
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Fig. 8. Best ((a) and (c)) and worst ((b) and (d)) fits of age proxy tracks for unseen test initial masses, with the HNNI and KNN methods, respectively.

with the pre-MS phase. Therefore, the values of ages at ZAMS,
Tzams(Mini), quantify its duration. Instead of 7, we use a scaled
age variable 7 € (0, 1) for the age proxy fit with both the HNNI
and the supervised ML methods:

log 7{(Mini) — log Tzams (Mini)
log Tractes (Mini) — 10g Tzams (Mini)

T{(Miy;) =

To obtain back the actual non-normalized age values (in
units of years), the supply of the ZAMS logtzams(Mini)
and the TACHeB log Tracues(Mini) functions is needed. The
Tzams (Mini) values are available from the MIST data set at the
discretely sampled initial mass grid points. In order to be able
to predict ZAMS and TACHeB ages of stars over a continuous
My range, we fit a Gaussian process regression model to the
discretely sampled catalog ZAMS and TACHeB grid points (see
Fig. 7a), respectively.

4.2.1. HNNI

The HNNI routine for the age proxy fit operates in the same way
as outlined in Sect. 3.4, with the sole difference that the primary
regressor variable now is 7 (instead of the age proxy used in step
2), while s is itself the target variable of the fit. As Fig. 7b shows,
HNNI predicts the values of the age proxy reliably throughout
evolution of stars from s = 0 up to s = 1 over the validation
data set. The mean residual error €. is of order 10~>. The only
clustered scatter regions off the diagonal are around s ~ 0.25 and
s =~ 0.6, but the scatter offsets are low in amplitude. The most
extremal over- and underprediction outliers are of order 1072 in
absolute value.

The performance evaluation based on the test data assesses
the predictive accuracy of mapping the stellar age onto the
timescale-adapted evolutionary coordinate over the course of the
entire evolution from ZAMS up to TACHeB for unseen initial
masses.

The outcome is that HNNI predicts the value of the age
proxy reliably throughout the evolution from ZAMS to TACHeB
except at fast-timescale transitions, which make up little stellar
lifetime but manifest themselves as sharp increases in age proxy
values as function of age. Figures 8a and b show the best and
the worst fit, respectively, assessed by the MSE metric, among
all the test initial masses. The scatter plot of the best fit (for
Mt = 41 M) has no considerable spread, since § aligns with
Stest Over course of the full evolution. In the scatter plot of the
worst fit (for M{%" = 0.91 Mo), the local deviations of § from
Stest are apparent: the age proxy is first reproduced accurately up
to s =~ 0.47. Then a gap in the output range forms, such that the
next predicted age proxy value is at s ~ 0.6 and continues to be
overpredicted up to s ~ 0.7, from where it transitions onward to
an underprediction phase. A second domain gap forms and the
predicted age proxy aligns back with its actual test data value at
s ~ 0.9 up to the end. The physical implications on the prediction
of HR and Kiel diagrams in effect of the two-step interpolation
scheme are discussed in Sect. 4.3.1. Age proxy prediction errors
imply that the evolutionary state of the star is either under- or
overpredicted, since a wrong evolutionary coordinate value has
been assigned to a given stellar age of reference. However, as has
been shown in Sect. 4.1, sampling target variables at homoge-
neously distributed ds increments (e.g., an equidistant spacing)
in the step 2 scheme ensures that no significant changes in target
variability will have been jumped over. In other words, artifact
gap formation along curves in HR and Kiel diagrams is avoided
by the fitted age proxy parametrization of stellar evolutionary
tracks (step 2 fit), independent of the age proxy forecasts (step 1
fit).

4.2.2. KNN

Analogously to the procedure for the observables fit, we con-
structed another solution to the age proxy fit with supervised
machine learning. The reason is that we would like to obtain

A86, page 13 of 21



Maltsev, K., et al.:

6 L
—— -
) — -
8 4 - & P L
~ s
24 == i
oy
04 @ i
5.0 4.5 4.0 3.5
log Tes/K
Mini /Mg = 41.0, L2xr =0.0053
—
574 (© - i
5 5.6 1 B
3
o))
£ 55 - i
test track
54 - KNN*fINN |
4.6 4.4 42 4.0 38
log Terr/K

A&A, 681, A86 (2024)

04 !
= i
=)
=
g4 -

6 : T T T T

5.0 4.5 4.0 35
10g Teﬁ/K
My /Mg = 0.91, L2yr =0.2647

34 @ _...--""'_. L
821 -
3

o))
S 1A L
test track

o1 KNN*NN |

3.75 3.70 3.65 3.60 3.55 3.50
log Ter/K

Fig. 9. Outcome of the two-step interpolation scheme with supervised ML. Stellar tracks in the HR (top left) and Kiel diagram (top right) for
unseen test initial masses are predicted as function of age 7. For comparison with the true test HR and Kiel tracks, see Fig. 4. For better visibility,
the best- (bottom left) and worst-fit (bottom right) of tracks in the HR diagram, as assessed by the L2 measurement, are displayed separately.

a more cost-efficient interpolation model than HNNI, which
nevertheless is sufficiently accurate for astrophysical applica-
tion purposes. The age proxy fit is a univariate regression
problem distinct from the observables fit and for which the pro-
cedure of surrogate model class selection and hyperparameter
optimization needs be re-iterated. For comparing and select-
ing ML surrogate models, we used performance scores that are
defined analogously to the performance scores for the step 2 fit
(Sect. 2.4), but applied to the univariate output of age proxy pre-
diction. After a series of tests of a number of model classes,
including ffNN, we obtained the best performance with the KNN
algorithm. After a preliminary grid search for hyperparameter
optimization of KNN, we manually fine-tuned hyperparameters
for best-fit results. We obtained these with two neighbors to
query, a Minkowski metric, a p = 2 power parameter for distance
calculation, the BallTree algorithm, distance-based weighting,
and a leaf size of 300. The predictive quality is lower, but error
scores are on the same order of magnitude compared to the
HNNI case (see Fig. 7c for the summary statistics of the age
proxy prediction errors over the validation data). Therefore, we
evaluated the solution with the KNN algorithm as sufficiently
accurate. For a performance assessment over the test data set,
Fig. 8 (c and d) show the best and worst fits of the age proxy,
respectively. HNNI and KNN agree on the worst fit to be at the
low-mass end, for M{%" = 0.91 M. Here, the KNN worst-fit has
a characteristic similar to the HNNI case: the age proxy is first
reproduced accurately up to s ~ 0.52. Then a gap in the output
range forms, such that the subsequent predicted age proxy value
isat s ~ 0.76. The gap is larger than in the HNNI case. Hereafter,
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the age proxy is overpredicted, and aligns with the sy values
from s ~ 0.93 onward up to the end.

4.3. Predicting stellar evolution

Consecutively putting together two predictive models for the age
proxy and for the stellar observables, respectively, allows for the
prediction of stellar evolution tracks in HR and Kiel diagrams as
function of stellar age, and of isochrones showing stars of same
age. In this section, we use the integral two-step interpolation
scheme to predict complete stellar evolution tracks in HR and
Kiel diagrams over the set of test initial masses (see Sect. 4.3.1)
and to predict stellar observables at fixed values of stellar age
over a densely sampled initial mass range (see Sect. 4.3.2).

4.3.1. Evolutionary tracks

For the input of age (log7) and initial mass (log Mj,;) of the
star, the value of the age proxy (§) is predicted first by the
step 1 method. Then, § is used as input variable for the step 2
method, together with again the initial mass (log Mj,;). Here,
we present the two-step pipeline interpolation results that are
obtained with the supervised machine learning models (KNN
and ffNN), which is a less accurate method compared to HNNI
in both fitting tasks. We find that the predictive quality of stel-
lar surface variables reaches the desired accuracy level (see the
predictions of evolutionary tracks in HR and Kiel diagrams for
unseen test initial masses in Fig. 9). The net effect the step 1 fit
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errors have on the shape of predicted tracks in HR and Kiel dia-
grams in the two-step interpolation scheme is that step 2 based
point forecasts of surface variables are incorrectly shifted along
the track. If the step 1 fit by KNN accomplished a perfect log 7-
to-s mapping, then the tracks predicted by ffNN (step 2 fit) would
retain the same shape as shown in Figs. 4b and d. However, as the
step 1 fit introduces over- and underprediction errors of the age
proxy values, these lead to locally increased or decreased sam-
pling densities of the age proxy axis as compared to the original
unperturbed case. The under-densities along the age proxy axis
result in domain gaps, over which no corresponding step 2 out-
put (values of surface variables) is produced. These gaps form
predominantly at fast-timescale transitions between evolutionary
phases. As can be seen in Fig. 9, this applies in particular to the
rear part of passage through the Hertzsprung gap and toward the
late stages of CHeB (for high-mass stars), to the nearing of the tip
of the RGB and during the helium flashes (for low-mass stars).
Depending on accuracy or sampling needs of specific astrophys-
ical applications, post-processing methods could be applied to
fill the prediction gaps. The post-processing method would need
to identify the domain gaps in the age proxy value range, sample
the age proxy within the gap regions to obtain the prediction of
observables (by the model that accomplishes the step 2 fit, which
is ffNN or HNNI) and then use local interpolation-based meth-
ods to infer the stellar ages over the gap regions along the age
Proxy axis.

4.3.2. Isochrones

Finally, we further demonstrate consistency of our predictive
models with the original MIST stellar evolution catalog by com-
parison of MIST isochrones with emulator-based predictions of
observables at fixed stellar ages. MIST isochrones, interpolated
over the parameter space using the EEP-based method discussed
in Sect. 1, are imported from the Web interface’ provided by
the makers of the catalog. For the emulator isochrones, we
use the following multistep predictive pipeline to obtain stellar
observables at fixed age:

First, for each M;,; value of interest, the two fitted GPR mod-
els are used to predict log Tzams(Mini) and log Traches (Mini).
Second, these are then used to calculate analytically the scaled
age T for each pair {M;,;, 7} of interest. Third, together with
log My, T serves as input of the trained KNN model, which
predicts the corresponding value of the timescale-adapted evo-
lutionary coordinate s. Fourth, s and log M;y; serve as inputs for
the trained ffNN model to predict the observables log L, log T,
and log g, which are then plotted against one another.

Figure 10 shows the outcome of the multistep predictive
pipeline to obtain isochrones'. For each value of the stellar
age, the distribution of point predictions in the HR diagrams
mimics a simulated observation of stars under assumption of
a log-uniform initial mass probability distribution. Therefore,
most emulator-based point predictions of observables popu-
late those regions of stellar evolution tracks over which stars
evolve on the nuclear timescales. While there is some scatter

9 https://waps.cfa.harvard.edu/MIST/interp_isos.html

10 The value range of the imported MIST isochrones is adapted to match
our problem setting: only the evolutionary sequences ZAMS—-TACHeB
are shown, the pre-MS and the post-CHeB evolution of stars are cut off.
Note that in addition, there is an intrinsic cut-off in the MIST isochrones
at the high-mass end, which —in contrast to the MIST training data set
we used— do not include the WR stars. Therefore, the emulator-based 1
Myr isochrone extends further to the blue part of the HR diagram than
the MIST isochrones.

1 T
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Fig. 10. Comparison of MIST isochrones with emulator-based (GPR,
KNN and ffNN) predictions of stellar observables at fixed ages. The ini-
tial mass range M,y € (0.65,300) M, is sampled over a log scale with a
step size 6log Mini /M, = 5 x 107 to obtain the parameter space points
at which discrete predictions are made. For the set of values of stel-
lar isochrones, we chose a log sampling of the time axis to cover the
full range of stellar ages 7. The theoretical MIST isochrones are color-
marked, while the emulator-based point predictions are scatter-plotted
in black.

of emulator-based predictions about the theoretical isochrones,
most prominent at the blue end of the HR diagram and along
the blue loop of the 100 Myr isochrone, we consider the overall
statistical match as satisfactory.

4.3.3. Comparison with observations

As has been stressed in Sect. 1, in this work, we use the
MIST catalog for a proof-of-concept study to demonstrate our
method of constructing accurate predictive models of stellar evo-
lution over a width of parameter space necessary for a scalable
general-purpose astrophysical applicability. We therefore pro-
ceed with the background assumption that the MIST data set
is the ground truth of stellar evolution modeling. In Sect. 4.1
we show that the emulator-based prediction errors on all the
three observables log L, log T, and log g are significantly lower
than typical observational uncertainties on the same variables.
However, our predictive models can explain observations only
as good as the original MIST models do. The important question
of how well MIST stellar models agree with the observations and
which sources of systematic uncertainty have been identified, is
addressed elsewhere, namely, in the original paper on the cata-
log (Choi et al. 2016) and in follow-up studies. In this section,
we provide a brief summary of their main conclusions concern-
ing the ZAMS-TACHeB evolution at solar metallicity over the
initial mass range (0.65,300) M. It is aimed at informing inter-
ested readers about which scalable astrophysical applications of
our predictive models are reasonable, and which are not, as con-
sequence of systematic prediction errors that result from the
adopted MIST input physics. Our trained machine learning mod-
els can be used for astrophysical applications in future work and
are available to corresponding authors upon reasonable request.
MS evolution, MS turn-off morphologies, and red clump lumi-
nosities of low-mass stars are in good agreement with MIST
predictions, except for those in the mass range Mi, < 0.7 M.
The MS evolution of high-mass stars is reproduced well by MIST
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models close to ZAMS, but not the MS width at the highest
masses within the tested range Mi,i/Ms € (10, 80). The slope
of model red supergiants is too shallow compared to observa-
tions; however, no observed red supergiants lie in the forbidden
zone cooler than the limit at the Hayashi line. Comparing the
observed to predicted ratio of WC- to WN-type!! stars, of WR
to O-type, and of blue- to red supergiant stars allows us to test
mass loss, semiconvection, and convective overshoot models. At
Zs, model ratios and observed ratios broadly agree on the order
of magnitude, but the deviation is substantial in particular for
the ratio of WC- to WN-type stars. For a more detailed analysis,
the reader is referred to the original paper (Choi et al. 2016) and
references therein.

5. Conclusions and outlook

We develop two method classes for interpolation of stellar evo-
lution tracks over an initial mass range from red dwarfs to very
massive stars, evolved from the zero age main sequence (ZAMS)
up to terminal age of core helium burning (TACHeB). The two
interpolation methods are: 1) a surrogate model of stellar evo-
lution constructed with supervised machine learning and 2) a
catalog-based hard-coded hierarchical nearest-neighbors inter-
polation (HNNI) algorithm. Both of these invoke a two-step
interpolation procedure that makes use of a timescale-adapted
evolutionary coordinate s (age proxy) that we introduce to
re-parametrize the evolution of stars. This re-parametrization
reduces the timescale variability of evolutionary variables,
thereby allowing for more accurate predictions across timescale-
separated evolutionary phases.

For the predictive two-step pipeline constructed with super-
vised machine learning, we optimized a k-nearest neighbors
model to predict the age proxy for the input of (scaled) stel-
lar age, 7, and initial mass, Mi,. The predicted age proxy
value, together with initial mass, is then used as input by a
hyperparameter-tuned feedforward neural network model to pro-
duce the multiple output prediction of the log-scaled surface
variables luminosity, log L, effective temperature, log T, and
surface gravity, logg. These predictions allow tracing the evo-
lution of stars in the HR and Kiel diagrams over the dominant
duration of their lifetimes.

For the predictive two-step pipeline constructed with HNNI,
we use the same syntax in the algorithmic prescription for both
the age proxy prediction and for the prediction of observables.
It operates by selecting the two nearest neighbors, from above
and from below, in each parameter space direction, and then
performing a sequence of linear interpolations, according to a
hierarchical ordering of parameters.

Depending on the astrophysical application, one method
is preferable over the other. The supervised machine learning
approach is more cost-efficient (by two orders of magnitude in
seconds) but more difficult to develop. The hard-coded HNNI is
more accurate by one order of magnitude on the MAE and by
two orders of magnitude on e€r, while all other error scores are
on the same scale), but less handy, since continued access to the
stellar evolution catalog is required.

With a wide initial mass range and with a sequence of
evolutionary phases from the ZAMS up to TACHeB, astrophys-
ical application of our models is of interest, first, in context

1 'WC stars are WR subtype stars that reveal helium-burning products
in the outer layers, while WR stars of subtype WN reveal hydrogen-
burning products.

A86, page 16 of 21

of rapid single star population synthesis. The second promis-
ing application prospect is the incorporation of stellar evolution
emulators as stellar microphysics sub-grid models in large-scale
stellar N-body dynamics or galactic evolution simulations. The
third prospect for application is the usage of our interpolation
methods to infer fundamental stellar parameters (given multiple
observables of a single star) or the initial mass function (given
the observation of a stellar population). The latter astrophysi-
cal application prospect could follow the DALEK (Kerzendorf
et al. 2021) working example in context of spectral modeling
of Type Ia supernovae. DALEK is a deep learning based emu-
lator of the output of the TARDIS (Kerzendorf & Sim 2014)
radiative transfer code. A variant thereof has been used in a
Bayesian framework, where it represents the output of TARDIS,
to infer supernova progenitor parameters from the observation of
its spectrum (O’Brien et al. 2021). The variant has been trained
from scratch on a training data set which has been generated over
a reasonably constrained parameter range given likely properties
of the progenitor system. Reliable inference on the parameters of
the progenitor system without the emulator, with the traditional
grid-based methods instead, is impossible; it would take thou-
sands of years of clock time to evaluate the high-dimensional
parameter space by the classical Bayesian inference approach
of running TARDIS models at all those parameter space grid
points as selected by iterative optimization that typically requires
millions of evaluations.

Sampling a stellar evolution track as function of the age
proxy instead of the stellar age, for instance at equidistant ds
increments, facilitates the adequate resolution of all significant
changes in the stellar output variables. This applies not only
to the ZAMS-TACHeB sequence, but also to the pre-MS and
post-CHeB evolution (up to white dwarf cooling for low-mass
stars).

For the generalization of our methods to a higher dimen-
sional space of fundamental parameters, additional consider-
ations need to be taken into account. Sampling of a high-
dimensional parameter space to generate the grid data needs to
be efficient: sparse enough to keep the computational expenses
low, but dense enough to maintain the predictive accuracy sat-
isfactory locally across all directions in parameter space. The
MIST single star grid space sampling density distribution, which
we used to construct our models, has been decided upon by the
makers of the catalog, based on physical insight from domain
expertise. We have expanded the data set in parameter ranges
of interest based on inspection of local fit results obtained with
the surrogate model, to locally improve the predictive perfor-
mance where needed, by supplying more training data in those
regions. An alternative approach to determining the optimal
parameter space sampling goes by using active learning (AL;
Settles 2009). By pre-defined heuristics, decision-making with
AL is automated and, therefore, better adapted to high dimen-
sional parameter spaces for finding an optimized distribution of
grid points. In the context of stellar astrophysics, Rocha et al.
(2022) applied AL in a case study involving the mapping of ini-
tial binary star parameters to the final orbital period and show
that it can be used to reduce the training data grid size.

For stellar parameter spaces greater than those tested here,
we recommend using HNNI as the predictive interpolation
model as far as it is applicable given computational cost con-
straints. The HNNI method generalizes to higher dimensions: for
clarity, we have provided the recipe for a 3D (s, Mipi, Zin;) formu-
lation of HNNI in order to show the systematic of its dimensional
extension. In the case that either the HNNI method we devel-
oped will break down or be computationally too inefficient
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in the high-dimensional parameter space (given the impracti-
cally large cumulative number of 1D interpolations to make),
we recommend using supervised machine learning, in particu-
lar deep learning, to train univariate surrogate models of stellar
evolution on segments of the initial mass parameter space. For
training deep learning models, we have provided basic guid-
ance on selection of feedforward neural network architecture and
learning hyperparameters and on the choice of the loss func-
tion. Finally, we have found a successful training strategy that,
in its basic design, could (since it has been adjusted to data base
specifics of a stellar evolution catalog) continue to produce sat-
isfactory fit results when trained on data in a higher dimensional
parameter space.
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Appendix A: Stellar evolution re-parametrization
and HNNI

Figures A.1-A.3 provide additional materials that support the
use of a timescale-adapted evolutionary coordinate and of the
HNNI method for interpolation of stellar evolution tracks. Fig-
ure A.l demonstrates the general suitability of our age proxy
prescription for resolution of variability in stellar tracks over a
wide span of sequential evolutionary phases and across the ini-
tial mass range.

Figure A.2 compares the predictive quality of the two-step fitting
approach with the naive direct fit, when applied to the test case of
modeling the log-scaled luminosity time series of a Sun-like star

from ZAMS up to TACHeB. We make an 85:15% train-test split
of the data and use the scaled age variable 7 defined in Sect. 4.2
as regressor variable. For the naive fit, we train a GPR model
on the log-scaled luminosity training data, and use it to predict
the test data. For the two-step approach, we first train a KNN
model to predict the normalized age proxy, s, based on the train-
ing data. Second, we use the age proxy prediction as regressor
variable when training another GPR model to predict the log-
scaled luminosity training data. To compare the outcomes, we
plot the prediction of the naive fit and the one resulting from
the two-step pipeline separately for each evolutionary phase MS,
RGB, and CHeB. For better discrimination of the test data stellar
track, neighboring test data points are connected by piecewise
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Fig. A.1. Comparison of naive versus a two-step fit of stellar evolution time series, upon the 1D test case of predicting log-scaled luminosity of a

Sun-like star over the MS, RGB, and CHeB phases.
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Fig. A.2. Parametrization of stellar evolution as function of the timescale-adapted evolutionary coordinate over phases beyond the ZAMS-TACHeB
sequence. Stars across the initial mass range are evolved from the pre-MS up to post-CHeB evolution (post-asymptotic giant branch evolution for
low-mass stars, and onset of core carbon burning for massive stars) as function of (unnormalized) timescale-adapted evolutionary coordinate §.
The color marking denotes the evolutionary phases pre-main sequence (PMS), main sequence (MS), red giant branch (RGB), core helium burning
(CHeB), early asymptotic giant branch (EAGB), thermally pulsating asymptotic giant branch (TPAGB), post asymptotic giant branch (postAGB),

and Wolf-Rayet (WR) phase.
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Fig. A.3. Prediction of stellar evolutionary tracks in the core density-temperature diagram over the test data, with the HNNI method (right) and the

true held-back tracks (left) for comparison.

linear dashed lines over each phase. The MS evolution data is
accurately predicted by both methods, and so is the sub-giant
and early red giant phase. The naive fit loses out to the two-step
fit during the later stages: the ascension of the RGB and through-
out the CHeB phase.

Figure A.3 shows that HNNI, by virtue of the same algorith-
mic prescription, yields accurate forecasts of not only the surface
variables log L, log Tes, and log g, which have been evaluated in
the main part of the paper, but also of all other stellar variables
we tested. The shape of the tracks in the (log p., log 7.) diagram
is represented well by HNNI, except at fast-timescale transitions
during the helium flashes of low-mass stars.

Appendix B: HNNI in three dimensions or higher

Here, we assume that the stellar parameter space is spanned by
a third dimension: the initial metallicity Z,;. The resulting set
of parameters (s, Mini, Zin;) allows for a hierarchical ordering:
Always first is the age proxy axis, s. Always second is the ini-
tial mass axis Mi,;. Third and least significant out of the three, is
the initial metallicity axis Z;,;, whose effect on the shape of stel-
lar evolutionary tracks (at a fixed initial mass) results in minor
corrections. The pseudo-code below provides the recipe for a
numerical response to the question of what the value of the
target variable Y; = Y(s;) is at the test location (s;, MI%", Zi%")
in parameter space. Here, Y is any evolved stellar variable: for
example, Y = log L/L. For full generality, we assume that nei-
ther M nor Z*' is contained in the catalog grid database
spanned by {Mini, Zini}car- Below, the linear interpolation equa-
tion, y(x) = y; + )”é )”C‘ (x — x1), is referred to by its parameters:
y(x) < y2,Y1, X2, x;. We assume that in the catalog, a similar
initial mass grid sampling density is available for each initial
metallicity.

Pseudo-code.

1. Determine the nearest neighbors Z lm, Z. € {Ziilca to the
test initial metallicity value Z*** from above and from below,
respectively.

2. From the set of available initial masses {M;y}(Z*.) and

n1

{Mini}(Z,) contained in the catalog at these two metallici-

ties, determine the nearest neighbors to M} from above and
from below, respectively:

M, My € {Min}(Z3),
M, MZ € {Mini}(Z,).
3. From the age proxy series available in the catalog at each

of these four initial mass grid points, determine the nearest
tmaxs Symin € (SIH(M7) with 57
in < 8j < sE
s” s~ . e {s;}(M>) with s~
(S+ mm) S: max’ *+ min’

Yy (SJ) — Y (S+ ,max

YZ(s;) < YZ(5Z pax)» Y- (s_,mm) 5” max> S min-
6. Interpolate along the log-scaled initial metallicity axis to find

neighbors to s; along the age proxy axis that satisfy:
ST maxs S i € (M) with sT . <'5; < s7
+,min
st st e s} (M) with s_
—max> ®— min —,min <s$j< s-
4. Interpolate along the age proxy axis to find
) Yy (S+ mm) S+ max? S:r min’
Y+(Sj) — Y (S— max) Y+(S mm) S_ ,max? S:mm’
5. Interpolate along the log-scaled initial mass axis to find
Yi(sj) < Yi(s7), YZ(s)), log(M/Mo), log(M7 | Mo),
Y(sj) & Yi(s)), Y_(s)), log(Z;:/ Zo), 10g(Z; ;| Zo)-

+,min +,max?

+ max?
—,max?

—,max*

+,min

Sy + min < Sj < sy

—,max’ ~ — min

e (SJ) L (S+ max) s}

Y-(s;) « Y(5,), Y=(5,), log(M* | Mo), log(M~ | Mo).

Generalization. The HNNI method is extended analogously
to higher-dimensional parameter spaces. We have the number,
n, of hierarchical 1D interpolations to perform and number,
k, of neighboring grid points to query scale as follows with
dimensionality of the parameter space:

— ID(s):n=1,k=2,

—2D(s,Mini):n=(1+1)+1=3k=2+2)+2=6,

= 3D (s, Mini, Zini)):n=B3+3)+1=7,k=(6+6)+2 =14,

— 4D (s, Minis Zini, Uini): n = (T+7)+ 1 =15k = (14 + 14) +

2 =30.

We believe that our HNNI method is generalizable to even higher
parameter space dimensions but have not verified this hypoth-
esis. For a binary system composed of two non-rotating stars
of the same initial metallicity, we expect the following hier-
archical ordering of variables to yield accurate interpolation
results:

SD: (51, Mini,1, Mini 2, Pinis €),

withn = (15 + 15) + 1 = 31, and k = (30 + 30) + 2 = 62.
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Appendix C: GPR

Ever since pioneering work by Sacks et al. (1989), GPR has been
considered standard method choice for emulation tasks because
of flexibility of the fitting model and regulatory effect of the
Gaussian assumption (for a detailed discussion of application of
GPR, see Kennedy & O’Hagan 2001). In general, GPR becomes
increasingly time-prohibitive and computationally expensive as
the size of training data grows. Particularly, GPR involves the
Cholesky factorization and inversion of the covariance matrix,
which are computationally costly operations for a large data set.

The literature on GPR includes multiple approaches to
improve scalability (Liu et al. 2020), which can be broadly clas-
sified into global approximation and local approximation of the
GPR. While approaches to global approximation tend to focus
on methods based on sparse kernels (Kaufman et al. 2008) and
approximate likelihoods (Varin et al. 2011), approaches to local
approximation center around inference and prediction on local
subsets of data, such as moving-window GPR (Van Tooren &
Haas 1993; Ni et al. 2012).

Following the local approximation approach, Li et al. (2022)
solved the forward problem of stellar evolutionary track forecasts
for given fundamental input parameters with separate GPR mod-
els that each cover a subspace of the narrow but five dimensional
stellar parameter space. However, using a separate GPR on sub-
spaces is likely to ignore the potential dependence across them,
which in turn can lead to suboptimal predictions. We expect this
to become problematic upon extension of the input space, when
exploring parameter spaces of binary star systems. For these rea-
sons, we investigate machine learning models that can be trained
on the full data set more closely.

Appendix D: ffNN hyperparameter tuning

Architecture design. There are a number of relevant theoreti-
cal considerations that guided our approach to ffNN architecture
design. The main role of the activation function is to intro-
duce non-linearities into the information processing pipeline of
the neural network. We adopt the standard recommendation of
choosing the ReLU activation function, and instead focus on
tuning the model capacity.'> There are approaches to tuning the
model capacity based on complexity of the learning task (Achille
et al. 2021), which can be estimated using the Kolmogorov com-
plexity measure (Kolmogorov 1963). However, its estimation is
more a theoretical, less a practical enterprise, due to its non-
trivial computation. Instead, there is a body of theoretical hint
suggesting that over-parametrization of the deep learning model
is required in order to overcome an inherent bias of learning
simple (rather than complex) input-output mapping rules (Din-
gle et al. 2018; Nichani et al. 2020). The model capacity ought
to be chosen large enough to prevent underfitting, however not
overly large to avoid overfitting. The model capacity, once fixed,
can be built up in two contrasting ways: 1) by few hidden lay-
ers and many neurons per hidden layer or 2) by many hidden
layers and few neurons per hidden layer. An incentive toward
the first approach is the success of GPR as emulation method:
a first-order Taylor approximation to the output of a wide net-
work, initialized with independent and identically distributed
weights and trained for a large number of epochs, approximates

12 The model capacity corresponds to the number of free trainable
parameters. In a fully connected ffNN without regularization layers, the
model capacity is given by the total number of weighted connections
between neural nodes plus the total number of biases in the network.
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the predictions of a GPR model, and the selection of activation
functions corresponds to a particular kernel (the neural tangent
kernel) in GPR (Jacot et al. 2018; Lee et al. 2019). The other
approach to building up a fixed model capacity, by choosing a
higher number of layers, can, on the other hand, be more valuable
than increasing the width. For example, Eldan & Shamir (2016)
show that approximating certain functions requires an exponen-
tially higher number of neurons in a wide network configuration
to achieve the same accuracy as that of a deeper network, and the
result holds irrespective of the choice of activation function. We
tested both approaches on our problem and found the best result
by building up model capacity through a many-layer architecture
with a moderate number of neurons. When training deep learn-
ing models, we tested dropout, batch normalization, and layer
normalization as regularization techniques, in order to push the
validation loss further down past stagnation phases.

Selection criteria. We performed empirical tests of manually
designed hyperparameter (HP) combinations and then applied
selection criteria to decide whether or not to train the con-
figured model up to the end. The main HP that we varied
were the number of hidden layers, the number of neurons per
layer (assuming a symmetric network architecture), learning rate
schedule parameters and the batch size. For each HP combi-
nation, we evaluated the loss curve decline during the runtime
of learning, and applied the following selection criteria at the
{500, 103,2%x10%,5x 103} epoch stages: First, the speed of learn-
ing (judged upon by cross-comparison of validation loss scores
at the aforementioned epoch stages for different HP combina-
tions, and estimation of the slopes). Second, the degree of overfit
(judged upon by visual assessment of departure of the validation
from the training loss curve with increasing epoch number). Sub-
sequently, we manually adjusted the HP choice for the next series
of empirical tests, informed by performance of HP combinations
from the previous trials. Promising models (with fast validation
loss curve decline and tolerable overfit over long training peri-
ods) were trained until the validation loss curve either flattened
out or started to oscillate over epoch scales of order 5 — 10k. Out
of those promising models, the "best" deep learning model was
selected as the one that had the least error scores on the valida-
tion data. This procedure was iterated until we trained a surrogate
model that attained a threshold value of the validation loss, with
the lowest error scores among all the deep learning models we
tested over a series of generations. Training our best-fit ffNN
model lasted around 8 h on a Nvidia RTX 3060 GPU machine.

Randomness and reproducibility. A trained deep learning
model is the outcome of a stochastic computer experiment. In
order to obtain reproducible results, the random seed needs to
be fixed twice: first, before the train-test split of the total data
set Niotal = Nirain + Nval and second, before initializing the ffNN
kernel at model compilation.

Appendix E: Alignment problem

Globally defined loss functions. What remains an issue when
building stellar evolution surrogate models with supervised
machine learning models to approach the regression problem we
formulated, is what we refer to as the alignment problem (AP):
our expectation of the surrogate model’s predictive capability
(characterized by locally accurate performance over all three tar-
get variables, across all three evolutionary phases and across
the entire initial mass range) does not align with the formalized
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numerical condition (characterized by the minimization of one
single global error score) that is optimized during training of
machine learning models. We find that none of the standard loss
function choices optimally match our problem setting. > The
reason for the AP is that the evolution of stars, traced in the HR
diagram, does neither happen over the same absolute nor relative
numerical scale range for different initial masses. However, the
surrogate model learns by minimizing a globally defined error
score, which means by improving to reproduce the overall global
shape of the three-dimensional hypersurface of the target vari-
ables over the two-dimensional input parameter space. While
training deep learning models, we encountered cases when the
statistical MSE scores on training and validation data decreased
further (i.e., no overfitting in the statistical learning sense of the
term), but our physical performance scores, which are locally
defined, worsened. In essence, this means that the surrogate
model continued to learn, but not that what we appreciate. It
may happen that the emulator will have improved predictive
capability globally, as assessed by the global loss score, by sub-
stantial gains in predictive accuracy in those parameter space
regions where the accuracy was already good enough accord-
ing to our physical performance metrics — but at the sacrifice
of losing predictive accuracy in other parameter space regions
admitted by statistical fluctuations. That latter loss in local pre-
dictive accuracy, however, may manifest itself in a decrease of
physical performance scores over the target variables, adverse
to expectations. Nevertheless, this performance loss is not con-
sidered problematic by the surrogate model based on the global
error score that insufficiently penalizes the prediction errors in
relevant parameter regions of concern.

The AP is only partially addressed by choosing a ffNN model
class, which minimizes the loss of —not the global data set in
a single step, but of— a sequence of randomly selected data
batches'*), by choosing the Huber loss score (which seeks a
trade-off between MSE and MAE minimization) and by locally

13 MSE is the average squared residual, where the squared penalization
incentivizes to avoid large absolute residuals in model training. Clearly,
this behavior is globally desirable for stellar evolutionary track fitting,
but leads to too much leniency when a surface variable does not vary
much over a star’s lifetime. Then, residuals would be small compared
to the global range, but large as perceived in HR or Kiel diagrams for a
given initial mass. MAE is the average absolute residual, where penal-
ization is linear, and the behavior is reversed in comparison to the MSE.
Common scale-free measures, such as MSLE and MAPE, essentially
penalize multiplicative errors. MSLE evaluates squared penalties on a
log scale (that is, squared log ratios), and MAPE is the average ratio of
the absolute residual over the actual value of predicted target variable.
In a nutshell, both of these measures tolerate larger absolute residuals as
the observed value increases, but we require the opposite for luminosity,
which tends stay in a smaller range for tracks at overall high values of
luminosity (see top-left panel of Fig. 9).

4 This point is best understood by comparison of ffNN optimization to
that of another statistical learning algorithm. For instance, a RF model
is optimized in a single step: a loss score (such as MSE) is minimized
after the complete data set is fed into the RF by the bagging technique
that distributes the input data onto the individual decision trees. A RF
forecast is an ensemble forecast from an ensemble of decision trees,
each of which receives a random split of data samples. For this subset
of training data (which differs from one tree to another), the decision
tree finds its own hierarchically conditioned numerical rules during the
supervised machine learning. However, during training the minimiza-
tion of the loss score happens globally, not locally for each subset of
the total training data set. In contrast, ffNN minimizes the loss score for
each batch (a small, randomly selected chunk of the total training data
set) and repeatedly over a large number of iterations.

increasing the initial mass parameter space sampling (which, sta-
tistically, increases the importance of specific parameter space
regions by the increased amount of data for that region). If super-
vised ML is to be applied in high dimensional parameter space
for stellar track fitting, this issue requires adequate resolution.

Solution approaches. For future extensions of our surrogate
modeling method to wide high-dimensional parameter spaces,
we propose the following approaches:

(1) To train a separate ffNN model for each target variable,
instead of training a single ffNN model with multiple output.
To segment the initial mass parameter space into parts, and
train a different ffNN model on each segment of the initial
mass range.

To tailor a loss function (parameterized by input variables,
in particular the initial mass) to account for differences in
numerical scale range over which stellar variables change
across the initial mass range, across evolutionary phases
and (in the case of multiple output) across different target
variables.

Approaches (i) and (ii) are the most common and straight-
forward. Li et al. (2022) employed both of them when modeling
stars by a set of global GPR models. Here, approach (ii) facili-
tated a splitting of the total training data set of size ~300k into
subsets of size ~20k, which is their stated limit of computational
feasibility for applying global GPR models on a training subset.
With approaches (i) and (ii), the learning task is simplified and
that can lead to more accurate individual interpolations.
However, all three approaches to solving the AP, which can be
employed individually or in concert, do have their drawbacks:
For approaches (i) and (ii), many separate models need to be
trained, and the capability to capture dependence structures is
impaired. Approach (iii) is the only solution that leads to truly
multivariate predictions, but is the most difficult to realize. If
the training target loss does not account for inter-variable depen-
dence, then any loss-based training lacks the required guidance.
The first step in accounting for dependence is accounting for
variability and covariance. Already that initial step is a chal-
lenge since the range of a single stellar surface variable over a
star’s lifetime can be drastically different depending on initial
mass alone. Possibly, creating a suitable multivariate loss func-
tion, tailored to stellar evolution tracks, is similarly complex as
the multivariate interpolation task itself.

For future research toward extending stellar evolution emula-
tors to wide high-dimensional parameter spaces, we believe that
a good starting approach is to build a separate deep learning
model for each target variable and to segment the initial mass
range into parts to train sets of univariate deep learning models
on each initial mass segment, in an otherwise high-dimensional
parameter space.

(i)

(iii)

A86, page 21 of 21



	Scalable stellar evolution forecasting
	1 Introduction2.8pt
	2 Methods
	2.1 Regression problem formulation
	2.2 The timescale-adapted evolutionary coordinate
	2.3 Data base
	2.4 Performance evaluation

	3 Interpolation scheme solutions
	3.1 Model selection
	3.2 Choice of loss function
	3.3 Hyperparameter optimization
	3.4 Hierarchical nearest-neighbor interpolation

	4 Results
	4.1 Observables fit
	4.1.1 Deep learning emulation
	4.1.2 HNNI
	4.1.3 Method comparison

	4.2 Age proxy fit
	4.2.1 HNNI
	4.2.2 KNN

	4.3 Predicting stellar evolution
	4.3.1 Evolutionary tracks
	4.3.2 Isochrones
	4.3.3 Comparison with observations


	5 Conclusions and outlook
	Acknowledgements
	References
	Appendix A: Stellar evolution re-parametrization and HNNI
	Appendix B: HNNI in three dimensions or higher
	Appendix C:  GPR
	Appendix D:  ffNN hyperparameter tuning
	Appendix E: Alignment problem


