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Abstract

Purpose: Limited studies exploring concrete methods or approaches to tackle and enhance
model fairness in the radiology domain. Our proposed AI model utilizes supervised contrastive
learning to minimize bias in CXR diagnosis.

Materials and Methods: In this retrospective study, we evaluated our proposed method on two
datasets: the Medical Imaging and Data Resource Center (MIDRC) dataset with 77,887 CXR
images from 27,796 patients collected as of April 20, 2023 for COVID-19 diagnosis, and the
NIH Chest X-ray (NIH-CXR) dataset with 112,120 CXR images from 30,805 patients collected
between 1992 and 2015. In the NIH-CXR dataset, thoracic abnormalities include atelectasis,
cardiomegaly, effusion, infiltration, mass, nodule, pneumonia, pneumothorax, consolidation,
edema, emphysema, fibrosis, pleural thickening, or hernia. Our proposed method utilizes su-
pervised contrastive learning with carefully selected positive and negative samples to generate
fair image embeddings, which are fine-tuned for subsequent tasks to reduce bias in chest X-ray
(CXR) diagnosis. We evaluated the methods using the marginal AUC difference (∆mAUC).

Results: The proposed model showed a significant decrease in bias across all subgroups when
compared to the baseline models, as evidenced by a paired T-test (p<0.0001). The ∆mAUC ob-
tained by our method were 0.0116 (95% CI, 0.0110-0.0123), 0.2102 (95% CI, 0.2087-0.2118),
and 0.1000 (95% CI, 0.0988-0.1011) for sex, race, and age on MIDRC, and 0.0090 (95% CI,
0.0082-0.0097) for sex and 0.0512 (95% CI, 0.0512-0.0532) for age on NIH-CXR, respectively.

Conclusion: Employing supervised contrastive learning can mitigate bias in CXR diagnosis,
addressing concerns of fairness and reliability in deep learning-based diagnostic methods.

1 Introduction

In recent years, Artificial Intelligence (AI) has been extensively utilized in image-based disease diagnosis.1–6

While these models have attained or exceeded expert-level performance, the concern of fairness has emerged
in various medical domains and populations.7 In the AI algorithm, fairness denotes the absence of bias or
favoritism towards an individual or group based on their inherent or acquired characteristics.8 In medical
domains, certain groups, such as those defined by race, sex, and age, have been identified as being subject
to unfair or biased decisions made by AI models.9–11
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A chest X-ray (CXR) is a quick and convenient diagnostic tool that uses a low dose of ionizing radiation to
produce images of the chest, including the lungs, heart, and chest wall. This imaging technique can shed
light on the underlying cause of shortness of breath, persistent cough, chest pain, and injury. Additionally,
CXRs help diagnose and monitor lung conditions such as pneumonia, emphysema, and cancer. Several stud-
ies have focused on automating disease diagnosis based on CXR imaging to achieve accurate results.12–15

While these efforts have achieved high accuracy in detecting abnormalities in CXRs, exploring AI model
fairness and bias reduction has been relatively limited. Therefore, there is a need to develop methods to
minimize bias in CXR diagnosis.

There exist three primary methods to reduce bias in medical image classification. Pre-processing methods
work to reduce bias through dataset resampling or augmentation.10,16 In-processing methods typically in-
corporate an adversarial component into the baseline model. This component predicts sensitive attributes
derived from the input image and emphasizes the loss function selection.17,18 Lastly, post-processing tech-
niques can address unfairness by introducing perturbations to input images.19 This prevents the model from
relying on biased features and can be achieved without necessitating model retraining. Despite these strate-
gies, they have two limitations. First, the changes might inadvertently affect overall performance. This
type of degradation, where fairness is achieved by deteriorating the performance of one or more groups is
quite problematic.20,21 Furthermore, the testing and development of these methodologies are predominantly
conducted on relatively small datasets. This can impede their ability to be generalized or applied to more
extensive, real-world scenarios.

Our study aims to investigate fairness issues in employing AI for CXR diagnosis and to mitigate biases
on subgroups such as race, sex, and age. One potential reason for bias in AI models is the presence of
non-neglectable subgroup information in image embeddings. For example, in the race subgroup, the image
embeddings may contain race-related information that could lead to biased predictions by the models. Su-
pervised contrastive learning is a pretraining technique that uses label information to draw embeddings from
the same class closer and push those from different classes further apart.22 Benefiting from well-trained em-
bedding, it achieves superior performance on downstream classification tasks. Inspired by this method, we
propose utilizing supervised contrastive learning with carefully selected positive and negative samples to
generate fair image embedding. Subsequently, the model is fine-tuned for downstream tasks. In our ap-
proach, we define images with the same label from different subgroups as positive samples and images with
different labels from the same subgroup as negative samples. This demonstrates a significant capability to
reduce bias for subgroups.

2 Materials and Methods

The study protocol was approved by the institutional review board at each clinical center and Weill Cornell
Medicine. Due to the publicly available nature of both datasets used in this study, the requirement for
obtaining written informed consent from all subjects (patients) was waived by the IRB.

2.1 Dataset Acquisition

Our proposed method was designed and assessed using two CXR imaging datasets. The first dataset is
a repository created for COVID-19 diagnosis, hosted at the University of Chicago as part of the Medical
Imaging and Data Resource Center (MIDRC).23 The MIDRC is a collaborative initiative funded by the
National Institute of Biomedical Imaging and Bioengineering (NIBIB) under contracts 75N92020C00008
and 75N92020C00021 and jointly led by the American College of Radiology® (ACR®), the Radiological
Society of North America (RSNA), and the American Association of Physicists in Medicine (AAPM). The
MIDRC accepts images in DICOM standard and clinical data in various formats. It is currently seeking
COVID-19-related CT scans, X-rays, MRI, and Ultrasound, along with similar control cases. In this study,
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Figure 1: Creation of MIDRC dataset

we focus on X-rays. The race, sex, and age data in MIDRC are self-reported. According to the MIDRC
Data Contributor Reference Document, the outcome in MIDRC was confirmed through COVID-19 test
results (PCR or Rapid antigen test) within a timeframe of 0 to 14 days before the imaging study. Given that
MIDRC is a multi-institutional collaborative initiative, and no exclusion criteria are specified in the dataset
descriptions, we have taken measures to mitigate selection bias. However, it is important to acknowledge
that the MIDRC may not fully represent all patient populations. As of September 2022, there are 126,295
imaging studies with demographic information in the MIDRC data. We collected computed radiography
(CR) and digital radiography (DX) with age, sex, and race information. Figure 1 provides an overview of
the data selection process. Finally, there are 77,887 CXR images from 60,802 imaging studies of 27,796
patients.

The second data set used in this study was the publicly accessible National Institutes of Health Chest X-ray
(NIH-CXR) dataset, which comprised 112,120 frontal CXR images from 30,805 patients.3 In the NIH-CXR
dataset, race and sex information were self-reported, while age was recorded at the time of the patient’s first
admission. In the NIH-CXR dataset, a thoracic abnormality refers to any abnormal finding in the chest area.
This encompasses various conditions, such as lung masses, among others.

2.2 Bias Definition

To assess the model’s fairness, we used the Difference between the maximum and minimum value of the
marginal overall Area Under the receiver operating characteristic Curve (∆mAUC). The marginal AUC24

is defined as

AGi> := P
(
f(x) > f(x

′
)
∣∣∣y > y

′
, (x, y) ∈ G+

i , (x
′
, y

′
) ∈ G−

)
(1)

G is the dataset used, Gi is the subgroup in the dataset, f(x) is the output of the AI model with input
image x, and y is the ground truth label for x, indicating whether the input image has a disease or not.
P stands for the marginal AUC, which measures the AUC for a specific subgroup. It is calculated by
determining the probability that the model ranks a randomly selected positive sample from the subgroup,
over a randomly selected negative example from the entire data. For binary classification, the marginal
AUC requires that positive labels have an equal chance to be predicted positively across subgroups.24 By
subtracting the minimum value of marginal AUC from the maximum, ∆mAUC can be obtained. A higher
∆mAUC signifies significant disparities at the levels of individual subgroups and a lack of fairness in the
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Figure 2: The overview of the proposed workflow using the Contrastive Learning Model for Fairness. For example, a male with
COVID-19 serves as the anchor image, while the image of a female with COVID-19 that follows also serves as a positive sample.
On the other hand, the image of a male without COVID-19 is considered as a negative sample.

model’s predictions. For example, in the age subgroup, the marginal AUC for individuals below 75 years
and their counterparts is 0.8288 and 0.7289, respectively, resulting in a ∆mAUC of 0.0999. If the proposed
method can reduce this value from 0.0999 to a lower value, it successfully reduces bias.

Additionally, we also use the difference between the maximum and minimum values of the subgroups in
traditional evaluation metrics, specifically true positive rate (TPR), false negative rate (FPR), and brier scores
(BS) to assess fairness. We refer to them as ∆TPR, ∆FPR, and ∆BS.

2.3 Overall Architecture

Our overall architecture is presented in Figure 2. We first pre-trained the model using contrastive learning,
which learns the initial parameters for the model backbone. We then fine-tuned the model for the subse-
quential tasks. We used the DenseNet-121 as the backbone in this study.25

2.4 Contrastive Learning Model

We use contrastive learning as a pretraining technique to minimize the bias among different subgroups, re-
sulting in fair image embeddings. To implement contrastive learning, we replace the final output layer of
the prediction network with a single-layer perceptron, which serves as the contrastive head. In contrastive
learning, an ”anchor image” refers to an image that serves as a reference point within the contrastive loss
function. For anchor images in a minibatch, we use images that have the same label but originate from
different subgroups as positive samples, and images with different labels but from the same subgroup as
negative samples. In this scenario, a male with COVID-19 serves as the anchor image, while the image
of a female with COVID-19 that follows also serves as a positive sample. On the other hand, the image
of a male without COVID-19 is considered a negative sample. In this context, positive sampling encour-
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ages image embeddings from different subgroups to be similar to one another, while still considering the
label information. Image embeddings are the feature embeddings obtained by the convolutional part of the
model. Conversely, negative sampling pushes image embeddings with distinct labels further apart, without
emphasizing the group information. The contrastive loss can be expressed as follows.22

L =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

expzi·zp/τ∑
n∈N(i) exp

zi·zn/τ
(2)

where i is the anchor image in the minibatch I . P (i) represents all the positive samples of i in the minibatch.
N(i) are all the negative samples of i in the minibatch. zi, zp, and zn are the image embeddings of i, p,
and n. The loss function allows all positive pairs to contribute to the numerator, encouraging the encoder to
provide closely aligned representations for all entries from the same class. The form of the loss function can
distinguish between positive and negative samples.

2.5 Downstream Prediction

After we pre-trained the model using contrastive learning, we replaced the contrastive head with the origin
output layer, which is the prediction head in Figure 2. We then fine-tuned the model to generate the output
result. We used binary cross-entropy loss in the downstream prediction.

2.6 Experimental Settings

For the MIDRC dataset, we followed the same image processing method as described in the study by
Johnson et al.26 for the original CXR images. We started by converting all the Posterior-Anterior (PA)
or Anterior-Posterior (AP) CXR images from DICOM to JPG format. Specifically, pixel values in the DI-
COM format were normalized to a range of [0, 255]. If necessary, all pixels were inverted to ensure that the
air in the image appeared white, and the area outside the patient’s body appeared black. Following that, we
performed histogram equalization to enhance the image contrast. Finally, the processed image was saved in
JPG format with a quality factor of 95.

All images were subsequently resized to 256 × 256 × 3 using PyTorch's default bilinear interpolation and
center-cropped to 224 × 224 × 3. A stochastic image augmentation was randomly applied to transform a
CXR into an augmented view. In this work, we sequentially applied two simple augmentation operations:
(1) random rotation between 0

◦
and 10

◦
, and (2) random flipping.

The proposed method is not exclusive to specific deep learning models, and Densenet-12125 showed good
performance in classification on NIH-CXR in the previous study.4 Therefore, we used a Densenet-121
architecture pretrained on CheXpert27 in this study. The last layer of the model is firstly substituted by a
single-layer perception with an output dimension of 128 (backbone + contrastive head). We then fine-tuned
the entire network for the subsequential tasks. Adam optimizer28 with a learning rate of 0.0001 was used
for contrastive learning. We set the temperature to 0.05 and trained the model for 10 epochs. After that, we
replaced the output layer with the classification output layer (backbone + prediction head) and fine-tuned
the model for 1 epoch. The experiments were conducted on an Intel Core i9-9960 X 16-core processor and
an NVIDIA Quadro RTX 6000 GPU. The models were implemented using PyTorch. The code is available
at https://github.com/bionlplab/CXRFairness.

For the MIDRC dataset, we randomly split the entire dataset at the patient level. We designated one group
(20% of the total subjects) as the hold-out test set and used the remaining portion as the training and valida-
tion sets. For the NIH-CXR dataset, we used the official training, validation, and testing split.

We evaluated our methods on all subgroups across age, gender, and race, and compared our result with
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Table 1: Patent characteristics for both datasets

Dataset Characteristic Training set Test set

MIDRC
Age, yrs (interquartile) 59 (44-71) 59 (25-75)
Sex

Male, n (%) 11,257 (51) 2,819 (51)
Female, n (%) 10,980 (49) 2,740 (49)

Race
White, n (%) 12,002 (54) 2,998 (54)
Black, n (%) 7,444 (33) 1,912 (34)
Other, n (%) 2,791 (13) 649 (12)

NIH-CXR
Age, yrs 48 (34-59) 49 (34-59)
Sex

Male, n (%)* 15,073 (54) 1,557 (56)
Female, n (%) 12,935 (46) 1,240 (44)

The category Other includes American Indian or Alaska Native,
Asian, Native Hawaiian or other Pacific Islander, and Other.

four baselines: Empirical Risk Minimization (ERM),29 balanced ERM,20 Adversarial,30 and supervised
contrastive learning (SCL).22 In this study, these four baselines are based on DenseNet-121 pretrained on
CheXpert,27 which we refer to as DenseNet-121, Balance DenseNet-121, ADV, and SCL. DenseNet-121 is
an original algorithm that does not consider the bias problem, and our proposed algorithm uses DenseNet-
121 as its backbone. Data resampling is a commonly used data pre-processing technique for reducing bias
in subgroups, so we employed Balanced DenseNet-121 as one of the baselines. In this study, we resampled
the subgroups with fewer samples to ensure that the number of samples in all subgroups was the same. ADV
is a widely used in-processing method derived from the domain adaptation field, which treats the sensitive
attribute as a domain-specific label and attempts to use only domain-irrelevant features for the target task.
SCL is a general contrastive learning approach without label definitions related to demographic information,
which we use to demonstrate the effectiveness of the proposed method.

2.7 Statistical Analysis

We used 200 bootstrap samples to obtain a distribution of the ∆mAUC and reported 95% confidence inter-
vals. For each bootstrap iteration, we sampled n images with replacements from the test set of n images.
To compare the difference in ∆mAUC between the proposed model and baseline across all subgroups, we
conducted a paired t-test. Statistical analysis was conducted using SciPy 1.7.1 with statistical significance
defined as p < 0.05.

3 Results

3.1 Study Participants

Table 1 lists the patient characteristics for both datasets. For the MIDRC dataset, the training set includes
22,237 patients (median age, 59 years; interquartile range [IQR]: 44-71 years; 11,257 [51%] men), and
the test set includes 5,559 patients (median age, 59 years; interquartile range [IQR]: 25-75 years; 2,819
[51%] men). For the NIH-CXR dataset, the training set includes 28,008 patients (median age, 48 years;
interquartile range [IQR]: 34-59 years; 15,073 [54%] men), and the test set includes 2,797 patients (median
age, 49 years; interquartile range [IQR]: 34-59 years; 1,557 [54%] men).

Table 2 presents the subgroup information of the datasets at the image level. Our study focused on training
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Table 2: The subgroup information of two datasets at the image level: MIDRC 23 and Chest X-ray14 3

Dataset Characteristic Training set Test set

Positive Total Positive Total

MIDRC
Images, n 31,434 62,178 7,935 15,709
Age

< 75 yrs 21,213 52,427 6,970 13,115
≥ 75 yrs 4,566 9,751 965 2,594

Sex
Male 17,991 35,081 4,404 8,799
Female 13,443 27,097 3,531 6,910

Race
White 11,616 30,667 2,739 7,790
Black 16,836 24,104 4,456 6,135
Other 2,982 7,407 7,40 1,784

NIH-CXR
Images, n 43,021 86,524 9,671 25,596
Age

< 60 yrs 30,933 66,048 7,579 19,634
≥ 60 yrs 12,088 20,476 2,092 5,962

Sex
Male 24,409 48,858 5,595 14,882
Female 18,612 38,066 4,076 10,714

The category Other includes American Indian or Alaska Native, Asian,
Native Hawaiian or other Pacific Islander, and Other.

image-based classifiers for disease detection and evaluating the model’s performance on the subgroups based
on sex, age, and race for the MIDRC dataset, and sex and age for the NIH-CXR dataset. Due to the different
age characteristics between these two datasets (Table 1), we set the age groups for MIDRC and NIH datasets
differently.

3.2 Data investigation

We first employed logistic regression to analyze the association between demographic information (age,
sex, and race) and the prevalence of COVID-19 on the MIDRC dataset. Age, sex, and race were used as
predictors and compared with the reference group (e.g., individuals under 75 years versus those aged 75
years and above, male versus female, Black versus White, and other racial individuals versus White). Odds
ratios (ORs) larger than 1 indicated that the comparison groups had higher rates of antecedent compared to
the reference group. p < 0.05 is considered significant. When comparing rates, 95% confidence intervals
(CI) were calculated.

As shown in Figure 3, COVID-19 is associated with individuals under 75 years (OR = 1.59, 95% CI = 1.53-
1.66), males (OR = 1.04, 95% CI = 1.02-1.08), Black (OR = 4.00, 95% CI = 3.87-4.13), and other racial
(OR = 1.14, 95% CI = 1.09-1.20).

We also examined the association between demographic factors (age and sex) and thorax abnormality on
the NIH-CXR dataset. Figure 3 shows that thorax abnormality is associated with individuals aged 60 years
or older (OR = 1.34, 95% CI = 1.30-1.37) and males (OR = 1.03, 95% CI: 1.00-1.05).
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Figure 3: Forest plot of relative odds (95% confidence intervals) of COVID-19 (MIDRC) and thorax abnormality (NIH-CXR)
associated with age, sex, and race.

Table 3: The AUC, marginal AUC, and marginal AUC difference (∆mAUC) of baseline and proposed model for COVID-19
diagnosis in the MIDRC dataset. Balance DenseNet-121 – DenseNet-121 with balanced empirical risk minimization. 29 ADV -
Adversarial. 30 SCL - supervised contrastive learning. 22

DenseNet-121 Balance DenseNet-121 ADV SCL Proposed

Sex
Overall AUC 0.8167 (0.8162-0.8171) 0.8110 (0.8106-0.8116) 0.8060 (0.8056-0.8065) 0.8090 (0.8085-0.8095) 0.8085 (0.8080-0.8090)
Male 0.8218 (0.8213-0.8224) 0.8161 (0.8155-0.8166) 0.8185 (0.8180-0.8190) 0.8169 (0.8164-0.8175) 0.8088 (0.8083-0.8094)
Female 0.8102 (0.8096-0.8108) 0.8049 (0.8043-0.8056) 0.7905 (0.7899-0.7916) 0.7991 (0.7985-0.7998) 0.8081 (0.8075-0.8073)
∆mAUC 0.0116 (0.0110-0.0123) 0.0112 (0.0105-0.0119) 0.0280 (0.0273-0.0287) 0.0179 (0.0173-0.0184) 0.0037 (0.0032-0.0041)

Race
Overall AUC 0.8167 (0.8162-0.8171) 0.8051 (0.8048-0.8056) 0.8157 (0.8152-0.8161) 0.8106 (0.8101-0.8111) 0.7918 (0.7913-0.7923)
White 0.7583 (0.7577-0.7590) 0.7715 (0.7708-0.7721) 0.7568 (0.7561-0.7575) 0.7551 (0.7544-0.7559) 0.7515 (0.7507-0.7522)
Black 0.8775 (0.8770-0.8779) 0.8515 (0.8511-0.8519) 0.8787 (0.8782-0.8791) 0.8712 (0.8708-0.8716) 0.8391 (0.8386-0.8396)
Other 0.6672 (0.6657-0.6688) 0.6513 (0.6496-0.6530) 0.6552 (0.6535-0.6569) 0.6513 (0.6496-0.6530) 0.6572 (0.6556-0.6589)
∆mAUC 0.2103 (0.2087-0.2118) 0.2002 (0.1985-0.2019) 0.2235 (0.2217-0.2251) 0.2199 (0.2182-0.2216) 0.1819 (0.1802-0.1835)

Age
Overall AUC 0.8167 (0.8162-0.8171) 0.8020 (0.8016-0.8025) 0.8134 (0.8130-0.8139) 0.8077 (0.8072-0.8082) 0.8011 (0.8006-0.8015)
< 75 yrs 0.8288 (0.8284-0.8293) 0.8143 (0.8139-0.8148) 0.8227 (0.8223-0.8232) 0.8158 (0.8153-0.8163) 0.8094 (0.8089-0.8098)
≥ 75 yrs 0.7289 (0.7277-0.7300) 0.7135 (0.7121-0.7149) 0.7463 (0.7452-0.7473) 0.7488 (0.7476-0.7501) 0.7414 (0.7403-0.7425)
∆mAUC 0.0999 (0.0988-0.1011) 0.1008 (0.0994-0.1023) 0.0764 (0.0754-0.0776) 0.0670 (0.0658-0.0682) 0.0680 (0.0669-0.0692)

3.3 Model Fairness Comparisons in MIDRC Dataset

Figure 4 shows that our proposed method produced significantly smaller ∆mAUC across all demographics
in comparison to the baselines. This demonstrates the effectiveness of our approach in reducing bias and
promoting fairness in AI models for COVID-19 diagnosis on CXRs.

Table 3 presents a detailed performance comparison of various methods for COVID-19 diagnosis based on
sex, race, and age. Individuals in subgroups with lower AUC values are at a higher risk of being misdiag-
nosed compared to their counterparts.

Specifically, compared to DenseNet-121, the ∆mAUC obtained by the proposed method decreased from
0.0116 (95% CI, 0.0110-0.0123) to 0.0040 (95% CI, 0.0036-0.0044) for sex, with female individuals show-
ing lower marginal AUC values than their male counterparts. For the race subgroup, the ∆mAUC ob-
tained by the proposed method decreased from 0.2102 (95% CI, 0.2087-0.2118) to 0.1818 (95% CI, 0.1802-
0.1835) compared to DenseNet-121. The ”other” group showed lower marginal AUC values than the White
and Black groups. Similarly, for the age subgroup, the ∆mAUC values decreased from 0.0999 (95% CI,
0.0988-0.1011) to 0.0686 (95% CI, 0.0669-0.0692) compared with DenseNet-121, with individuals below
75 years of age displaying lower marginal AUC values than their counterparts. The individuals in subgroups
with lower marginal AUC are more likely to be misdiagnosed than their counterparts.

Supplementary Tables 1, 2, and 3 present TPR and ∆TPR, FPR and ∆FPR, and BS and ∆BS of vari-
ous methods for COVID-19 diagnosis based on sex, race, and age, respectively. The proposed method
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Figure 4: ∆mAUC across subgroups of sex (a), age (b), and race (c) in COVID-19 detection on the MIDRC dataset. The results
are averaged over 200 times bootstrap experiment. ****: p-value ≤ 0.0001. Balance DenseNet-121 – DenseNet-121 with balanced
empirical risk minimization 29 ADV - Adversarial. 30 SCL - supervised contrastive learning. 22
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Figure 5: ∆mAUC across subgroups of sex (a) and age (b) in the thorax abnormality detection on the NIH-CXR dataset. The
results are averaged over 200 times bootstrap experiment. ****: p-value ≤ 0.0001. Balance DenseNet-121 – DenseNet-121 with
balanced empirical risk minimization. 29 ADV - Adversarial. 30 SCL - supervised contrastive learning. 22

demonstrated comparable TPR in sex and race to DenseNet-121, with lower ∆TPR in sex, race, and age.
Moreover, the proposed method exhibited lower FPR in age and reduced ∆FPR in race and age compared
to DenseNet-121. Additionally, the proposed method generated lower ∆BS in sex and age, and lower BS in
age.

3.4 Model Fairness Comparisons in NIH-CXR Dataset

For diagnosing thorax abnormalities on the NIH-CXR dataset, Figure 5 shows that our proposed method
also produced significantly smaller ∆mAUC across all demographics in comparison to the baselines.

Table 4 further presents a detailed analysis of the results. The proposed method achieved a lower ∆mAUC
compared to the baselines for all demographic groups. In the race subgroup analysis, the ∆mAUC obtained
by the proposed method decreased from 0.0090 (95%, 0.0082-0.0097) to 0.0053 (95% CI, 0.0048-0.0059)
compared to DenseNet-121. The proposed model performed similarly for male individuals as their coun-
terparts in the race subgroup analysis, while the baselines generated lower AUC for male individuals. In
the age subgroup, the ∆mAUC obtained by the proposed method decreased from 0.0512 (95%CI, 0.0512-
0.0532) to 0.0427 (95%CI,0.0417-0.0436) compared to the DenseNet-121. Individuals over 60 years of age
had lower AUCs than their counterparts.

Supplementary Tables 4, 5, and 6 list TPR and ∆TPR, FPR and ∆FPR, and BS and ∆BS of various methods
for diagnosing thorax abnormalities on the NIH-CXR dataset across sex and age, respectively. The proposed
method achieved higher TPR on sex and age than DenseNet-121. Additionally, the proposed method exhib-
ited lower ∆FPR on sex than DenseNet-121. Furthermore, the proposed method generated comparable BS
and lower ∆BS in sex and age than DenseNet-121.
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Table 4: The AUC, marginal AUC, and marginal AUC difference (∆mAUC) of baseline and proposed model for thorax abnor-
malities diagnosis in the NIH-CXR dataset. Balance DenseNet-121 – DenseNet-121 with balanced empirical risk minimization. 29

ADV - Adversarial. 30 SCL - supervised contrastive learning. 22

DenseNet-121 Balance DenseNet-121 ADV SCL Proposed

Sex
Overall AUC 0.7354 (0.7349-0.7369) 0.7322 (0.7317-0.7327) 0.7108 (0.7102-0.7112) 0.7306 (0.7301-0.7310) 0.7341 (0.7336-0.7346)
Male 0.7317 (0.7311-0.7324) 0.7263 (0.7256-0.7268) 0.6995 (0.6988-0.7001) 0.7249 (0.7243-0.7255) 0.7355 (0.7349-0.7361)
Female 0.7404 (0.7398-0.7411) 0.7404 (0.7397-0.7410) 0.7261 (0.7255-0.7268) 0.7384 (0.7378-0.7390) 0.7322 (0.7316-0.7328)
∆mAUC 0.0090 (0.0082-0.0097) 0.0142 (0.0133-0.0150) 0.0267 (0.0259-0.0275) 0.0135 (0.0128-0.0143) 0.0053 (0.0048-0.0059)

Age
Overall AUC 0.7354 (0.7349-0.7369) 0.7243 (0.7243 – 0.7252) 0.7071 (0.7066-0.7076) 0.7306 (0.7302-0.7311) 0.7277 (0.7272-0.7282)
< 60 yrs 0.7467 (0.7461-0.7472) 0.7348 (0.7343-0.7353) 0.7185 (0.7180-0.7191) 0.7413 (0.7407-0.7418) 0.7369 (0.7364-0.7374)
≥ 60 yrs 0.6945 (0.6936-0.6954) 0.6883 (0.6874-0.6893) 0.6656 (0.6648-0.6665) 0.6922 (0.6913-0.6931) 0.6943 (0.6935-0.6951)
∆mAUC 0.0512 (0.0512-0.0532) 0.0465 (0.0455-0.0475) 0.0529 (0.0520-0.0538) 0.0491 (0.0481-0.0501) 0.0427 (0.0417-0.0436)

3.5 External Validation

To further evaluate the proposed method, we utilized both DenseNet-121 and the proposed model trained on
the NIH-CXR dataset, testing them on the MIMIC-CXR test set. The details of the results are presented in
Supplementary Table 7. For external validation, our proposed method achieved a higher AUC for both sex
and age, as well as a lower ∆mAUC for sex.

4 Discussion

In this study, we proposed a method leveraging supervised contrastive learning to reduce bias in AI models
for CXR image diagnosis across different groups. The proposed model was evaluated using two large-scale
CXR datasets. We observed systematic model biases in subgroups across all settings. This highlights the
importance of addressing biases in AI models to ensure fair and accurate diagnoses across all demographic
subgroups. We have the following observations for further discussion.

First, the logistic regression analysis revealed the existence of bias in the dataset across different demo-
graphics. For example, the results indicate that individuals aged 60 years or older are more likely to show
abnormalities compared to those younger than 60 years (OR = 1.34, 95% CI = 1.30-1.37) in the NIH-CXR
dataset.

Second, our proposed method effectively improves the fairness of CXR diagnoses by utilizing supervised
contrastive learning to obtain fair image embeddings that retain label information. In contrast to state-of-
the-art models, we modified the definitions of positive and negative samples to enable the network to capture
more label information and less group information. Our proposed method generated smaller ∆mAUC for
both datasets across all demographics when compared to the baselines. Additionally, the proposed method
consistently maintains overall performance. We conduct quantitative analysis using the metric of relative
change. Supplementary Table 8 shows that the relative change in AUC and mAUC remains consistently
within 2%, while the relative change in ∆mAUC ranges from 13.5% to 68.10%. The results suggest that
our proposed method can successfully reduce bias (∆mAUC) without significantly compromising AUC and
mAUC.

Third, this study highlights the impact of data imbalance on the bias of AI models. The overrepresentation
of prevalent patients in certain subgroups can lead to biased models, as evidenced by our findings (Table
2). For example, in the MIDRC dataset, the prevalence of COVID-19 is significantly higher among Black
individuals compared to their White counterparts (70.02% vs. 37.33%). This overrepresentation can result
in biased models trained on this dataset. Additionally, even when subgroups have similar prevalence, the
sample size can still introduce bias. For instance, in the MIDRC dataset, the number of White, Black,
and “Other” individuals are 38,457, 30,239, and 9,191, respectively. Although the COVID-19 prevalence is
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almost the same for the “Other” and White individuals (40.50% vs 37.33%), the former group, which had the
smallest sample size among the racial subgroups, obtained the lowest AUC value. Similar phenomena were
observed in the age subpopulations for thorax disease detection in the NIH-CXR dataset and for COVID-19
detection in the MIDRC dataset.

Fourth, data resampling is a commonly used data pre-processing technique for reducing bias in subgroups,
but our findings suggest that it may not always be effective. Specifically, our results in Table 3 and Table 4
show that the Balance DenseNet-121 model could not reduce bias for sex and age on the MIDRC dataset,
or bias for sex on the NIH-CXR dataset, compared with the DenseNet-121 model. In this study, we only
employed one resampling method to ensure an equal sample size across subgroups. However, future research
could explore additional resampling methods to determine their effectiveness.

Fifth, ADV is widely used as an in-processing method to improve group fairness, but our results suggest
that it may not always be effective. Specifically, the results in Table 3 and Table 4 show that the ADV model
could only reduce bias related to age in the MIDRC dataset when compared with the DenseNet-121 model.

Finally, SCL is a general contrastive learning approach without label definitions related to demographic
information. The experiments conducted with SCL can be regarded as an ablation study to demonstrate that
our proposed method considers demographic information to form positive and negative samples for learning
image feature embeddings to improve group fairness. The results in Table 3 and Table 4 show that our
proposed method effectively improve group fairness.

While this study assessed the fairness of binarized models, one limitation is that it did not examine the cal-
ibration of predicted probabilities. As a result, there is a possibility of overconfidence or underconfidence
in certain cases. To address this limitation, future research should investigate the relationship between cal-
ibration and bias in disease detection and develop effective methods to reduce calibration bias. Moreover,
expanding the proposed method to include continuous attributes, in addition to discrete groups, and multi-
class settings, would increase its applicability. Additionally, this study aims to enhance the fairness of auto-
mated Chest X-ray diagnosis through contrastive learning. We utilized two extensive Chest X-ray datasets
to showcase the effectiveness of the proposed method, with both datasets focusing on thoracic diseases. In
the future, we plan to extend the application of our method to other diseases and imaging modalities and test
on more models. Furthermore, the data does not provide the comorbidity history of the patients.

In summary, this study introduces an effective AI model that reduces bias toward subgroups in CXR diag-
nosis. Notably, this represents the first attempt to address bias in deep learning for COVID-19 diagnosis.
Our proposed approach uses supervised contrastive learning as a pretraining method to obtain fair image
embeddings. Unlike previous supervised contrastive methods, our approach uses images with the same la-
bel but from different protected groups as positive samples and images with different labels but from the
same protected group as negative samples for each anchor image in a minibatch. This allows the network to
capture more label information and less group information during pretraining. The backbone of the model
is fine-tuned in the downstream task. We developed and evaluated the proposed method using two large
multi-institutional datasets, which demonstrated its effectiveness in reducing bias. Therefore, the proposed
method is suitable for clinical practice and can help alleviate concerns regarding disparities generated by AI
models.
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Iglesia-Vayá, and G Shih. The 2021 SIIM-FISABIO-RSNA machine learning COVID-19 challenge:
Annotation and standard exam classification of COVID-19 chest radiographs. J. Digit. Imaging, 36(1):
365–372, February 2023. ISSN 0897-1889, 1618-727X. doi: 10.1007/s10278-022-00706-8.

[24] Harikrishna Narasimhan, Andrew Cotter, Maya Gupta, and Serena Wang. Pairwise fairness for ranking
and regression. In AAAI, volume 34, pages 5248–5255, April 2020. doi: 10.1609/aaai.v34i04.5970.

[25] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected con-
volutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 4700–4708. IEEE, July 2017. ISBN 9781538604571. doi: 10.1109/cvpr.2017.243.

[26] Alistair E W Johnson, Tom J Pollard, Seth Berkowitz, Nathaniel R Greenbaum, Matthew P Lungren,
Chih-Ying Deng, Roger G Mark, and Steven Horng. MIMIC-CXR: A large publicly available database
of labeled chest radiographs. arXiv preprint arXiv:1901.07042, 1(2), 2019.

[27] Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute, and Henrik
Marklund. CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 590–597, 2019.

[28] Diederik P Kingma and Jimmy Ba. Adam: a method for stochastic optimization. In International
Conference on Learning Representations (ICLR), pages 1–15, 2015.

[29] Vladimir Vapnik. Principles of risk minimization for learning theory. Adv. Neural Inf. Process. Syst.,
4, 1991. ISSN 1049-5258.

[30] Christina Wadsworth, Francesca Vera, and Chris Piech. Achieving fairness through adversarial learn-
ing: an application to recidivism prediction. June 2018.

15



Supplementary materials
Supplementary Table 1: The TPR, and ∆TPR of baseline and proposed model for COVID-19 diagnosis in the MIDRC dataset.
Balance DenseNet-121 – DenseNet-121 with balanced empirical risk minimization. 29 ADV - Adversarial. 30 SCL - supervised
contrastive learning. 22

DenseNet-121 Balance DenseNet-121 ADV SCL Proposed

Sex
Overall 0.7786 (0.7779-0.7792) 0.7042 (0.7035-0.7050) 0.7503 (0.7496-0.7510) 0.7274 (0.7268-0.7281) 0.7767 (0.7761-0.7774)
Male 0.7822 (0.7813-0.7831) 0.7063 (0.7053-0.7073) 0.7668 (0.7659-0.7678) 0.7389 (0.7380-0.7398) 0.7765 (0.7757-0.7774)
Female 0.7740 (0.7729-0.7751) 0.7016 (0.7006-0.7027) 0.7296 (0.7287-0.7306) 0.7131 (0.7120-0.7141) 0.7770 (0.7760-0.7780)
∆TPR 0.0104 (0.0093-0.0114) 0.0086 (0.0077-0.0095) 0.0372 (0.0359-0.0385) 0.0258 (0.0244-0.0272) 0.0074 (0.0066-0.0082)

Race
Overall 0.7786 (0.7779-0.7792) 0.6936 (0.6929-0.6934) 0.7513 (0.7506-0.7520) 0.6952 (0.6945-0.6959) 0.7794 (0.7788-0.7801)
White 0.6809 (0.6796-0.6821) 0.6290 (0.6257-0.6281) 0.6470 (0.6457-0.6483) 0.5799 (0.5787-0.5811) 0.7221 (0.7210-0.7235)
Black 0.8713 (0.8706-0.8720) 0.7661 (0.7652-0.7669) 0.8517 (0.8509-0.8524) 0.8051 (0.8043-0.8059) 0.8419 (0.8412-0.8427)
Other 0.5813 (0.5788-0.5838) 0.5039 (0.5012-0.5066) 0.5329 (0.5303-0.5355) 0.4594 (0.4567-0.4622) 0.6147 (0.6119-0.6174)
∆TPR 0.2900 (0.2874-0.2926) 0.2622 (0.2594-0.2650) 0.3188 (0.3161-0.3214) 0.3456 (0.3428-0.3485) 0.2273 (0.2245-0.2301)

Age
Overall 0.7786 (0.7779-0.7792) 0.7377 (0.7370-0.7385) 0.6851 (0.6844-0.6859) 0.7718 (0.7711-0.7725) 0.6699 (0.6691-0.6706)
< 75 yrs 0.8012 (0.8005-0.8019) 0.7593 (0.7585-0.7601) 0.7076 (0.7069-0.7084) 0.7850 (0.7843-0.7857) 0.6859 (0.6851-0.6867)
≥ 75 yrs 0.6145 (0.6122-0.6167) 0.5813 (0.5790-0.5837) 0.5219 (0.5195-0.5244) 0.6758 (0.6753-0.6780) 0.5535 (0.5512-0.5558)
∆TPR 0.1867 (0.1844-0.1891) 0.1780 (0.1755-0.1805) 0.1857 (0.1831-0.1883) 0.1092 (0.1069-0.1116) 0.1324 (0.1299-0.1349)
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Supplementary Table 2: The FPR, and ∆FPR of baseline and proposed model for COVID-19 diagnosis in the MIDRC dataset.
Balance DenseNet-121 – DenseNet-121 with balanced empirical risk minimization . 29 ADV - Adversarial. 30 SCL - supervised
contrastive learning. 22

DenseNet-121 Balance DenseNet-121 ADV SCL Proposed

Sex
Overall 0.2868 (0.2861-0.2875) 0.2245 (0.2239-0.2252) 0.2784 (0.2777-0.2791) 0.2529 (0.2522-0.2536) 0.3031 (0.3024-0.3039)
Male 0.2836 (0.2826-0.2846) 0.2187 (0.2178-0.2196) 0.2841 (0.2831-0.2851) 0.2548 (0.2538-0.2557) 0.2838 (0.2828-0.2848)
Female 0.2909 (0.2898-0.2919) 0.2321 (0.2311-0.2331) 0.2709 (0.2699-0.2720) 0.2505 (0.2495-0.2516) 0.3283 (0.3271-0.3294)
∆FPR 0.0100 (0.0089-0.0111) 0.0143 (0.0130-0.0155) 0.0145 (0.0132-0.0157) 0.0089 (0.0080-0.0097) 0.0445 (0.0429-0.0460)

Race
Overall 0.2868 (0.2861-0.2875) 0.2140 (0.2134-0.2146) 0.2640 (0.2633-0.2647) 0.2236 (0.2229-0.2243) 0.3500 (0.3493-0.3508)
White 0.2219 (0.2211-0.2227) 0.1728 (0.1721-0.1735) 0.1985 (0.1977-0.1992) 0.1697 (0.1689-0.1705) 0.2863 (0.2855-0.2872)
Black 0.5448 (0.5430-0.5466) 0.3931 (0.3915-0.3948) 0.5203 (0.5187-0.5220) 0.4431 (0.4413-0.4449) 0.5806 (0.5790-0.5821)
Other 0.1857 (0.1840-0.1873) 0.1250 (0.1235-0.1265) 0.1689 (0.1673-0.1706) 0.1313 (0.1300-0.1326) 0.2874 (0.2855-0.2893)
∆FPR 0.3592 (0.3566-0.3617) 0.2622 (0.2594-0.2650) 0.3514 (0.3491-0.3537) 0.3118 (0.3095-0.3141) 0.2931 (0.2906-0.2956)

Age
Overall 0.2868 (0.2861-0.2875) 0.2671 (0.2664-0.2678) 0.2066 (0.2060-0.2072) 0.3098 (0.3091-0.3105) 0.2198 (0.2192-0.2204)
< 75 yrs 0.3107 (0.3099-0.3115) 0.2949 (0.2941-0.2957) 0.2250 (0.2243-0.2257) 0.3369 (0.3361-0.3377) 0.2416 (0.2409-0.2423)
≥ 75 yrs 0.1968 (0.1953-0.1982) 0.1623 (0.1610-0.1636) 0.1373 (0.1361-0.1384) 0.2077 (0.2064-0.2090) 0.1376 (0.1364-0.1388)
∆FPR 0.1139 (0.0988-0.1011) 0.1326 (0.1311-0.1340) 0.0878 (0.0864-0.0891) 0.1292 (0.1277-0.1308) 0.1040 (0.1027-0.1054)
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Supplementary Table 3: The brier scores (BS), and ∆BS of baseline and proposed model for COVID-19 diagnosis in the MIDRC
dataset. Balance DenseNet-121 – DenseNet-121 with balanced empirical risk minimization. 29 ADV - Adversarial. 30 SCL - super-
vised contrastive learning. 22

DenseNet-121 Balance DenseNet-121 ADV SCL Proposed

Sex
Overall 0.1766 (0.1763-0.1769) 0.1810 (0.1807-0.1812) 0.1819 (0.1816-0.1821) 0.1793 (0.1790-0.1795) 0.1804 (0.1802-0.1807)
Male 0.1802 (0.1799-0.1805) 0.1722 (0.1719-0.1740) 0.1797 (0.1794-0.1800) 0.1755 (0.1752-0.1758) 0.1876 (0.1873-0.1879)
Female 0.1852 (0.1849-0.1855) 0.1737 (0.1734-0.1740) 0.1896 (0.1893-0.1899) 0.1810 (0.1808-0.1813) 0.1901 (0.1898-0.1904)
∆BS 0.0050 (0.0048-0.0052) 0.0019 (0.0017-0.0021) 0.0099 (0.0096-0.0101) 0.0056 (0.0054-0.0058) 0.0026 (0.0024-0.0028)

Race
Overall 0.1767 (0.1763-0.1769) 0.2288 (0.2283-0.2292) 0.1767 (0.1765-0.1770) 0.1791 (0.1788-0.1749) 0.1913 (0.1910-0.1915)
White 0.2013 (0.2010-0.2017) 0.2244 (0.2238-0.2249) 0.1950 (0.1946-0.1953) 0.1818 (0.1815-0.1821) 0.2187 (0.2184-0.2191)
Black 0.1596 (0.1582-0.1588) 0.1906 (0.1902-0.1911) 0.1528 (0.1525-0.1531) 0.1481 (0.1478-0.1483) 0.1873 (0.1870-0.1876)
Other 0.2052 (0.2049-0.2056) 0.2101 (0.2095-0.2107) 0.1943 (0.1939-0.1947) 0.1712 (0.1708-0.1715) 0.2354 (0.2350-0.2358)
∆BS 0.0467 (0.0464-0.0469) 0.0337 (0.0333-0.0341) 0.0421 (0.0419-0.0424) 0.0231 (0.0228-0.0233) 0.0481 (0.0479-0.0484)

Age
Overall 0.1980 (0.1968-0.1992) 0.1972 (0.1969-0.1976) 0.1807 (0.1804-0.1810) 0.1829 (0.1826-0.1832) 0.1851 (0.1849-0.1854)
< 75 yrs 0.1766 (0.1763-0.1769) 0.1887 (0.1883-0.1890) 0.1726 (0.1723-0.1729) 0.1809 (0.1806-0.1812) 0.1784 (0.1782-0.1787)
≥ 75 yrs 0.2012 (0.2009-0.2016) 0.2082 (0.2077-0.2086) 0.1639 (0.1635-0.1642) 0.2089 (0.2085-0.2093) 0.1665 (0.1662-0.1668)
∆BS 0.0296 (0.0294-0.0299) 0.0195 (0.0192-0.0198) 0.0087 (0.0084-0.0090) 0.0280 (0.0278-0.0283) 0.0119 (0.0117-0.0122)
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Supplementary Table 4: The TPR and ∆TPR of baseline and proposed model for thorax abnormalities diagnosis in the NIH-
CXR dataset. Balance DenseNet-121 – DenseNet-121 with balanced empirical risk minimization. 29 ADV - Adversarial. 30 SCL -
supervised contrastive learning. 22

DenseNet-121 Balance DenseNet-121 ADV SCL Proposed

Sex
Overall 0.4608 (0.4601-0.4615) 0.5289 (0.5282-0.5296) 0.4814 (0.4807-0.4820) 0.5294 (0.5287-0.5300) 0.4996 (0.4989-0.5003)
Male 0.4645 (0.4637-0.4655) 0.5261 (0.5252-0.5271) 0.4824 (0.4815-0.4832) 0.5320 (0.5311-0.5330) 0.5115 (0.5107-0.5107)
Female 0.4557 (0.4547-0.4568) 0.5328 (0.5318-0.5338) 0.4800 (0.4790-0.4810) 0.5257 (0.5246-0.5267) 0.4832 (0.4821-0.4843)
∆TPR 0.0111 (0.0101-0.0122) 0.0095 (0.0085-0.0105) 0.0080 (0.0072-0.0088) 0.0093 (0.0084-0.0103) 0.0284 (0.0269-0.0298)

Age
Overall 0.4608 (0.4601-0.4615) 0.4986 (0.4978–0.4991) 0.4799 (0.4792-0.4805) 0.5033 (0.5026-0.5040) 0.4837 (0.4830-0.4844)
< 60 yrs 0.4821 (0.4813-0.4829) 0.5142 (0.5135-0.5150) 0.5039 (0.5031-0.5046) 0.5255 (0.5248-0.5263) 0.5106 (0.5099-0.5113)
≥ 60 yrs 0.3835 (0.3820-0.3850) 0.4412 (0.4397-0.4427) 0.3927 (0.3913-0.3942) 0.4228 (0.4212-0.4243) 0.3860 (0.3845-0.3875)
∆TPR 0.0986 (0.0969-0.1002) 0.0730 (0.0712-0.0748) 0.1111 (0.1095-0.1127) 0.1027 (0.1009-0.1044) 0.1246 (0.1230-0.1263)
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Supplementary Table 5: The FPR and ∆FPR of baseline and proposed model for thorax abnormalities diagnosis in the NIH-
CXR dataset. Balance DenseNet-121 – DenseNet-121 with balanced empirical risk minimization. 29 ADV - Adversarial. 30 SCL -
supervised contrastive learning. 22

DenseNet-121 Balance DenseNet-121 ADV SCL Proposed

Sex
Overall 0.1131 (0.1128-0.1134) 0.1695 (0.1691-0.1698) 0.1538 (0.1534-0.1542) 0.1708 (0.1704-0.1711) 0.1437 (0.1433-0.1440)
Male 0.1093 (0.1089-0.1097) 0.1602 (0.1597-0.1607) 0.1421 (0.1416-0.1426) 0.1632 (0.1627-0.1637) 0.1466 (0.1461-0.1472)
Female 0.1185 (0.1179-0.1190) 0.1824 (0.1817-0.1830) 0.1710 (0.1695-0.1707) 0.1814 (0.1807-0.1821) 0.1395 (0.1389-0.1401)
∆FPR 0.0092 (0.0086-0.0099) 0.0221 (0.0212-0.0230) 0.0279 (0.0271-0.0288) 0.0182 (0.0173-0.0191) 0.0078 (0.0071-0.0085)

Age
Overall 0.1131 (0.1128-0.1134) 0.1487 (0.1483–0.1490) 0.1690 (0.1686-0.1694) 0.1464 (0.1460-0.1467) 0.1424 (0.1421-0.1428)
< 60 yrs 0.1132 (0.1129-0.1136) 0.1460 (0.1445-0.1464) 0.1699 (0.1694-0.1703) 0.1504 (0.1500-0.1508) 0.1478 (0.1474-0.1482)
≥ 60 yrs 0.1127 (0.1120-0.1134) 0.1572 (0.1563-0.1580) 0.1663 (0.1654-0.1672) 0.1338 (0.1330-0.1345) 0.1257 (0.1249-0.1265)
∆FPR 0.0049 (0.0046-0.0054) 0.0115 (0.0106-0.0124) 0.0065 (0.0058-0.0072) 0.0166 (0.0157-0.0175) 0.0221 (0.0212-0.0230)
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Supplementary Table 6: The BS and ∆BS of baseline and proposed model for thorax abnormalities diagnosis in the NIH-
CXR dataset. Balance DenseNet-121 – DenseNet-121 with balanced empirical risk minimization. 29 ADV - Adversarial. 30 SCL -
supervised contrastive learning. 22

DenseNet-121 Balance DenseNet-121 ADV SCL Proposed

Sex
Overall 0.1920 (0.1917-0.1921) 0.1956 (0.1954-0.1958) 0.2005 (0.2003-0.2006) 0.1962 (0.1960-0.1963) 0.1930 (0.1928-0.1932)
Male 0.1671 (0.1669-0.1673) 0.1784 (0.1782-0.1786) 0.1820 (0.1818-0.1822) 0.1819 (0.1817-0.1821) 0.1718 (0.1716-0.1720)
Female 0.1546 (0.1544-0.1548) 0.1672 (0.1670-0.1674) 0.1715 (0.1714-0.1717) 0.1737 (0.1735-0.1739) 0.1644 (0.1642-0.1646)
∆BS 0.0125 (0.0123-0.0127) 0.0111 (0.0110-0.0113) 0.0105 (0.0103-0.0106) 0.0082(0.0081-0.0084) 0.0074 (0.0072-0.0075)

Age
Overall 0.1919 (0.1917-0.1921) 0.1987 (0.1985–0.1989) 0.2041 (0.2040-0.2043) 0.1936 (0.1934-0.1938) 0.1959 (0.1957-0.1960)
< 60 yrs 0.1764 (0.1763-0.1766) 0.1854 (0.1852-0.1856) 0.1926 (0.1925-0.1928) 0.1799 (0.1798-0.1801) 0.1854 (0.1852-0.1856)
≥ 60 yrs 0.1411 (0.1409-0.1412) 0.1551 (0.1549-0.1553) 0.1695 (0.1692-0.1696) 0.1524 (0.1522-0.1526) 0.1537 (0.1535-0.1538)
∆BS 0.0354 (0.0352-0.0356) 0.0303 (0.0301-0.0305) 0.0232 (0.0230-0.0233) 0.0276 (0.0274-0.0277) 0.0287 (0.0285-0.0289)
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Supplementary Table 7: The AUCs of DenseNet-121 and the proposed method trained on NIH and tested on MIMIC-CXR test
dataset.

DenseNet-121 Proposed

Sex
Overall AUC 0.6567 (0.6549-0.6585) 0.7264 (0.7247-0.7280)
Male, mAUC 0.6040 (0.6017-0.6064) 0.6863 (0.6839-0.6885)
Female, mAUC 0.7091 (0.7068-0.7113) 0.7664 (0.7642-0.7686)
∆mAUC 0.1050 (0.1021-0.1080) 0.0802 (0.0770-0.0833)

Age
Overall AUC 0.6567 (0.6549-0.6585) 0.7079 (0.7062-0.7096)
< 60 yrs, mAUC 0.6978 (0.6952-0.7003) 0.7537 (0.7512-0.7562)
≥ 60 yrs, mAUC 0.6345 (0.6324-0.6367) 0.6832 (0.6811-0.6853)
∆mAUC 0.0632 (0.0601-0.0663) 0.0706 (0.0674-0.0737)
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Supplementary Table 8: Relative changes and absolute changes in AUC, marginal AUC (mAUC) and difference between in
mAUC (∆mAUC) between baseline and the proposed method in two datasets.

Dataset Subgroups Relative change (%) Absolute change

MIDRC Sex
Overall AUC -1.03 -0.0084
Male, mAUC -1.60 -0.0130
Female, mAUC -0.25 -0.0025
∆mAUC -68.10 -0.0079

Race
Overall AUC -3.04 -0.0249
White, mAUC -0.90 -0.0068
Black, mAUC -4.40 -0.0384
Other, mAUC -1.50 -0.0100
∆mAUC -13.5 -0.0284

Age
Overall AUC -1.91 -0.0156
< 75 yrs, mAUC -1.94 -0.0194
≥ 75 yrs, mAUC 1.71 0.0125
∆mAUC -31.93 -0.0319

NIH-CXR Sex
Overall AUC -0.18 -0.0013
Male, mAUC 0.52 0.0038
Female, mAUC -1.10 -0.0082
∆mAUC -48.89 -0.0037

Age
Overall AUC -1.05 -0.0077
< 60 yrs, mAUC -1.31 -0.0098
≥ 60 yrs, mAUC -0.03 -0.0002
∆mAUC -16.60 -0.0085
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