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Abstract

Recently, transformers have demonstrated great potential for mod-

eling long-term dependencies from skeleton sequences and thereby

gained ever-increasing attention in skeleton action recognition.

However, the existing transformer-based approaches heavily rely

on the naive attention mechanism for capturing the spatiotemporal

features, which falls short in learning discriminative representa-

tions that exhibit similar motion patterns. To address this challenge,

we introduce the Frequency-aware Mixed Transformer (FreqMix-

Former), speci�cally designed for recognizing similar skeletal ac-

tions with subtle discriminative motions. First, we introduce a

frequency-aware attention module to unweave skeleton frequency

representations by embedding joint features into frequency atten-

tion maps, aiming to distinguish the discriminative movements

based on their frequency coe�cients. Subsequently, we develop a

mixed transformer architecture to incorporate spatial features with

frequency features to model the comprehensive frequency-spatial

patterns. Additionally, a temporal transformer is proposed to extract

the global correlations across frames. Extensive experiments show

that FreqMiXFormer outperforms SOTA on 3 popular skeleton ac-

tion recognition datasets, including NTU RGB+D, NTU RGB+D

120, and NW-UCLA datasets. Our project is publicly available at:

https://github.com/wenhanwu95/FreqMixFormer.

CCS Concepts

• Computing methodologies→ Arti�cial intelligence; Com-
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Figure 1: The overall design of our Frequency-aware Mixed

Transformer. Our FreqMixFormer model overcomes the limi-

tations of traditional transformer-based methods, which can-

not e�ectively recognize confusing actions such as reading

and writing due to the straightforward process of skeleton

sequences. As highlighted with the colored boxes, the Fre-

qMixFormer introduces the frequency domain and extracts

high-frequency features, which often indicate subtle and dy-

namic movements (red), and low-frequency features, which

are associated with slow and steady movements (blue). These

features are then fused with spatial features. Our results

demonstrate that the integrated frequency-spatial features

signi�cantly improve the model’s capability to discern dis-

criminative joint correlations.
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Human action recognition, a vital research topic in computer

vision, is widely applied in various applications, including visual

surveillance [52, 53], human-computer interaction [19, 40], and au-

tonomous driving systems [29, 33]. Particularly, skeleton sequences

represent the motion trajectories of human body joints to char-

acterize distinctive human movements with 3D structural pose

information, which is robust to surface textures and backgrounds.

Consequently, skeletal action recognition stands out as an e�ective

approach for recognizing human actions compared to RGB-based

[56, 70] or Depth-based [66, 82] methods. Early skeleton-based

works typically represent the human skeleton as a sequence of 3D

joint coordinates or a pseudo-image, then adapted Convolutional

Neural Networks (CNNs) [15, 20, 21] or Recurrent Neural Networks

(RNNs) [12, 22, 73] to model spatial features among joints. How-

ever, unlike static images, skeleton data embodies dynamic and

complex spatiotemporal topological correlations that CNNs and

RNNs fail to capture. Therefore, to e�ectively model the skeletal in-

formation encapsulated within the topological graph structure that

re�ects human anatomy, Graph Convolutional Networks (GCNs)

[8–10, 23, 24, 26, 50, 68, 71] are utilized. Nevertheless, as graph infor-

mation progresses through deeper layers, the model may lose vital

joint correlations and direct propagation, diminishing its ability to

capture long-range interactions between distant frames.

Recently, Transformer [57] has acquired promising results in

human action recognition in various data modalities such as RGB

[30, 47], depth [61, 62], point cloud [36, 65], and skeleton [10, 60].

The Transformer’s ability to model the intrinsic representation of

human joints and sequential frame correlations makes it a suit-

able backbone for skeleton-based action recognition. Despite the

notable achievements of several transformer-based studies [4, 14,

34, 44, 51, 67, 69, 75, 81], they have yet to surpass the accuracy

benchmarks set by GCNs. We hypothesize that the primary issue

contributing to this gap is - GCNs, through their localized graph

convolutions, e�ectively capture the human spatial con�guration

essential for action recognition. In contrast, traditional transform-

ers, utilizing global self-attention operations, lack the inductive

bias to inherently grasp the skeleton’s topology. Although these

global operations model overall motion patterns within a skeleton

sequence, the self-attention mechanism in transformers may dilute

the subtle local interactions among joints. Additionally, as attention

scores are normalized across the entire sequence, subtle yet crucial

discrimination in action sequences might be ignored if they do not

substantially impact the overall attention landscape.

To bridge this gap, we focus on improving transformers’ capa-

bility to learn discriminative representation of subtle motion

patterns. In this work, we aim to aggregate the frequency-spatial

features by introducing Discrete Cosine Transform (DCT) [1] into a

mixed attention transformer framework [11, 69] to encode joint cor-

relations in the frequency domain to explore the frequency-based

joint representations. The motivation behind the representations

is straightforward and intuitive: the frequency components can

represent the entire joint sequence [39] and are sensitive to subtle

movements. As a result, we introduce a novel Frequency-aware

Mixed Transformer (FreqMixFormer) for skeleton action recogni-

tion to capture the discriminative correlations among joints. The

key steps of our approach are outlined as follows:

Firstly, we formulate a Frequency-aware Attention module for

transferring spatial joint information to the frequency domain,

where the skeletal movement dependencies (similarity score be-

tween Queries & and Keys  ) are embedded in the spectrum do-

main with a distinct representation based on their energy. As il-

lustrated in Fig.1, discriminative skeleton features with similar

patterns (e.g., confusing actions like reading and writing) can be

e�ectively learned by leveraging their physical correlations. In the

context of these skeleton sequences, minor movements that contain

subtle variations and exhibit rapid spatial changes are e�ectively

compressed into high-frequency componentswith lower energy

(highlighted with the red box). Conversely, actions that constitute

a larger portion of the sequence and change slowly over time in

the temporal domain are compressed into low-frequency compo-

nents with higher energy (shown in the blue box). Subsequently, a

frequency operator is applied to accentuate the high-frequency co-

e�cients while diminishing the low-frequency coe�cients, thereby

enabling selective ampli�cation and attenuation for �ne-tuning

within the frequency domain. Secondly, we propose a transformer-

based model that utilizes mixed attention mechanism to extract

spatial and frequency features separately with self-attention (SA)

and cross-attention (CA) operations, where SA and CA extract

joint dependencies and contextual joint correlations respectively.

An integration module subsequently fuses the features from both

the frequency and spatial domains, resulting in frequency-spatial

features. These features are then fed into a temporal transformer,

which globally learns the inter-frame joint correlations (e.g., from

the �rst to the last frame), e�ectively capturing the discriminat-

ing frequency-spatial features temporally. Our contributions are

summarized as follows:

• We propose a Frequency-aware Attention Block (FAB) to

investigate frequency features within skeletal sequences. A fre-

quency operator is speci�cally designed to improve the learning

of frequency coe�cients, thereby enhancing the ability to capture

discriminative correlations among joints.

• Consequently, we introduce the Frequency-awareMixedTrans-

former (FreqMixFormer) to extract frequency-spatial joint corre-

lations. The model incorporates a temporal transformer designed

to enhance its ability to capture temporal features across frames.

• Our proposed FreqMixFormer outperforms state-of-the-art per-

formance on three benchmarks, including NTU RGB+D [48],

NTU RGB+D 120 [35], and Northwestern-UCLA [58].

2 Related Work

FrequencyRepresentation Learning for Skeleton-basedTasks.

Traditional pose-based methods aim to extract motion patterns

directly from the poses for trajectory-prediction [28, 54], pose es-

timation [6, 79], action recognition [10, 71]. The representations

derived from pose space naturally re�ect physical characteristics

(spatial dependency of structure information) and motion patterns

(temporal dependency of motion information), making it challeng-

ing to encode poses in a spatiotemporal way. Motivated by a strong

ability to encode temporal information in the frequency domain

smoothly and compactly [3], several recent works [13, 27, 39, 59]

utilize discrete cosine transform (DCT) to convert the temporal
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motion to frequency domain for frequency-speci�c representation

learning.

In skeleton action recognition, only a few works [5, 7, 16, 45]

have considered frequency representations so far. [16] proposed

a multi-feature branches framework to extract subtle frequency

features with fast Fourier transform (FFT) and spatial-temporal joint

dependencies, aiming to build a multi-task framework in skeleton

action recognition. [7] adopts discrete wavelet transform with a

GCN-based decoupling framework to decouple salient and subtle

motion features, aiming for �ne-grained skeleton action recognition.

While our interest aligns with frequency-based modeling, we opt

for a DCT-based approach since its frequency coe�cients are well-

distributed in the frequency domain, bene�ting the discriminative

motion representation learning.

Transformer-based Skeleton Action Recognition.Many recent

works adopt transformers for human pose estimation [76, 78] and

skeleton action recognition [38, 46] to explore joint correlations

via attention mechanism. ST-TR [44] is the �rst to introduce the

transformer to process skeleton data with spatial transformer and

temporal transformer, proving its e�ectiveness in action recogni-

tion. Many follow-up works [14, 38, 46, 69, 75] keep employing

this spatial-temporal structure for skeleton recognition with di�er-

ent con�gurations. STTFormer [46] proposed a tuple self-attention

mechanism for capturing the joint relationships among frames.

FG-STFormer [14] was developed to understand the connections

between local joints and contextual global information across spa-

tial and temporal dimensions. SkeMixFormer [69] introduced mixed

attention method [11] and channel grouping techniques into spa-

tiotemporal structure, enabling the model to learn the dynamic

multivariate topological relationships. Besides these methods that

focus on model con�gurations, [41] designed a partitioning strategy

with the self-attention mechanism to learn the semantic represen-

tations of the interactive body parts. [34] presented an e�cient

transformer with a temporal partitioning aggregation strategy and

topology-aware spatial correlation modeling module.

Most of the transformer-based methods mentioned above mainly

focus on con�guration improvement and spatiotemporal correla-

tion learning without exploiting the skeletal motion patterns in

the frequency domain. In this work, we propose a frequency-based

transformer with a frequency-spatial mixed attention mechanism,

leveraging joint representation learning.

3 Methodology

3.1 Preliminaries

Transformer. Self-Attention is the core mechanism of the trans-

former [57]. Given the input - ∈ Rÿ×Ā , where � is the number of

patches and � is the embedding dimension, - is �rst mapped to

three matrices: Query matrix & , Key matrix  and Value matrix +

by three linear transformation:

& = -,č ,  = -,ć , + = -,Ē (1)

where,č ,,ć and,Ē ∈ RĀ×Ā are the learnable weight matrices.

The self-attention score can be described as the following map-

ping function:

�CC4=C8>=(&, ,+ ) = (> 5 C<0G (& 
¦
√
3
)+ (2)

where& ¦ is the similarity score, 1√
Ě
is the scaling factor that pre-

vents the softmax function from entering regions where gradients

are too small. Next, the Multi-Head Self-Attention (MHSA) function

is introduced to process information from di�erent representation

subspaces in di�erent positions. The MHSA score is expressed as:

"�(�(&, ,+ ) = �>=20C (�1, �2, . . . , �ℎ),ĥīĪ (3)

where �ğ = �CC4=C8>=(&ğ ,  ğ ,+ğ ), 8 ∈ {1, 2, . . . , ℎ} is the single
attention head,,ĥīĪ is a linear projection ∈ RĀ×Ā .
Baseline. The existing transformer-based skeleton action recogni-

tion methods rely heavily on plain self-attention blocks mentioned

above to capture spatiotemporal correlations, ignoring the contex-

tual information among di�erent blocks. Thus, we simply adopt

o�-the-shelf SkeMixformer [69] as our baseline for capturing spatial

skeletal features, where the contextual information can be extracted

based on a mixed way: 1) Cross-attention, an asymmetric attention

scheme of mixing Query matrix & and Key matrix  , leveraging

asymmetric information integration. 2) Channel grouping, a strat-

egy that divides the input into unit groups to capture multivariate

interaction characteristics, preserving the inherent features of the

skeleton data by avoiding the full self-attention’s dependency on

global complete channels.

However, SkeMixFormer falls short of modeling discriminative

motion patterns, thereby not fully leveraging its representational

potential. In light of the baseline’s limitations, we introduce our

proposed FreqMixFormer to verify the e�ectiveness of frequency-

spatial features over purely spatial ones. The detailed components

of our model are elaborated in the following sections.

3.2 Overview of FreqMixFormer

The overall architecture of FreqMixFormer is illustrated in Fig. 2.

Given the input - ∈ RĆ ×ÿ×Ă is embedded by joint and positional

embedding layers to represent a skeleton sequence with a consistent

frame count of � , where � denotes the dimensionality of the joint,

and � represents the number of joints in each frame. Then a partition

block is proposed for capturing multivariate interaction association

characteristics, where- is divided into = unit groups (= = 3 in Fig. 2

for example) by channel splitting to facilitate interpretable learning

of joint adjacency. The split unit is expressed as Gğ ∈ RĆ ×(ÿ/Ĥ)×Ă
and - ← Concat[G1, G2, . . . , Gğ ], where 8 = 1, 2, . . . , =. Next, we

feed unit inputs Gğ to the Frequency-aware Mixed Transformer

based on self-attention and cross-attention mechanisms among

Spatial Attention Blocks and Frequency-aware Attention Blocks.

Afterward, frequency-spatial mixed features are processed with a

Temporal Attention Block to learn inter-frame correlations. The

�nal outputs are further reshaped and passed to an FC layer for

classi�cation.
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Figure 2: Overview of the proposed FreqMixFormer. Given the skeleton sequence, we �rst perform the joint and positional embedding to get

the embedded Ĕ . Then Ĕ is divided into Ĥ (Ĥ = 3 as an example in this �gure) unit groups as the input Įğ . The explanation of data partition is

available in Section 3.2. Next, Įğ passes through the Frequency-aware Mixed Transformer to extract the mixed frequency-spatial attention maps

ĉĂďğ (the de�nition is available in Section 3.4 ), which contain the joint fusion patterns from the frequency and spatial domains. These maps

are subsequently concatenated into a featureĉ along with the Value Ē as the input of the temporal attention block, leading to an inter-frame

joint correlation learning, and the corresponding output ĔĥīĪ is passed to an FC-layer for the classi�cation.

3.3 Discrete Cosine Transform (DCT) for Joint
Sequence Encoding

Let G ∈ RĆ ×ÿ×Ă denotes the input joint sequence, the trajectory of

the 9-th joint across � frames is denoted as - Ġ = (G Ġ,0, G Ġ,1, ..., G Ġ,Ă ).
While existing transformer-based skeleton action recognition meth-

ods only use this - Ġ as an input sequence for skeletal correlation

representation learning in the spatial domain, we propose to adopt

a frequency representation based on Discrete Cosine Transform

(DCT). Di�erent from the previous DCT-based trajectory represen-

tation learning methods [26, 39, 77], which discard some of the

high-frequency coe�cients for providing a more compact represen-

tation, we not only keep all the DCT coe�cients but also enhance

the high-frequency parts and reduce the low-frequency parts. The

main motivations behind this are: (i) High-frequency DCT com-

ponents are more sensitive to those subtle discrepancies that are

di�cult to discriminate in the spatial domain (e.g., the hand move-

ments in reading and writing, which are illustrated in Fig. 1). (ii)

Low-frequency DCT coe�cients re�ect the movements with steady

or static motion patterns, which are not discriminative enough in

recognition (e.g., the lower body movements in reading and writ-

ing, which are also illustrated in Fig. 1). (iii) The cosine transform

exhibits excellent energy compaction properties to concentrate the

majority of the energy (low-frequency coe�cients) into the �rst few

coe�cients of the transformation, meaning it is well-distributed

for amplifying subtle motion features.

Thus, we apply DCT to each trajectory individually. For trajec-

tory - Ġ , the 8-th DCT coe�cient is calculated as:

� Ġ,ğ =

√

2

�

Ă
∑

Ĝ =1

G Ġ,Ĝ
1

√
1 + Xğ1

cos

[

c (25 − 1) (8 − 1)
2�

]

(4)

where the Kronecker Xğ Ġ = 1 if 8 = 9 , otherwise Xğ Ġ = 0. In particu-

lar, 8 ∈ {1, 2, . . . , � }, the larger 8 , the higher frequency coe�cient.

These coe�cients enable us to represent skeleton motion within the

frequency domain e�ectively. Besides, the original input sequence

in the time domain can be restored using Inverse Discrete Cosine

Transform (IDCT), which is given by:

G Ġ,Ĝ =

√

2

�

Ă
∑

ğ=1

� Ġ,ğ
1

√
1 + Xğ1

cos

[

c (25 − 1) (8 − 1)
2�

]

(5)

where 9 ∈ {1, 2, . . . , � }.
To use DCT coe�cients in the transformer, we further intro-

duce a Frequency-aware Mixed Transformer for extracting mixed

frequency-spatial features in the next section.
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3.4 Frequency-aware Mixed Transformer

Mixed Spatial Attention. Given a split input Gğ ∈ RĆ ×(ÿ/Ĥ)×Ă
mentioned in Section 3.2, the basic Query matrix and Key matrix

for each sequence are extracted along the spatial dimension:

&ğ ,  ğ = '4!* (;8=40A (�E6%>>; (Gğ ))), (6)

where 8 = 1, 2, . . . , =. In Eq. 6, �E6%>>; denotes adaptive average

pooling for smoothing the joint weight and minimizing the impact

of noisy or less relevant variations within the skeletal data, and an

FC-layer with a ReLU activation operation is applied to ensure &ğ
and  ğ are globally integrated. Then, the self-attention is expressed

as:

�CC4=ğ
ĩěĢ Ĝ

= (> 5 C<0G (
&ğ 

¦
ğ√
3
) (7)

In order to enable richer contextual integration across di�erent

unit groups, inspired by [11], a cross-attention strategy is proposed,

where  ğ is shared between adjacent attention blocks. The cross

attention is expressed as:

�CC4=ğģğĮ = (> 5 C<0G (
&ğ+1 ¦ğ√

3
) (8)

Each mixed attention map is formulated as:

"(ğ = �CC4=
ğ
ĩěĢ Ĝ
+�CC4=ğģğĮ +�CC4=

ğ−1
ģğĮ (9)

where the number of this association mixed-attention maps is based

on the number of unit groups (e.g., = = 3 in Fig. 2). These mixed-

attention maps are extracted by several SABs (Spatial Attention

Blocks, illustrated in Fig. 3 (a)) for spatial representation learning.

Mixed Frequency-Spatial Attention.We apply DCT to obtain

the corresponding frequency coe�cients from the split joint se-

quence Gğ , and then the inputs to FABs (Frequency-aware Attention

Blocks, see in Fig. 3) can be denoted as ��) (Gğ ), where ��) (·) de-
notes the transform expressed in Eq. 4. Similar to the mixed spatial

attention, we obtain the Query and Key values along the frequency

domain:

&ğ ,  ğ = '4!* (;8=40A (�E6%>>; (��) (Gğ )))) (10)

The corresponding frequency-based self-attention andmixed-attention

maps are:

�CC4=
ğ
ĩěĢ Ĝ = (> 5 C<0G (

&ğ 
¦
ğ√
3
) (11)

�CC4=
ğ
ģğĮ = (> 5 C<0G (

&ğ+1 ¦ğ√
3
), (12)

Thus, the mixed frequency attention maps are expressed as:

"�ğ = �CC4=
ğ
ĩěĢ Ĝ +�CC4=

ğ
ģğĮ +�CC4=

ğ−1
ģğĮ (13)

Subsequently, a Frequency Operator (FO) k (·) is adopted to

mixed frequency attention maps:k ("�ğ ). Given a frequency oper-

ator coe�cient i , where i ∈ (0, 1), the high-frequency coe�cients

in"�ğ are enhanced by (1+i), making minimal and subtle actions

more pronounced. On the other hand, the low-frequency coe�-

cients are reduced by i , appropriately diminishing the focus on

salient actions while preserving the integrity of overall action rep-

resentations. The search for the best i is discussed in Section 4.5.

Afterward, an IDCT module is employed to restore the transformed

skeleton sequence:"�ğ = ���) (k ("�ğ )). All the"ğ are extracted
by Frequency-aware Attention Blocks (FABs), as depicted in Fig. 3

(b). Thus the output is:"�(ğ = "�ğ +"(ğ , and the �nal output of

the mixed frequency-spatial attention map can be expressed as:

" ← Concat["�(1, "�(2, . . . , "�(ğ ] (14)

We obtain Value+ from the initial input- with uni�ed computation

via adding one spatial 1 × 1 convolutional layer along the spatial
dimension. Consequently, the input of the Temporal Attention

Block is expressed as:

GĪ = "+ (15)

Temporal Attention Block. Given the temporal input GĪ based

on the mixed frequency-spatial attention method, some tricky

strategies in [69] are adopted to transform the input channel and

acquire more multivariate information alone the temporal dimen-

sion: -Ī = �) (GĪ ) (the channel transformation �) (·) is detailed in

the Appendix). Then the transformed input -Ī is processed with

a temporal attention block (Fig. 3 (c)) to obtain the corresponding

Query and Key matrices:

&Ī = f (;8=40A (�E6%>>; (-Ī ))), (16)

 Ī = f (;8=40A ("0G%>>; (-Ī ))) (17)

And the Value in temporal attention block+Ī is obtained from the

temporal input after a 1 × 1 convolutional layer along the temporal

dimension. Finally, the temporal attention is expressed as:

�CC4=Īěģ = (> 5 C<0G (
&Ī 

¦
Ī√
3
), (18)

and the �nal output for the classi�cation head is de�ned as:

-ĥīĪ = ((86<>3 (�CC4=Īěģ))+Ī (19)

(a) Spatial Attention Block

MatMul

Scale

Softmax

�
ReLU

Linear

AvgPool

ReLU

Linear

AvgPool

��
(c) Temporal Attention Block

MatMul

Scale

Sigmoid

MatMul

Conv

�
ReLU

Linear

AvgPool

ReLU

Linear

MaxPool

�� ��
�� �� ��

��
Channel 

Transformation

MatMul

Scale

Softmax

DCT

IDCT

(b)  Frequency-aware Attention Block

ReLU

Linear

AvgPool

ReLU

Linear

AvgPool

Frequency Operator

�� ഥ��

��
Figure 3: Three di�erent blocks applied in FreqMixFormer:

(a) Spatial Attention Block (SAB), (b) Frequency-aware Atten-

tion Block (FAB), and (c) Temporal Attention Block (TAB).
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Table 1: Comparison with the SOTA on NTU datasets. * indi-

cates results are implemented based on the released codes.

The highest values are highlighted in red, while the second-

highest values are marked in blue.

NTU-60 NTU-120
Method Source

X-Sub (%) X-View (%) X-Sub (%) X-Set (%)

G
C
N

ST-GCN [71] AAAI’18 81.5 88.3 70.7 73.2
AS-GCN [25] CVPR’19 86.8 94.2 78.3 79.8
2S-AGCN [50] CVPR’19 88.5 95.1 82.5 84.2
NAS-GCN [43] AAAI’20 89.4 95.7 - -
Sym-GNN [26] TPAMI’22 90.1 96.4 - -
Shift-GCN [9] CVPR’20 90.7 96.5 85.9 87.6
MS-G3D [37] CVPR’20 91.5 96.2 86.9 88.4
E�cientGCN-B4 [55] TPAMI’22 91.7 95.7 88.3 89.1
CTR-GCN [8] ICCV’21 92.4 96.8 88.9 90.6
FR-Head [80] CVPR’23 92.8 96.8 89.5 90.9
Koopman [64] CVPR’23 92.9 96.8 90.0 91.3
Stream-GCN [72] IJCAI’23 92.9 96.9 89.7 91.0
WDCE-Net [7] ICASSP’24 93.0 97.2 - -
InfoGCN (4-stream) [10] CVPR’22 92.7 96.9 89.4 90.7
InfoGCN (6-stream) [10] CVPR’22 93.0 97.1 89.8 91.2
HD-GCN (4-stream) [23] ICCV’23 93.0 97.0 89.8 91.2
HD-GCN (6-stream) [23] ICCV’23 93.4 97.2 90.1 91.6

T
ra
n
sf
o
rm

er

ST-TR [44] CVIU’21 90.3 96.3 85.1 87.1
4s-GSTN [18] Symmetry’22 91.3 96.6 86.4 88.7
DSTA [51] ACCV’20 91.5 96.4 86.6 89.0
STST [75] ACMMM’21 91.9 96.8 - -
STAR-Transformer [2] WACV’23 92.0 96.5 90.3 92.7
FG-STFormer [14] ACCV’22 92.6 96.7 89.0 90.6
SiT-MLP [74] arXiv’23 92.3 96.8 89.0 90.2
TranSkeleton [34] TCSVT’23 92.8 97.0 89.4 90.5
Hyperformer [81] arXiv’22 92.9 96.5 89.9 91.3
STEP-CATFormer [38] BMVC’23 93.2 97.3 90.0 91.2
SkeMixFormer* (joint only) [69] ACMMM’23 90.7 95.9 87.1 88.9
SkeMixFormer* (4-stream) [69] ACMMM’23 92.8 96.9 90.0 91.2
SkeMixFormer* (6-stream) [69] ACMMM’23 93.0 97.1 90.1 91.3
FreqMixFormer (ours, joint only) 91.5 96.0 87.9 89.1
FreqMixFormer (ours, 4-stream) 93.4 97.3 90.2 91.5
FreqMixFormer (ours, 6-stream) 93.6 97.4 90.5 91.9

4 Experiments

4.1 Datasets

NTU RGB+D (NTU-60) [48] is one of the most widely used large-

scale datasets for action recognition, containing 56,880 skeleton

action samples from 40 subjects across 155 camera viewpoints. Each

3D skeleton data consists of 25 joints. The data is classi�ed into

60 classes with two benchmarks. 1) Cross-Subject (X-Sub): half of

the subjects are set for training, and the rest are used for testing.

2) Cross-View (X-View): training and test sets are split based on

di�erent camera views (2, 3 views for training, 1 for testing).

NTU RGB+D 120 (NTU-120) [35] is an expansion dataset of

NTU RGB+D, containing 113,945 samples with 120 action classes

performed by 106 subjects. There are two benchmarks. 1) Cross-

Subject (X-Sub): 53 actions are used for training, and the rest are

used for testing. 2) Cross-Setup (X-Set): samples with even setup

IDs are set as training sets, and samples with odd setup IDs are

used for testing.

Northwestern-UCLA (NW-UCLA) [58] is a 10-classes action

recognition dataset containing 1494 video clips. Three Kinect cam-

eras capture the actions with di�erent camera views. We adopt the

commonly used evaluation protocols: the �rst two camera views are

used for training, and the testing set comes from the other camera.

4.2 Implementation Details

We follow the standard data processing method from [8] to pre-

process the skeleton data. The proposed method is implemented

on Pytorch [42] with two NVIDIA RTX A6000 GPUs. The model

is trained with 100 epochs and 128 batch size for all datasets men-

tioned above and a warm-up at the �rst 5 epochs. The weight decay

is 0.0005, and the learning rate is initialized to 0.1 in the NTU

RGB+D and NTU RGB+D 120 datasets (with a 0.1 reduction at the

35th, 55th, and 75th rounds) and 0.2 in the Northwestern-UCLA

dataset (with a 0.1 reduction at the 50th round). A commonly used

multi-stream ensemble method [10] is implemented for 4-stream

fusion and 6-stream fusion. The experimental results are shown in

Table 1 and Table 2.

4.3 Comparison with the State-of-the-Art

In this section, we conduct a comprehensive performance compar-

ison with the state-of-the-art (SOTA) methods on NTU RGB+D,

NTU RGB+D 120, and NW-UCLA datasets to demonstrate the com-

petitive ability of our FreqMixFormer. The comparison is made with

three ensembles of di�erent modalities and the details are provided

in the appendix. Comparisons for NTU datasets are shown in Table

1. We compare our model with the recent SOTA methods based on

their frameworks (GCN and Transformer). The recognition accu-

racy of our FreqMixFormer has outperformed all the transformer-

based methods. It is noted that even our 4-stream ensemble results

on both NTU-60 (93.4% in X-Sub and 97.3% in X-View) and NTU-

120 datasets (90.2% in X-Sub and 91.5% in X-Set) have exceeded

all SOTA approaches. Despite the predominant role of GCN-based

methods in the skeleton-based action recognition, as we mentioned

in Section 1, FreqMixFormer still surpasses the recent methods,

such as InfoGCN [10] and HD-GCN [23]. Moreover, our method

achieves better performance compared with all the methods that

also focus on recognizing discriminative subtle actions, including

FR-Head [80] (outperformed by 0.8% on NTU-60 X-Sub and 0.6%

on X-View) and WDCE-Net [7] (outperformed by 0.6% on NTU-60

X-Sub and 0.2% on X-View) methods. It is worth noting that our

method not only surpasses the existing SOTA GCN-based methods

but also enhances the transformer’s ability to learn discriminative

representations among subtle actions.

In addition to experiments on large-scale datasets like NTU-60

and NTU-120, we extend our research to the small-scale dataset

NW-UCLA to further validate our model’s performance across

di�erent data scales. Table 2 shows results on the NW-UCLA dataset.

FreqMixFormer achieves the best results (97.7 %) in comparison

to SOTA methods based on GCNs and transformers. Our method

outperforms the HD-GCN by 0.8% and SkeMixFormer by 0.3%.

4.4 Comparison of Complexity with Other
Models

Table 3 shows the complexity comparison with other models. For

a fair comparison, we conduct the experiments under the same

settings. Although our FreqMixFormer is less e�cient (GCNs typi-

cally require fewer parameters and incur lower computational costs

than Transformers since GCNs leverage the inherent structure of

graph data, which allows them to model node dependencies directly

with minimal parameters. Additionally, GCN operations are con-

�ned to the edges of a graph, signi�cantly reducing the GFLOPs.

In contrast, transformers process all pairwise element interactions

in a sequence, leading to a rapid increase in computational com-

plexity and parameter count, especially for long sequences) than
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Table 2: Comparison with the SOTA on NW-UCLA dataset.

The best performance is highlighted in bold. * indicates re-

sults are implemented based on the released codes.

Method Source NW-UCLA Top-1 (%)

G
C
N

Shift-GCN [9] CVPR’20 94.6

CTR-GCN [8] ICCV’21 96.5

InfoGCN [10] CVPR’22 96.0

FR-Head [80] CVPR’23 96.8

Koopman [64] CVPR’23 96.8

Stream-GCN [72] IJCAI’23 96.8

HD-GCN [23] ICCV’23 96.9

T
ra
n
sf
o
rm

er

4s-GSTN [18] Symmetry’22 95.9

STST [75] ACMMM’21 97.0

FG-STFormer [14] ACCV’22 97.0

SiT-MLP [74] arXiv’23 96.5

Hyperformer [81] arXiv’22 96.7

SkeMixFormer* [69] ACMMM’23 97.4

FreqMixFormer (ours) 97.7

Table 3: Comparison of the complexity of the joint stream

state-of-the-art. The best performances are bolded.

Method NTU-120 X-Sub (%) Param (M) GFLOPs

GCN

MS-G3D [37] 84.9 3.22 5.22

CTR-GCN [8] 84.9 1.46 1.97

InfoGCN [10] 85.1 1.57 1.68

HD-GCN [23] 85.7 1.68 1.60

Transformer

Hyperformer [81] 87.3 2.69 9.64

SkeMixFormer [69] 87.1 2.08 2.39

FreqMixFormer (ours) 87.9 2.04 2.40

GCN-based methods, we achieve a very competitive result on the

NTU-120 dataset X-Sub, which outperforms HD-GCN by 2.2 % and

SKeMixFormer by 0.8 % with fewer parameters than SkeMixformer.

4.5 Ablation Study

In this section, we �rst evaluate the role of key modules in FreqMix-

Former, including FAB, FO, and TAB, to analyze the e�ectiveness of

each block. Then we propose to search for the best variants within

the model, including the number of unit group = for input parti-

tion and the best frequency operator coe�cient i . Additionally,

we provide the visualization of the attention maps to show the

e�ectiveness of the mixed frequency-spatial attention mechanism.

The Design of Frequency-awareMixed Transformer.As the

results shown in Table 4, the baseline only contains the basic Spatial

MixFormer module from [69], which only achieves 89.8% accurate.

Then we propose 3 modules for analysis: 1) Frequency-aware Atten-

tion Block (FAB): the key part in our proposed method, extracting

frequency-based attention maps from the joint sequence, leading

to a 1.2% improvement in our baseline. 2) Frequency Operator (FO):

an extra module within FABs enhances the high-frequency coe�-

cients and reduces the low-frequency coe�cients based on the DCT

operator coe�cient, resulting in a 1.4% improvement in the base-

line. 3) Temporal Attention Block (TAB): a module utilized to learn

joint correlations across frames, leading to a 0.9% over the baseline

performance. As we can see, each of these modules can enhance the

baseline’s performance, where the main contribution comes from

the utilization of Frequency-aware Attention Blocks with a proper

frequency operator coe�cient. The best result comes from the com-

bination of all these modules with baseline, which achieves 91.5%

accuracy in NTU-60 X-Sub with joint modality. It is speculated that

the proposed frequency-aware attention mechanism (see in Section

3.4) plays a signi�cant role in enhancing the action recognition

performance. The experiment results on confusing actions with

subtle motions are presented in Section 4.6.

Table 4: The design of Frequency-aware Mixed Transformer.

Baseline FAB FO TAB NTU-60 X-Sub (%)

! % % % 89.8

! % % ! 90.7 (↑ 0.9)
! ! % % 91.0 (↑ 1.2)
! ! ! % 91.2 (↑1.4)
! ! % ! 91.1 (↑1.3)
! ! ! ! 91.5 (↑ 1.7)

Search for the best frequency operator coe�cient i . More-

over, we also conduct analysis regarding the best number of the

unit = in Table 5. It can be seen in Table 5 that the increasing =

does improve the results (= = 2, 3, 4) with a peak accuracy of 91.5%

in NTU-60 X-Sub and 96.0% in NTU-60 X-View. However, further

increments do not lead to better outcomes, only to a higher compu-

tational cost (the model parameters keep increasing from 1.26M to

2.83M). Given the trade-o� between cost and performance, we opt

for a splitting number of = = 4 for subsequent experiments.

Search For the Best Frequency Operator Coe�cient i . In

Table 6, we investigate the impact of frequency operator coe�cient

i . As we discussed on Section 3.4, the high-frequency coe�cients

will be ampli�ed by (1 +i), and the low-frequency coe�cients will

be diminished by i . As i increases from 0.1 to 0.5, there is a general

trend of improved performance, reaching a peak at i = 0.5, which

achieves the highest accuracy of 91.5% on NTU-60 X-Sub and 96.0%

on X-View. However, further increasing i from 0.6 to 0.9 does not

lead to improvements in performance. In fact, the accuracy slightly

declines. This suggests that enhancing high-frequency components

too much or reducing low-frequency components too aggressively

may lead to loss of motion patterns learning.

E�ectiveness of theMixed Frequency-aware Attention. Fig.

4 presents the visualization of the attention matrices learned by

FreqMixFormer. The skeleton con�guration is generated from the

NTU-60 dataset (Fig. 4 (a)). We take "eat meal" as an example (Fig.

4 (b)). In the correlation matrix, a more saturated yellow represents

a large weight, indicating a stronger correlation among joints. And

the numbers denote di�erent joints. Note that the Mixed Spatial

Attention Map (Fig. 4 (c), learned by SAB) represents the spatial

relationships among joints. The Mixed Frequency Attention Map

(Fig. 4 (d), learned by FAB) suggests the frequency aspects of mo-

tion. Based on these two attention maps, a mixed frequency-spatial

attention map is proposed (Fig. 4 (e)) for capturing both spatial

correlations and frequency dependencies, integrating the spatial

and frequency skeleton features.
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Table 5: Search for the best

number of the unit =.

=
NTU-60

Param (M)
X-Sub (%) X-View (%)

2 90.0 95.1 1.26

3 90.8 95.3 1.64

4 91.5 96.0 2.04

5 91.3 95.9 2.45

6 91.3 95.7 2.83

Table 6: Search for the best fre-

quency operator coe�cient i .

i
NTU-60

X-Sub (%) X-View (%)

0.1 90.9 95.6

0.2 90.8 95.4

0.3 91.0 95.6

0.4 90.9 95.7

0.5 91.5 96.0

0.6 91.0 95.8

0.7 91.0 95.6

0.8 91.0 95.7

0.9 91.1 95.6

As we see in the �gures, the model focuses on the correlations

with the spine and right-hand tip in the spatial domain. As for the

frequency domain, more correlation areas are concerned (joint con-

nections with the spine, left arm, and the interactions between head

and hands), which indicates the model is analyzing more discrimi-

native movements overlooked in the spatial domain. Meanwhile,

the mixed frequency-spatial attention map contains not only the

strong attention areas learned from spatial space but also the con-

cerned correlations in frequency space. This demonstrates that our

FreqMixFormer model advances this by extracting minimal and

subtle joint representations (highlighted with the red box in Fig. 4

(b)) from both spatial and frequency domains. The e�ectiveness of

the mixed frequency attention is also veri�ed in Table 4.
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Figure 4: The visualization of attention matrices. (a) is the

joint index of the NTU RGB+D dataset. (b) is the skeleton

sequence of the "eat meal" action. The red box indicates the

deeper attention area among joints. (c) is the mixed spatial

attention map extracted from the spatial attention block. (d)

is the mixed frequency attention map extracted from the

frequency-aware attention block. (e) is the mixed frequency-

spatial attention map, representing the mixed frequency-

spatial skeleton features.

4.6 Comparison Results on Confusing Actions

To validate our model’s capability in discerning discriminative ac-

tions, similar to [7, 80], we categorize certain actions from the

NTU-60 dataset (only joint stream with X-Sub protocol) into three

sets based on the classi�cation results of Hyperformer [81]: the

actions with accuracy lower than 80% as Hard set, between 80% and

90% as Medium set, and higher than 90% as Easy set. All the confus-

ing actions are classi�ed into Hard and Medium sets. For example,

"writing," "reading," and "playing with a phone" are categorized as

Table 7: The results on di�erent di�cult-level actions for

NTU RGB+D dataset.

Method
NTU-60 X-Sub (%)

Hard Mdeium Easy

Hyperformer [81] 71.4 83.6 94.1

SkeMixFormer [69] 71.9 84.6 94.3

FreqMixFormer (ours) 73.9 86.1 95.2

Hard action sets due to their subtle di�erences, which are limited

to small upper-body movements involving only a few joint correla-

tions, leading to low recognition results. We compare our results

with the recent transformer-based models Hyperformer [81] and

SkeMixFormer [69]. The results of di�erent di�cult-level actions

are displayed in Table 7, showcasing that our model outperforms

the recent SOTA methods across these three subsets. Furthermore,

the detailed results of Hard andMedium actions are also provided in

Fig. 5 and Fig. 6. The results indicate that our method signi�cantly

enhances performance on both hard-level and medium-level confus-

ing actions, demonstrating its capability to di�erentiate ambiguous

movements.

Hard Set

Figure 5: Accuracy comparison results on confusing actions

in the hard set.

Medium Set

Figure 6: Accuracy comparison results on confusing actions

in the medium set.

5 Conclusion and Discussion

In this work, we introduce Frequency-aware Mixed Transformer

(FreqMixFormer), a novel transformer architecture designed to dis-

cern discriminative movements among similar skeletal actions by
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leveraging a frequency-aware attention mechanism. This model

enhances skeleton action recognition by integrating spatial and

frequency features to capture comprehensive intra-class frequency-

spatial patterns. Our extensive experiments across diverse datasets,

including NTU RGB+D, NTU RGB+D 120, and NW-UCLA, estab-

lish FreqMixFormer’s state-of-the-art performance. The proposed

model demonstrates superior accuracy in general and signi�cant

advancements in recognizing confusing actions. Our research ad-

vances the �eld by presenting a method that integrates frequency

domain analysis with current transformer models, paving the way

for more precise and e�cient action recognition systems. This

work is anticipated to inspire future research on precision-targeted

skeletal action recognition.
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A OVERVIEW OF SUPPLEMENTARY
MATERIAL

In this supplementary material, we provide the following items:

• Partial DCT vs full DCT algorithms.

• Evaluation of the number of DCT coe�cients.

• Evaluation on UAV-Human dataset.

• Additional results.

• Implementation details.

• More visualizations.

• Limitations and future work.

B Partial DCT vs Full DCT Algorithms

In FreqMixFormer, we utilize DCT in Frequency-aware Attention

Block (FAB) to extract skeletal frequency features. As illustrated

in Fig. 2 and 3 in the main paper, only Query matrix & and Key

matrix  are processed with DCT and IDCT modules for attention

score, Value matrix + is only processed with linear transformation,

the methodology can be found in Algorithm 1 as Partial DCT Al-

gorithm. Moreover, we also investigate the Full DCT Algorithm,

where DCT and IDCT process + , and the methodology is shown in

Algorithm 2. However, the full DCT algorithm performs poorly in

the experiment: the full DCT algorithm only achieves 87.7% on the

NTU-60 X-Sub setting, while the partial DCT algorithm achieves

91.5% accuracy. The overview of the FreqMixFormer with full DCT

algorithm is illustrated in Fig. 8. The Spatial Attention Block (SAB)

in this experiment is shown in Fig. 7 (a) and the Frequency-aware

Mixed Former (FAB) with full DCT algorithm is shown in Fig. 7 (b).

We hypothesize that the primary issues contributing to this gap

are: 1) Applying DCT to & and  can e�ectively highlight key

frequency features and improve the model accuracy by matching

relevant features during the computation of attention scores. 2)

By excluding + from the frequency domain, the original temporal-

spatial information is retained. This retention may help preserve

more detailed and dynamic information in the �nal representation,

enhancing the model’s ability to utilize these details for action

recognition. 3) Recognizing actions relies not only on the frequency

characteristics of movements (such as the speed and rhythm) but

also on the speci�cs of how the actions are performed (like the

swinging of an arm). Processing & ,  , and + in di�erent domains

may allow the model to balance these needs.
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(b) FAB with full DCT algorithm
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Figure 7: (a) SAB utilized in this experiment. (b) FAB with

full DCT algorithm.

C Evaluation of the number of DCT coe�cients

In order to explore the frequency operator in-depth, we conduct

an evaluation of the number of enhanced DCT coe�cients. Table 9

shows the extra ablation study on the number of DCT coe�cients

#ę that we set as high-frequency coe�cients (the rest are set as

low-frequency coe�cients). The high-frequency coe�cients are

enhanced by a frequency operator coe�cient i discussed in Section

3.4 of the main paper. For a fair comparison, we keep i = 0.5 during

the experiments. As shown in the table, with the number of the

enhanced DCT coe�cient #ę = 12, the model achieves the best

performance on NTU-60 (91.5% in X-Sub and 96.0% in X-View)

dataset, and further increasing does not result in improvements.

Algorithm 1 Partial DCT

Input: the skeleton sequence is processed with joint embedding

and positional embedding as the initial input - , where - ∈ Rÿ×Ă× Ć .
Init:,č ,,ć and,Ē are the learnable weight matrices.

Output: the partial DCT attention score

(1) - = ��) (- )
(2) & = -,ħ,  = -,ġ ,+ = -,Ĭ

(3) & = -,ħ,  = -,ġ

(4) �CC4=(&, ,+ ) = ���)
(

(> 5 C<0G

(

čć
Đ

√
Ě

))

Ē

(5) �CC4=1 = �CC4=(&, ,+ )
Return : �CC4=1

Algorithm 2 Full DCT

Input: the skeleton sequence is processed with joint embedding

and positional embedding as the initial input - , where - ∈ Rÿ×Ă× Ć .
Init:,č ,,ć are the learnable weight matrices.

Output: the full DCT attention score

(1) - = ��) (- )
(2) & = -,ħ,  = -,ġ ,+ = -,Ĭ
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Figure 8: Overview of the proposed FreqMixFormer with full DCT algorithm. The overall structure is similar to the method introduced in

Section 3.2 of the main paper. The detailed structures of SAB and FAB are illustrated in Fig. 7.

(3) č = Ĕēħ, ć = Ĕēġ ,Ē = ĔēĬ

(4) ýĪĪěĤ(č,ć,Ē ) =
(

ďĥ Ĝ ĪģėĮ

(

čć
Đ

√
Ě

))

Ē

(5) ýĪĪěĤ2 = ąĀÿĐ (ýĪĪěĤ(č,ć,Ē ))
Rreturn: ýĪĪěĤ2

D Evaluation on UAV-Human Dataset

D.1 UAV-Human Dataset

UAV-Human [32] is an action recognition dataset comprising 22,476

video clips with 155 classes. The dataset was collected via a UAV

across various urban and rural settings, both during daytime and

nighttime. It extracts action data from 119 distinct subjects engaged

in 155 di�erent activities across 45 diverse environmental locations.

For evaluation (X-Sub, 17 joints in each subject), 89 subjects are

selected for training and 30 for testing.

D.2 Experiment Settings

The hardware con�gurations are the same as the experiments re-

ported in the main paper. The model is trained with 100 epochs,

and the batch size is 128. We set a warm-up at the �rst 5 epochs.

The weight decay is set as 0.0005, and the basic learning rate is 0.2.

There is a 0.1 reduction at the 50th epoch.

D.3 Comparison Results

As Table 10 shows, we compare our performance with the state-of-

the-art methods on the UAV-Human dataset. Our FreqMixFormer

outperforms all the existing methods and achieves the new state-

of-the-art results on this benchmark.

E Additional Results

E.1 Accuracy Di�erence Results

We further analyze the Top-1 Accuracy Di�erence (%) between the

proposed FreqMixFormer and the baselinemethod SkeMixFormer[69]

with the joint input modality on NTU RGB+D 120 X-Sub. As il-

lustrated in Fig. 12, the most signi�cant improvements typically

appear in confusing actions with subtle movements. For instance,

our model achieves an improvement of 35.09% for "make OK sign",

21.55% for "make victory sign", and 18.56% for "counting money".

These results underscore FreqMixFormer’s performance in recogniz-

ing actions that are visually confusing by extracting the frequency-

spatial features.

E.2 Comparison with Frequency-based Results

We provide an extra comparison with the previous frequency-based

methods in skeleton action recognition. As shown in Table 8, our

FreqMixFormer outperforms all the existing methods utilizing fre-

quency analysis on the NTU-60 X-Sub dataset. Moreover, our model

also plays a signi�cant role in e�ciency, as it has the least parame-

ters (2.04M) and the best GFLOPs (2.40) among the frequency-based

methods.
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Table 8: Comparison with recent Frequency-based methods. The best performance is highlighted in bold.

Method Frequency Transformation NTU-60 X-Sub (%) NTU-60 X-View (%) Param (M) GFLOPS

SLnL-rFA Fast Fourier Transform (FFT) 89.7 95.4 9.46 7.78

DCE-CRL Discrete Cosine Encoding (DCE) 90.6 96.6 2.92 39.2

WDCE-Net Discrete Wavelet Transform (DWT) 93.0 97.2 - -

FreqMixFormer(ours) Discrete Cosine Transform (DCT) 93.6 97.4 2.04 2.40

Table 9: Search for the best number of DCT coe�cient Ċę .

Ċę
NTU-60

X-Sub (%) X-View (%)

3 91.3 95.6

6 91.0 95.2

9 91.2 95.5

12 91.5 96.0

15 91.4 95.7

Table 10: Comparison with the SOTA on UAV-Human dataset.

The best performance is highlighted in bold. T indicates the

Transformer-based method.

Method Source UAV-Human X-Sub (%)

G
C
N

ST-GCN [71] AAAI’18 30.3

DGNN [49] CVPR’19 29.9

2s-AGCN [80] CVPR’19 34,8

HARD-Net [31] ECCV’20 37.0

Shift-GCN [72] CVPR’20 42.9

MS-G3D [23] CVPR’20 43.4

CTR-GCN [8] ICCV’21 43.4

ACFL [63] ACMMM’22 45.3

T

SkeMixFormer [69] ACMMM’23 48.9

FreqMixFormer (ours) 49.6

F Implementation Details

F.1 Multi-stram Fusion Strategy

The comparison is made with three ensembles of di�erent modali-

ties (joint only, 4-stream ensemble, 6-stream ensemble. We denote

the stream as S for convenience) following the setting of InfoGCN

[10]: S1: k = 1, motion = False; S2: k = 2, motion = False; S3: k = 8

(k = 6 for NW-UCLA and UAV-Human datasets), motion = False;

S4: k = 1, motion = True; S5: k = 2, motion = True; S6: k = 8 (k = 6

for NW-UCLA and UAV-Human datasets), motion = True, where k

indicates k value of k-th mode representation of the skeleton. And

4-stream = S1+S2+S4+S5, 6-stream = S1+S2+S3+S4+S5+S6. For a

fair comparison, experiments using the baseline method are also

conducted with this emsemble strategy.

F.2 Evaluations of the Batch Size

Fig. 9 illustrates the impact of batch size during the training. We

take the experimental results on the NTU-60 dataset as an example.

As we can see, increasing the batch size from 32 to 128 enhances

performance. However, a higher batch size (256) is not better be-

cause it requires more memory and leads to convergence issues.

Thus, we choose 128 as our default batch size.

Figure 9: The batch size settings.

F.3 Channel Transformation in Temporal
Attention Block

As we mentioned in Section 3.4 of the main paper, we adopt some

tricky strategies in the baseline method [69] as our temporal chan-

nel transformation ÿĐ (·), which is stacked with two modules: 1)

Channel Reforming Model. An improving model derived from SE-

net[17], which enhances the feature separation between groups and

reduces noise, it is essential to reorganize the channel relationships

within each group. 2) Multiscale Convolution Module. The �rst part

of the Temporal MixFormer in [69], which is a simple optimization

from MS-G3D [37] of maintaining a �xed �lter while adjusting dila-

tion, enabling the acquisition of more diverse multiscale temporal

information and reducing computational costs. We simply adopt

this combination as the ÿĐ (·) operation.

G More Visualizations

In this section, we exhibit more attention maps, the same as the

visualization results illustrated in Section 4.5 of the main paper.

Since we have provided the action "eat a meal" from the Hard set,

we give more visualization results from the Medium set (headache)

and Easy set (kicking) as examples. All the skeletons and attention

maps are generated by the NTU-60 dataset. As shown in Fig. 10

and Fig .11, our proposed Frequency-aware Mixed attention maps

(extracted by FAB modules) contain more detailed information and

joint correlations compared with the spatial maps (extracted by

SAB).
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(b) Mixed spatial attention map (c) Mixed frequency-aware attention map

(a) <headache= action from NTU-60 dataset
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(d) Mixed frequency-spatial attention map

Figure 10: The visualization results of "headache" action from the NTU-60 dataset. (a) is the skeleton sequence, the red box indicates the

attention area with stronger correlations. (b) is the mixed spatial attention map. (c) is the mixed frequency-aware attention map. (d) is the

mixed frequency-spatial attention map. In this example, FAB focuses more on correlations of arms and legs, while SAB only focuses on the

correlations of the right hand.

(b) Mixed spatial attention map (c) Mixed frequency-aware attention map
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(d) Mixed frequency-spatial attention map

(a) <kicking= action from NTU-60 dataset

Figure 11: The visualization results of "kicking" action from the NTU-60 dataset. (a) is the skeleton sequence, the red box indicates the

attention area with stronger correlations. (b) is the mixed spatial attention map. (c) is the mixed frequency-aware attention map. (d) is the

mixed frequency-spatial attention map. In this example, FAB focuses more on the correlations of the spine and right leg, while SAB only

focuses on the correlations of the left hip and right ankle.
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H Limitations and Future Work

Despite the high accuracy of our model, it still has some limitations.

Firstly, our model is still not e�cient and lightweight enough. As

we discussed in the ablation study from the main paper, there is a

gap between our method and the recent GCN-based methods such

as HD-GCN [23] (1.68M parameters vs 2.04M, 1.60 GFLIOPS vs

2.40 GFLOPS), and we have no remarkable advantages of e�ciency

over the recent transformer-based methods. Secondly, we keep

all the high-frequency coe�cients during the training, which is

not robust to noisy joint information. The more e�cient way is to

enhance the high-frequency coe�cients selectively instead of the

whole coe�cients. Our future work will focus on �nding the best

trade-o� point between e�ciency and accuracy.
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Figure 12: Top-1 Accuracy Di�erence (%) between the proposed FreqMixFormer and the baseline method SkeMixFormer with the joint input

modality on NTU RGB+D 120 X-Sub.
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