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Abstract
This experience report describes a partnership between commu-
nity college faculty and learning scientists to co-design Intelligent
Tutoring Systems (ITSs) addressing challenges in cybersecurity
workforce training. Our co-design approach combined collabora-
tive reflection on student difficulties from prior course offerings
with systematic curricular analysis to identify high-impact inter-
vention points. We targeted two challenge areas: strengthening
students’ ability to contrast key cybersecurity taxonomies, and
providing realistic hands-on training without costly infrastructure.
The resulting ITSs include: one employing exercises that scaffold
comparison of conceptual categories, and another using lightweight
simulations to provide experiential learning while circumventing
typical cost and time overhead. Both systems incorporate instruc-
tional principles grounded in learning science research, includ-
ing evidence-based features associated with ITS efficacy such as
timely hints and feedback. Through iterative classroom deployment
and refinement—including adding task-loop adaptivity to offer re-
peated practice until mastery—we observed encouraging learning
outcomes, alongside insights into mitigating “gaming the system”
behaviors. We detail our co-design process and formative evalua-
tions—procedures, outcomes, and cautious interpretation due to the
limited number of consented learners—and share lessons learned
to inform scalable, replicable ITS development for cybersecurity
workforce training in resource-constrained settings.

CCS Concepts
• Social and professional topics → Adult education; Comput-
ing education; • Applied computing→ Interactive learning
environments.
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1 Introduction
Community colleges in the United States play a vital role in work-
force training, particularly in addressing the growing demand for
cybersecurity professionals, and are accessible to tens of millions of
American workers. They have proven effective in teaching technical
subjects, generating returns comparable to four-year programs [30].
However, these institutions face significant resource constraints
[18, 28, 34], motivating the adoption of effective and scalable teach-
ing methods such as Intelligent Tutoring Systems (ITSs).

2 Related Work
2.1 ITS and Adaptive Learning
Extensive research supports the efficacy of ITSs. For example, Ku-
lik and Fletcher’s meta-analysis reported that ITS implementa-
tions consistently outperform traditional classroom instruction,
with the largest gains when assessments are locally developed and
aligned with instructional objectives [27]. Similarly, VanLehn’s
meta-analysis found that the average effect size of ITSs across do-
mains is on par with human tutoring [35]. One evidence-based
approach to designing effective ITSs is to incorporate adaptive
learning following the “Adaptivity Grid” framework by Aleven et
al. [3], which delineates three forms of adaptivity: (i) step-loop adap-
tivity (within a problem), where the system responds to individual
student actions within an instructional task; (ii) task-loop adaptivity
(between problems), where the system personalizes subsequent
tasks for the learner; and (iii) design-loop adaptivity (between ma-
terial versions), where course designers update the content and
system based on data-driven reflection. This three-tiered frame-
work has guided many empirical studies examining how different
forms of adaptivity affect learning outcomes. In particular, research
shows that when task-loop adaptivity is incorporated effectively,
they can accelerate learning by tailoring subsequent practice based
on individual progress [8, 13, 26].

2.2 Co-Design with Community College Faculty
Co-design is a collaborative design method that involves stake-
holders as partners throughout the design process, rather than as
"sources of information" [33]. In educational contexts, researchers
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collaborate with instructors and other stakeholders to design educa-
tional tools, environments, or materials. This approach centers the
voices, needs, and experiences of instructors and learners. Success-
ful co-design with instructors requires building trust, establishing
safe spaces, and incorporating flexibility into the design process
[22]. An example of successful co-design is Lumilo, an augmented
reality tool co-designed with instructors that supports real-time
monitoring of student engagement and performance in intelligent
tutors [17]. In computing education, successful co-design has also
been demonstrated through instructors’ self-reported personal and
professional growth, along with their recognition of the method’s
value [11, 20]. Also, researchers have partneredwith community col-
lege faculty to collaboratively revise math lessons [14] and design
content for combating misinformation [22]. These collaborations
fostered trust and produced well-aligned educational materials.

3 Our Iterative Instructional Co-Design
This section details our iterative co-design approach for developing
ITSs to enhance community college cybersecurity workforce train-
ing. We outline a replicable collaboration process between faculty
and learning scientists, informed by faculty teaching experiences,
research literature, and community college resource constraints.

3.1 Instructional Design Context
The target learner population comprises students at a large, public
two-year community college located in a populous urban county in
the northeastern United States. Our instructional co-design grounds
in the authentic needs of a core cybersecurity course serving both
workforce certificate and associate degree pathways. Positioned
midway through these programs, this course functions as a critical
gateway to advanced cybersecurity topics, building upon prerequi-
site coursework in networking and system administration. Course
objectives are aligned with those specified for CompTIA Security+
[16], a foundational credential widely recognized in the cyberse-
curity job market, and also approved by the U.S. Department of
Defense (DoD) to fulfill directive 8140/8570.01-M requirements [9].

3.2 Identification of Actionable & High-Impact
Intervention Opportunities

Given the resource constraints faced by community colleges, our
co-design approach strategically begins by identifying high-priority
cybersecurity concepts and skills before investing substantial effort
in ITS implementation. We identify high-impact intervention op-
portunities through two complementary approaches: collaborative
reflection on student struggles and systematic curricular analysis.

3.2.1 Collaborative Reflection on Student Struggles. The first ap-
proach involved structured discussions with faculty to surface
persistent student difficulties observed across multiple semesters.
Alongside regular meetings between learning scientists and commu-
nity college faculty throughout the project, we conducted focused
collaborative reflection sessions to identify and document key stu-
dent struggles. These pain points were derived from faculty insights
and longitudinal observations of student difficulties across multiple
semesters. To systematically structure our co-reflection sessions
and document outcomes, we developed a framework (detailed in

Table 1) that facilitates documenting student struggles and ranking
their priority based on instructional impact.

Table 1: Student Struggle Identification Framework

Column Description
Week Course week when topic is taught
Learning Objective Measurable competency defined with Bloom’s

taxonomy [25] (e.g., “Analyze”, “Interpret”)
Evaluation Method Assessment instruments (e.g., graded assign-

ments, quizzes)
Difficulty Level Faculty rating of difficulty (high/medium/low)
Curricular Relevance Faculty rating of relevance to future course-

work in certificate/associate degree curricula
(critical/important/less important/not relevant)

Workforce Relevance Faculty rating of relevance in real-world jobs
(critical/important/less important/not relevant)

Additional Notes Qualitative insights on specific challenges and
contextual factors

This structured process culminated in a tangible artifact docu-
menting 35 distinct learning objectives with which students strug-
gled in the cybersecurity course. This artifact then served as the
foundation for subsequent co-design activities and the prioritization
of ITS development.

3.2.2 Systematic Curricular Analysis. Building on the collabora-
tive identification of 35 distinct learning objectives where students
struggled, we employed systematic curricular analysis to strategi-
cally prioritize objectives for ITS development based on two criteria:
high instructional impact and feasibility within resource constraints.
This analysis comprised two key components: first, we utilized cur-
riculum mapping—a systematic method for evaluating and aligning
course content with desired learning outcomes to ensure coherent
knowledge progression [21, 31]; second, we decomposed high-level
learning objectives into fine-grained knowledge components (KCs)
that align with ITS granularity requirements. KCs represent dis-
crete cognitive functions that can be attained through learning
events and observed through assessments [24]. Through this pro-
cess, we identified two primary types of student struggles along
with their associated instructional challenges and opportunities for
ITS intervention (detailed in Table 2).

These gaps represented high-leverage opportunities for ITS in-
tervention, informing the design and development of two ITSs: the
first tutor scaffolds contrastive reasoning for conceptual distinc-
tions through tailored exercises; the second provides experiential
learning through lightweight simulations that replicate workplace
tasks while circumventing high costs and time requirements. The
following sections detail each tutor’s design features, deployment
in classroom settings, evaluation outcomes, and how reflective in-
sights informed iterative refinements.

3.3 Security Control Tutor: Conceptual
Distinctions through Contrastive Reasoning

During the ITS design phase, faculty and learning scientists collab-
oratively analyzed the course textbook (CompTIA Security+ Cert
Guide [16]) to identify instructional gaps contributing to student
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Table 2: Instructional Challenges Identified through Systematic Curricular Analysis and Corresponding ITS Solutions

Student Struggle Theme Contextual Factors Faced by
Community College Students

High-Impact Example Solution Using ITS

Comparing taxonomies Business-as-usual textbook lacks tai-
lored instructional design for under-
standing/contrasting taxonomies

Comparing security control types
and categories

Scaffolding contrastive reasoning
through tailored exercises

Developing practical skills Delivering realistic cybersecurity ex-
periences is typically expensive and
infeasible for community colleges

Detecting, analyzing, and remedying
DDoS attacks

Providing experiential learning
through lightweight simulations of
workplace tasks

Figure 1: Security Control Tutor. Left: Introduction to tax-
onomies using plain language with comparative scaffolding,
supplemented by visual aids. Right: Active learning compo-
nents. Top-right: Hint box providing multi-level hints, and
immediate misconception-targeted feedback. Bottom-right:
scenario-based MCQs requiring contrastive reasoning.

difficulties. This analysis revealed a recurring pedagogical limita-
tion of the textbook: it confines cybersecurity taxonomies to iso-
lated subsections without comparison across them. For example, in
Chapter 1 each control type (e.g., preventive, detective, corrective)
is introduced in its own subsection, with definitions and exam-
ples presented independently. Likewise, each control category (e.g.,
managerial, operational, technical) is presented in isolation without
any comparison. This gap is particularly consequential given its
misalignment with target assessments—the textbook’s evaluation
instruments rely heavily on classification-based multiple-choice
questions (MCQs). For example, 17 of 20 questions in Chapter 1’s
pre/post quizzes required students to classify functional descrip-
tions or contextual examples into specific taxonomy terms (e.g.,
“What control category is designed to increase individual and group
system security?” or “What control type is intended to discourage
someone from violating policies?”). To address this gap, the Security
Control Tutor (as illustrated by Figure 1) was developed to scaffold
contrastive reasoning to meet assessment requirements by present-
ing exercises in which learners compare and justify classifications
across categories within authentic scenarios.

3.3.1 Evaluation of First Iteration. The Security Control Tutor was
developed using the Cognitive Tutor Authoring Tools (CTAT) [1, 2]
and first deployed in Fall 2024 within a cybersecurity course en-
rolling 19 students. The course was offered in both in-person and
remote modalities, with 12 students attending in-person and 7 par-
ticipating remotely. To explore the efficacy of ITS, we conducted

a small-scale randomized controlled trial (RCT) using a between-
group pre-post design. Students in the experimental group used the
Security Control Tutor, while those in the control group engaged
with digitally presented CompTIA Security+ textbook content via
the CTAT platform. Though presented as a CTAT problem set, the
control condition lacked core ITS features: it provided no tailored
multi-level hints or targeted feedback. Instead, answers from the
textbook’s answer section were used to serve as both hints (upon
request) and feedback (after incorrect attempts). Two distinct yet
equivalent 10-item quizzes served as pre- and post-tests. No feed-
back (including correctness) was given during the pre-test. This
evaluation design aimed to mitigate potential biases and ensure any
observed differences in learning outcomes could be attributed to
the ITS intervention, rather than variations in assessment difficulty
or practice effects from the pre-test. Learning logs generated in
both the experimental and control conditions were collected in
DataShop [23] to support our evaluation.

Five students (4 experimental and 1 control) consented to the
use of their learning data for research purposes and completed all
required learning activities. Table 3 shows individual pre-test and
post-test scores for these participants.

Table 3: Pre/Post Results for Security Control Tutor

Condition Student Pre-test (%) Post-test (%)

Experimental S1 20 30
Experimental S2 30 20
Experimental S3 70 70
Experimental S4 40 100
Control S5 60 50

Given the limited sample size (n=5), we emphasize these results
should be interpreted as exploratory rather than conclusive. 4 par-
ticipants showed minimal change (±1 correct answer on a 10-item
test), while we note with encouragement that 1 student in the ex-
perimental condition (S4) improved dramatically from 40% to 100%.
This outcome is encouraging in that it suggests the ITS, when max-
imally utilized, may potentially support substantial learning gains
for some learners. However, the lack of improvement in the major-
ity of participants indicates that further investigation is needed to
understand the factors that mediate the effectiveness of the tutor.

3.3.2 Engagement as a Potential Mediator of ITS Efficacy. To bet-
ter understand the observed variation in learning outcomes, we
analyzed student interaction patterns to infer (dis)engagement be-
haviors that might mediate ITS efficacy. This analytical approach
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Figure 2: Representative learning events timelines for learn-
ers using the Security Control Tutor. The horizontal axis
indicates seconds from session start; the vertical axis lists
practice steps. Each marker denotes a step attempt: green
for correct and red for incorrect. The upper panel shows the
interaction of the high-performing learner (S4), while the
lower panel shows a learner with minimal gain (S1), charac-
terized by repeated incorrect attempts on multiple steps.

was informed by extensive prior research examining student mis-
use of ITS. “Gaming the system” behaviors—where students exploit
system features to progress without learning—are consistently doc-
umented across ITS studies, with 10–40% of students engaging in
such behaviors at least intermittently [4]. Critically, these behaviors
are associated with poorer learning gains [6, 7], potentially explain-
ing why one student achieved perfect performance while others
showed minimal change despite identical instructional exposure.

One established method for identifying disengagement is to
employ machine learning. For instance, Baker et al. [5] engineered
24 features from ITS logs to train a Latent Response Model [29]
for detecting student misuse of ITSs. However, we opted against
this approach due to its reliance on large datasets (e.g., 70 students
in [5]’s study)—a requirement incompatible with our small sample
size. We therefore adopted human-defined heuristics inspired by
[15, 32], which offer interpretable indicators of disengagement that
maintain transparency while accommodating our data constraints.

To operationalize this approach, we visualized fine-grained in-
teraction data through timeline views, inspired by [12] who demon-
strated that timeline visualizations of learning events can yield
meaningful and actionable insights worthy of investigation for
faculty. Figure 2 contrasts representative timelines.

We want to emphasize that these patterns should not be in-
terpreted as conclusive evidence, but rather as potential signals
for instructors to investigate further and intervene as appropriate.
These patterns should also not be used to dichotomize students into
“successful” versus “unsuccessful” learners, since some students
whose timeline patterns resemble those associated with successful
outcomes nevertheless show minimal knowledge gains. That said,
our community college faculty reviewed these learning-event time-
lines and agreed that certain patterns may indicate disengagement.
Consistent with Du et al.’s [12] approach, we treat learning-event
timelines as one component of a holistic assessment rather than
relying on them alone for definitive conclusions. For example, trian-
gulating multiple data points for S1—including substantially lower
time-on-task (179 seconds, 𝑧 = −1.20) compared to the group mean

Figure 3: Refined Security Control Tutor. Bottom-left: Skill
bars track mastery progress for each skill, enabling adap-
tive practice selection. Bottom-right: Contrastive reasoning
restructured into a scaffolded three-step comparison pro-
cess. Top-left: Instructional content area maintains previous
layout with refinedmaterial. Top-right: Hint box retains orig-
inal layout but features updated hints and feedback aligned
with the three-step reasoning process.

(300.75 seconds, 𝑆𝐷 = 101.66), low pre-test scores (indicating lim-
ited prior knowledge), and minimal learning gain—led faculty to
identify this learner as potentially at-risk. Based on this multifac-
eted evidence, the faculty deemed follow-up conversations and
interventions as appropriate pedagogical responses.

3.3.3 Instructional Refinement Through Co-Design. Informed by
the “Adaptivity Grid” framework by Aleven et al.[3] (discussed in
Section 2.1), the learning scientist and faculty collaborated to sys-
tematically incorporate evidence-based features into the tutor, lever-
aging all three adaptivity loops. In the initial iteration of the Security
Control Tutor, we implemented comprehensive step-loop adaptivity
through multi-level hints and targeted feedback to address common
misconceptions. Subsequent analysis of learner outcomes informed
a redesign with several added features, including task-loop adaptiv-
ity: by integrating Bayesian Knowledge Tracing [10], an algorithm
that continuously updates its estimate of a learner’s skill mastery
based on real-time performance, the refined tutor is able to tailor
subsequent practice activities until mastery is achieved. This data-
driven refinement process also exemplifies design-loop adaptivity.
Figure 3 illustrates this refined iteration, with the added features
described in the caption.

3.3.4 Evaluation of Second Iteration. To evaluate the refined tutor,
we deployed it in the Spring 2025 offering of the cybersecurity
course with 9 enrolled students, employing a mixed-methods evalu-
ation approach. Quantitatively, we maintained the between-group
pre-post design from the first iteration. Students in the experimen-
tal condition used the enhanced Security Control Tutor, while the
control group again engaged with the digitally presented CompTIA
Security+ textbook content. While preserving the structure of two
equivalent quizzes, we conducted a new round of KC modeling
that identified one quiz item assessing multiple KCs simultane-
ously. This item was replaced with three separate questions, each
targeting a single KC, increasing the total quiz items from 10 to 12.

4 students (2 experimental and 2 control) consented to the use of
their learning data for research purposes and completed required
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Figure 4: Representative learning-event timeline for a high-
performing learner using the refined Security Control Tu-
tor with task-loop adaptivity. The horizontal axis indicates
seconds since session start; the vertical axis lists individual
practice steps. Each marker denotes a step attempt (green
for correct, red for incorrect). The repeated markers on steps
illustrates repeated practice until mastery is achieved.

activities. Table 4 shows individual pre-test and post-test scores for
these participants. Of the two students in the experimental group,
one improved substantially and achieved a full score on the post-
test, while the other showed no gain. Both students in the control
group demonstrated moderate gains.

Table 4: Pre/Post Results for Refined Security Control Tutor

Condition Student Pre-test (%) Post-test (%)

Experimental S1 66 100
Experimental S2 58 58
Control S3 75 91
Control S4 66 83

To visualize learner engagement, we generated timeline views
of student interactions. Figure 4 illustrates the learning-event time-
line for the high-performing experimental student (S1). The time-
line shows repeated practice on steps until mastery was achieved,
demonstrating the task-loop adaptivity in action. We also examined
the timeline for the experimental student who showed no gain (S2)
but did not observe notable differences in the interaction pattern
compared to the high performer.

Given the small sample size, we supplemented our evaluation by
collecting open-ended responses from students in the experimental
group after using the tutor. The feedback revealed several themes
regarding the perceived strengths and weaknesses of the tutor.

When asked what they liked about the tutor, one student (S1)
reported that “it was useful that it targeted topics that need im-
provement dynamically,” and the other (S2) described the tutor
as “very engaging, instead of just reading books.” Additionally,
when asked how the tutor aided their learning of the cybersecurity
taxonomies , S1 stated, “The tutor helped me learn about the man-
agerial, operational, and technical categories. The explanation and
question/knowledge verification features helped clarify for me.” S2
noted, “The way the tutor gave out questions and examples really
helped.” When particularly asked about task-loop adaptivity, both
participants characterized it as “helpful.” S1 added that “it’s useful
to target areas of weak understanding,” and S2 noted that they
“learned a lot from the practice.” Meanwhile, both students com-
mented that the practice “was repetitive,” and S2 commented that
the tutor asked “too much of the same question.” These responses

indicate that while students appreciated the dynamic personaliza-
tion, the existing question pool, containing three distinct scenarios
per KC, may require further diversification to mitigate perceptions
of repetition.

3.3.5 Summary. In this section, we detailed the co-design and re-
finement of the Security Control Tutor to bridge the gap between
textbook presentations of cybersecurity taxonomies and the con-
trastive reasoning required for certification-aligned assessments.
We evolved the tutor from providing step-level scaffolding to in-
corporating task-loop adaptivity that tailors practice to individual
mastery levels. While limited sample sizes warrant cautious in-
terpretation, we observed promising outcomes, including perfect
post-test performance for some students, alongside overall posi-
tive feedback on the tutor’s adaptive features. Meanwhile, student
feedback regarding scenario diversity highlighted clear opportu-
nities for further refinement to mitigate perceptions of repetition
associated with repeated practice via task-loop adaptivity. This
co-design process demonstrates that faculty-researcher collabora-
tion can yield instructional innovations aligned with both learning
needs and institutional constraints.

3.4 DDoS Incident Response Tutor: Lightweight
Simulations for Experiential Learning

Besides conceptual challenges like comparing taxonomies, our co-
design process identified a second critical instructional challenge:
the expense and logistical complexity of delivering realistic cyber-
security experiences in community college settings. To address
this, we developed a DDoS Incident Response Tutor that provides
experiential learning through lightweight simulations of workplace
tasks within an ITS framework. Similar to the Security Control
Tutor, this second tutor underwent two design iterations. Our de-
sign aligns with recent recommendations by Choi et al. [30], who
advocate that experiential learning and technical simulation are
two foremost instructional design strategies to promote transfer of
skills acquired in classroom to the workplace. In this section, we
highlight its unique features, the challenges encountered, and the
co-design solutions we implemented.

Figure 5 illustrates the DDoS Incident Response Tutor, which
simulates IT infrastructure under a DDoS attack without requiring
physical or cloud resources. Developed in collaboration with faculty,
the tutor guides students through a systematic workflow to detect,
analyze, respond to, and reflect on a DDoS attack—a high-priority
workforce competency identified through curriculum mapping.

3.4.1 Evaluation of First Iteration. We first deployed this tutor in
the Spring 2025 offering of the cybersecurity course, employing the
same between-group pre–post evaluation design used for the initial
Security Control Tutor iteration. All the 9 enrolled students (5 ex-
perimental and 4 control) consented to the research and completed
required learning activities. Table 5 shows individual pre-test and
post-test scores. We observed results similar to those in the first
iteration of the Security Control Tutor: one student in the experi-
mental condition (S2) improved substantially, achieving a perfect
post-test score, while all other participants in both groups showed
minimal change (±1 correct answer on the 10-item test).
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Figure 5: DDoS Incident Response Tutor. Top left: hint box
offeringmulti-level hints and immediate feedback. Top right:
milestone tracker segments the complex DDoS response
workflow into milestones and indicates student progress
for reflection. Bottom left: steps for the current milestone
guides the student through the procedure. Bottom right: sim-
ulation dashboard presenting interactive network-traffic and
resource-utilization graphs that update in response to miti-
gation techniques applied by students.

Table 5: Pre/Post Results for DDoS Incident Response Tutor

Condition Student Pre-test (%) Post-test (%)

Experimental S1 40 50
Experimental S2 70 100
Experimental S3 50 60
Experimental S4 60 60
Experimental S5 60 70
Control S6 70 60
Control S7 70 80
Control S8 70 70
Control S9 70 80

3.4.2 Instructional Refinement Through Co-Design. We also gen-
erated student interaction timeline views to visualize learner en-
gagement. Figure 6 contrasts representative examples. Mirroring
findings in Security Control Tutor, some students with negligible
learning gains exhibit patterns of repeated mistakes across multiple
steps. However, other students, despite patterns resembling those
linked to successful outcomes, show minimal knowledge gains.

Based on previous data-driven reflection from the Security Con-
trol Tutor and similar observations of student “gaming the system”
behaviors, faculty recognized the value of also integrating task-
loop adaptivity into this DDoS Incident Response Tutor. However,
implementing task-loop adaptivity in this tutor presented a unique
challenge. Traditionally, task-loop adaptivity selects subsequent
practice items from a pool based on associated KC—for example,
presenting a “managerial versus operational control” problemwhen
the KC for contrasting those categories has not yet been mastered.
In contrast, this tutor employs a single many-step problem cover-
ing all KCs. Repeating this monolithic problem until all KCs were
mastered would risk overpractice. To address this, we modified
the static interface so that it dynamically adapts to skill-mastery
estimates. Once learners complete the initial practice rounds, the
system may initiate additional rounds. In these extra rounds, any
step associated with a skill already marked as mastered is automati-
cally completed, enabling learners to focus solely on steps requiring

Figure 6: Representative learning events timelines for learn-
ers using the DDoS Incident Response Tutor. The horizontal
axis indicates seconds from session start; the vertical axis
lists practice steps. Eachmarker denotes a step attempt: green
for correct and red for incorrect. The upper panel shows the
interaction of the high-performing learner (S2), while the
lower panel shows a learner with minimal gain (S5), charac-
terized by repeated incorrect attempts on multiple steps.

further practice. When all skills reach mastery, completing that
round marks the activity as finished. This dynamic interface design
draws inspiration from on dynamic ITSs such as that of Huang et
al. [19], presenting additional fine-grained steps only when learners
struggle with complex tasks, thereby supporting integration and
preventing overpractice of mastered fundamental KCs. While our
solution similarly updates the interface in response to performance,
our implementation operates at the task-loop by (disabling steps
when skills are mastered), whereas [19]’s approach operated at the
step-loop (by providing immediate scaffolding in response to er-
rors). Though fully implemented and faculty-reviewed, this second
iteration awaits classroom evaluation—a focus of future work.

4 Conclusion
Community college faculty face a critical practical question: not just
whether evidence-based instructional innovations could improve
learning, but whether they are feasible and worthwhile given perva-
sive resource constraints. While our small-N evaluations (totaling
18 consented participants among 28 enrolled students) preclude de-
finitive statistical conclusions, this experience report demonstrates
how iterative co-design between learning scientists and faculty can
yield actionable insights within these constraints.

Our work produced two key contributions: (1) a replicable co-
design process for identifying high-impact intervention opportu-
nities through collaborative reflection and curricular analysis, and
(2) two tangible ITS implementations whose designs may extend
to other contexts: one scaffolding conceptual distinctions, and the
other providing experiential learning via lightweight simulations.

We share our co-design approach, tutor implementations, and
formative evaluation procedures—with cautious interpretation of
outcomes—to enable replication. By treating small-N studies as an
inherent characteristic of community college settings rather than a
mere limitation, we present how faculty–researcher partnerships
can adapt pedagogical innovations to real-world constraints. We
hope these insights contribute to a shared understanding within the
CSEd community and inform the development of scalable, context-
sensitive instructional innovations for workforce training in com-
munity colleges.
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