Primal-dual extrapolation methods for monotone inclusions under local
Lipschitz continuity

Zhaosong Lu * Sanyou Mei *

June 1, 2022 (Revised: August 30, 2024)

Abstract

In this paper we consider a class of monotone inclusion (MI) problems of finding a zero of the sum of
two monotone operators, in which one operator is maximal monotone while the other is locally Lipschitz
continuous. We propose primal-dual extrapolation methods to solve them using a point and operator
extrapolation technique, whose parameters are chosen by a backtracking line search scheme. The
proposed methods enjoy an operation complexity of O (log 5’1) and O (5*1 log 5’1), measured by the
number of fundamental operations consisting only of evaluations of one operator and resolvent of the
other operator, for finding an e-residual solution of strongly and non-strongly MI problems, respectively.
The latter complexity significantly improves the previously best operation complexity O (5_2). As a
byproduct, complexity results of the primal-dual extrapolation methods are also obtained for finding
an e-KKT or e-residual solution of convex conic optimization, conic constrained saddle point, and
variational inequality problems under local Lipschitz continuity. We provide preliminary numerical
results to demonstrate the performance of the proposed methods.
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1 Introduction

A broad range of optimization, saddle point (SP), and variational inequality (VI) problems can be solved as
a monotone inclusion (MI) problem, namely, finding a point « such that 0 € .7 (z), where .7 : R” = R" is
a maximal monotone set-valued (i.e., point-to-set) operator (see Section 1.1 for the definition of monotone
and maximal monotone operators). In this paper we consider a class of MI problems as follows:

find z € R" such that 0 € (F + B)(z), (1)

where B : R" = R” is a maximal monotone set-valued operator with a nonempty domain denoted
by dom B, and F' is a monotone point-valued (i.e., point-to-point) operator on cl(dom B). It shall be
mentioned that dom B is possibly unbounded. We make the following additional assumptions throughout
this paper.

Assumption 1. (a) Problem (1) has at least one solution.

(b) F + B is monotone on dom B with a monotonicity parameter > 0 such that

(w—v,z—y) > pllz—y|>  Va,y € domB,u e (F+ B)(x),v € (F+ B)(y). (2)

(c) F is locally Lipschitz continuous on cl(dom B).!

(d) The resolvent of vB can be exactly evaluated for any v > 0.
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'See Section 1.1 for the definition of local Lipschitz continuity of a mapping on a closed set.



The local Lipschitz continuity of F' on cl(dom B) is generally weaker than the (global) Lipschitz
continuity of F' on cl(dom B) usually imposed in the literature. Moreover, it can sometimes be easily
verified. For example, if F' is continuously differentiable on cl(dom B), it is clearly locally Lipschitz
continuous there. In addition, by the maximal monotonicity of B and Assumptions 1(b) and 1(c), it
can be observed that F' 4+ B is maximal monotone (e.g., see [16, Proposition A.1]) and it is also strongly
monotone when p > 0.

Several special cases of problem (1) have been considerably studied in the literature. For example,
when F is cocoercive? problem (1) can be suitably solved by a splitting inertial proximal method [17], a
Halpern fixed-point splitting method [24], and also the classical forward-backward splitting (FBS) method
[10, 20] that generates a solution sequence {z*} according to

" = (I 4+B)™! (xk - 'ku(xk)) Vk > 1.

In addition, a modified FBS (MFBS) method [25], its variant [15], an inertial forward-backward-forward
splitting method [1], and an extra anchored gradient method [7, Algorithm 3] were proposed for (1)
with F' being Lipschitz continuous. It shall be mentioned that operation complexity bounds of O (5_2)
and O (6*1), measured by the number of fundamental operations consisting of evaluations of F' and
resolvent of B, were respectively established for the variant of MFBS method [15, Theorem 4.6] and the
extra anchored gradient method [7, Theorem 2] for finding an e-residual solution® of (1) with Lipschitz
continuous F'.

There has been little algorithmic development for solving problem (1) with locally Lipschitz continuous
F. Indeed, the MFBS method [25] and the forward-reflected-backward splitting (FRBS) method [13,
Algorithm 3.1] appear to be the only existing methods for solving this problem. The MFBS method
modifies the classical FRBS method in the spirit of the extragradient method [5] for monotone variational
inequalities, while the FRBS method modifies the forward term in the classical FBS method using
an operator extrapolation technique that has been popularly used to design algorithms for solving
optimization, SP, and VI problems (e.g., [3, 4, 6, 14, 21]). Specifically, the FRBS method generates a
solution sequence {z*} according to

"t = (I +yB)~" (wk — W F (@) = pp1 (F(a*) - F(@“k*l))) vk >1 (3)

for a suitable choice of stepsizes {v}. Global convergence to a solution of problem (1) are established
for these methods in [13, 25], respectively. Moreover, it can be shown that the FRBS method enjoys an
operation complexity of O(e72) for finding an e-residual solution of (1) by using [13, equation (2.14),
Theorem 3.4, and Lemmas 3.2 and 3.3], although this result is not established in [13]. In addition, when
B = 0g, where g is a proper closed convex function, an adaptive golden ratio algorithm was proposed
in [12, Algorithm 1]. While [12] did not specifically study the operation complexity of this algorithm
for finding an e-residual solution of (1) with B = Jg, it can be shown that the algorithm achieves an
operation complexity of O(¢~2) for such a solution by using [12, equation (34) and Lemma 2].

As seen from the above discussion, there is a significant gap between the best operation complexities of
O(e72) and O(e7 1) for finding an e-residual solution of (1) and its special case with Lipschitz continuous
F, which are achieved by the FRBS method [13] and the extra anchored gradient method [7], respectively.
To significantly shorten this gap, in this paper we propose new variants of FBS method, called primal-dual
(PD) eatrapolation methods, for finding an e-residual solution of (1) with complexity guarantees. In
particular, we first propose a PD extrapolation method for solving a strongly MI problem, namely,
problem (1) with g > 0, by modifying the forward term in the FBS method using a point and operator
extrapolation technique that has recently been used to design algorithms for solving stochastic VI problems
in [4] and problem (1) with Lipschitz continuous F' in [13]. Specifically, this PD extrapolation method
generates a solution sequence {a:k } according to

P = (T4 pB) 7 (2 ap(a® — 22 = [F() + Bu(F(h) = F 1)) wh2 1,

2F is cocoercive if there exists some o > 0 such that (F(z) — F(y),z —y) > o||F(z) — F(y)||* for all z,y € dom F. Tt can
be observed that if F' is cocoercive, then it is monotone and Lipschitz continuous on dom F'.

3An e-residual solution of problem (1) is a point « € dom B satisfying resrp(z) < €, where resp4p(x) = inf{||v|| : v €
(F+ B)(x)}.



where the sequences {ay}, {5k} and {v;} are updated by a backtracking line search scheme (see Algorithm
1). We show that this PD extrapolation method enjoys an operation complexity of O (log 6_1) for finding
an e-residual solution of (1) with p > 0. We then propose another PD extrapolation method for solving
a non-strongly MI problem, namely, problem (1) with x = 0 by applying the above PD extrapolation
method to approximately solve a sequence of strongly MI problems 0 € (F), + B)(z) with Fj being a
perturbation of F' (see Algorithm 2). We show that the resulting PD extrapolation method enjoys an
operation complexity of O (5*1 log 5*1) for finding an e-residual solution of problem (1) with u = 0,
which significantly improves the previously best operation complexity O(¢~?) achieved by the FRBS
method [13].
The main contributions of our paper are summarized as follows.

e Primal-dual extrapolation methods are proposed for the MI problem (1) with locally Lipschitz
continuous F'; which enjoy several attractive features: (i) they are applicable to a broad range
of problems since only local rather than global Lipschitz continuity of F' is required; (ii) they
adopt a point and operator extrapolation technique with fundamental operations consisting only of
evaluations of F' and resolvent of B; (iii) they are equipped with a verifiable termination criterion
and output an e-residual solution of problem (1) with complexity guarantees.

e We show that an e-residual solution of problem (1) with locally Lipschitz continuous F' can be
found by our methods with an operation complexity of O (log 5_1) and O (5_1 log 5_1) for pu >0
and p = 0, respectively. The latter complexity significantly improves the previously best operation
complexity O(¢~2) achieved by the FRBS method [13].

e The applications of our proposed methods to convex conic optimization, conic constrained SP, and
VI problems are studied. Best complexity results for finding an e-KKT or e-residual solution of
these problems under local Lipschitz continuity are obtained.

The rest of this paper is organized as follows. In Section 1.1 we introduce some notation and
terminology. In Sections 2 and 3, we propose PD extrapolation methods for problem (1) with p > 0
and pu = 0, respectively, and study their complexity. In Section 4, we study the applications of the
PD extrapolation methods for solving convex conic optimization, conic constrained saddle point, and
variational inequality problems. In addition, we present some preliminary numerical results and the
proofs of the main results in Sections 5 and 6, respectively. Finally, we make some concluding remarks in
Section 7.

1.1 Notation and terminology

The following notations will be used throughout this paper. Let R™ denote the Euclidean space of
dimension n, (-,-) denote the standard inner product, and || - || stand for the Euclidean norm. For any
w € R, let wy = max{w,0} and [w] denote the least integer number greater than or equal to w.

Given a proper closed convex function h : R™ — (—o0, oo], Oh denotes its subdifferential. The proximal
operator associated with h is denoted by prox;, which is defined as

prox,(z) = arg min {1||a; — 2|2+ h(x)} Vz € R™.
zeRn | 2
Given an operator .7, dom .7 and cl(dom .77) denote its domain and the closure of its domain, respectively.
For a mapping g : R® — R™, Vg denotes the transpose of the Jacobian of g. The mapping g is called
L-Lipschitz continuous on a set ) for some constant L > 0 if ||g(x) — g(y)|| < L||x — y|| for all z,y € Q.
Besides, g is called locally Lipschitz continuous on a closed set Q if g is Lo-Lipschitz continuous on any
compact set 2 C Q for some Lq > 0. Let I stand for the identity operator. For a maximal monotone
operator 7 : R® = R", the resolvent of .7 is denoted by (I + 7)~!, which is a mapping defined
everywhere in R™. In particular, z = (I + 7)~1(z) if and only if x € (I + 7)(z). Since the evaluation
of (I +~.7)7!(x) is often as cheap as that of (I + 7)~1(z), we count the evaluation of (I +~v.7)"}(x)
as one evaluation of resolvent of . for any v > 0 and x. The residual of 7 at a point x € dom 7 is
defined as resz(z) = inf{||v|| : v € F(x)}. For any given € > 0, a point z is called an e-residual solution
of problem (1) if x € dom B and respip(z) < €.



Given a nonempty closed convex set C' C R", dist(z, C') stands for the Euclidean distance from z to
C, and TI¢(z) denotes the Euclidean projection of z onto C, namely,

[Io(z) = argmin{||z — | : z € C}, dist(z,C) = ||z — o (2)]|, VzeR™

The normal cone of C' at any z € C is denoted by N (z). For a closed convex cone K, we use K* to
denote the dual cone of I, that is, L* = {y e R™: (y,z) > 0, Vz € K}.

2 A primal-dual extrapolation method for problem (1) with y > 0

In this section we propose a primal-dual extrapolation method for solving a strongly MI problem (1),
namely, the case in which Assumption 1(b) holds with > 0. Our method is a variant of the classical
forward-backward splitting (FBS) method [10, 20]. It modifies the forward term in (3) by using a primal
and dual extrapolation technique? that has recently been proposed to design algorithms for solving
stochastic VI problems in [4]. Note that the choice of the parameters for extrapolations in [4] requires
Lipschitz continuity of F. Since F' is only assumed to be locally Lipschitz continuous in this paper, the
choice of them in [4] is not applicable to our method. To resolve this issue, we propose a backtracking
line search scheme to decide on parameters for extrapolations and splitting.® In addition, we propose
a verifiable termination criterion, which guarantees that our method outputs an e-residual solution of
problem (1) with p > 0 for any given tolerance e. The proposed method is presented in Algorithm 1
below.

Algorithm 1 A primal-dual extrapolation method for problem (1) with x>0

Input: € >0,7% >0,6€(0,1),0<v <1/2,7n€[0,v/(1+v)), and 2° = 2! € dom B.
1: fort=1,2,... do

2:  Compute

2 = (14 3B) 7 (o + oo — oY) — (P + B(F@) - FY), (@)
where
Vi1 20ye-1\ Vsl
Tt = Hlin{%, 5_1’71‘,71}5”1&’ ﬁt = L= <1 + = ) y Ot = : ta (5)
Yt 1—n V-1

and n; is the smallest nonnegative integer such that
IF (@) = F(a') =y ™ = 2| < v(1 =)y Hja™ = 2. (6)
3:  Terminate the algorithm and output z‘*! if
Iy (2" = 2™t ag(at —2'™h)) + Fa™*) — F(a') = Bu(F(a') — F(a71)| < e (7)

4: end for

Remark 1. (i) If n = 0, Algorithm 1 is reduced to a dual extrapolation method. Besides, oy and [3
are for primal-dual extrapolation and ~; is the stepsize, while g, § and v are used for backtracking line
search. For the sake of generality, we provide a flexible choice for v and n satisfying the conditions
stated in the input line of Algorithm 1. Nevertheless, one can easily specify them, for example, letting
(v,m) = (0.5,0.33), which appears to be the best choice for Algorithm 1 as observed in practice.

(i) As will be shown in Lemma 3, it holds that

At =t (et — ot 4+ F(at) - Pat) - f(F() - Fa™Y) € (F + B)('H).

“In the context of optimization, the operator F is typically the gradient of a function and F (z) can be viewed as a point
in the dual space. As a result, {'} and {F(z")} generated by this method can be respectively viewed as a primal and dual
sequence and thus the extrapolations on them are called primal and dual extrapolations just for simplicity. Accordingly, we
refer to our method as a primal-dual extrapolation method.

°It shall be mentioned that backtracking line search schemes have been widely used for designing algorithms for solving
MI problems (e.g., see [13, 25]).



As a result, o't satisfying (7) implies that respy (') < €, namely, '+ is an e-residual solution of

problem (1). Thus, (7) provides a verifiable termination criterion for Algorithm 1 to find an e-residual
solution of (1).

(iii) As will be established below, Algorithm 1 is well-defined at each iteration. Moreover, one can
observe that the fundamental operations of Algorithm 1 consist only of evaluations of F' and resolvent of
B. Specifically, at iteration t, Algorithm 1 requires ny + 1 evaluations of F and resolvent of B for finding
21 satisfying (6).

We next establish that Algorithm 1 well-defined and outputs an e-residual solution of problem (1).
We also study its complexity including: (i) iteration complexity measured by the number of iterations; (ii)
operation complexity measured by the number of evaluations of F' and resolvent of B.

To proceed, we assume throughout this section that problem (1) is a strongly MI problem (namely,
p > 0) and that z* is the solution of (1). Let {x!'};c1 denote all the iterates generated by Algorithm 1,
where T is a subset of consecutive nonnegative integers starting from 0.6 We also define

* * o
TOZHxO—fCH? S:{xedomB ||x—x||§m}, (8)

T-1={t—-1:t€T}, {=v(l—n)—mn, 9)

where 2 is the initial point, and v and 7 are the input parameters of Algorithm 1.

The following lemma establishes that F' is Lipschitz continuous on S and also on an enlarged set
induced by 79, ro, v, 2%, F and S, albeit F' is locally Lipschitz continuous on cl(dom B). This result will
play an important role in this section.

Lemma 1. Let S be defined in (8). Then the following statements hold.
(i) F is Ls-Lipschitz continuous on S for some constant Ls > 0.

(i) F' is Lg-Lipschitz continuous on S for some constant Lg > 0, where

(5+970Ls)7“0} .
8 = €T E dOmB N xTr — $* < - 7
{ o -7 < CE200ls)

ro s defined in (8), and yo > 0 and v € (0,1/2] are the input parameters of Algorithm 1.

(10)

Proof. Notice that S is a bounded subset in dom B. By this and the local Lipschitz continuity of F
on cl(dom B), there exists some constant Lg > 0 such that F'is Lgs-Lipschitz continuous on S. Hence,
statement (i) holds and moreover the set S is well-defined. By a similar argument, one can see that
statement (ii) also holds. O

The following theorem shows that Algorithm 1 is well-defined at each iteration. Its proof is deferred
to Section 6.

Theorem 1. Let {z'}ier and {n;}1<ter—1 be generated by Algorithm 1 and & be defined in (9). Then the
following statements hold.

(i) Algorithm 1 is well-defined at each iteration.

(i) 2t € S for allt € T, and moreover, S i_,n; < M+t for all 1 <t € T — 1, where S is defined in
(8) and

= fos (552 ros] o

S

The next theorem presents iteration and operation complexity of Algorithm 1 for finding an e-residual
solution of problem (1) with p > 0, whose proof is deferred to Section 6.

SFor the time being, it is possible that T = {0,1,2,...,T} or {0,1,2,...} for some T > 0. The reason for not presuming
T to be a finite set here is that the finite termination of Algorithm 1 is not yet established. Nevertheless, it will be shown in
Theorem 2 that T is a finite set.

"The specific choices of the radius associated with S and S will become clear from the proofs of Lemmas 5 and 6.



Theorem 2. Let vy, 0, v, n and € be given in Algorithm 1, Ls and Lg be given in Lemma 1, and
ro and & be defined in (8) and (9). Suppose that u > 0, i.e., F + B is strongly monotone on dom B.
Then Algorithm 1 terminates and outputs an e-residual solution of problem (1) in at most T iterations.
Moreover, the number of evaluations of F' and resolvent of B performed in Algorithm 1 is no more than
N, respectively, where

T =3+ |2log ro 8+ 1270Ls) log (14— wmin { L=16¢ , (12)
1 1 3
3e 1—2V2min{L§ 55,70} -

+

0~3

v o () rnt] -

Remark 2. (i) It can be seen from Theorem 2 that Algorithm 1 enjoys an iteration and operation
complexity of O (log e_l) for finding an e-residual solution of problem (1) with pu > 0 under the assumption
that F' is locally Lipschitz continuous on cl(dom B). In addition, notice that if vo > 6§/ Lz,

24 . -1 ~ 20 H

It then follows from (12) and (13) that if v9 > 0§/Lg, T and N are roughly proportional to Lg/jui. Hence,
Lg/p can be viewed as the “condition number” of problem (1) with p > 0.

(ii) Algorithm 1 will become a linearly convergent method if setting e = 0. Indeed, one can observe
from Lemma 5 that the sequence {x*} generated by Algorithm 1 with ¢ = 0 satisfies ||z* — z*||> <
(1 —202) 711 + 2uy)27F||2® — 2*||? for all k > 2, where z* is the solution of (1) and 7y := infyyy is a
positive number due to Theorem 1. B

3 A primal-dual extrapolation method for problem (1) with y =0

In this section we propose a primal-dual extrapolation method for solving a non-strongly MI problem (1),
namely, the case in which Assumption 1(b) holds with x4 = 0. Our method consists of applying Algorithm
1 to approximately solve a sequence of strongly MI problems 0 € (Fj + B)(x), where Fj, is a perturbation
of F given in (14). The proposed method is presented in Algorithm 2.

Algorithm 2 A primal-dual extrapolation method for problem (1) with g =0
Input: € >0,7 >0,2€domB,0<5<1,0<v<1/2,n€[0,v/(1+0v)),po>1,0<70<1,(>1,
0<0o<1/¢, pr = poCk, 7, = 700" for all k > 0.
1: for £k =0,1,... do
2:  Call Algorithm 1 with F < F}, p + pgl, € < 11, 20 = 2! < 2F and the parameters g, 7, ¢ and v,
and output zFt!, where

Fy(z) = F(x) + py*(x — 2¥) Vo € dom F. (14)
3:  Terminate this algorithm and output z*+1 if
o 125 = F 47 < e (15)

4: end for

Remark 3. (i) In Algorithm 2, the parameters 7o, 0, v and n have the same meaning as those for
Algorithm 1 (see Remark 1(i)). Besides, po, 10, ¢ and o are used for subproblem regularization and
subproblem termination criterion.

(ii) It is easy to see that Algorithm 2 is well-defined at each iteration and equipped with a verifiable
termination criterion, while it shares the same fundamental operations as Algorithm 1, consisting only of
evaluations of F' and resolvent of B.



We next show that Algorithm 2 outputs an e-residual solution of problem (1). We also study its
complexity including: (i) iteration complerity measured by the number of iterations; (ii) operation
complexity measured by the total number of evaluations of F' and resolvent of B.

To proceed, we assume that z* is an arbitrary solution of problem (1) and fixed throughout this
section. Let {z*}cx denote all the iterates generated by Algorithm 2, where K is a subset of consecutive
nonnegative integers starting from 0.8 We also define K — 1 = {k —1: k € K}, and

- 1 POTO0

0 * *
=°—2*|, Q={zedomB: |jz—2*| <[ ——xu +1 + , 16
To=|z" —2%, Q {:B om |z — =™ ( — ) <7~0 - C)} (16)

where 20 is the initial point and pg, 79, v, ¢, ¢ are the input parameters of Algorithm 2.

The following lemma establishes that F} is Lipschitz continuous on Q and also on an enlarged set
induced by Fj and Q with a Lipschitz constant independent on k. This result will play an important role
in this section.

Lemma 2. Let Fy, and Q be defined in (14) and (16). Then the following statements hold.

(i) Fy is Lo-Lipschitz continuous on Q for some constant Lo > 0 independent of k.

(ii) Fy is L@—Lipschitz continuous on Q for some constant L@ > 0 independent of k, where

~ 5+9’)/()LQ _ PoTo
Q—{xedomB: xz—zx* §< 1> <T+ 9 17
ool < (S22 1) (o 2 an

Proof. Notice that Q is a bounded subset in dom B. By this and the local Lipschitz continuity of F' on
cl(dom B), there exists some constant Lg > 0 such that F' is Lo-Lipschitz continuous on Q. In addition,
notice from Algorithm 2 that py > pg for all k£ > 0. Using these and (14), we can easily see that F} is
Lo-Lipschitz continuous on Q with Lo = Lo + 1/po. Hence, statement (i) holds and moreover the set O
is well-defined. By a similar argument, one can see that statement (ii) also holds. O

The next theorem presents iteration and operation complexity of Algorithm 2 for finding an e-residual
solution of problem (1) with @ = 0, whose proof is deferred to Section 6.

Theorem 3. Let vy, 6, v, 1, ¢, 0, po, To and € be given in Algorithm 2, Lo and L@ be given in Lemma
2, & and 7o be defined in (9) and (16), and

POTO (fo +A) (8 +1290Lo)
1—o0o( PR 37'0\/1—21/2min{Lél(5§,'yo} 1)
£ 1
Cy = |log | —— | /log 5“ , Cs= . (19)
2 |7 (70[/@) . 3 (C — 1) log (1 + (1 o) min {L o€, ’}’0})

Suppose that u = 0, i.e., F'+ B is monotone but not strongly monotone on dom B. Then Algorithm
2 terminates and outputs an e-residual solution in at most K + 1 iterations. Moreover, the number of
evaluations of F' and resolvent of B performed in Algorithm 2 is no more than M, respectively, where

e oo (252) )

and

€P0 €

r logl;gd
+ 4¢C3(log o) K max {W,C <27—0> e ,1} . (21)
€

€P0

8For the time being, it is possible that K = {0,1,2,..., K} or {0,1,2,...} for some K > 0. The reason for not presuming
K to be a finite set is that the finite termination of Algorithm 2 is not yet established. Nevertheless, it will be shown in
Theorem 3 that K is a finite set.

9The specific choices of the radius associated with Q and Q will become clear from the proof of Lemma 10.

log ¢
_ 20(7 A 2 log(1/0)
M:8+c2+(8+02)K+4<(01)+03max{m“,g(“) = ,1}




Remark 4. (i) Sincel1 < (< 1/o and K = O (log 5_1), it can be seen from Theorem 3 that Algorithm 2
enjoys an iteration complexity of O (log 5_1) and an operation complexity of O (6_1 log 5_1) for finding an
e-residual solution of problem (1) with p = 0 under the assumption that F' is locally Lipschitz continuous

on cl(dom B). The latter complexity significantly improves the previously best operation complexity O(s~2)
achieved by the FRBS method [13]. In addition, notice that if 9 > 0£/L 5,

2 _ 26& _
log [ 1 + ——— min { LZ16¢, > ~——— L7
g< po(1 —n) { Q 5%} po(l—n) <

It then follows from (19) and (21) that if vo > 6§/ L5, M is roughly proportional to Lg. Hence, L can
be viewed as the “Lipschitz constant” of problem (1) with u = 0.

(i) Algorithm 2 will become a globally convergent method if setting e = 0. Indeed, one can o0b-
serve from Lemma 8 that the sequence {z*} generated by Algorithm 2 with ¢ = 0 satisfies ||2F —
(I + pr(F + B)) "1 (zF)|| < prr for all k > 0, where 0 < p, — oo and >k PETE < 00. Besides, one can
see from Lemma 9 that {z*} is bounded. It then follows from [22, Theorem 1] that the sequence {z*}
converges to a solution of (1).

(iii) While Algorithm 2 is proposed to solve problem (1) with p =0, it is also applicable to (1) with
w > 0. Similar to the proof of Theorem 3, it can be shown that Algorithm 2 achieves an operation
complezity of O((loge™1)2) for finding and e-residual solution of problem (1) with u > 0. This complexity
is at most worse by a logarithmic factor compared to the complexity achieved by directly calling Algorithm
1.

4 Applications

In this section we study applications of our PD extrapolation method, particularly Algorithm 2, for
solving several important classes of problems, particularly, convex conic optimization, conic constrained
saddle point, and variational inequality problems. As a consequence, complexity results are obtained for
finding an e-KKT or e-residual solution of these problems under local Lipschitz continuity for the first
time.

4.1 Convex conic optimization

In this subsection we consider convex conic optimization

min f(z) + P(x)

st. —g(z) € K, (22)

where f, P : R"™ — (—o0, 00| are proper closed convex functions, K is a closed convex cone in R™, and the
mapping g : R® — R™ is K-convex, that is,
vg(x) + (1 =D)gy) —g@Wz+ (1 -d)y) e L  Va,y eR", J€[0,1]. (23)

It shall be mentioned that dom P is possibly unbounded.

Problem (22) includes a rich class of problems as special cases. For example, when IC = R"* x {0}
for some my and ma, g(z) = (g1(z), .., gm, (), h1(z), . .., hm, ()T with convex g;’s and affine h;’s, and
P(z) is the indicator function of a simple convex set X C R", problem (22) reduces to an ordinary convex
optimization problem

min{f(x) : gi(z) <0, i=1,...,my;hj(z) =0, j=1,...,ma}.

We make the following additional assumptions for problem (22).

Assumption 2. (a) The prozimal operator associated with P and also the projection onto K* can be
exactly evaluated.

(b) The function f and the mapping g are differentiable on cl(dom OP). Moreover, Vf and Vg are
locally Lipschitz continuous on cl(dom OP).



(¢) Both problem (22) and its Lagrangian dual problem

sup inf { f(z) + P(z) + (A, g(z))} (24)
AEK*

have optimal solutions, and moreover, they share the same optimal value.

Under the above assumptions, it can be shown that (x, \) is a pair of optimal solutions of (22) and
(24) if and only if it satisfies the Karush-Kuhn-Tucker (KKT) condition

Vf(x)+ Vg(z)\+ IP(x)
0€ ( o) + Nie- (M) ) | (25)

In general, it is difficult to find an exact optimal solution of (22) and (24). Instead, for any given ¢ > 0,
we are interested in finding a pair of e-KKT solutions (z, ) of (22) and (24) that satisfies

dist(0, Vf(z) + Vg(x)\ + 0P(x)) < e, dist(0, —g(z) + Nicx(N)) < e. (26)
Observe from (25) that problems (22) and (24) can be solved as the MI problem
0€ F(z,\) + B(z, \), (27)

where

= (T - (113)

Notice that A € £* and g is K-convex in the sense that (23) holds, which imply that (), g(x)) is convex
in x. Based on this and the above assumptions, one can observe that f(x) + (A, g(x)) is convex in z and
concave in A on cl(dom B), which implies that F' is monotone on cl(dom B). One can also observe that F'
is locally Lipschitz continuous on cl(dom B) and B is maximal monotone. As a result, Algorithm 2 can
be suitably applied to the MI problem (27). It then follows from Theorem 3 that Algorithm 2, when
applied to problem (27), finds an e-residual solution (x, A) of (27) within O (5*1 log 5*1) evaluations of
F' and resolvent of B. Notice from (26) and (28) that such (x, \) is also a pair of e-KKT solutions of (22)
and (24). In addition, the evaluation of F' requires that of Vf and Vg, and also the resolvent of B can
be computed as

(I+~vB)7! (i) = (pﬁ’ij&(f)) Y(z,\) € R" x R™ v > 0.

The above discussion leads to the following result regarding Algorithm 2 for finding a pair of e-KKT
solutions of problems (22) and (24).

Theorem 4. For any e > 0, Algorithm 2, when applied to the MI problem (27), outputs a pair of e-KKT
solutions of problems (22) and (24) within O (5_1 log 6_1) evaluations of V f, Vg, prox,p and g« for
some v > 0.

Remark 5. (i) This is the first time to propose an algorithm for finding an e-KKT solution of problem
(22) without the usual assumption that V f and Vg are Lipschitz continuous and/or the domain of
P is bounded. Moreover, the proposed algorithm is equipped with a verifiable termination criterion
and enjoys an operation complexity of O (5*1 log 5*1).

(ii) A first-order augmented Lagrangian method was recently proposed in [11] for finding a pair of e-KKT
solutions of a subclass of problems (22) and (24), which also requires O (5_1 log 5_1) evaluations of
V[, Vg, prox,p and lg~. However, this method and its complexity analysis require that V f and
Vg be Lipschitz continuous on an open set containing dom P and also that dom P be bounded. As
a result, it is generally not applicable to problem (22).



(i1i) A variant of Tseng’s MFBS method was proposed in [16, Section 6] for finding a pair of e-KKT
solutions of a special class of problems (22) and (24), where g is an affine mapping, K = {0}, and
V f is Lipschitz continuous on cl(dom P). Due to the latter assumption, this method is generally
not applicable to problem (22). Additionally, this method has an operation complexity of O (5_2)
(see [16, Theorem 6.3]). In contrast, our method achieves a significantly better operation complezity
of of O (5_1 log z—:_l). Furthermore, an adaptive prorimal algorithm was recently proposed in [8,
Section 3.1] for solving a special case of problem (22) where g is an affine mapping. It has been
shown in [8, Theorem3.4] that the iterates of this algorithm converges to a KKT solution of the
problem.

4.2 Conic constrained saddle point problems

In this subsection we consider the following conic constrained saddle point (CCSP) problem:

min  max _{¥(z,y) = f(z,y) + P(z) = P(y)}, (29)
—9(x)eX —g(y)ek
where f : R*xR™ — [—o0, oc] is convex in z and concave in y, P : R" — (—o0, 00] and P : R™ — (—00, 0]

are proper closed convex functions, K C R? and K C R? are closed convex cones, and g and § are K- and
K-convex in the sense of (23), respectively. It shall be mentioned that dom P and dom P are possibly
unbounded.

We make the following additional assumptions for problem (29).

Assumption 3. (a) The prozimal operator associated with P and P and also the projection onto K*
and KC* can be exactly evaluated.

(b) The function f is differentiable on cl(dom dP) x cl(dom OP). Moreover, V f is locally Lipschitz
continuous on cl(dom dP) x cl(dom dP).

(¢) The mappings g and g are respectively differentiable on cl(dom 9P) and cl(dom dP). Moreover, Vg
and Vg are locally Lipschitz continuous on cl(dom OP) and cl(dom OP), respectively.

(d) There exists a pair (z*,y*) € dom P x dom P satisfying —g(z*) € K and —g(y*) € K such that
V(" y) < U(z"y") < ¥(z,y)
holds for any (x,y) € dom P x dom P satisfying —g(z) € K and —j(y) € K.

Problem (29) includes a rich class of saddle point problems as special cases. Several of them have
been studied in the literature. For example, extragradient method [5], mirror-prox method [18], dual
extrapolation method [19], and accelerated proximal point method [9] were developed for solving the
special CCSP problem

min max f(a,y), (30)
where f is convex in z and concave in y with Lipschitz continuous gradient on X x Y, and X and )
are simple convex sets. Also, optimistic gradient method [14] and extra anchored gradient method [29]
were proposed for solving problem (30) with X = R™ and ) = R™. In addition, accelerated proximal
gradient method [26], a variant of MFBS method [16], and also generalized extragradient method [16]
were proposed for solving the special CCSP problem

min max {f(:ﬂ,y) + P(x) — p(y)} , (31)

z oy
where f is convex in z and concave in y with Lipschitz continuous gradient on dom P x dom P. Besides,
several optimal or nearly optimal first-order methods were developed for solving problem (30) or (31)
with a strongly-convex-(strongly)-concave f (e.g., see [9, 28, 27]). Recently, extra-gradient method of
multipliers [30] was proposed for solving a special case of problem (29) with g and g being an affine

mapping, dom P and dom P being compact, and Vf being Lipschitz continuous on dom P x dom P.
Iteration complexity of these methods except [29] was established based on the duality gap on the ergodic
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(i.e., weight-averaged) solution sequence. Yet, the duality gap can often be difficult to measure. In
practice, one may use a computable upper bound on the duality gap to terminate these methods, which
however typically requires the knowledge of an upper bound on the distance between the initial point
and the solution set. Besides, there is a lack of complexity guarantees for these methods in terms of the
original solution sequence.

Due to the sophistication of the constraints —g(z) € K and —g(y) € K and also the local Lipschitz
continuity of Vf, Vg and Vg, the aforementioned methods [5, 19, 18, 26, 16, 14, 9, 28, 27, 29] are
generally not suitable for solving the CCSP problem (29). We next apply our Algorithm 2 to find an
e-KKT solution of (29) and also study its operation complexity for finding such an approximate solution
under the local Lipschitz continuity of Vf, Vg and Vg.

Under the above assumptions, it can be shown that (z,y) is a pair of optimal minmax solutions of
problem (29) if and only if it together with some (X, \) satisfies the KKT condition

Vaf(z,y) + Vg(z)A + 0P (x)
—Vyf(,y) + Vgy)A+ IP(y)
—g(x) + Nig=(A)

—3(y) + Nig-(A)
Generally, it is difficult to find a pair of exact optimal minimax solutions of (29). Instead, for any given

e > 0, we are interested in finding an e-KKT solution (z,y, A\, A) of (29) that satisfies

dist(0, V. f(z,y) + Vg(@)A + OP(z)) < e, dist(0, =V, f(z,y) + Vi) +P(y)) <e,  (33)

0e (32)

dist(0, —g(z) + Ni= (V) <&, dist(0, —g(y) + N (N)) < e. (34)
Observe from (32) that problem (29) can be solved as the MI problem
0 € F(z,y, M\ A) + Bz, y, A, ), (35)
where
Vaf(,y) + Vg(x)A OP(x)
Flyah) = | Vil @ y)(jL) TN | Bla ) = f/’i%)) (36)
—9(y) Nig+(A)

Notice that A € K*, A € K*, and g and § are respectively K- and K-convex in the sense of (23), which
imply that (X, g(x)) and (X, §(y)) are convex in x and vy, respectively. Based on this and the above
assumptions, one can observe that f(x,y) + (A, g(z)) — (X, §(y)) is convex in (x, \) and concave in (y, \)
on cl(dom B), which implies that F' is monotone on cl(dom B). One can also observe that F' is locally
Lipschitz continuous on cl(dom B) and B is maximal monotone. As a result, Algorithm 2 can be suitably
applied to the MI problem (35). It then follows from Theorem 3 that Algorithm 2, when applied to
problem (35), finds an e-residual solution (z,, A, A) of (35) within O (e tloge™!) evaluations of F and
resolvent of B. Notice from (33), (34) and (36) that such (x,y, A, A) is also an e-KKT solution of problem
(29). In addition, the evaluation of F' requires that of Vf, Vg and Vg, and also the resolvent of B can
be computed as

= V(z,y, A\, A) € R" x R™ x R? x R?, > 0.
H;@*(A)

The above discussion leads to the following result regarding Algorithm 2 for finding an e-KKT solution
of problem (29).

Theorem 5. For any € > 0, Algorithm 2, when applied to the MI problem (35), outputs an e-KKT
solution of problem (29) within O (a‘*lloga*l) evaluations of V f, Vg, Vg, prox,p, PIOX, . I+ and
g, for some v > 0.

(I+~B)™"

> 8
/-\

Remark 6. This is the first time to propose an algorithm for finding an e-KKT solution of problem
(29). Moreover, the proposed algorithm is equipped with a verifiable termination criterion and enjoys
an operation complezity of O (z—:_l log 5_1) without the usual assumption that V f is Lipschitz continuous
and/or the domains P and P are bounded.
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4.3 Variational inequality

In this subsection we consider the following variational inequality (VI) problem:
find x € R" such that g(y) — g(z) + (y — z, F(x)) > 0 Vy € R", (37)

where g : R"™ — (—o00, 00| is a proper closed convex function, and F' : dom F' — R" is monotone and locally
Lipschitz continuous on cl(dom dg) C dom F. It shall be mentioned that dom g is possibly unbounded.
Assume that problem (37) has at least one solution. For the details of VI and its applications, we refer
the reader to [2] and the references therein.

Recently, an adaptive golden ratio algorithm was proposed in [12, Algorithm 1] for solving (37). In
addition, some special cases of (37) have been well studied in the literature. For example, projection
method [23], extragradient method [5], mirror-prox method [18], dual extrapolation method [19], operator
extrapolation method [6], extra-point method [3, 4], and extra-momentum method [4] were developed for
solving problem (37) with g being the indicator function of a closed convex set and F' being Lipschitz
continuous on it or the entire space. In addition, a variant of Tseng’s MFBS method [16], and generalized
extragradient method [16] were proposed for solving problem (37) with F' being Lipschitz continuous.
Iteration complexity of these methods except [6] was established based on the weak gap or its variant on
the ergodic (i.e., weight-averaged) solution sequence. Yet, the weak gap can often be difficult to measure.
In practice, one may use a computable upper bound on the weak gap to terminate these methods, which
however typically requires the knowledge of an upper bound on the distance between the initial point
and the solution set. Besides, there is a lack of complexity guarantees for these methods in terms of the
original solution sequence. In addition, since F' is only assumed to be locally Lipschitz continuous on
cl(dom g) in our paper, these methods are generally not suitable for solving problem (37).

Generally, it is difficult to find an exact solution of problem (37). Instead, for any given £ > 0, we are
interested in finding an e-residual solution of (37), which is a point x satisfying respigq(x) < e. To this
end, we first observe that problem (37) is equivalent to the MI problem

0 € (F+0g)(x). (38)

Since F' is monotone and locally Lipschitz continuous on cl(dom dg) and dg is maximal monotone,
Algorithm 2 can be suitably applied to the MI problem (38). It then follows from Theorem 3 that
Algorithm 2, when applied to problem (38), finds an e-residual solution x of (38), which is indeed also an
e-residual solution of (37), within O (5*1 log 5*1) evaluations of F' and resolvent of dg. Notice that the
resolvent of dg can be computed as

(I +~0g)  (z) = prox,,(r), Vre€R" y>0.

The above discussion leads to the following result regarding Algorithm 2 for finding an e-residual
solution of problem (37).

Theorem 6. For any e > 0, Algorithm 2, when applied to the MI problem (38), outputs an e-residual
solution of problem (37) within O (8_1 log 5_1) evaluations of F' and prox,, for some vy > 0.

Remark 7. An adaptive golden ratio algorithm was recently proposed in [12, Algorithm 1]. While [12]
did not specifically study the operation complexity of this algorithm for finding an e-residual solution of
(37), it can be shown that the algorithm achieves an operation complexity of O(e=2) for such a solution by
using [12, equation (34) and Lemma 2]. In contrast, the operation complezity of O (5_1 log 6_1) achieved
by our method is significantly better.

5 Numerical results

In this section we conduct some preliminary experiments to test the performance of our proposed method
(Algorithm 2), and compare it with FRBS method [13], MFBS method with an Armijo-Goldstein-type
stepsize [25], and adaptive golden ratio (AGR) algorithm [12], respectively. All the methods are coded in
Matlab and all the computations are performed on a desktop with a 3.60 GHz Intel i7-12700K 12-core
processor and 32 GB of RAM.
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We consider the problem

i Az —b||t + (B —||Cy —d||3 39
min max {14z bl + (Br,y) ~ |Cy — dl{}, (39)

where A € R>™ B € R™" C ¢ R*™, b R, d € RY, and |24 = (3, 2})/* for any vector 2.

We randomly generate instances for problem (39). Specifically, we first randomly generate U € RIX(
and V e RM/10xn with all the entries independently chosen from a normal distribution with mean
0 and standard deviation 0.1, and a diagonal matrix D € R(/10x(/10) with all the diagonal entries
independently chosen from a uniform distribution between 0 and 1. Then we set A = UDV. In a
similar vein, we randomly generate C. Besides, we randomly generate P € R™*! with all the entries
independently chosen from the standard normal distribution, and set B = PA. In addition, we randomly
generate b and d with all the entries independently chosen from the standard normal distribution.

Notice that problem (39) is a special case of (29). As discussed in Subsection 4.2, (39) is equivalent

to the monotone inclusion problem (1) with

V() Ax - b + BTy
Fle.y) = <V<||0y - Bw)

n/10)

s = (i) )

where B = {z € R™ : ||z]| < 1}. Clearly, B is a maximal monotone operator and F' is monotone and
locally Lipschitz continuous, albeit not globally Lipschitz continuous. In addition, for any v > 0, the
resolvent of vB can be calculated as

1 ([T o HRi (:L‘))
U5 <y) ( s(y) )
As a result, (39) can be suitably solved by Algorithm 2, FRBS [13], MFBS [25], and AGR [12]. Our aim
is to find a 10~ “-residual solution of the corresponding monotone inclusion problem of (39) for the above
instances by using Algorithm 2, FRBS, MFBS and AGR, and compare their performance. Due to this,
we terminate them once a 10~*-residual solution is found. In addition, for all the methods, we choose 0
as the initial point and set the parameters as

£,%, 6, V, po, 70, ¢, 0,m) = (1074,0.1,0.9,0.5,10,0.09,9,0.1,0.33) for Algorithm 2;

o (
e (A\o,0,0) = (0.1,0.5,0.9) for FRBS [13];
(0,6

. ,8) = (0.1,0.5,0.9) for MFBS [25].

U?
(Ao, A, ¢) = (1,1,1.5) for AGR [12].

The computational results of Algorithm 2, FRBS, MFBS and AGR for the instances randomly
generated above are presented in Table 1. In detail, the value of (n,m,l,q) is listed in the first four
columns. For each instance, the number of gradient evaluations and the CPU time (in seconds) are given in
the rest of the columns. One can observe that our method, namely Algorithm 2, substantially outperforms
the other three methods in terms of number of gradient evaluations and CPU time. Notice that our
method uses both primal and dual extrapolation schemes, while FRBS only uses a dual extrapolation
scheme, and MFBS and AGR do not use any of them. The numerical results in Table 1 demonstrate that
primal and dual extrapolation schemes have an acceleration effect.

Gradient evaluations CPU time (seconds)

n m l q Algorithm 2 FRBS MFBS AGR Algorithm 2 FRBS MFBS AGR
100 10 500 100 || 1.23 x 103 3.12x 105 3.08x 10° 2.12x10% | 0.3 0.5 0.4 0.3
200 20 1000 200 | 2.81 x 10° 8.15x 10 1.20x 10* 7.41x 103 || 1.4 6.2 6.3 3.7
300 30 1500 300 || 2.28 x 10% 6.25 x 10*  8.84 x 10* 4.27 x 10* | 23.3 82.3 114.3 573
400 40 2000 400 || 7.62 x 10% 1.78 x 10° 3.84 x 10° 1.24 x 10° || 109.4 3144 5984  231.9
500 50 2500 500 || 5.93 x 10% 1.68 x 10° 5.95 x 10° 1.65 x 10° || 149.2 388.5 1741.8 464.4
600 60 3000 600 | 6.00 x 10* 1.70 x 10° 4.28 x 10° 1.71 x 10° || 238.4 549.0 1588.8 561.7
700 70 3500 700 || 6.90 x 10% 1.54 x 10°  4.71 x 10° 1.37 x 10° || 268.3 639.5 20059 596.7
800 80 4000 800 || 4.62 x 10*  8.52x 10* 4.04 x 10° 8.52 x 10* || 271.6 565.9 2363.5 577.5
900 90 4500 900 | 5.43 x 10* 9.33 x 10* 5.17x 105 8.27 x 10* | 324.3 594.3  3459.8 562.8
1000 100 5000 1000 || 3.32 x 10*  6.13 x 10* 5.37 x 10° 6.67 x 10* || 380.5 784.2  6206.5 854.8

Table 1: Numerical results for problem (39)
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6 Proof of the main results

In this section we provide a proof of our main results presented in Sections 2 and 3, which are particularly
Theorems 1, 2, and 3.

6.1 Proof of the main results in Section 2

In this subsection we first establish several technical lemmas and then use them to prove Theorems 1 and
2.

Before proceeding, we introduce some notation that will be used shortly. Recall from Section 2 that
{x'}er denotes all the iterates generated by Algorithm 1, where T is a subset of consecutive nonnegative
integers starting from 0. For any 1 <t € T, we define

A= F(z') = F(a'™), (40)
Al = A =y (2 = 2. (41)
In addition, we define
vt =t — 2T (et — 2+ AT — 8 A Vi<teT-1, (42)
t—1 t—1 9
%zl?ﬂ @:IIu+mwg:IIQ+-fZ) Vi<teT-1.10 (43)
i=1 i=1

The following lemma establishes some properties of {v'};<ier_1.

Lemma 3. Let {z'}cr be generated by Algorithm 1. Then for all 1 <t € T — 1, the following relations
hold.

€ (F + B)(="), (44)
=3 (@' — 2" + AT - 3,8AN. (45)
Proof. By (4), one has
ot ap(at — 2 =y (F(2h) + Bu(F(2) — F(z'™1))) € o' + 4 B(ztt).
Adding v, F(2'™!) to both sides of this relation, we obtain
o'+ ap(rt =2+ p(Fh) = F(a') = wBi(F(a') — F(a'™h) € 2™ 4+ 3(F + B)(a"),
which together with (40) and (42) yields
vh = (@l =T (e - 2T + AT B AT € (F + B) (2",
and hence (44) holds. In addition, recall from (5) that a; = n7y:5¢/v:—1. By this, (41) and (43), one has
o' = (et = e (et = ) AT -y BAT)
L (e T At )
=4 (@ =2+ RAT - 5,840,
Hence, (45) holds as desired. O

The next two lemmas establish some properties of {z'};c7.

O0We set 61 = 1.
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Lemma 4. Let {xt};c1 be generated by Algorithm 1. Then for all 1 <k € T — 1, we have
1 Lo 1 i . s \
591||41?0 —at|® — S+ 207k) Ok |2 — 2 |? > =0 (AN M —2¥) + Ry, (46)

where

k
1
R = Y (B0 o)+ ol o ). (47)

t=1

Proof. By (2), (44) and 0 € (F' + B)(z*), one has
<’Ut,.%'t+1 . 1'*> > unt+1 _ .%'*”2,
which along with (45) implies that

t+1 .%'*”2 <.%'t t+1 + 7 At—i— _'Yt/BtA i .1‘*>
— <$t —r t+1 xtJrl —x > +,yt<At+17xt +1 {L’*> _ :)/t/Bt<At,«Tt+1 o JI*>

1 o
(Hx T HQ H t+1 x*HQ _ ||$t _ l’t+1||2) +’Yt<At+1,xt+1 _ $*>

- 'Ytﬁt<A a-T - $*> - ’?tﬁt<At,xt+1 — ﬂst>.

Aol

Rearranging the terms in the above inequality yields

1 i} 1 ) . s o - .
§||xt — *||* - S+ 25u) | — 2P > B (A 3" — 2¥) — F (AT, 2 — 2¥)

- ~ 1
+ ,tht<At’xt+l _ :L’t> + §HIL‘t+I _ l’tHQ.

Multiplying both sides of this inequality by #; and summing it up for t = 1,...,k, we have

k

1 Lo 1 ) )
> (g0’ oI = 50+ 2l - 7))

~
—_

>

Mw

k
t7tﬂt<A l‘ — LU Z Qt'yt At+1 .Tt +1 I*> + Rk
t t=1

Il
N

k-1
= 0B AY &t — o)+ (i1 Fer1Beir — 07 (AT 2T — 2%) — 305 (AM M — %) 4 Ry
t=1
(48)

In addition, it follows from z° = 2! and (41) that A! = 0. Also, by the definition of 4, 6; and §; in (5)
and (43), one has

- . 2yt V1 N 20y \ Ve
Or+1Yi+1 8141 — 0yt = 64 (1 + . : 1+ —0; =0,
1=n) 1-=1n mu 1-n n

Orr1 = (1 + 2911)0;. (49)

Using these, A' = 0 and (48), we obtain

k
1 Ly 1 . - .

Z (29tH$t — | - §9t+1Hﬂ'3tJr1 - ’2) > =0k (AF, M — 2*) 4+ Ry,

t=1

which yields
1 1 _ N
591”1,0 _ ‘T*HQ _ §0k+1”xk+l _ x*HZ > _,ykgk<Ak+17xk+l _ $*> + Ry.
The conclusion then follows from this and (49) with ¢ = k. O
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Lemma 5. Let {xt};c1 be generated by Algorithm 1. Then we have

1

k+1 %2
Il vl = (1— 202)0y,

|20 —2*? V1i<keT-1. (50)

Proof. By the definition of 8; and 4 in (5) and (43), one has 4, 1 %:6; = (1 4+ 2uy—1/(1 — 7). Using
this and the definition of #; in (43), we obtain

2y 2 0
0t_1—4u Ve 17,52@915*015 1 (1—41/2 <1+ HYe 1) 9t )

1—n t—1

-1
g, (1 — 42 (1 + 2{’?;) ) >0, (51)

where the last inequality follows from the fact that 0 < v < 1/2. In addition, it follows from (6), (40),
(41), and the definition of 4; in (43) that

JAY| < vy, Y2t — 2™t v2<teT. (52)

Recall that Ry, is defined in (47). Letting 6y = 0, and using (47), (51), (52) and z° = z!, we have

1
R ' z( OB o+ 30— o)

k

(52) 1 _ 1
D3 <—m1mﬂtet||xf — a7l — 2t + S0l - xtn?)
t=1
k
1 - _ 1 1 _
- Z (—V%_lwtﬂﬂt\lwt — a2 — 2|+ zé’tﬂﬂfurl — '+ th—lﬂiﬂt -zt 1HQ>
t=1

1
+ Zek”$k+1 . IL‘kHQ

k
515 - 1
> Z ((\/W/2 — V’thll’ytﬁt‘gt) ||xt —t 1||||l‘t+1 _ :L‘tH) + Zekz”xk—H N kaQ

t=1
(51) 1
> Z'9k||a:k+1 o kaZ

Using this, (46) and (52), we further obtain

1 \ ~ s oo 1
Oilla” = 27 [* = S (U4 200, 2™ — (| > = 3 (AT, 2 = 27) 4 20l — b

N =

- < w1
> = el | AT (|2 — 2| 4 Ok " — 2

(52) 1
> — vy [l — P M e 19k||55k+1 — |

> VQHkakJrl _ m*HZ
It then follows from this, §; = 1, and 0 < v < 1/2 that

1
) — 2|2

T

0 *2<
TR

- (1 — 2V2)‘9k H
L]

In what follows, we will show that {n;};<;er—1 is bounded, that is, the number of evaluations of F’
and resolvent of B is bounded above by a constant for all iterations ¢t € T — 1. To this end, we define

2™ (y) = (L +9B) 7 (@' + ar(y) (@’ —2'™) =7 (F(a") + B(N)(F(z') = F(z'71))) ¥y >0, (53)
Vir1(7) = [IF (@ (7)) = F(a) =™ @ () =2l vy >0, (54)
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where

e 2uy-1) ~ mBiy)
Bi(y) = S (1 + 1_77> soo(y) = Ty (55)

The following lemma establishes some property of z!*!(v), which will be used shortly.

Lemma 6. Let S and S be defined in (8) and (10). Assume that z*, 2" € S for some 1 <t e T — 1.
Then x'T(y) € S for any 0 < v < 7.

Proof. Fix any v € (0,7]. It follows from (53) that

zt =2 () + a(y) (@' — 2" = (F(2") + Bi()(F(a') — F(z'"))) € B (7).

Also, by the definition of z*, one has —yF(z*) € yB(z*). These along with the monotonicity of B imply
that

t l‘H_l(

(x ) +w,z(y) —2*) >0, (56)

where
w = oy(7)(z' — a7t = y(F(z') = F(a*)) = v8(1)(F (') — F(a'™1). (57)
It follows from (56) that

21 () = 272 < {af =2 + w1 9) — 7)< llat - " + wlllat* () - 27,

which implies that
1241 (y) — 2| < [lat — 2 + w]| < |t — 2] + . (58)

Notice from Algorithm 1 that 0 < ;—1 <79 and 0 < 7 < 1/3. Using these and (55), we have

9y 1\ L
VB (7) = 11 (1 + 5?771) < "0, (59)
7y Be(7y) < 2#%—1)1 1
+(7) o - 3 (60)

Recall that S, 79 and w are given in (8) and (57), respectively. Using zf,2!"1 2* € S, 0 < v < v, (8),
(57), (59) and (60), we have

lwll < ae()lla’ — 2" +7Lslla’ — «*|| +~Be(7) Ls e’ — 27

1 - *
< (5+0Ls ) et = a1+ oLslet —

IN

1 * — * *
(5+70Es) (' =l + "~ = 2D + Lo’ = o°|

9 1 1 (2 + 970Ls)70
< 2 (% 4r0Ls) o+ ————noLsry < 2T 200ES)T0,
\/1—2u2( o 3) 0 T 2,2 107870 = Ty T o0

3
This together with z! € S, (8) and (58) yields

(54 9vLs)ro
3V1— 202

The conclusion then follows from this and the definition of S in (10). O

Iz (7) = 2|l <ll2* — 27| + Jw] <

The next lemma provides an upper bound on ng, which will be used to prove Theorem 1.

Lemma 7. Assume that ', 2t € S for t > 1 and Algorithm 1 has not yet terminated at iteration t — 1.
Then 't is successfully generated by Algorithm 1 at iteration t with ny < M + 1 — Zf;} n;, where M is
given in (11).
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Proof. Recall that_ 21 (y) and Vi1 1(y) are defined in (53) and (54), respectively. It follows from Lemma
6 that 2'T1(y) € S for any 0 < v < 7. Also, notice that 2! € S C S. By these and Lemma 1(ii), one has

IF (2" (7)) = F(z")]| < Lglla™ () = 2'[| Y0 < < 7.
Using this and (54), we obtain that for any 0 < v < 7y,
Vi1 (1) < (|F (@) = F(@')[| + oy~ iz () — 2| < (Lg +m D)2 (y) — 2. (61)

In addition, notice from (5) that v; < 4;_10™ ! fori = 1,...,¢t—1, which implies that ;1 < 70625;}(”1'_1).
Let v = min{~y, 5_1%,1}6]\/[“_23;} i In view of these, 6 € (0,1), and the definition of M in (11), one
can verify that

0 < Y S 5_1’715_1(5M+t_22;i e S ’70(5M S min{{/Lg, ’y()}.

It then follows from this, (9), and (61) that

Vi (7) < (Lgy + )y 2" () = 2| < v(@ = )y 2" (y) — 2],

which, together with (6), (54), the expression of v, and the definition of n; (see step 2 of Algorithm 1),
implies that ny < M 4+t — Zf;} n; and hence z!*! is successfully generated. O

We are now ready to prove the main results presented in Section 2, namely, Theorems 1 and 2.

Proof of Theorem 1. We prove this theorem by induction. Indeed, notice from Algorithm 1 that
20 = 2! € 8. Tt then follows from Lemma 7 that 22 is successfully generated and n; < M + 1. Hence,

Algorithm 1 is well-defined at iteration 1. By this, (43), and (50) with k£ = 1, one has

43) 1
1= 202

(50)
|22 — 2*|2 < |20 — 2|2 12° — 2|12,

(1 — 2V2)91
which together with (8) implies that 22 € S. Now, suppose for induction that Algorithm 1 is well-defined
at iteration 1 tot — 1 and 2 € S for all 0 <4 < t for some 2 <t € T — 1. It then follows from Lemma 7

that 't is successfully generated and Zle n; < M +t. Hence, Algorithm 1 is well-defined at iteration
t. By this, (43), and (50) with k& = ¢, one has

(50) 1 (43)

4 1
t+1 %2 < 0 .*|2 <
o4 "I < g e oI <

1—202

|2 — 2|2,
which together with (8) implies that 2'*! € S. Hence, the induction is completed and the conclusion of
this theorem holds. 0

Proof of Theorem 2. Notice from Algorithm 1 that 0 <np<1/3and 0 <y <~ forall0<teT—1.
Using these and (5), we have that for all 1 <t e T —1,

-~ 20y-1\ B -1\ 1
VB =1 ( 1+ —— <7, o= =n|l+— <3 (62)
L—n Vi1 1= 3
We next show by induction that
~ > min {L;ag,%} VO<teT -1, (63)

where ¢ is defined in (9). Indeed, (63) clearly holds at ¢ = 0. Suppose that (63) holds at some
0<t—1€T-2. We now show that (63) holds at ¢ by considering the following two separate cases.

Case (a): ny = 0. It follows from this and Algorithm 1 that v; = min{~yp,d~'v;_1}, which together
with § € (0,1) and (63) with ¢ replaced by ¢ — 1 implies that (63) holds at ¢.

Case (b): ny > 0. By this, (5), § € (0,1) and the definition of n, one can observe that v;/0 =
min{yp, 8 1y;_1}6™ "1 < 40 and (6) will not hold if -, is replaced by 7;/5. Besides, from the proof of
Lemma 7, one can see that (6) will hold if ; is replaced by ¥ satisfying 0 < ¥ < min{{/Lz,~0}. Hence,
it follows that v;/d > {/Lg, which together with ~; < ~o implies that (63) holds at ¢.
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By (8), (43), (50), and (63), one has that for all 1 <t e T — 1,
1
t—1 2074
(1=202) ][5 (1 + 7{%)
2 1—t
TO 2/1/ . —1
< ~ .
S <1 + p mln{LS 5&70})

It then follows that for all 3 <t e T — 1,

||.1't+1 _ x*HQ < 0 _:B*HQ

[

max{[|z’ — 2", |2 = 2|} < max{|la’ — 2| + [Ja"F = 2], 2T = 2+ et - 2|}
3—t

2rg 2p . -1 2
< — 1+7mm{LA5, }) . 64
%1_21/2( - 3 9670 (64)
Suppose for contradiction that Algorithm 1 runs for at least 7'+ 1 iterations. It then follows that (7)

fails for t = T, which along with (42) implies that |[v”|| > €. In addition, recall from Theorem 1(ii) that
xt € § for all t € T. By this, (40) and Lemma 1(i), one has

1A'l = |F (") = F(2'71)|| < Lsla* = 2'7'|| V1<teT. (65)
Also, notice from (12) that 7' > 3. By this, yr < 70, (12), (42), (62), (63), (64), and (65), one has

(42) 1 -
It < — (12" = 2Tl + arlla” = o + | AT+ yrBr] A7)
(65) 1 - .
= r (=™ = 27| + aplla” — 2" Y| + yrLsla™" — &"|| + v0BrLslla™ — 2" 7))
(64) 2 9 3-T
o I . —1 2
< 1+ar+vyrLs + Ls (1+m1n{LA5, })
wm( T vrBrLs) - 5 0670
3-T
(62) 2rg ( 1 ) < 21 X 3T
S == |\1+3+twlst+nl 1+—min{L:5, })
T2 \| T g Toks T ks s 166,70
3—-T
(63) 8 + 12y L 2 5 (12)
S TO( + 70 S) <1+ %mln {L§15£’70}> S E’
-1

3v/1 — 202 min {Lgldf, 'yo}

which leads to a contradiction. Hence, Algorithm 1 terminates in at most T iterations. Suppose that
Algorithm 1 terminates at iteration ¢ and outputs 2**! for some ¢t < T'. It then follows that (7) holds for
such ¢. By this and (42), one can see that ||v|| < e, which together with (44) implies that resp, g(z*!) < .

Observe that |T| < T + 2 and the total number of inner iterations of Algorithm 1 is ng 2(nt +1).
It follows from these and Theorem 1(ii) that

|T|—2
> (e +1) <2(T| - 2) + M < 2T + M,
t=1
which together with (11) and (12) implies that the conclusion holds. O

6.2 Proof of the main result in Section 3

In this subsection we first establish several technical lemmas and then use them to prove Theorem 3.
Recall from Section 3 that {z¥}rcx denotes all the iterates generated by Algorithm 2, where K is a

subset of consecutive nonnegative integers starting from 0. Notice that at iteration 0 < k € K — 1 of

Algorithm 2, Algorithm 1 is called to find an approximate solution of the following strongly MI problem

0 € (Fy+ B)(2) = (F + B)(z) + p;, ' (z — 2F). (66)

Since F'+ B is maximal monotone, it follows that the domain of the resolvent of F'+ B is R™. As a result,
there exists some z¥ € R” such that

A=+ pe(F+B))™ (). (67)
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Moreover, z¥ is the unique solution of problem (66) and thus
0 € (Fi + B)(20) = (F + B)(=) + pi (o1 = 2°). (68)
Lemma 8. Let {zF}rcx be generated by Algorithm 2. Then for all 0 < k € K — 1, we have
1257 = 2E(| < pri (69)
where 2¥ is defined in (67).

Proof. By the definition of zF*! (see step 2 of Algorithm 2) and Theorem 2, there exists some v €
(Fy, + B)(2F*1) with |jv]| < 7%. Tt follows from this and (68) that

v—pp (M=) e (F+ B) (MY, —p (2 =28 € (F + B) (D).
By the monotonicity of F'+ B, one has
(0= gt (M = K)o (2 — ), A k) > 0,

which yields

o+ — 22 ek A ]

< pr(v, 2 < prllvllll=
It then follows from this and |jv|| < 75 that || 25T — 25| < prllv]| < pr7e- O

Lemma 9. Let {zF}rcx be generated by Algorithm 2. Then we have

s—1
I2° — " < |I2° = 2| + > _prme VI<s€EK, (70)
k=0
S
257 =28 < [12° =2 | + > e VI<sEK-L (71)
k=0

Proof. By (68) and the definition of z*, one has

F =zl e p(F + B)(&), 0€ pu(F + B)(2"),
which together with the monotonicity of F'+ B yield

0<2(2P —2f, 20 —a*) = % — 2|2 — I8 = |* = ||2F — 2™
It follows that
12 = 2812 + 12— a*|* < J|2% = 2*)1%,

which implies that

128 — 2| < [l2F — 2|, |25 = 2] < 125 — 2. (72)
By the first relation in (72), one has

e e R E e N [E e R Ear

Summing up the above inequalities for £k =0,...,s — 1 yields
s—1
125 — 2| < 120 — 2| + )l = 22,
k=0
which along with (69) implies that (70) holds. In addition, using (69) with k& = s, (70) and (72), we have

(70)
<

69),(72) il
I2° = a* | + psrs < 20— 2"+ prmi
k=0

(
127 =22l < 12 = 22 + e =22 <
Hence, (71) holds as desired. O
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Define

1
S, =<{zedomB: |z —2zF <zk—zf} VO<keK-1, 73
o= { o = 28l < gl = 24 < (73)
Sp=<{zecdomB: |z —2F| < — === |28 - 2F VO<keK-1, 74
.= { o = 2] < Sk — 2k < (74)

where 2¥ is defined in (67), Lg is given in Lemma 2, and v and 7 are the input parameters of Algorithm
2.

Lemma 10. Let Sy, and Sy, be defined in (73) and (74). Then for all0 < k € K—1, we have
S<CQ S cQ

where Q and Q are defined in (16) and (17). Consequently, for all 0 < k € K —1, Fy, is Lg- and
L@—Lz’pschitz continuous on S and Sy, respectively, where Lo and L@ are given in Lemma 2.

Proof. Fix any 0 < k € K—1 and « € S. By this, (70), (72), (73), and Y ;2 pi7i = po70/(1 — 0(), we
have

(73) (72)
o — 2] < lo = 2] + 2 —a*]) < 15 — 2+ o —a*] € ( +1) 1 — o]

1 1
V1 —202 V1 —202
(70) 1 = 1 poTo
< | ——=+1 20— x|+ i | < ( )(z—m +7 ),
(= +1) (H 1+ 3om) < (g tt) (1 -+ 25

which together with (16) implies that z € Q. It then follows that S C Q. Similarly, one can show
that S € Q. By these and the definition of Lg and Lg in Lemma 2, one can see that Fj is Lo- and

L @—Lipschitz continuous on Sy and §k, respectively. 0

Lemma 11. Let 7o, 9, v, n, {pr} and {7} be given in Algorithm 2, and let &, 7o and A be defined in (9),
(16) and (18). Then for any 0 < k € K— 1, the number of evaluations of F' and resolvent of B performed
in the kth iteration of Algorithm 2 is at most M, where

(F0+A)(8+1270LQ)
_ 2 log 31,V 1202 min{Lil(% 70} og (’YOL )
My =6+2 el (75)
log (1 + o (1 7 min {L 55,70}) N og .

Proof. Recall that Fj, + B is 1/pj-strongly monotone and (Fj + B):l(()) # (). In addition, it follows from
Lemma 10 that Fj is Lo- and L 5-Lipschitz continuous on Sy, and Sk, respectively. Using (70), (72), and
the fact that A = >"77 ) px7s, we have

k—1
128 = 28l < 125 =2 < )12° = 2| + D peme < Fo+ A,
=0
where z¥ is given in (67). The conclusion then follows from applying Theorem 2 to the subproblem (66)

with €, 1, Ls, Lg, and 7o in (13) being replaced by 7%, 1/px, Lo, Lg, and 7o + A, respectively. O

Proof of Theorem 3. Suppose for contradiction that Algorithm 2 runs for more than K + 1 outer
iterations. By this and Algorithm 2, one can assert that (15) does not hold for £ = K. On the other
hand, by (71), pr = po¢* and 7, = 90", one has

K ~
|25+ — 2K - 129 — 2% + >0 PrTk - 120 — a*|| + >pe o ke To+ A

PK B PK B PK pocK
This together with the definition of K in (20) implies that

|25+ — 2K < To + A <€
PK = poCK T2
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and thus (15) holds for ¥ = K, which contradicts the above assertion. Hence, Algorithm 2 must terminate
in at most K + 1 outer iterations.
Suppose that Algorithm 2 terminates at some iteration k. Then we have

P |2 = 2K+ < e (76)

In addition, by the definition of z**! (see step 2 of Algorithm 2), Theorem 2, and (14), there exists some
v such that

ve (F+B)(Z") + ot (M =28, o)l < 7. (77)

Observe that v — p, ' (zF1 — 2¥) € (F + B)(z**1). It follows from this, (76), (77), and the definition of
resp4p that

_ _ (77) B (76)
respyp(FY) < o — N = 2 < ol + o = S Tt A - ) < e

Recall from Lemma 11 that the number of evaluations of F' and resolvent of B performed in the kth
iteration of Algorithm 2 is at most My, where Mj, is given in (75). In addition, using (18), (19) and (75),
we have

2C —2klogo

: 20& 290
log (mln {1 + Lépo(l—n)C’“ 5 1+ po(1—n)CF }) N

By the concavity of log(1 4 y), one has log(1 4+ ¥y) > ¥log(1l + y) for all y > —1 and 9 € [0, 1]. Using
this, we obtain that

. 208 27
o (mm {1 T ool - m¢FLg’ BTG })
o k 26¢ < & 2% )
mm{log(l—i—C po(l—n)L@>’IOg 1+¢ ool —1) }

)k 20 —k 270

By (78), (79), 0 € (0,1) and ¢ > 1, one has that for all £ > 0,

My, =6+ 2 + Oy, (78)

) (4Cy — 4klogo) |
Loy TS (R

g mln{ + po(—m)CFLy’ + po(1—mn)¢k })
4(Cy), —4klogo

: 26¢ 2y

log (mln {1 + po(1—n)CFLg” 1+ po(l—(:?)Ck }>
(79) 4Ck (Cy) . — 4kck1

< 8+ - 1)+25§ e

. 2
log <m1n {1 + po(1-n)Lg° 1+ Po(lvgn) })

Observe that |[K| < K + 2 and also the total number of inner iterations of Algorithm 2 is at most
LE‘O_Q M;. Tt then follows from (19), (78) and (80) that the total number of evaluations of F and

resolvent of B performed in Algorithm 2 is at most

+ Cy

<8+

+ Cy

+ Cs. (80)

[K|-2 K k k
_ A¢k (Cy), — 4kCF 1o
N M < 8+ ¢ 1)+26£ ¢ g"% +Cy
3 0
k=0 k=0 log (mln {1 + po(1-n)L g’ 1+ po(1—n) })
< 8K +8+4(Cy), Os5¢M ™ +4C3(log o™ KK 4+ (K +1)Cs, (81)
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where the second inequality is due to Z/i(:o ¢F < B¢ —1) and Zf:o k¢F < K¢EF1/(¢ —1). By the
definition of K in (20), one has

7 A 1
27y + 2 ) 1, 0g(270/¢) 1,0}’

K < 1
= max{ °g<< £00 log(1/0)

which together with ¢ > 1 implies that

- S
CKSmaX{QC(TO_‘_A),g(QTO) (/)71}' (82)

EP0 €

IK|=2 v
k

Using (20), (21), (81) and (82), we can see that Y, -\ M), < M. O

7 Concluding remarks

We proposed primal-dual extrapolation methods enjoying an operation complexity of O (log 5_1) and
(@) (5_1 log 5_1), measured by the number of fundamental operations for finding an e-residual solution of
strongly and non-strongly monotone inclusion problems under local Lipschitz continuity, respectively. The
latter complexity significantly improves upon the previously best operation complexity O(e~2) achieved
by the FRBS method [13].

One natural question is whether the aforementioned operation complexity of O (5*1 log 6*1) can be
improved to O (5_1), which would match the optimal complexity for solving non-strongly monotone
inclusion problems under global Lipschitz continuity. Additionally, our proposed methods require the
exact resolvent of B, which limits their applicability. Clearly, a method using the inexact resolvent of
B for the monotone inclusion problem would be both practically and theoretically interesting. It is
worthwhile to explore these as future research directions.
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