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Abstract

In this paper we consider a class of monotone inclusion (MI) problems of finding a zero of the sum of
two monotone operators, in which one operator is maximal monotone while the other is locally Lipschitz
continuous. We propose primal-dual extrapolation methods to solve them using a point and operator
extrapolation technique, whose parameters are chosen by a backtracking line search scheme. The
proposed methods enjoy an operation complexity of O

(
log ε−1

)
and O

(
ε−1 log ε−1

)
, measured by the

number of fundamental operations consisting only of evaluations of one operator and resolvent of the
other operator, for finding an ε-residual solution of strongly and non-strongly MI problems, respectively.
The latter complexity significantly improves the previously best operation complexity O

(
ε−2
)
. As a

byproduct, complexity results of the primal-dual extrapolation methods are also obtained for finding
an ε-KKT or ε-residual solution of convex conic optimization, conic constrained saddle point, and
variational inequality problems under local Lipschitz continuity. We provide preliminary numerical
results to demonstrate the performance of the proposed methods.

Keywords: Local Lipschitz continuity, primal-dual extrapolation, operator splitting, monotone inclusion,
convex conic optimization, saddle point, variational inequality, iteration complexity, operation complexity
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1 Introduction

A broad range of optimization, saddle point (SP), and variational inequality (VI) problems can be solved as
a monotone inclusion (MI) problem, namely, finding a point x such that 0 ∈ T (x), where T : Rn ⇒ Rn is
a maximal monotone set-valued (i.e., point-to-set) operator (see Section 1.1 for the definition of monotone
and maximal monotone operators). In this paper we consider a class of MI problems as follows:

find x ∈ Rn such that 0 ∈ (F +B)(x), (1)

where B : Rn ⇒ Rn is a maximal monotone set-valued operator with a nonempty domain denoted
by domB, and F is a monotone point-valued (i.e., point-to-point) operator on cl(domB). It shall be
mentioned that domB is possibly unbounded. We make the following additional assumptions throughout
this paper.

Assumption 1. (a) Problem (1) has at least one solution.

(b) F +B is monotone on domB with a monotonicity parameter µ ≥ 0 such that

⟨u− v, x− y⟩ ≥ µ∥x− y∥2 ∀x, y ∈ domB, u ∈ (F +B)(x), v ∈ (F +B)(y). (2)

(c) F is locally Lipschitz continuous on cl(domB).1

(d) The resolvent of γB can be exactly evaluated for any γ > 0.

∗Department of Industrial and Systems Engineering, University of Minnesota, USA (email: zhaosong@umn.edu,
mei00035@umn.edu). This work was partially supported by NSF Award IIS-2211491.

1See Section 1.1 for the definition of local Lipschitz continuity of a mapping on a closed set.
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The local Lipschitz continuity of F on cl(domB) is generally weaker than the (global) Lipschitz
continuity of F on cl(domB) usually imposed in the literature. Moreover, it can sometimes be easily
verified. For example, if F is continuously differentiable on cl(domB), it is clearly locally Lipschitz
continuous there. In addition, by the maximal monotonicity of B and Assumptions 1(b) and 1(c), it
can be observed that F +B is maximal monotone (e.g., see [16, Proposition A.1]) and it is also strongly
monotone when µ > 0.

Several special cases of problem (1) have been considerably studied in the literature. For example,
when F is cocoercive2 problem (1) can be suitably solved by a splitting inertial proximal method [17], a
Halpern fixed-point splitting method [24], and also the classical forward-backward splitting (FBS) method
[10, 20] that generates a solution sequence {xk} according to

xk+1 = (I + γkB)−1 (xk − γkF (xk)
)
∀k ≥ 1.

In addition, a modified FBS (MFBS) method [25], its variant [15], an inertial forward-backward-forward
splitting method [1], and an extra anchored gradient method [7, Algorithm 3] were proposed for (1)
with F being Lipschitz continuous. It shall be mentioned that operation complexity bounds of O

(
ε−2
)

and O
(
ε−1
)
, measured by the number of fundamental operations consisting of evaluations of F and

resolvent of B, were respectively established for the variant of MFBS method [15, Theorem 4.6] and the
extra anchored gradient method [7, Theorem 2] for finding an ε-residual solution3 of (1) with Lipschitz
continuous F .

There has been little algorithmic development for solving problem (1) with locally Lipschitz continuous
F . Indeed, the MFBS method [25] and the forward-reflected-backward splitting (FRBS) method [13,
Algorithm 3.1] appear to be the only existing methods for solving this problem. The MFBS method
modifies the classical FRBS method in the spirit of the extragradient method [5] for monotone variational
inequalities, while the FRBS method modifies the forward term in the classical FBS method using
an operator extrapolation technique that has been popularly used to design algorithms for solving
optimization, SP, and VI problems (e.g., [3, 4, 6, 14, 21]). Specifically, the FRBS method generates a
solution sequence {xk} according to

xk+1 = (I + γkB)−1
(
xk − γkF (xk)− γk−1(F (xk)− F (xk−1))

)
∀k ≥ 1 (3)

for a suitable choice of stepsizes {γk}. Global convergence to a solution of problem (1) are established
for these methods in [13, 25], respectively. Moreover, it can be shown that the FRBS method enjoys an
operation complexity of O(ε−2) for finding an ε-residual solution of (1) by using [13, equation (2.14),
Theorem 3.4, and Lemmas 3.2 and 3.3], although this result is not established in [13]. In addition, when
B = ∂g, where g is a proper closed convex function, an adaptive golden ratio algorithm was proposed
in [12, Algorithm 1]. While [12] did not specifically study the operation complexity of this algorithm
for finding an ε-residual solution of (1) with B = ∂g, it can be shown that the algorithm achieves an
operation complexity of O(ε−2) for such a solution by using [12, equation (34) and Lemma 2].

As seen from the above discussion, there is a significant gap between the best operation complexities of
O(ε−2) and O(ε−1) for finding an ε-residual solution of (1) and its special case with Lipschitz continuous
F , which are achieved by the FRBS method [13] and the extra anchored gradient method [7], respectively.
To significantly shorten this gap, in this paper we propose new variants of FBS method, called primal-dual
(PD) extrapolation methods, for finding an ε-residual solution of (1) with complexity guarantees. In
particular, we first propose a PD extrapolation method for solving a strongly MI problem, namely,
problem (1) with µ > 0, by modifying the forward term in the FBS method using a point and operator
extrapolation technique that has recently been used to design algorithms for solving stochastic VI problems
in [4] and problem (1) with Lipschitz continuous F in [13]. Specifically, this PD extrapolation method
generates a solution sequence {xk} according to

xk+1 = (I + γkB)−1
(
xk + αk(x

k − xk−1)− γk[F (xk) + βk(F (xk)− F (xk−1))]
)
∀k ≥ 1,

2F is cocoercive if there exists some σ > 0 such that ⟨F (x)−F (y), x− y⟩ ≥ σ∥F (x)−F (y)∥2 for all x, y ∈ domF . It can
be observed that if F is cocoercive, then it is monotone and Lipschitz continuous on dom F .

3An ε-residual solution of problem (1) is a point x ∈ domB satisfying resF+B(x) ≤ ε, where resF+B(x) = inf{∥v∥ : v ∈
(F +B)(x)}.

2



where the sequences {αk}, {βk} and {γk} are updated by a backtracking line search scheme (see Algorithm
1). We show that this PD extrapolation method enjoys an operation complexity of O

(
log ε−1

)
for finding

an ε-residual solution of (1) with µ > 0. We then propose another PD extrapolation method for solving
a non-strongly MI problem, namely, problem (1) with µ = 0 by applying the above PD extrapolation
method to approximately solve a sequence of strongly MI problems 0 ∈ (Fk + B)(x) with Fk being a
perturbation of F (see Algorithm 2). We show that the resulting PD extrapolation method enjoys an
operation complexity of O

(
ε−1 log ε−1

)
for finding an ε-residual solution of problem (1) with µ = 0,

which significantly improves the previously best operation complexity O(ε−2) achieved by the FRBS
method [13].

The main contributions of our paper are summarized as follows.

• Primal-dual extrapolation methods are proposed for the MI problem (1) with locally Lipschitz
continuous F , which enjoy several attractive features: (i) they are applicable to a broad range
of problems since only local rather than global Lipschitz continuity of F is required; (ii) they
adopt a point and operator extrapolation technique with fundamental operations consisting only of
evaluations of F and resolvent of B; (iii) they are equipped with a verifiable termination criterion
and output an ε-residual solution of problem (1) with complexity guarantees.

• We show that an ε-residual solution of problem (1) with locally Lipschitz continuous F can be
found by our methods with an operation complexity of O

(
log ε−1

)
and O

(
ε−1 log ε−1

)
for µ > 0

and µ = 0, respectively. The latter complexity significantly improves the previously best operation
complexity O(ε−2) achieved by the FRBS method [13].

• The applications of our proposed methods to convex conic optimization, conic constrained SP, and
VI problems are studied. Best complexity results for finding an ε-KKT or ε-residual solution of
these problems under local Lipschitz continuity are obtained.

The rest of this paper is organized as follows. In Section 1.1 we introduce some notation and
terminology. In Sections 2 and 3, we propose PD extrapolation methods for problem (1) with µ > 0
and µ = 0, respectively, and study their complexity. In Section 4, we study the applications of the
PD extrapolation methods for solving convex conic optimization, conic constrained saddle point, and
variational inequality problems. In addition, we present some preliminary numerical results and the
proofs of the main results in Sections 5 and 6, respectively. Finally, we make some concluding remarks in
Section 7.

1.1 Notation and terminology

The following notations will be used throughout this paper. Let Rn denote the Euclidean space of
dimension n, ⟨·, ·⟩ denote the standard inner product, and ∥ · ∥ stand for the Euclidean norm. For any
ω ∈ R, let ω+ = max{ω, 0} and ⌈ω⌉ denote the least integer number greater than or equal to ω.

Given a proper closed convex function h : Rn → (−∞,∞], ∂h denotes its subdifferential. The proximal
operator associated with h is denoted by proxh, which is defined as

proxh(z) = arg min
x∈Rn

{
1

2
∥x− z∥2 + h(x)

}
∀z ∈ Rn.

Given an operator T , domT and cl(domT ) denote its domain and the closure of its domain, respectively.
For a mapping g : Rn → Rm, ∇g denotes the transpose of the Jacobian of g. The mapping g is called
L-Lipschitz continuous on a set Ω for some constant L > 0 if ∥g(x)− g(y)∥ ≤ L∥x− y∥ for all x, y ∈ Ω.
Besides, g is called locally Lipschitz continuous on a closed set Ω̂ if g is LΩ-Lipschitz continuous on any
compact set Ω ⊆ Ω̂ for some LΩ > 0. Let I stand for the identity operator. For a maximal monotone
operator T : Rn ⇒ Rn, the resolvent of T is denoted by (I + T )−1, which is a mapping defined
everywhere in Rn. In particular, z = (I + T )−1(x) if and only if x ∈ (I + T )(z). Since the evaluation
of (I + γT )−1(x) is often as cheap as that of (I + T )−1(x), we count the evaluation of (I + γT )−1(x)
as one evaluation of resolvent of T for any γ > 0 and x. The residual of T at a point x ∈ domT is
defined as resT (x) = inf{∥v∥ : v ∈ T (x)}. For any given ε > 0, a point x is called an ε-residual solution
of problem (1) if x ∈ domB and resF+B(x) ≤ ε.
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Given a nonempty closed convex set C ⊆ Rn, dist(z, C) stands for the Euclidean distance from z to
C, and ΠC(z) denotes the Euclidean projection of z onto C, namely,

ΠC(z) = argmin{∥z − x∥ : x ∈ C}, dist(z, C) = ∥z −ΠC(z)∥ , ∀z ∈ Rn.

The normal cone of C at any z ∈ C is denoted by NC(z). For a closed convex cone K, we use K∗ to
denote the dual cone of K, that is, K∗ = {y ∈ Rm : ⟨y, x⟩ ≥ 0, ∀x ∈ K}.

2 A primal-dual extrapolation method for problem (1) with µ > 0

In this section we propose a primal-dual extrapolation method for solving a strongly MI problem (1),
namely, the case in which Assumption 1(b) holds with µ > 0. Our method is a variant of the classical
forward-backward splitting (FBS) method [10, 20]. It modifies the forward term in (3) by using a primal
and dual extrapolation technique4 that has recently been proposed to design algorithms for solving
stochastic VI problems in [4]. Note that the choice of the parameters for extrapolations in [4] requires
Lipschitz continuity of F . Since F is only assumed to be locally Lipschitz continuous in this paper, the
choice of them in [4] is not applicable to our method. To resolve this issue, we propose a backtracking
line search scheme to decide on parameters for extrapolations and splitting.5 In addition, we propose
a verifiable termination criterion, which guarantees that our method outputs an ϵ-residual solution of
problem (1) with µ > 0 for any given tolerance ϵ. The proposed method is presented in Algorithm 1
below.

Algorithm 1 A primal-dual extrapolation method for problem (1) with µ > 0

Input: ϵ > 0, γ0 > 0, δ ∈ (0, 1), 0 < ν ≤ 1/2, η ∈ [0, ν/(1 + ν)), and x0 = x1 ∈ domB.
1: for t = 1, 2, . . . do
2: Compute

xt+1 = (I + γtB)−1
(
xt + αt(x

t − xt−1)− γt(F (xt) + βt(F (xt)− F (xt−1)))
)
, (4)

where

γt = min{γ0, δ−1γt−1}δnt , βt =
γt−1

γt

(
1 +

2µγt−1

1− η

)−1

, αt =
ηγtβt
γt−1

, (5)

and nt is the smallest nonnegative integer such that

∥F (xt+1)− F (xt)− ηγ−1
t (xt+1 − xt)∥ ≤ ν(1− η)γ−1

t ∥xt+1 − xt∥. (6)

3: Terminate the algorithm and output xt+1 if

∥γ−1
t (xt − xt+1 + αt(x

t − xt−1)) + F (xt+1)− F (xt)− βt(F (xt)− F (xt−1))∥ ≤ ϵ. (7)

4: end for

Remark 1. (i) If η = 0, Algorithm 1 is reduced to a dual extrapolation method. Besides, αt and βt
are for primal-dual extrapolation and γt is the stepsize, while γ0, δ and ν are used for backtracking line
search. For the sake of generality, we provide a flexible choice for ν and η satisfying the conditions
stated in the input line of Algorithm 1. Nevertheless, one can easily specify them, for example, letting
(ν, η) = (0.5, 0.33), which appears to be the best choice for Algorithm 1 as observed in practice.

(ii) As will be shown in Lemma 3, it holds that

γ−1
t (xt − xt+1 + αt(x

t − xt−1)) + F (xt+1)− F (xt)− βt(F (xt)− F (xt−1)) ∈ (F +B)(xt+1).

4In the context of optimization, the operator F is typically the gradient of a function and F (x) can be viewed as a point
in the dual space. As a result, {xt} and {F (xt)} generated by this method can be respectively viewed as a primal and dual
sequence and thus the extrapolations on them are called primal and dual extrapolations just for simplicity. Accordingly, we
refer to our method as a primal-dual extrapolation method.

5It shall be mentioned that backtracking line search schemes have been widely used for designing algorithms for solving
MI problems (e.g., see [13, 25]).
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As a result, xt+1 satisfying (7) implies that resF+B(x
t+1) ≤ ϵ, namely, xt+1 is an ϵ-residual solution of

problem (1). Thus, (7) provides a verifiable termination criterion for Algorithm 1 to find an ϵ-residual
solution of (1).

(iii) As will be established below, Algorithm 1 is well-defined at each iteration. Moreover, one can
observe that the fundamental operations of Algorithm 1 consist only of evaluations of F and resolvent of
B. Specifically, at iteration t, Algorithm 1 requires nt + 1 evaluations of F and resolvent of B for finding
xt+1 satisfying (6).

We next establish that Algorithm 1 well-defined and outputs an ϵ-residual solution of problem (1).
We also study its complexity including: (i) iteration complexity measured by the number of iterations; (ii)
operation complexity measured by the number of evaluations of F and resolvent of B.

To proceed, we assume throughout this section that problem (1) is a strongly MI problem (namely,
µ > 0) and that x∗ is the solution of (1). Let {xt}t∈T denote all the iterates generated by Algorithm 1,
where T is a subset of consecutive nonnegative integers starting from 0.6 We also define

r0 = ∥x0 − x∗∥, S =

{
x ∈ domB : ∥x− x∗∥ ≤ r0√

1− 2ν2

}
, (8)

T− 1 = {t− 1 : t ∈ T}, ξ = ν(1− η)− η, (9)

where x0 is the initial point, and ν and η are the input parameters of Algorithm 1.
The following lemma establishes that F is Lipschitz continuous on S and also on an enlarged set

induced by γ0, r0, ν, x
∗, F and S, albeit F is locally Lipschitz continuous on cl(domB). This result will

play an important role in this section.

Lemma 1. Let S be defined in (8). Then the following statements hold.

(i) F is LS-Lipschitz continuous on S for some constant LS > 0.

(ii) F is LŜ-Lipschitz continuous on Ŝ for some constant LŜ > 0, where

Ŝ =

{
x ∈ domB : ∥x− x∗∥ ≤ (5 + 9γ0LS)r0

3
√
1− 2ν2

}
, 7 (10)

r0 is defined in (8), and γ0 > 0 and ν ∈ (0, 1/2] are the input parameters of Algorithm 1.

Proof. Notice that S is a bounded subset in domB. By this and the local Lipschitz continuity of F
on cl(domB), there exists some constant LS > 0 such that F is LS-Lipschitz continuous on S. Hence,
statement (i) holds and moreover the set Ŝ is well-defined. By a similar argument, one can see that
statement (ii) also holds.

The following theorem shows that Algorithm 1 is well-defined at each iteration. Its proof is deferred
to Section 6.

Theorem 1. Let {xt}t∈T and {nt}1≤t∈T−1 be generated by Algorithm 1 and ξ be defined in (9). Then the
following statements hold.

(i) Algorithm 1 is well-defined at each iteration.

(ii) xt ∈ S for all t ∈ T, and moreover,
∑t

i=1 ni ≤ M + t for all 1 ≤ t ∈ T− 1, where S is defined in
(8) and

M =

⌈
log

(
ξ

γ0LŜ

)
/ log δ

⌉
+

. (11)

The next theorem presents iteration and operation complexity of Algorithm 1 for finding an ϵ-residual
solution of problem (1) with µ > 0, whose proof is deferred to Section 6.

6For the time being, it is possible that T = {0, 1, 2, . . . , T} or {0, 1, 2, . . .} for some T ≥ 0. The reason for not presuming
T to be a finite set here is that the finite termination of Algorithm 1 is not yet established. Nevertheless, it will be shown in
Theorem 2 that T is a finite set.

7The specific choices of the radius associated with S and Ŝ will become clear from the proofs of Lemmas 5 and 6.
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Theorem 2. Let γ0, δ, ν, η and ϵ be given in Algorithm 1, LS and LŜ be given in Lemma 1, and
r0 and ξ be defined in (8) and (9). Suppose that µ > 0, i.e., F + B is strongly monotone on domB.
Then Algorithm 1 terminates and outputs an ϵ-residual solution of problem (1) in at most T iterations.
Moreover, the number of evaluations of F and resolvent of B performed in Algorithm 1 is no more than
N , respectively, where

T = 3 +

2 log
 r0 (8 + 12γ0LS)

3ϵ
√
1− 2ν2min

{
L−1

Ŝ
δξ, γ0

}
/log

(
1 +

2µ

1− η
min

{
L−1

Ŝ
δξ, γ0

})
+

, (12)

N = 2T +

⌈
log

(
ξ

γ0LŜ

)
/ log δ

⌉
+

. (13)

Remark 2. (i) It can be seen from Theorem 2 that Algorithm 1 enjoys an iteration and operation
complexity of O

(
log ϵ−1

)
for finding an ϵ-residual solution of problem (1) with µ > 0 under the assumption

that F is locally Lipschitz continuous on cl(domB). In addition, notice that if γ0 ≥ δξ/LŜ ,

log

(
1 +

2µ

1− η
min

{
L−1

Ŝ
δξ, γ0

})
≈ 2δξ

1− η
· µ

LŜ
.

It then follows from (12) and (13) that if γ0 ≥ δξ/LŜ , T and N are roughly proportional to LŜ/µ. Hence,
LŜ/µ can be viewed as the “condition number” of problem (1) with µ > 0.

(ii) Algorithm 1 will become a linearly convergent method if setting ϵ = 0. Indeed, one can observe
from Lemma 5 that the sequence {xk} generated by Algorithm 1 with ϵ = 0 satisfies ∥xk − x∗∥2 ≤
(1 − 2ν2)−1(1 + 2µγ)2−k∥x0 − x∗∥2 for all k ≥ 2, where x∗ is the solution of (1) and γ := infk γk is a
positive number due to Theorem 1.

3 A primal-dual extrapolation method for problem (1) with µ = 0

In this section we propose a primal-dual extrapolation method for solving a non-strongly MI problem (1),
namely, the case in which Assumption 1(b) holds with µ = 0. Our method consists of applying Algorithm
1 to approximately solve a sequence of strongly MI problems 0 ∈ (Fk +B)(x), where Fk is a perturbation
of F given in (14). The proposed method is presented in Algorithm 2.

Algorithm 2 A primal-dual extrapolation method for problem (1) with µ = 0

Input: ε > 0, γ0 > 0, z0 ∈ domB, 0 < δ < 1, 0 < ν ≤ 1/2, η ∈ [0, ν/(1 + ν)), ρ0 ≥ 1, 0 < τ0 ≤ 1, ζ > 1,
0 < σ < 1/ζ, ρk = ρ0ζ

k, τk = τ0σ
k for all k ≥ 0.

1: for k = 0, 1, . . . do
2: Call Algorithm 1 with F ← Fk, µ← ρ−1

k , ϵ← τk, x
0 = x1 ← zk and the parameters γ0, η, δ and ν,

and output zk+1, where

Fk(x) = F (x) + ρ−1
k (x− zk) ∀x ∈ domF. (14)

3: Terminate this algorithm and output zk+1 if

ρ−1
k ∥z

k+1 − zk∥+ τk ≤ ε. (15)

4: end for

Remark 3. (i) In Algorithm 2, the parameters γ0, δ, ν and η have the same meaning as those for
Algorithm 1 (see Remark 1(i)). Besides, ρ0, τ0, ζ and σ are used for subproblem regularization and
subproblem termination criterion.

(ii) It is easy to see that Algorithm 2 is well-defined at each iteration and equipped with a verifiable
termination criterion, while it shares the same fundamental operations as Algorithm 1, consisting only of
evaluations of F and resolvent of B.

6



We next show that Algorithm 2 outputs an ε-residual solution of problem (1). We also study its
complexity including: (i) iteration complexity measured by the number of iterations; (ii) operation
complexity measured by the total number of evaluations of F and resolvent of B.

To proceed, we assume that x∗ is an arbitrary solution of problem (1) and fixed throughout this
section. Let {zk}k∈K denote all the iterates generated by Algorithm 2, where K is a subset of consecutive
nonnegative integers starting from 0.8 We also define K− 1 = {k − 1 : k ∈ K}, and

r̄0 = ∥z0 − x∗∥, Q =

{
x ∈ domB : ∥x− x∗∥ ≤

(
1√

1− 2ν2
+ 1

)(
r̄0 +

ρ0τ0
1− σζ

)}
, (16)

where z0 is the initial point and ρ0, τ0, ν, ζ, σ are the input parameters of Algorithm 2.
The following lemma establishes that Fk is Lipschitz continuous on Q and also on an enlarged set

induced by Fk and Q with a Lipschitz constant independent on k. This result will play an important role
in this section.

Lemma 2. Let Fk and Q be defined in (14) and (16). Then the following statements hold.

(i) Fk is LQ-Lipschitz continuous on Q for some constant LQ > 0 independent of k.

(ii) Fk is LQ̂-Lipschitz continuous on Q̂ for some constant LQ̂ > 0 independent of k, where

Q̂ =

{
x ∈ domB : ∥x− x∗∥ ≤

(
5 + 9γ0LQ

3
√
1− 2ν2

+ 1

)(
r̄0 +

ρ0τ0
1− σζ

)}
.9 (17)

Proof. Notice that Q is a bounded subset in domB. By this and the local Lipschitz continuity of F on
cl(domB), there exists some constant L̃Q > 0 such that F is L̃Q-Lipschitz continuous on Q. In addition,
notice from Algorithm 2 that ρk ≥ ρ0 for all k ≥ 0. Using these and (14), we can easily see that Fk is
LQ-Lipschitz continuous on Q with LQ = L̃Q + 1/ρ0. Hence, statement (i) holds and moreover the set Q̂
is well-defined. By a similar argument, one can see that statement (ii) also holds.

The next theorem presents iteration and operation complexity of Algorithm 2 for finding an ε-residual
solution of problem (1) with µ = 0, whose proof is deferred to Section 6.

Theorem 3. Let γ0, δ, ν, η, ζ, σ, ρ0, τ0 and ε be given in Algorithm 2, LQ and LQ̂ be given in Lemma
2, ξ and r̄0 be defined in (9) and (16), and

Λ =
ρ0τ0

1− σζ
, C1 = log

 (r̄0 + Λ) (8 + 12γ0LQ)

3τ0
√
1− 2ν2min

{
L−1

Q̂
δξ, γ0

}
 , (18)

C2 =

⌈
log

(
ξ

γ0LQ̂

)
/ log δ

⌉
+

, C3 =
1

(ζ − 1) log
(
1 + 2

ρ0(1−η) min
{
L−1

Q̂
δξ, γ0

}) . (19)

Suppose that µ = 0, i.e., F + B is monotone but not strongly monotone on domB. Then Algorithm
2 terminates and outputs an ε-residual solution in at most K + 1 iterations. Moreover, the number of
evaluations of F and resolvent of B performed in Algorithm 2 is no more than M̄ , respectively, where

K =

⌈
max

{
logζ

(
2r̄0 + 2Λ

ερ0

)
,
log(2τ0/ε)

log(1/σ)

}⌉
+

, (20)

and

M̄ = 8 + C2 + (8 + C2)K + 4ζ(C1)+C3max

{
2ζ(r̄0 + Λ)

ερ0
, ζ

(
2τ0
ε

) log ζ
log(1/σ)

, 1

}

+ 4ζC3(log σ
−1)Kmax

{
2ζ(r̄0 + Λ)

ερ0
, ζ

(
2τ0
ε

) log ζ
log(1/σ)

, 1

}
. (21)

8For the time being, it is possible that K = {0, 1, 2, . . . ,K} or {0, 1, 2, . . .} for some K ≥ 0. The reason for not presuming
K to be a finite set is that the finite termination of Algorithm 2 is not yet established. Nevertheless, it will be shown in
Theorem 3 that K is a finite set.

9The specific choices of the radius associated with Q and Q̂ will become clear from the proof of Lemma 10.
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Remark 4. (i) Since 1 < ζ < 1/σ and K = O
(
log ε−1

)
, it can be seen from Theorem 3 that Algorithm 2

enjoys an iteration complexity of O
(
log ε−1

)
and an operation complexity of O

(
ε−1 log ε−1

)
for finding an

ε-residual solution of problem (1) with µ = 0 under the assumption that F is locally Lipschitz continuous
on cl(domB). The latter complexity significantly improves the previously best operation complexity O(ε−2)
achieved by the FRBS method [13]. In addition, notice that if γ0 ≥ δξ/LQ̂,

log

(
1 +

2

ρ0(1− η)
min

{
L−1

Q̂
δξ, γ0

})
≈ 2δξ

ρ0(1− η)
L−1

Q̂
.

It then follows from (19) and (21) that if γ0 ≥ δξ/LQ̂, M̄ is roughly proportional to LQ̂. Hence, LQ̂ can
be viewed as the “Lipschitz constant” of problem (1) with µ = 0.

(ii) Algorithm 2 will become a globally convergent method if setting ε = 0. Indeed, one can ob-
serve from Lemma 8 that the sequence {zk} generated by Algorithm 2 with ε = 0 satisfies ∥zk −
(I + ρk(F +B))−1 (zk)∥ ≤ ρkτk for all k ≥ 0, where 0 < ρk → ∞ and

∑
k ρkτk < ∞. Besides, one can

see from Lemma 9 that {zk} is bounded. It then follows from [22, Theorem 1] that the sequence {zk}
converges to a solution of (1).

(iii) While Algorithm 2 is proposed to solve problem (1) with µ = 0, it is also applicable to (1) with
µ > 0. Similar to the proof of Theorem 3, it can be shown that Algorithm 2 achieves an operation
complexity of O((log ε−1)2) for finding and ε-residual solution of problem (1) with µ > 0. This complexity
is at most worse by a logarithmic factor compared to the complexity achieved by directly calling Algorithm
1.

4 Applications

In this section we study applications of our PD extrapolation method, particularly Algorithm 2, for
solving several important classes of problems, particularly, convex conic optimization, conic constrained
saddle point, and variational inequality problems. As a consequence, complexity results are obtained for
finding an ε-KKT or ε-residual solution of these problems under local Lipschitz continuity for the first
time.

4.1 Convex conic optimization

In this subsection we consider convex conic optimization

min f(x) + P (x)
s.t. −g(x) ∈ K, (22)

where f, P : Rn → (−∞,∞] are proper closed convex functions, K is a closed convex cone in Rm, and the
mapping g : Rn → Rm is K-convex, that is,

ϑg(x) + (1− ϑ)g(y)− g(ϑx+ (1− ϑ)y) ∈ K ∀x, y ∈ Rn, ϑ ∈ [0, 1]. (23)

It shall be mentioned that domP is possibly unbounded.
Problem (22) includes a rich class of problems as special cases. For example, when K = Rm1

+ × {0}m2

for some m1 and m2, g(x) = (g1(x), . . . , gm1(x), h1(x), . . . , hm2(x))
T with convex gi’s and affine hj ’s, and

P (x) is the indicator function of a simple convex set X ⊆ Rn, problem (22) reduces to an ordinary convex
optimization problem

min
x∈X
{f(x) : gi(x) ≤ 0, i = 1, . . . ,m1;hj(x) = 0, j = 1, . . . ,m2}.

We make the following additional assumptions for problem (22).

Assumption 2. (a) The proximal operator associated with P and also the projection onto K∗ can be
exactly evaluated.

(b) The function f and the mapping g are differentiable on cl(dom ∂P ). Moreover, ∇f and ∇g are
locally Lipschitz continuous on cl(dom ∂P ).
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(c) Both problem (22) and its Lagrangian dual problem

sup
λ∈K∗

inf
x
{f(x) + P (x) + ⟨λ, g(x)⟩} (24)

have optimal solutions, and moreover, they share the same optimal value.

Under the above assumptions, it can be shown that (x, λ) is a pair of optimal solutions of (22) and
(24) if and only if it satisfies the Karush-Kuhn-Tucker (KKT) condition

0 ∈
(
∇f(x) +∇g(x)λ+ ∂P (x)

−g(x) +NK∗(λ)

)
. (25)

In general, it is difficult to find an exact optimal solution of (22) and (24). Instead, for any given ε > 0,
we are interested in finding a pair of ε-KKT solutions (x, λ) of (22) and (24) that satisfies

dist(0,∇f(x) +∇g(x)λ+ ∂P (x)) ≤ ε, dist(0,−g(x) +NK∗(λ)) ≤ ε. (26)

Observe from (25) that problems (22) and (24) can be solved as the MI problem

0 ∈ F (x, λ) +B(x, λ), (27)

where

F (x, λ) =

(
∇f(x) +∇g(x)λ

−g(x)

)
, B(x, λ) =

(
∂P (x)
NK∗(λ)

)
. (28)

Notice that λ ∈ K∗ and g is K-convex in the sense that (23) holds, which imply that ⟨λ, g(x)⟩ is convex
in x. Based on this and the above assumptions, one can observe that f(x) + ⟨λ, g(x)⟩ is convex in x and
concave in λ on cl(domB), which implies that F is monotone on cl(domB). One can also observe that F
is locally Lipschitz continuous on cl(domB) and B is maximal monotone. As a result, Algorithm 2 can
be suitably applied to the MI problem (27). It then follows from Theorem 3 that Algorithm 2, when
applied to problem (27), finds an ε-residual solution (x, λ) of (27) within O

(
ε−1 log ε−1

)
evaluations of

F and resolvent of B. Notice from (26) and (28) that such (x, λ) is also a pair of ε-KKT solutions of (22)
and (24). In addition, the evaluation of F requires that of ∇f and ∇g, and also the resolvent of B can
be computed as

(I + γB)−1

(
x
λ

)
=

(
proxγP (x)

ΠK∗(λ)

)
∀(x, λ) ∈ Rn × Rm, γ > 0.

The above discussion leads to the following result regarding Algorithm 2 for finding a pair of ε-KKT
solutions of problems (22) and (24).

Theorem 4. For any ε > 0, Algorithm 2, when applied to the MI problem (27), outputs a pair of ε-KKT
solutions of problems (22) and (24) within O

(
ε−1 log ε−1

)
evaluations of ∇f , ∇g, proxγP and ΠK∗ for

some γ > 0.

Remark 5. (i) This is the first time to propose an algorithm for finding an ε-KKT solution of problem
(22) without the usual assumption that ∇f and ∇g are Lipschitz continuous and/or the domain of
P is bounded. Moreover, the proposed algorithm is equipped with a verifiable termination criterion
and enjoys an operation complexity of O

(
ε−1 log ε−1

)
.

(ii) A first-order augmented Lagrangian method was recently proposed in [11] for finding a pair of ε-KKT
solutions of a subclass of problems (22) and (24), which also requires O

(
ε−1 log ε−1

)
evaluations of

∇f , ∇g, proxγP and ΠK∗. However, this method and its complexity analysis require that ∇f and
∇g be Lipschitz continuous on an open set containing domP and also that domP be bounded. As
a result, it is generally not applicable to problem (22).
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(iii) A variant of Tseng’s MFBS method was proposed in [16, Section 6] for finding a pair of ε-KKT
solutions of a special class of problems (22) and (24), where g is an affine mapping, K = {0}m, and
∇f is Lipschitz continuous on cl(domP ). Due to the latter assumption, this method is generally
not applicable to problem (22). Additionally, this method has an operation complexity of O

(
ε−2
)

(see [16, Theorem 6.3]). In contrast, our method achieves a significantly better operation complexity
of of O

(
ε−1 log ε−1

)
. Furthermore, an adaptive proximal algorithm was recently proposed in [8,

Section 3.1] for solving a special case of problem (22) where g is an affine mapping. It has been
shown in [8, Theorem3.4] that the iterates of this algorithm converges to a KKT solution of the
problem.

4.2 Conic constrained saddle point problems

In this subsection we consider the following conic constrained saddle point (CCSP) problem:

min
−g(x)∈K

max
−g̃(y)∈K̃

{Ψ(x, y) := f(x, y) + P (x)− P̃ (y)}, (29)

where f : Rn×Rm → [−∞,∞] is convex in x and concave in y, P : Rn → (−∞,∞] and P̃ : Rm → (−∞,∞]
are proper closed convex functions, K ⊆ Rp and K̃ ⊆ Rp̃ are closed convex cones, and g and g̃ are K- and
K̃-convex in the sense of (23), respectively. It shall be mentioned that domP and dom P̃ are possibly
unbounded.

We make the following additional assumptions for problem (29).

Assumption 3. (a) The proximal operator associated with P and P̃ and also the projection onto K∗

and K̃∗ can be exactly evaluated.

(b) The function f is differentiable on cl(dom ∂P ) × cl(dom ∂P̃ ). Moreover, ∇f is locally Lipschitz
continuous on cl(dom ∂P )× cl(dom ∂P̃ ).

(c) The mappings g and g̃ are respectively differentiable on cl(dom ∂P ) and cl(dom ∂P̃ ). Moreover, ∇g
and ∇g̃ are locally Lipschitz continuous on cl(dom ∂P ) and cl(dom ∂P̃ ), respectively.

(d) There exists a pair (x∗, y∗) ∈ domP × dom P̃ satisfying −g(x∗) ∈ K and −g̃(y∗) ∈ K̃ such that

Ψ(x∗, y) ≤ Ψ(x∗, y∗) ≤ Ψ(x, y∗)

holds for any (x, y) ∈ domP × dom P̃ satisfying −g(x) ∈ K and −g̃(y) ∈ K̃.

Problem (29) includes a rich class of saddle point problems as special cases. Several of them have
been studied in the literature. For example, extragradient method [5], mirror-prox method [18], dual
extrapolation method [19], and accelerated proximal point method [9] were developed for solving the
special CCSP problem

min
x∈X

max
y∈Y

f̃(x, y), (30)

where f̃ is convex in x and concave in y with Lipschitz continuous gradient on X × Y, and X and Y
are simple convex sets. Also, optimistic gradient method [14] and extra anchored gradient method [29]
were proposed for solving problem (30) with X = Rn and Y = Rm. In addition, accelerated proximal
gradient method [26], a variant of MFBS method [16], and also generalized extragradient method [16]
were proposed for solving the special CCSP problem

min
x

max
y

{
f̃(x, y) + P (x)− P̃ (y)

}
, (31)

where f̃ is convex in x and concave in y with Lipschitz continuous gradient on domP × dom P̃ . Besides,
several optimal or nearly optimal first-order methods were developed for solving problem (30) or (31)
with a strongly-convex-(strongly)-concave f̃ (e.g., see [9, 28, 27]). Recently, extra-gradient method of
multipliers [30] was proposed for solving a special case of problem (29) with g and g̃ being an affine
mapping, domP and dom P̃ being compact, and ∇f being Lipschitz continuous on domP × dom P̃ .
Iteration complexity of these methods except [29] was established based on the duality gap on the ergodic
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(i.e., weight-averaged) solution sequence. Yet, the duality gap can often be difficult to measure. In
practice, one may use a computable upper bound on the duality gap to terminate these methods, which
however typically requires the knowledge of an upper bound on the distance between the initial point
and the solution set. Besides, there is a lack of complexity guarantees for these methods in terms of the
original solution sequence.

Due to the sophistication of the constraints −g(x) ∈ K and −g̃(y) ∈ K̃ and also the local Lipschitz
continuity of ∇f , ∇g and ∇g̃, the aforementioned methods [5, 19, 18, 26, 16, 14, 9, 28, 27, 29] are
generally not suitable for solving the CCSP problem (29). We next apply our Algorithm 2 to find an
ε-KKT solution of (29) and also study its operation complexity for finding such an approximate solution
under the local Lipschitz continuity of ∇f , ∇g and ∇g̃.

Under the above assumptions, it can be shown that (x, y) is a pair of optimal minmax solutions of
problem (29) if and only if it together with some (λ, λ̃) satisfies the KKT condition

0 ∈


∇xf(x, y) +∇g(x)λ+ ∂P (x)

−∇yf(x, y) +∇g̃(y)λ̃+ ∂P̃ (y)
−g(x) +NK∗(λ)

−g̃(y) +NK̃∗(λ̃)

 . (32)

Generally, it is difficult to find a pair of exact optimal minimax solutions of (29). Instead, for any given
ε > 0, we are interested in finding an ε-KKT solution (x, y, λ, λ̃) of (29) that satisfies

dist(0,∇xf(x, y) +∇g(x)λ+ ∂P (x)) ≤ ε, dist(0,−∇yf(x, y) +∇g̃(y)λ̃+ ∂P̃ (y)) ≤ ε, (33)

dist(0,−g(x) +NK∗(λ)) ≤ ε, dist(0,−g̃(y) +NK̃∗(λ̃)) ≤ ε. (34)

Observe from (32) that problem (29) can be solved as the MI problem

0 ∈ F (x, y, λ, λ̃) +B(x, y, λ, λ̃), (35)

where

F (x, y, λ, λ̃) =


∇xf(x, y) +∇g(x)λ
−∇yf(x, y) +∇g̃(y)λ̃

−g(x)
−g̃(y)

 , B(x, y, λ, λ̃) =


∂P (x)

∂P̃ (y)
NK∗(λ)

NK̃∗(λ̃)

 . (36)

Notice that λ ∈ K∗, λ̃ ∈ K̃∗, and g and g̃ are respectively K- and K̃-convex in the sense of (23), which
imply that ⟨λ, g(x)⟩ and ⟨λ̃, g̃(y)⟩ are convex in x and y, respectively. Based on this and the above
assumptions, one can observe that f(x, y) + ⟨λ, g(x)⟩ − ⟨λ̃, g̃(y)⟩ is convex in (x, λ̃) and concave in (y, λ)
on cl(domB), which implies that F is monotone on cl(domB). One can also observe that F is locally
Lipschitz continuous on cl(domB) and B is maximal monotone. As a result, Algorithm 2 can be suitably
applied to the MI problem (35). It then follows from Theorem 3 that Algorithm 2, when applied to
problem (35), finds an ε-residual solution (x, y, λ, λ̃) of (35) within O

(
ε−1 log ε−1

)
evaluations of F and

resolvent of B. Notice from (33), (34) and (36) that such (x, y, λ, λ̃) is also an ε-KKT solution of problem
(29). In addition, the evaluation of F requires that of ∇f , ∇g and ∇g̃, and also the resolvent of B can
be computed as

(I + γB)−1


x
y
λ

λ̃

 =


proxγP (x)

proxγP̃ (y)

ΠK∗(λ)

ΠK̃∗(λ̃)

 ∀(x, y, λ, λ̃) ∈ Rn × Rm × Rp × Rp̃, γ > 0.

The above discussion leads to the following result regarding Algorithm 2 for finding an ε-KKT solution
of problem (29).

Theorem 5. For any ε > 0, Algorithm 2, when applied to the MI problem (35), outputs an ε-KKT
solution of problem (29) within O

(
ε−1 log ε−1

)
evaluations of ∇f , ∇g, ∇g̃, proxγP , proxγP̃ , ΠK∗ and

ΠK̃∗ for some γ > 0.

Remark 6. This is the first time to propose an algorithm for finding an ε-KKT solution of problem
(29). Moreover, the proposed algorithm is equipped with a verifiable termination criterion and enjoys
an operation complexity of O

(
ε−1 log ε−1

)
without the usual assumption that ∇f is Lipschitz continuous

and/or the domains P and P̃ are bounded.
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4.3 Variational inequality

In this subsection we consider the following variational inequality (VI) problem:

find x ∈ Rn such that g(y)− g(x) + ⟨y − x, F (x)⟩ ≥ 0 ∀y ∈ Rn, (37)

where g : Rn → (−∞,∞] is a proper closed convex function, and F : domF → Rn is monotone and locally
Lipschitz continuous on cl(dom ∂g) ⊆ domF . It shall be mentioned that dom g is possibly unbounded.
Assume that problem (37) has at least one solution. For the details of VI and its applications, we refer
the reader to [2] and the references therein.

Recently, an adaptive golden ratio algorithm was proposed in [12, Algorithm 1] for solving (37). In
addition, some special cases of (37) have been well studied in the literature. For example, projection
method [23], extragradient method [5], mirror-prox method [18], dual extrapolation method [19], operator
extrapolation method [6], extra-point method [3, 4], and extra-momentum method [4] were developed for
solving problem (37) with g being the indicator function of a closed convex set and F being Lipschitz
continuous on it or the entire space. In addition, a variant of Tseng’s MFBS method [16], and generalized
extragradient method [16] were proposed for solving problem (37) with F being Lipschitz continuous.
Iteration complexity of these methods except [6] was established based on the weak gap or its variant on
the ergodic (i.e., weight-averaged) solution sequence. Yet, the weak gap can often be difficult to measure.
In practice, one may use a computable upper bound on the weak gap to terminate these methods, which
however typically requires the knowledge of an upper bound on the distance between the initial point
and the solution set. Besides, there is a lack of complexity guarantees for these methods in terms of the
original solution sequence. In addition, since F is only assumed to be locally Lipschitz continuous on
cl(dom g) in our paper, these methods are generally not suitable for solving problem (37).

Generally, it is difficult to find an exact solution of problem (37). Instead, for any given ε > 0, we are
interested in finding an ε-residual solution of (37), which is a point x satisfying resF+∂g(x) ≤ ε. To this
end, we first observe that problem (37) is equivalent to the MI problem

0 ∈ (F + ∂g)(x). (38)

Since F is monotone and locally Lipschitz continuous on cl(dom ∂g) and ∂g is maximal monotone,
Algorithm 2 can be suitably applied to the MI problem (38). It then follows from Theorem 3 that
Algorithm 2, when applied to problem (38), finds an ε-residual solution x of (38), which is indeed also an
ε-residual solution of (37), within O

(
ε−1 log ε−1

)
evaluations of F and resolvent of ∂g. Notice that the

resolvent of ∂g can be computed as

(I + γ∂g)−1(x) = proxγg(x), ∀x ∈ Rn, γ > 0.

The above discussion leads to the following result regarding Algorithm 2 for finding an ε-residual
solution of problem (37).

Theorem 6. For any ε > 0, Algorithm 2, when applied to the MI problem (38), outputs an ε-residual
solution of problem (37) within O

(
ε−1 log ε−1

)
evaluations of F and proxγg for some γ > 0.

Remark 7. An adaptive golden ratio algorithm was recently proposed in [12, Algorithm 1]. While [12]
did not specifically study the operation complexity of this algorithm for finding an ε-residual solution of
(37), it can be shown that the algorithm achieves an operation complexity of O(ε−2) for such a solution by
using [12, equation (34) and Lemma 2]. In contrast, the operation complexity of O

(
ε−1 log ε−1

)
achieved

by our method is significantly better.

5 Numerical results

In this section we conduct some preliminary experiments to test the performance of our proposed method
(Algorithm 2), and compare it with FRBS method [13], MFBS method with an Armijo-Goldstein-type
stepsize [25], and adaptive golden ratio (AGR) algorithm [12], respectively. All the methods are coded in
Matlab and all the computations are performed on a desktop with a 3.60 GHz Intel i7-12700K 12-core
processor and 32 GB of RAM.
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We consider the problem

min
x≥0

max
∥y∥≤1

{
∥Ax− b∥44 + ⟨Bx, y⟩ − ∥Cy − d∥44

}
, (39)

where A ∈ Rl×n, B ∈ Rm×n, C ∈ Rq×m, b ∈ Rl, d ∈ Rq, and ∥z∥4 = (
∑

i z
4
i )

1/4 for any vector z.
We randomly generate instances for problem (39). Specifically, we first randomly generate U ∈ Rl×(n/10)

and V ∈ R(n/10)×n with all the entries independently chosen from a normal distribution with mean
0 and standard deviation 0.1, and a diagonal matrix D ∈ R(n/10)×(n/10) with all the diagonal entries
independently chosen from a uniform distribution between 0 and 1. Then we set A = UDV . In a
similar vein, we randomly generate C. Besides, we randomly generate P ∈ Rm×l with all the entries
independently chosen from the standard normal distribution, and set B = PA. In addition, we randomly
generate b and d with all the entries independently chosen from the standard normal distribution.

Notice that problem (39) is a special case of (29). As discussed in Subsection 4.2, (39) is equivalent
to the monotone inclusion problem (1) with

F (x, y) =

(
∇(∥Ax− b∥44) +BT y
∇(∥Cy − d∥44)−Bx

)
, B(x, y) =

(
NRn

+
(x)

NB(y)

)
,

where B = {z ∈ Rm : ∥z∥ ≤ 1}. Clearly, B is a maximal monotone operator and F is monotone and
locally Lipschitz continuous, albeit not globally Lipschitz continuous. In addition, for any γ > 0, the
resolvent of γB can be calculated as

(I + γB)−1

(
x
y

)
=

(
ΠRn

+
(x)

ΠB(y)

)
.

As a result, (39) can be suitably solved by Algorithm 2, FRBS [13], MFBS [25], and AGR [12]. Our aim
is to find a 10−4-residual solution of the corresponding monotone inclusion problem of (39) for the above
instances by using Algorithm 2, FRBS, MFBS and AGR, and compare their performance. Due to this,
we terminate them once a 10−4-residual solution is found. In addition, for all the methods, we choose 0
as the initial point and set the parameters as

• (ε, γ0, δ, ν, ρ0, τ0, ζ, σ, η) = (10−4, 0.1, 0.9, 0.5, 10, 0.09, 9, 0.1, 0.33) for Algorithm 2;

• (λ0, δ, σ) = (0.1, 0.5, 0.9) for FRBS [13];

• (σ, θ, β) = (0.1, 0.5, 0.9) for MFBS [25].

• (λ0, λ̄, ϕ) = (1, 1, 1.5) for AGR [12].

The computational results of Algorithm 2, FRBS, MFBS and AGR for the instances randomly
generated above are presented in Table 1. In detail, the value of (n,m, l, q) is listed in the first four
columns. For each instance, the number of gradient evaluations and the CPU time (in seconds) are given in
the rest of the columns. One can observe that our method, namely Algorithm 2, substantially outperforms
the other three methods in terms of number of gradient evaluations and CPU time. Notice that our
method uses both primal and dual extrapolation schemes, while FRBS only uses a dual extrapolation
scheme, and MFBS and AGR do not use any of them. The numerical results in Table 1 demonstrate that
primal and dual extrapolation schemes have an acceleration effect.

Gradient evaluations CPU time (seconds)
n m l q Algorithm 2 FRBS MFBS AGR Algorithm 2 FRBS MFBS AGR

100 10 500 100 1.23× 103 3.12× 103 3.08× 103 2.12× 103 0.3 0.5 0.4 0.3
200 20 1000 200 2.81× 103 8.15× 103 1.20× 104 7.41× 103 1.4 6.2 6.3 3.7
300 30 1500 300 2.28× 104 6.25× 104 8.84× 104 4.27× 104 23.3 82.3 114.3 57.3
400 40 2000 400 7.62× 104 1.78× 105 3.84× 105 1.24× 105 109.4 314.4 598.4 231.9
500 50 2500 500 5.93× 104 1.68× 105 5.95× 105 1.65× 105 149.2 388.5 1741.8 464.4
600 60 3000 600 6.00× 104 1.70× 105 4.28× 105 1.71× 105 238.4 549.0 1588.8 561.7
700 70 3500 700 6.90× 104 1.54× 105 4.71× 105 1.37× 105 268.3 639.5 2005.9 596.7
800 80 4000 800 4.62× 104 8.52× 104 4.04× 105 8.52× 104 271.6 565.9 2363.5 577.5
900 90 4500 900 5.43× 104 9.33× 104 5.17× 105 8.27× 104 324.3 594.3 3459.8 562.8
1000 100 5000 1000 3.32× 104 6.13× 104 5.37× 105 6.67× 104 380.5 784.2 6206.5 854.8

Table 1: Numerical results for problem (39)
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6 Proof of the main results

In this section we provide a proof of our main results presented in Sections 2 and 3, which are particularly
Theorems 1, 2, and 3.

6.1 Proof of the main results in Section 2

In this subsection we first establish several technical lemmas and then use them to prove Theorems 1 and
2.

Before proceeding, we introduce some notation that will be used shortly. Recall from Section 2 that
{xt}t∈T denotes all the iterates generated by Algorithm 1, where T is a subset of consecutive nonnegative
integers starting from 0. For any 1 ≤ t ∈ T, we define

∆t = F (xt)− F (xt−1), (40)

∆̃t = ∆t − ηγ−1
t−1(x

t − xt−1). (41)

In addition, we define

vt = γ−1
t (xt − xt+1 + αt(x

t − xt−1) + γt∆
t+1 − γtβt∆

t) ∀1 ≤ t ∈ T− 1, (42)

γ̃t =
γt

1− η
, θt =

t−1∏
i=1

(1 + 2µγ̃i) =
t−1∏
i=1

(
1 +

2µγi
1− η

)
∀1 ≤ t ∈ T− 1.10 (43)

The following lemma establishes some properties of {vt}1≤t∈T−1.

Lemma 3. Let {xt}t∈T be generated by Algorithm 1. Then for all 1 ≤ t ∈ T− 1, the following relations
hold.

vt ∈ (F +B)(xt+1), (44)

vt = γ̃−1
t (xt − xt+1 + γ̃t∆̃

t+1 − γ̃tβt∆̃
t). (45)

Proof. By (4), one has

xt + αt(x
t − xt−1)− γt(F (xt) + βt(F (xt)− F (xt−1))) ∈ xt+1 + γtB(xt+1).

Adding γtF (xt+1) to both sides of this relation, we obtain

xt + αt(x
t − xt−1) + γt(F (xt+1)− F (xt))− γtβt(F (xt)− F (xt−1)) ∈ xt+1 + γt(F +B)(xt+1),

which together with (40) and (42) yields

vt = γ−1
t (xt − xt+1 + αt(x

t − xt−1) + γt∆
t+1 − γtβt∆

t) ∈ (F +B)(xt+1),

and hence (44) holds. In addition, recall from (5) that αt = ηγtβt/γt−1. By this, (41) and (43), one has

vt = γ−1
t (xt − xt+1 + αt(x

t − xt−1) + γt∆
t+1 − γtβt∆

t)

=
1

γt

(
(1− η)(xt − xt+1) + γt(∆

t+1 − η

γt
(xt+1 − xt))− γtβt(∆

t − αt

γtβt
(xt − xt−1))

)
= γ̃−1

t (xt − xt+1 + γ̃t∆̃
t+1 − γ̃tβt∆̃

t).

Hence, (45) holds as desired.

The next two lemmas establish some properties of {xt}t∈T.
10We set θ1 = 1.

14



Lemma 4. Let {xt}t∈T be generated by Algorithm 1. Then for all 1 ≤ k ∈ T− 1, we have

1

2
θ1∥x0 − x∗∥2 − 1

2
(1 + 2µγ̃k)θk∥xk+1 − x∗∥2 ≥ −γ̃kθk⟨∆̃k+1, xk+1 − x∗⟩+Rk, (46)

where

Rk =
k∑

t=1

(
γ̃tβtθt⟨∆̃t, xt+1 − xt⟩+ 1

2
θt∥xt+1 − xt∥2

)
. (47)

Proof. By (2), (44) and 0 ∈ (F +B)(x∗), one has

⟨vt, xt+1 − x∗⟩ ≥ µ∥xt+1 − x∗∥2,

which along with (45) implies that

γ̃tµ∥xt+1 − x∗∥2 ≤ ⟨xt − xt+1 + γ̃t∆̃
t+1 − γ̃tβt∆̃

t, xt+1 − x∗⟩
= ⟨xt − xt+1, xt+1 − x∗⟩+ γ̃t⟨∆̃t+1, xt+1 − x∗⟩ − γ̃tβt⟨∆̃t, xt+1 − x∗⟩

=
1

2

(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2 − ∥xt − xt+1∥2

)
+ γ̃t⟨∆̃t+1, xt+1 − x∗⟩

− γ̃tβt⟨∆̃t, xt − x∗⟩ − γ̃tβt⟨∆̃t, xt+1 − xt⟩.

Rearranging the terms in the above inequality yields

1

2
∥xt − x∗∥2 − 1

2
(1 + 2γ̃tµ)∥xt+1 − x∗∥2 ≥ γ̃tβt⟨∆̃t, xt − x∗⟩ − γ̃t⟨∆̃t+1, xt+1 − x∗⟩

+ γ̃tβt⟨∆̃t, xt+1 − xt⟩+ 1

2
∥xt+1 − xt∥2.

Multiplying both sides of this inequality by θt and summing it up for t = 1, . . . , k, we have

k∑
t=1

(
1

2
θt∥xt − x∗∥2 − 1

2
(1 + 2γ̃tµ)θt∥xt+1 − x∗∥2

)

≥
k∑

t=1

θtγ̃tβt⟨∆̃t, xt − x∗⟩ −
k∑

t=1

θtγ̃t⟨∆̃t+1, xt+1 − x∗⟩+Rk

= θ1γ̃1β1⟨∆̃1, x1 − x∗⟩+
k−1∑
t=1

(θt+1γ̃t+1βt+1 − θtγ̃t)⟨∆̃t+1, xt+1 − x∗⟩ − γ̃kθk⟨∆̃k+1, xk+1 − x∗⟩+Rk.

(48)

In addition, it follows from x0 = x1 and (41) that ∆̃1 = 0. Also, by the definition of γ̃t, θt and βt in (5)
and (43), one has

θt+1γ̃t+1βt+1 − θtγ̃t = θt

(
1 +

2µγt
1− η

)
· γt+1

1− η
· γt
γt+1

(
1 +

2µγt
1− η

)−1

− θt
γt

1− η
= 0,

θt+1 = (1 + 2γ̃tµ)θt. (49)

Using these, ∆̃1 = 0 and (48), we obtain

k∑
t=1

(
1

2
θt∥xt − x∗∥2 − 1

2
θt+1∥xt+1 − x∗∥2

)
≥ −γ̃kθk⟨∆̃k+1, xk+1 − x∗⟩+Rk,

which yields

1

2
θ1∥x0 − x∗∥2 − 1

2
θk+1∥xk+1 − x∗∥2 ≥ −γ̃kθk⟨∆̃k+1, xk+1 − x∗⟩+Rk.

The conclusion then follows from this and (49) with t = k.
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Lemma 5. Let {xt}t∈T be generated by Algorithm 1. Then we have

∥xk+1 − x∗∥2 ≤ 1

(1− 2ν2)θk
∥x0 − x∗∥2 ∀1 ≤ k ∈ T− 1. (50)

Proof. By the definition of βt and γ̃t in (5) and (43), one has γ̃−1
t−1γ̃tβt = (1 + 2µγt−1/(1− η))−1. Using

this and the definition of θt in (43), we obtain

θt−1 − 4ν2γ̃−2
t−1γ̃

2
t β

2
t θt = θt−1

(
1− 4ν2

(
1 +

2µγt−1

1− η

)−2 θt
θt−1

)
(43)
= θt−1

(
1− 4ν2

(
1 +

2µγt−1

1− η

)−1
)
≥ 0, (51)

where the last inequality follows from the fact that 0 < ν ≤ 1/2. In addition, it follows from (6), (40),
(41), and the definition of γ̃t in (43) that

∥∆̃t∥ ≤ νγ̃−1
t−1∥x

t − xt−1∥ ∀2 ≤ t ∈ T. (52)

Recall that Rk is defined in (47). Letting θ0 = 0, and using (47), (51), (52) and x0 = x1, we have

Rk

(47)

≥
k∑

t=1

(
−γ̃tβtθt∥∆̃t∥∥xt+1 − xt∥+ 1

2
θt∥xt+1 − xt∥2

)
(52)

≥
k∑

t=1

(
−νγ̃−1

t−1γ̃tβtθt∥x
t − xt−1∥∥xt+1 − xt∥+ 1

2
θt∥xt+1 − xt∥2

)

=

k∑
t=1

(
−νγ̃−1

t−1γ̃tβtθt∥x
t − xt−1∥∥xt+1 − xt∥+ 1

4
θt∥xt+1 − xt∥2 + 1

4
θt−1∥xt − xt−1∥2

)
+

1

4
θk∥xk+1 − xk∥2

≥
k∑

t=1

((√
θtθt−1/2− νγ̃−1

t−1γ̃tβtθt

)
∥xt − xt−1∥∥xt+1 − xt∥

)
+

1

4
θk∥xk+1 − xk∥2

(51)

≥ 1

4
θk∥xk+1 − xk∥2.

Using this, (46) and (52), we further obtain

1

2
θ1∥x0 − x∗∥2 − 1

2
(1 + 2µγ̃k)θk∥xk+1 − x∗∥2 ≥− γ̃kθk⟨∆̃k+1, xk+1 − x∗⟩+ 1

4
θk∥xk+1 − xk∥2

≥− γ̃kθk∥∆̃k+1∥∥xk+1 − x∗∥+ 1

4
θk∥xk+1 − xk∥2

(52)

≥ − νθk∥xk+1 − xk∥∥xk+1 − x∗∥+ 1

4
θk∥xk+1 − xk∥2

≥− ν2θk∥xk+1 − x∗∥2.

It then follows from this, θ1 = 1, and 0 < ν ≤ 1/2 that

∥xk+1 − x∗∥2 ≤ θ1
(1 + 2µγ̃k − 2ν2)θk

∥x0 − x∗∥2 ≤ 1

(1− 2ν2)θk
∥x0 − x∗∥2.

In what follows, we will show that {nt}1≤t∈T−1 is bounded, that is, the number of evaluations of F
and resolvent of B is bounded above by a constant for all iterations t ∈ T− 1. To this end, we define

xt+1(γ) = (I + γB)−1
(
xt + αt(γ)(x

t − xt−1)− γ
(
F (xt) + βt(γ)(F (xt)− F (xt−1))

))
∀γ > 0, (53)

Vt+1(γ) = ∥F (xt+1(γ))− F (xt)− ηγ−1(xt+1(γ)− xt)∥ ∀γ > 0, (54)
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where

βt(γ) =
γt−1

γ

(
1 +

2µγt−1

1− η

)−1

, αt(γ) =
ηγβt(γ)

γt−1
. (55)

The following lemma establishes some property of xt+1(γ), which will be used shortly.

Lemma 6. Let S and Ŝ be defined in (8) and (10). Assume that xt, xt−1 ∈ S for some 1 ≤ t ∈ T− 1.
Then xt+1(γ) ∈ Ŝ for any 0 < γ ≤ γ0.

Proof. Fix any γ ∈ (0, γ0]. It follows from (53) that

xt − xt+1(γ) + αt(γ)(x
t − xt−1)− γ(F (xt) + βt(γ)(F (xt)− F (xt−1))) ∈ γB(xt+1(γ)).

Also, by the definition of x∗, one has −γF (x∗) ∈ γB(x∗). These along with the monotonicity of B imply
that

⟨xt − xt+1(γ) + w, xt+1(γ)− x∗⟩ ≥ 0, (56)

where
w = αt(γ)(x

t − xt−1)− γ(F (xt)− F (x∗))− γβt(γ)(F (xt)− F (xt−1)). (57)

It follows from (56) that

∥xt+1(γ)− x∗∥2 ≤ ⟨xt − x∗ + w, xt+1(γ)− x∗⟩ ≤ ∥xt − x∗ + w∥∥xt+1(γ)− x∗∥,

which implies that
∥xt+1(γ)− x∗∥ ≤ ∥xt − x∗ + w∥ ≤ ∥xt − x∗∥+ ∥w∥. (58)

Notice from Algorithm 1 that 0 < γt−1 ≤ γ0 and 0 ≤ η < 1/3. Using these and (55), we have

γβt(γ) = γt−1

(
1 +

2µγt−1

1− η

)−1

≤ γ0, (59)

αt(γ) =
ηγβt(γ)

γt−1
= η

(
1 +

2µγt−1

1− η

)−1

≤ 1

3
. (60)

Recall that S, r0 and w are given in (8) and (57), respectively. Using xt, xt−1, x∗ ∈ S, 0 < γ ≤ γ0, (8),
(57), (59) and (60), we have

∥w∥ ≤ αt(γ)∥xt − xt−1∥+ γLS∥xt − x∗∥+ γβt(γ)LS∥xt − xt−1∥

≤
(
1

3
+ γ0LS

)
∥xt − xt−1∥+ γ0LS∥xt − x∗∥

≤
(
1

3
+ γ0LS

)
(∥xt − x∗∥+ ∥xt−1 − x∗∥) + γ0LS∥xt − x∗∥

≤ 2√
1− 2ν2

(
1

3
+ γ0LS

)
r0 +

1√
1− 2ν2

γ0LSr0 ≤
(2 + 9γ0LS)r0

3
√
1− 2ν2

.

This together with xt ∈ S, (8) and (58) yields

∥xt+1(γ)− x∗∥ ≤∥xt − x∗∥+ ∥w∥ < (5 + 9γ0LS)r0

3
√
1− 2ν2

.

The conclusion then follows from this and the definition of Ŝ in (10).

The next lemma provides an upper bound on nt, which will be used to prove Theorem 1.

Lemma 7. Assume that xt−1, xt ∈ S for t ≥ 1 and Algorithm 1 has not yet terminated at iteration t− 1.
Then xt+1 is successfully generated by Algorithm 1 at iteration t with nt ≤M + t−

∑t−1
i=1 ni, where M is

given in (11).
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Proof. Recall that xt+1(γ) and Vt+1(γ) are defined in (53) and (54), respectively. It follows from Lemma
6 that xt+1(γ) ∈ Ŝ for any 0 < γ ≤ γ0. Also, notice that xt ∈ S ⊂ Ŝ. By these and Lemma 1(ii), one has

∥F (xt+1(γ))− F (xt)∥ ≤ LŜ∥x
t+1(γ)− xt∥ ∀0 < γ ≤ γ0.

Using this and (54), we obtain that for any 0 < γ ≤ γ0,

Vt+1(γ) ≤ ∥F (xt+1(γ))− F (xt)∥+ ηγ−1∥xt+1(γ)− xt∥ ≤ (LŜ + ηγ−1)∥xt+1(γ)− xt∥. (61)

In addition, notice from (5) that γi ≤ γi−1δ
ni−1 for i = 1, . . . , t−1, which implies that γt−1 ≤ γ0δ

∑t−1
i=1(ni−1).

Let γ = min{γ0, δ−1γt−1}δM+t−
∑t−1

i=1 ni . In view of these, δ ∈ (0, 1), and the definition of M in (11), one
can verify that

0 < γ ≤ δ−1γt−1δ
M+t−

∑t−1
i=1 ni ≤ γ0δ

M ≤ min{ξ/LŜ , γ0}.

It then follows from this, (9), and (61) that

Vt+1(γ) ≤ (LŜγ + η)γ−1∥xt+1(γ)− xt∥ ≤ ν(1− η)γ−1∥xt+1(γ)− xt∥,

which, together with (6), (54), the expression of γ, and the definition of nt (see step 2 of Algorithm 1),
implies that nt ≤M + t−

∑t−1
i=1 ni and hence xt+1 is successfully generated.

We are now ready to prove the main results presented in Section 2, namely, Theorems 1 and 2.

Proof of Theorem 1. We prove this theorem by induction. Indeed, notice from Algorithm 1 that
x0 = x1 ∈ S. It then follows from Lemma 7 that x2 is successfully generated and n1 ≤ M + 1. Hence,
Algorithm 1 is well-defined at iteration 1. By this, (43), and (50) with k = 1, one has

∥x2 − x∗∥2
(50)

≤ 1

(1− 2ν2)θ1
∥x0 − x∗∥2 (43)

=
1

1− 2ν2
∥x0 − x∗∥2,

which together with (8) implies that x2 ∈ S. Now, suppose for induction that Algorithm 1 is well-defined
at iteration 1 to t− 1 and xi ∈ S for all 0 ≤ i ≤ t for some 2 ≤ t ∈ T− 1. It then follows from Lemma 7
that xt+1 is successfully generated and

∑t
i=1 ni ≤M + t. Hence, Algorithm 1 is well-defined at iteration

t. By this, (43), and (50) with k = t, one has

∥xt+1 − x∗∥2
(50)

≤ 1

(1− 2ν2)θt
∥x0 − x∗∥2

(43)

≤ 1

1− 2ν2
∥x0 − x∗∥2,

which together with (8) implies that xt+1 ∈ S. Hence, the induction is completed and the conclusion of
this theorem holds.

Proof of Theorem 2. Notice from Algorithm 1 that 0 ≤ η < 1/3 and 0 < γt ≤ γ0 for all 0 ≤ t ∈ T− 1.
Using these and (5), we have that for all 1 ≤ t ∈ T− 1,

γtβt = γt−1

(
1 +

2µγt−1

1− η

)−1

≤ γ0, αt =
ηγtβt
γt−1

= η

(
1 +

2µγt−1

1− η

)−1

≤ 1

3
. (62)

We next show by induction that

γt ≥ min
{
L−1

Ŝ
δξ, γ0

}
∀0 ≤ t ∈ T− 1, (63)

where ξ is defined in (9). Indeed, (63) clearly holds at t = 0. Suppose that (63) holds at some
0 ≤ t− 1 ∈ T− 2. We now show that (63) holds at t by considering the following two separate cases.

Case (a): nt = 0. It follows from this and Algorithm 1 that γt = min{γ0, δ−1γt−1}, which together
with δ ∈ (0, 1) and (63) with t replaced by t− 1 implies that (63) holds at t.

Case (b): nt > 0. By this, (5), δ ∈ (0, 1) and the definition of nt, one can observe that γt/δ =
min{γ0, δ−1γt−1}δnt−1 ≤ γ0 and (6) will not hold if γt is replaced by γt/δ. Besides, from the proof of
Lemma 7, one can see that (6) will hold if γt is replaced by γ̃ satisfying 0 < γ̃ ≤ min{ξ/LŜ , γ0}. Hence,
it follows that γt/δ > ξ/LŜ , which together with γt ≤ γ0 implies that (63) holds at t.
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By (8), (43), (50), and (63), one has that for all 1 ≤ t ∈ T− 1,

∥xt+1 − x∗∥2 ≤ 1

(1− 2ν2)
∏t−1

i=1

(
1 + 2µγi

1−η

)∥x0 − x∗∥2

≤ r20
1− 2ν2

(
1 +

2µ

1− η
min

{
L−1

Ŝ
δξ, γ0

})1−t

.

It then follows that for all 3 ≤ t ∈ T− 1,

max{∥xt − xt−1∥, ∥xt+1 − xt∥} ≤ max{∥xt − x∗∥+ ∥xt−1 − x∗∥, ∥xt+1 − x∗∥+ ∥xt − x∗∥}

≤ 2r0√
1− 2ν2

(
1 +

2µ

1− η
min

{
L−1

Ŝ
δξ, γ0

}) 3−t
2

. (64)

Suppose for contradiction that Algorithm 1 runs for at least T + 1 iterations. It then follows that (7)
fails for t = T , which along with (42) implies that ∥vT ∥ > ϵ. In addition, recall from Theorem 1(ii) that
xt ∈ S for all t ∈ T. By this, (40) and Lemma 1(i), one has

∥∆t∥ = ∥F (xt)− F (xt−1)∥ ≤ LS∥xt − xt−1∥ ∀1 ≤ t ∈ T. (65)

Also, notice from (12) that T ≥ 3. By this, γT ≤ γ0, (12), (42), (62), (63), (64), and (65), one has

∥vT ∥
(42)

≤ 1

γT

(
∥xT+1 − xT ∥+ αT ∥xT − xT−1∥+ γT ∥∆T+1∥+ γTβT ∥∆T ∥

)
(65)

≤ 1

γT

(
∥xT+1 − xT ∥+ αT ∥xT − xT−1∥+ γTLS∥xT+1 − xT ∥+ γTβTLS∥xT − xT−1∥

)
(64)

≤ 2r0

γT
√
1− 2ν2

(1 + αT + γTLS + γTβTLS)

(
1 +

2µ

1− η
min

{
L−1

Ŝ
δξ, γ0

}) 3−T
2

(62)

≤ 2r0

γT
√
1− 2ν2

(
1 +

1

3
+ γ0LS + γ0LS

)(
1 +

2µ

1− η
min

{
L−1

Ŝ
δξ, γ0

}) 3−T
2

(63)

≤ r0 (8 + 12γ0LS)

3
√
1− 2ν2min

{
L−1

Ŝ
δξ, γ0

} (1 + 2µ

1− η
min

{
L−1

Ŝ
δξ, γ0

}) 3−T
2 (12)

≤ ϵ,

which leads to a contradiction. Hence, Algorithm 1 terminates in at most T iterations. Suppose that
Algorithm 1 terminates at iteration t and outputs xt+1 for some t ≤ T . It then follows that (7) holds for
such t. By this and (42), one can see that ∥vt∥ ≤ ϵ, which together with (44) implies that resF+B(x

t+1) ≤ ϵ.

Observe that |T| ≤ T + 2 and the total number of inner iterations of Algorithm 1 is
∑|T|−2

t=1 (nt + 1).
It follows from these and Theorem 1(ii) that

|T|−2∑
t=1

(nt + 1) ≤ 2(|T| − 2) +M ≤ 2T +M,

which together with (11) and (12) implies that the conclusion holds.

6.2 Proof of the main result in Section 3

In this subsection we first establish several technical lemmas and then use them to prove Theorem 3.
Recall from Section 3 that {zk}k∈K denotes all the iterates generated by Algorithm 2, where K is a

subset of consecutive nonnegative integers starting from 0. Notice that at iteration 0 ≤ k ∈ K − 1 of
Algorithm 2, Algorithm 1 is called to find an approximate solution of the following strongly MI problem

0 ∈ (Fk +B)(x) = (F +B)(x) + ρ−1
k (x− zk). (66)

Since F +B is maximal monotone, it follows that the domain of the resolvent of F +B is Rn. As a result,
there exists some zk∗ ∈ Rn such that

zk∗ = (I + ρk(F +B))−1 (zk). (67)
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Moreover, zk∗ is the unique solution of problem (66) and thus

0 ∈ (Fk +B)(zk∗ ) = (F +B)(zk∗ ) + ρ−1
k (zk∗ − zk). (68)

Lemma 8. Let {zk}k∈K be generated by Algorithm 2. Then for all 0 ≤ k ∈ K− 1, we have

∥zk+1 − zk∗∥ ≤ ρkτk, (69)

where zk∗ is defined in (67).

Proof. By the definition of zk+1 (see step 2 of Algorithm 2) and Theorem 2, there exists some v ∈
(Fk +B)(zk+1) with ∥v∥ ≤ τk. It follows from this and (68) that

v − ρ−1
k (zk+1 − zk) ∈ (F +B)(zk+1), −ρ−1

k (zk∗ − zk) ∈ (F +B)(zk∗ ).

By the monotonicity of F +B, one has

⟨v − ρ−1
k (zk+1 − zk) + ρ−1

k (zk∗ − zk), zk+1 − zk∗ ⟩ ≥ 0,

which yields
∥zk+1 − zk∗∥2 ≤ ρk⟨v, zk+1 − zk∗ ⟩ ≤ ρk∥v∥∥zk+1 − zk∗∥.

It then follows from this and ∥v∥ ≤ τk that ∥zk+1 − zk∗∥ ≤ ρk∥v∥ ≤ ρkτk.

Lemma 9. Let {zk}k∈K be generated by Algorithm 2. Then we have

∥zs − x∗∥ ≤ ∥z0 − x∗∥+
s−1∑
k=0

ρkτk ∀1 ≤ s ∈ K, (70)

∥zs+1 − zs∥ ≤ ∥z0 − x∗∥+
s∑

k=0

ρkτk ∀1 ≤ s ∈ K− 1. (71)

Proof. By (68) and the definition of x∗, one has

zk − zk∗ ∈ ρk(F +B)(zk∗ ), 0 ∈ ρk(F +B)(x∗),

which together with the monotonicity of F +B yield

0 ≤ 2⟨zk − zk∗ , z
k
∗ − x∗⟩ = ∥zk − x∗∥2 − ∥zk − zk∗∥2 − ∥zk∗ − x∗∥2.

It follows that

∥zk − zk∗∥2 + ∥zk∗ − x∗∥2 ≤ ∥zk − x∗∥2,

which implies that

∥zk∗ − x∗∥ ≤ ∥zk − x∗∥, ∥zk − zk∗∥ ≤ ∥zk − x∗∥. (72)

By the first relation in (72), one has

∥zk+1 − x∗∥ ≤ ∥zk+1 − zk∗∥+ ∥zk∗ − x∗∥ ≤ ∥zk+1 − zk∗∥+ ∥zk − x∗∥.

Summing up the above inequalities for k = 0, . . . , s− 1 yields

∥zs − x∗∥ ≤ ∥z0 − x∗∥+
s−1∑
k=0

∥zk+1 − zk∗∥,

which along with (69) implies that (70) holds. In addition, using (69) with k = s, (70) and (72), we have

∥zs+1 − zs∥ ≤ ∥zs − zs∗∥+ ∥zs+1 − zs∗∥
(69),(72)

≤ ∥zs − x∗∥+ ρsτs
(70)

≤ ∥z0 − x∗∥+
s∑

k=0

ρkτk.

Hence, (71) holds as desired.
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Define

Sk =

{
x ∈ domB : ∥x− zk∗∥ ≤

1√
1− 2ν2

∥zk − zk∗∥
}

∀0 ≤ k ∈ K− 1, (73)

Ŝk =

{
x ∈ domB : ∥x− zk∗∥ ≤

5 + 9γ0LQ

3
√
1− 2ν2

∥zk − zk∗∥
}

∀0 ≤ k ∈ K− 1, (74)

where zk∗ is defined in (67), LQ is given in Lemma 2, and ν and γ0 are the input parameters of Algorithm
2.

Lemma 10. Let Sk and Ŝk be defined in (73) and (74). Then for all 0 ≤ k ∈ K− 1, we have

Sk ⊆ Q, Ŝk ⊆ Q̂,

where Q and Q̂ are defined in (16) and (17). Consequently, for all 0 ≤ k ∈ K − 1, Fk is LQ- and
LQ̂-Lipschitz continuous on Sk and Ŝk, respectively, where LQ and LQ̂ are given in Lemma 2.

Proof. Fix any 0 ≤ k ∈ K− 1 and x ∈ Sk. By this, (70), (72), (73), and
∑∞

i=0 ρiτi = ρ0τ0/(1− σζ), we
have

∥x− x∗∥ ≤ ∥x− zk∗∥+ ∥zk∗ − x∗∥
(73)

≤ 1√
1− 2ν2

∥zk − zk∗∥+ ∥zk∗ − x∗∥
(72)

≤
(

1√
1− 2ν2

+ 1

)
∥zk − x∗∥

(70)

≤
(

1√
1− 2ν2

+ 1

)(
∥z0 − x∗∥+

k−1∑
i=0

ρiτi

)
≤
(

1√
1− 2ν2

+ 1

)(
∥z0 − x∗∥+ ρ0τ0

1− σζ

)
,

which together with (16) implies that x ∈ Q. It then follows that Sk ⊆ Q. Similarly, one can show
that Ŝk ⊆ Q̂. By these and the definition of LQ and LQ̂ in Lemma 2, one can see that Fk is LQ- and

LQ̂-Lipschitz continuous on Sk and Ŝk, respectively.

Lemma 11. Let γ0, δ, ν, η, {ρk} and {τk} be given in Algorithm 2, and let ξ, r̄0 and Λ be defined in (9),
(16) and (18). Then for any 0 ≤ k ∈ K− 1, the number of evaluations of F and resolvent of B performed
in the kth iteration of Algorithm 2 is at most M̄k, where

M̄k = 6 + 2


2 log (r̄0+Λ)(8+12γ0LQ)

3τk
√
1−2ν2 min

{
L−1

Q̂
δξ,γ0

}
log
(
1 + 2

ρk(1−η) min
{
L−1

Q̂
δξ, γ0

})

+

+


log
(

ξ
γ0LQ̂

)
log δ


+

. (75)

Proof. Recall that Fk +B is 1/ρk-strongly monotone and (Fk +B)−1(0) ̸= ∅. In addition, it follows from
Lemma 10 that Fk is LQ- and LQ̂-Lipschitz continuous on Sk and Ŝk, respectively. Using (70), (72), and
the fact that Λ =

∑∞
k=0 ρkτk, we have

∥zk − zk∗∥ ≤ ∥zk − x∗∥ ≤ ∥z0 − x∗∥+
k−1∑
t=0

ρtτt ≤ r̄0 + Λ,

where zk∗ is given in (67). The conclusion then follows from applying Theorem 2 to the subproblem (66)
with ϵ, µ, LS , LŜ , and r0 in (13) being replaced by τk, 1/ρk, LQ, LQ̂, and r̄0 + Λ, respectively.

Proof of Theorem 3. Suppose for contradiction that Algorithm 2 runs for more than K + 1 outer
iterations. By this and Algorithm 2, one can assert that (15) does not hold for k = K. On the other
hand, by (71), ρk = ρ0ζ

k and τk = τ0σ
k, one has

∥zK+1 − zK∥
ρK

≤
∥z0 − x∗∥+

∑K
k=0 ρkτk

ρK
≤
∥z0 − x∗∥+

∑∞
k=0 ρkτk

ρK
=

r̄0 + Λ

ρ0ζK
.

This together with the definition of K in (20) implies that

∥zK+1 − zK∥
ρK

≤ r̄0 + Λ

ρ0ζK
≤ ε

2
, τK = τ0σ

K ≤ ε

2
,
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and thus (15) holds for k = K, which contradicts the above assertion. Hence, Algorithm 2 must terminate
in at most K + 1 outer iterations.

Suppose that Algorithm 2 terminates at some iteration k. Then we have

ρ−1
k ∥z

k+1 − zk∥+ τk ≤ ε. (76)

In addition, by the definition of zk+1 (see step 2 of Algorithm 2), Theorem 2, and (14), there exists some
v such that

v ∈ (F +B)(zk+1) + ρ−1
k (zk+1 − zk), ∥v∥ ≤ τk. (77)

Observe that v − ρ−1
k (zk+1 − zk) ∈ (F +B)(zk+1). It follows from this, (76), (77), and the definition of

resF+B that

resF+B(z
k+1) ≤ ∥v − ρ−1

k (zk+1 − zk)∥ ≤ ∥v∥+ ρ−1
k ∥z

k+1 − zk∥
(77)

≤ τk + ρ−1
k ∥z

k+1 − zk∥
(76)

≤ ε.

Recall from Lemma 11 that the number of evaluations of F and resolvent of B performed in the kth
iteration of Algorithm 2 is at most M̄k, where M̄k is given in (75). In addition, using (18), (19) and (75),
we have

M̄k =6 + 2


2C1 − 2k log σ

log
(
min

{
1 + 2δξ

LQ̂ρ0(1−η)ζk
, 1 + 2γ0

ρ0(1−η)ζk

})

+

+ C2. (78)

By the concavity of log(1 + y), one has log(1 + ϑy) ≥ ϑ log(1 + y) for all y > −1 and ϑ ∈ [0, 1]. Using
this, we obtain that

log

(
min

{
1 +

2δξ

ρ0(1− η)ζkLQ̂
, 1 +

2γ0
ρ0(1− η)ζk

})

= min

{
log

(
1 + ζ−k 2δξ

ρ0(1− η)LQ̂

)
, log

(
1 + ζ−k 2γ0

ρ0(1− η)

)}

≥ min

{
ζ−k log

(
1 +

2δξ

ρ0(1− η)LQ̂

)
, ζ−k log

(
1 +

2γ0
ρ0(1− η)

)}
. (79)

By (78), (79), σ ∈ (0, 1) and ζ > 1, one has that for all k ≥ 0,

M̄k

(78)

≤ 8 +
(4C1 − 4k log σ)+

log
(
min

{
1 + 2δξ

ρ0(1−η)ζkLQ̂
, 1 + 2γ0

ρ0(1−η)ζk

}) + C2

≤8 +
4 (C1)+ − 4k log σ

log
(
min

{
1 + 2δξ

ρ0(1−η)ζkLQ̂
, 1 + 2γ0

ρ0(1−η)ζk

}) + C2

(79)

≤ 8 +
4ζk (C1)+ − 4kζk log σ

log
(
min

{
1 + 2δξ

ρ0(1−η)LQ̂
, 1 + 2γ0

ρ0(1−η)

}) + C2. (80)

Observe that |K| ≤ K + 2 and also the total number of inner iterations of Algorithm 2 is at most∑|K|−2
t=0 M̄t. It then follows from (19), (78) and (80) that the total number of evaluations of F and

resolvent of B performed in Algorithm 2 is at most

|K|−2∑
k=0

M̄k ≤
K∑
k=0

8 +
4ζk (C1)+ − 4kζk log σ

log
(
min

{
1 + 2δξ

ρ0(1−η)LQ̂
, 1 + 2γ0

ρ0(1−η)

}) + C2


≤ 8K + 8 + 4 (C1)+C3ζ

K+1 + 4C3(log σ
−1)KζK+1 + (K + 1)C2, (81)
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where the second inequality is due to
∑K

k=0 ζ
k ≤ ζK+1/(ζ − 1) and

∑K
k=0 kζ

k ≤ KζK+1/(ζ − 1). By the
definition of K in (20), one has

K ≤ max

{
logζ

(
2r̄0 + 2Λ

ερ0

)
+ 1,

log(2τ0/ε)

log(1/σ)
+ 1, 0

}
,

which together with ζ > 1 implies that

ζK ≤ max

{
2ζ(r̄0 + Λ)

ερ0
, ζ

(
2τ0
ε

) log ζ
log(1/σ)

, 1

}
. (82)

Using (20), (21), (81) and (82), we can see that
∑|K|−2

k=0 M̄k ≤ M̄ .

7 Concluding remarks

We proposed primal-dual extrapolation methods enjoying an operation complexity of O
(
log ε−1

)
and

O
(
ε−1 log ε−1

)
, measured by the number of fundamental operations for finding an ϵ-residual solution of

strongly and non-strongly monotone inclusion problems under local Lipschitz continuity, respectively. The
latter complexity significantly improves upon the previously best operation complexity O(ε−2) achieved
by the FRBS method [13].

One natural question is whether the aforementioned operation complexity of O
(
ε−1 log ε−1

)
can be

improved to O
(
ε−1
)
, which would match the optimal complexity for solving non-strongly monotone

inclusion problems under global Lipschitz continuity. Additionally, our proposed methods require the
exact resolvent of B, which limits their applicability. Clearly, a method using the inexact resolvent of
B for the monotone inclusion problem would be both practically and theoretically interesting. It is
worthwhile to explore these as future research directions.

References
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