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Abstract: The Wilson–Cowan model has been widely applied for the simulation of electroencephalog-

raphy (EEG) waves associated with neural activities in the brain. The Runge–Kutta (RK) method

is commonly used to numerically solve the Wilson–Cowan equations. In this paper, we focus on

enhancing the accuracy of the numerical method by proposing a strategy to construct a class of

fourth-order RK methods using a generalized iterated Crank–Nicolson procedure, where the RK

coefficients depend on a free parameter c2. When c2 is set to 0.5, our method becomes a special case

of the classical fourth-order RK method. We apply the proposed methods to solve the Wilson–Cowan

equations with two and three neuron populations, modeling EEG epileptic dynamics. Our simu-

lations demonstrate that when c2 is set to 0.4, the proposed RK4-04 method yields smaller errors

compared to those obtained using the classical fourth-order RK method. This is particularly visible

when the spectral radius of the connection matrix or the excitation-inhibition coupling coefficient is

relatively large.

Keywords: Runge–Kutta method; iterated Crank–Nicolson method; Wilson–Cowan equations; EEG

simulation

1. Introduction

In computational neuroscience, the Wilson–Cowan model is an important tool for
studying neural activities in the brain [1–3]. It describes the interactions between excitatory
and inhibitory neuron populations, and is widely used to simulate electroencephalography
(EEG) waves [4–8]. For example, in [7], the Wilson–Cowan model is extended to a system of
three equations (one excitatory and two inhibitory neuron populations), and is employed to
simulate EEG waves in the context of epileptic dynamics. In [9], a four-population network
is introduced to study sleep regulation, consisting of excitatory, inhibitory, sleep-promoting,
and wake-promoting neurons.

The Wilson–Cowan model is a system of nonlinear ordinary differential equations
(ODEs). Due to its nonlinearity and the use of a sigmoid function, insights from the Wilson–
Cowan model rely mainly on numerical solutions. For instance, when the Wilson–Cowan
model is applied to modeling EEG signals, the solutions typically exhibit highly oscillatory
behavior. The robustness and efficiency of the used numerical methods then become
important considerations and integral parts for the validity of the solutions.

Here, the Crank–Nicolson (CN) method [10] is a widely used numerical algorithm
for solving differential equations. This algorithm produces an implicit system, which
is typically solved using an iterative solver, leading to the development of the iterated
Crank–Nicolson (ICN) method. The ICN algorithm has been applied to numerically
solve differential equations associated with diverse physical phenomena, including relativ-
ity [11–13], peridynamics [14], beam propagation [15,16], and electromagnetism (Maxwell’s
equations) [17,18]. The original ICN algorithm is a second-order accurate method [11],
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and it has recently been extended to third-order accuracy [19,20]. To our knowledge, no
work has been performed to generalize this method to fourth-order accuracy. It is worth to
noting that the ICN method can be viewed as a type of Runge–Kutta (RK) method, which is
commonly used to solve differential equations [21–23]. A more popular explicit RK method
is the classical fourth-order RK method, known as the RK4 method [23].

In this paper, we propose a strategy to extend the ICN algorithm to fourth-order
accuracy. Since the proposed methods can also be interpreted as RK methods, we refer
to them as Iterated Crank–Nicolson Runge–Kutta (ICN-RK) methods. Specifically, we
develop a class of four-stage, fourth-order algorithms where the coefficients depend on
a free parameter. When this parameter is set to 0.5, the corresponding method is the
classical RK4 method. The proposed fourth-order RK methods are employed to solve
the Wilson–Cowan equations for two and three neuron populations. The simulated EEG
signals include single-spike and poly-spike waves, as well as the transition from single to
poly-spike waves. The use of the free parameter enables us to investigate the relationship
between this parameter and the accuracy of solutions. Through a series of numerical
simulations, we examine the proposed RK methods as the free parameter varies from 0.1 to
0.9. First, we verify the convergence rates of these methods. Second, we confirm that the
EEG waves simulated using our methods are comparable to the simulation results and the
clinical data reported in [7]. Finally, we compare our methods to the classical fourth-order
RK method by evaluating their performance with different connection matrices, including
those with varying spectral radii and excitation-inhibition coupling coefficients.

The paper is organized as follows: In Section 2, we briefly review the Wilson–Cowan
equations. In Section 3, we present the derivation of a new class of fourth-order RK
methods based on a generalized ICN procedure. Section 4 provides numerical examples of
Wilson–Cowan equations for EEG simulations, followed by a discussion and conclusion.

2. The Wilson–Cowan Model

The original Wilson–Cowan model can be written as a system of two differential
equations [1,2],

Äe
dE(t)

dt
= −E(t) + (1 − rE(t))S(C11E(t) + C12 I(t) + P), (1)

Äi
dI(t)

dt
= −I(t) + (1 − rI(t))S(C21E(t) + C22 I(t) + Q), (2)

where E(t) and I(t) represent the excitatory and inhibitory neuron populations, respectively.
Äe and Äi are time constants, and r is the refractory period. The coefficients Cij form a
connection matrix C, where C11 and C22 represent the feedback strength from the excitatory
and inhibitory neurons to themselves, respectively. C12 and C21 are the excitation-inhibition
coupling coefficients, where C12 represents the inhibition strength from the inhibitory
neurons to the excitatory neurons, and C21 represents the excitation strength from the
excitatory neurons to the inhibitory neurons. P and Q are the external inputs. S is a sigmoid
(logistic) function [1],

S(x) =
1

1 + e−a(x−b)
, (3)

where a indicates the steepness of the sigmoid function and b is the threshold. Because
of the sigmoid function S and nonlinearity, the Wilson–Cowan system generally does not
have analytical solutions. Traditionally, this system is solved using numerical methods. We
can write this system (1)–(2) in matrix form,

dU

dt
= T−1(−U + AS(CU + B)), (4)

where U =

(

E
I

)

, T =

(

Äe 0
0 Äi

)

, A =

(

1 − rE 0
0 1 − rI

)

, C =

(

C11 C12

C21 C22

)

, and B =

(

P
Q

)

.
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Using the matrix Equation (4), the Wilson–Cowan system can be generalized to higher
dimensions to model multiple excitatory and inhibitory neuron populations, where U
and B are n dimensional vectors and T, A, and C are n × n matrices. In [7], the general
Wilson–Cowan system with three neuron populations is used to simulate EEG for epileptic
dynamics. This three-population system includes one excitatory and two inhibitory neuron
populations, and the equations are given by [7]:

Äe
dE(t)

dt
= −E(t) + S(C11E(t) + C12 I(t) + C13 J(t) + P), (5)

Äi
dI(t)

dt
= −I(t) + S(C21E(t) + C22 I(t) + C23 J(t) + Q), (6)

Äj
dJ(t)

dt
= −J(t) + S(C31E(t) + C32 I(t) + C33 J(t) + R), (7)

where E(t) is the excitatory neuron population, I(t) and J(t) represent two inhibitory
neuron populations. Äe, Äi, and Äj are the three time constants. The refractory period r in the
original Wilson–Cowan system is chosen to be zero. The Cij terms form a 3 × 3 connectivity
matrix, and P, Q, and R are the three external inputs.

Similarly, system (5)–(7) can also be written in matrix form,

du

dt
= T−1(−u + S(Cu + B)), (8)

where u = (E, I, J)T , T = diag(Äe, Äi, Äj), C = (Cij), and B = (P, Q, R)T . Here, vT represents
the transpose of vector v. In fact, Ä, C, and B can be time-dependent. For example, in [7], P
gradually increases from 3 to 5 in order to simulate the transition from single-spike wave
to poly-spike wave.

If we let f (t, u) = T−1(−u + S(Cu + B)) in Equation (8), then the Wilson–Cowan
system can be written in the form of a standard differential equation,

du

dt
= f (t, u). (9)

To find a particular solution to this equation, we need an initial condition u(0) = u0,
where u0 is a constant.

3. Iterated Crank–Nicolson Runge–Kutta Methods

Since the Wilson–Cowan system is a nonlinear system, commonly used numerical
methods include the Runge–Kutta algorithm, Crank–Nicolson method, and others. In this
section, we start with a general iterated Crank–Nicolson procedure, and construct a class of
fourth-order explicit Runge–Kutta methods for the nonlinear ODE system (9).

The Crank–Nicolson algorithm is based on the following implicit update equation [10]:

un+1 = un + h

(

1

2
f (tn, un) +

1

2
f (tn+1, un+1)

)

. (10)

where h is the time step, and un and un+1 represent the solutions at two consecutive time
levels, tn = nh and tn+1 = tn + h, respectively.

The CN Equation (10) can be solved explicitly using iterations, leading to the following
iterated Crank–Nicolson (ICN) algorithm [11]:

u1 = un + h f (tn, un), (11)

uj = un + h

(

1

2
f (tn, un) +

1

2
f (tn + h, uj−1)

)

, j = 2, 3, ..., s, (12)

un+1 = us, (13)
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where s represents the number of iterations. The original ICN method is second-order
accurate. Increasing the number of iterations does not increases the order of accuracy [11],
but it does reduce the numerical dissipation [20].

To extend the ICN method to higher orders, we modify the weight 1
2 to θj in the

j-th iteration, and use a parameter-dependent time step cjh. This yields the following
generalized ICN algorithm [12,19]:

u1 = un + c1h f (tn, un), (14)

uj = un + cjh
(

(1 − θj) f (tn, un) + θj f (tn + cj−1h, uj−1)
)

, j = 2, 3, ..., s, (15)

un+1 = us, (16)

which can also be written as

k1 = f (tn, un), (17)

k j+1 = f (tn + cjh, un + cjh((1 − θj)k1 + θjk j)), j = 1, 2, ..., s − 1, (18)

un+1 = un + csh((1 − θs)k1 + θsks). (19)

For instance, when s = 3, the generalized ICN method can reach third-order accuracy
if the coefficients cj and θj satisfy:

c1 = 1, c2 = 2/3, c3 = 1, θ1 = 1/2, θ2 = 1/3, θ3 = 3/4. (20)

When the coefficients satisfy Condition (20), the method can be written as

k1 = f (tn, un), (21)

k2 = f (tn + h, un + hk1), (22)

k3 = f

(

tn +
2

3
h, un +

4

9
hk1 +

2

9
hk2

)

, (23)

un+1 = un +
1

4
hk1 +

3

4
hk3. (24)

This RK method, (21)–(24), is third-order accurate, as it satisfies the criteria given
in [24]. Furthermore, if f = f (u) is linear, then this method is a strong stability preserving
method [24,25]. More detailed derivations are provided in [20].

When s = 4, Equations (17)–(19) become

k1 = f (tn, un), (25)

k2 = f (tn + c1h, un + c1hk1), (26)

k3 = f (tn + c2h, un + c2h[(1 − θ2)k1 + θ2k2]), (27)

k4 = f (tn + c3h, un + c3h[(1 − θ3)k1 + θ3k3]), (28)

un+1 = un + c4h((1 − θ4)k1 + θ4k4). (29)

For the nonlinear case, to achieve fourth-order accuracy, the coefficients must satisfy
the following conditions [22]:

c4θ4c3 =
1

2
, (30)

c4θ4c2
3 =

1

3
, (31)

c4θ4c3
3 =

1

4
. (32)

However, this system has no solution. Therefore, the algorithm given by
Equations (17)–(19) is not fourth order when s = 4, regardless of the choice of θj and cj.
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To achieve fourth-order accuracy, we modify Equation (19) by including all k j in the

calculation of un+1. The resulting algorithm becomes

k1 = f (tn, un), (33)

k2 = f (tn + c1h, un + c1hk1), (34)

k3 = f (tn + c2h, un + c2h[(1 − θ2)k1 + θ2k2]), (35)

k4 = f (tn + c3h, un + c3h[(1 − θ3)k1 + θ3k3]), (36)

un+1 = un + w1hk1 + w2hk2 + w3hk3 + w4hk4, (37)

and the coefficients must satisfy the following eight equations [22]:

w1 + w2 + w3 + w4 = 1, (38)

w2c1 + w3c2 + w4c3 =
1

2
, (39)

w2c2
1 + w3c2

2 + w4c2
3 =

1

3
, (40)

w2c3
1 + w3c3

2 + w4c3
3 =

1

4
, (41)

w3θ2c2c1 + w4θ3c3c2 =
1

6
, (42)

w3θ2c2c2
1 + w4θ3c3c2

2 =
1

12
, (43)

w3θ2c2
2c1 + w4θ3c2

3c2 =
1

8
, (44)

w4θ3θ2c3c2c1 =
1

24
. (45)

One solution to the system of Equations (38)–(45) is

c1 = c2 =
1

2
, c3 = 1, θ2 = θ3 = 1, w1 = w4 =

1

6
, w2 = w3 =

1

3
, (46)

where the RK algorithm (33)–(37) is exactly the classical fourth-order RK (RK4) method,

k1 = f (tn, un), (47)

k2 = f (tn +
h

2
, un +

1

2
hk1), (48)

k3 = f (tn +
h

2
, un +

1

2
hk2), (49)

k4 = f (tn + h, un + hk3), (50)

un+1 = un +
1

6
h(k1 + 2k2 + 2k3 + k4). (51)

Now, we work on the general solution to the system of Equations (38)–(45), as each
solution set leads to a fourth-order RK method. We observe that Equations (42)–(44) lead to
the following equation:

4c2
2 − 5c2 + 3c1 − 4c1c3 + 2c3 = 0, (52)

so, given two of the three unknowns, we can calculate the other one using this equation.
In this work, we focus on deriving a family of fourth-order RK algorithms when

c3 = 1, because the same c3 is used in the classical RK4 method. When c3 = 1, 0 < c2 < 1,
c2 ̸= 3

4 , and c2 ̸= 1
4 , we solve the system of Equations (38)–(45) and obtain their explicit
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solutions. Each solution set leads to a fourth-order RK method. We summarize this result
in the following theorem.

Theorem 1. The Runge–Kutta algorithm (33)–(37) is fourth-order if c3 = 1, 0 < c2 < 1, c2 ̸= 1
4 ,

c2 ̸= 3
4 , and the other parameters are calculated using the following sequence of equations explicitly:

c1 = 4c2
2 − 5c2 + 2, (53)

θ2 =
c2 − 1

c1(4c2 − 3)
, (54)

w3 = −
4c2 − 3

24c2(1 − c2)2
, (55)

w2 =
1
6 − w3c2 + w3c2

2

c1(1 − c1)
, (56)

w4 =
−c2

1(
1
2 − w3c2) + c1(

1
3 − w3c2

2)

c1(1 − c1)
, (57)

θ3 =
1

24c1c2θ2w4
, (58)

w1 = 1 − w2 − w3 − w4. (59)

Proof. Equations (38)–(45) are the order conditions for the fourth-order RK method, as they
coincide with the fourth-order conditions given in Equations (235a)–(235h) in Butcher’s
book [22]. Next, we need to show that the coefficients computed using Equations (53)–(59)
satisfy the order conditions (38)–(45), ensuring that the proposed RK algorithm (33)–(37) is
fourth-order.

Note that when c2 = 3
4 or c2 = 1

4 , the system of Equations (38)–(45) has no solution.

If c2 = 1
4 , then c1 = 1 by Equation (53), and the system of Equations (39)–(41) becomes

inconsistent. If c2 = 3
4 , then c1 = 1

2 , and the system of Equations (42)–(44) is inconsistent.

Therefore, we assume c2 ̸= 1
4 and 3

4 .
First, by substituting c3 = 1 into Equation (52), we obtain Equation (53) for calculating

c1. Next, we solve the system of Equations (42)–(44) for w3θ2 and w4θ3 in terms of c1 and c2,

w3θ2 =
1

24c1c2(1 − c2)
, (60)

w4θ3 =
3 − 4c2

24c2(1 − c2)
. (61)

By solving Equation (45) for θ2, and then Equation (60) for w3, we obtain
Equations (54) and (55) for calculating θ2 and w3, respectively. Next, solving the system
of Equations (39)–(41) for w2 and w4, which lead to Equations (56) and (57), respectively.
θ3 can then be calculated using Equation (45), yielding Equation (58). Note that θ3 can
also be computed using Equation (61), resulting in the same solution. Finally, by solving
Equation (38) for w1, we obtain Equation (59).

In particular, when c2 is chosen to be a rational number, all other coefficients are
rational. Therefore, we obtain a class of fourth-order RK methods where the corresponding
coefficients are determined by a free parameter c2 (c2 ̸= 3

4 and c2 ̸= 1
4 ). For instance, if we

let c2 vary from 0.1 to 0.9, and c3 is fixed at 1, the corresponding coefficients of fourth-order
RK methods are listed in Table 1. We use RK4-0x to denote the fourth-order RK method
with coefficients determined by the parameter 0.x. For example, RK4-05 is the classical
fourth-order RK method. When c2 = 0.4, the corresponding RK method is RK4-04, and it
can be written as
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k1 = f (tn, un), (62)

k2 = f (tn +
16

25
h, un +

16

25
hk1), (63)

k3 = f (tn +
2

5
h, un +

37

280
hk1 +

15

56
hk2), (64)

k4 = f (tn + h, un −
127

188
hk1 +

315

188
hk3), (65)

un+1 = un +
h

10368
(1539k1 + 3125k2 + 4200k3 + 1504k4). (66)

Table 1. Coefficients for fourth-order RK methods when c3 = 1 and c2 varies from 0.1 to 0.9.

Method c1 c2 c3 θ2 θ3 w1 w2 w3 w4

RK4-01 77
50 0.1 1 225

1001
1755
659 − 113

154 − 3125
56133

325
243

659
1458

RK4-02 29
25 0.2 1 100

319
110
131 − 41

348 − 3125
11136

275
384

131
192

RK4-03 43
50 0.3 1 175

387 − 105
23

19
258

3125
6321

25
49 − 23

294

RK4-04 16
25 0.4 1 75

112
315
188

19
128

3125
10368

175
432

47
324

RK4-05 1
2 0.5 1 1 1 1

6
2
6

2
6

1
6

RK4-06 11
25 0.6 1 50

33
35
53

7
44

3125
7392

25
96

53
336

RK4-07 23
50 0.7 1 75

23
135
511

51
322

3125
5589

25
189

73
486

RK4-08 14
25 0.8 1 − 25

14 − 55
248

121
672

3125
3696 − 25

96
31

132

RK4-09 37
50 0.9 1 − 25

111 − 65
327

143
666

3125
1443 − 25

9
109
78

4. Numerical Simulations of EEG

In this section, we apply the proposed fourth-order RK methods as shown in Table 1
(RK4-01 to RK4-09) to the Wilson–Cowan equations, and compare their performance.

For the sigmoid function S(x) in Equation (3), we set a = 1 and b = 4, following [7].
The simulation runs from t = 0 to t = T, with the computational domain having N grid
points, so the step size h = T/N.

4.1. Wilson–Cowan Equation of Two Neuron Populations

In the first test, we solve the Wilson–Cowan system (1)–(2). We set Äe = Äi = 0.013,
P = 1.5, Q = −2, and

C =

(

24 −20
40 0

)

. (67)

These parameters were taken from [7], where the Wilson–Cowan model was studied
for epileptic dynamics and compared with clinical data. In [7], the model includes three
neuron populations (one excitatory and two inhibitory populations). Ignoring the effect
of the second inhibitory neuron population reduces it to a system with two neuron pop-
ulations. The initial conditions are E(0) = I(0) = 0, and the simulation runs until time
T = 1.

Figure 1a shows the numerical solutions where the excitatory (E) and inhibitory (I)
neuron populations are functions of time. Figure 1b illustrates the E-I phase plane where
the E-I curve converges to a limit cycle. A comparison of four different fourth-order RK
methods is illustrated in Table 2. All methods achieve fourth-order convergence rates,
measured by L1, L2, and L∞ error norms. Solutions from a very fine mesh N = 32,000 are
used as the exact solution. Among the methods tested in this example, RK4-03 produces
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the largest errors, RK4-05 and RK4-06 yield similar error magnitudes, and RK4-04 produces
the smallest error.

To provide a comprehensive comparison of all methods, we list the errors when
N = 8000 in Table 3. Among these nine methods, the RK4-04 method exhibits the best
accuracy. The RK4-05 and RK4-06 methods produce error magnitudes approximately 3 to 4
times larger than that of the RK4-04 method.

(a) (b)

Figure 1. Numerical solution of the Wilson–Cowan Equations (1) and (2). (a) Time course of

the excitatory (red curve) and the inhibitory (blue curve) neuron populations. (b) The excitatory-

inhibitory (E-I) phase plane plot. Parameters: Äe = Äi = 0.013, P = 1.5, Q = −2, and C is given in

Equation (67).

Table 2. Comparison of fourth-order RK methods when c2 varies from 0.3 to 0.6. ϵ1, ϵ2 and ϵ∞

represent the numerical errors measured in the L1, L2, and L∞ norms, respectively.

Method N ϵ1 Rate ϵ2 Rate ϵ∞ Rate

1000 7.96 × 10−5 2.98 × 10−6 2.12 × 10−4

RK4-06 2000 4.60 × 10−6 4.11 1.21 × 10−7 4.62 1.17 × 10−5 4.18
c2 = 0.6 4000 2.61 × 10−7 4.14 4.87 × 10−9 4.64 6.50 × 10−7 4.16

8000 1.53 × 10−8 4.10 2.01 × 10−10 4.60 3.76 × 10−8 4.11

1000 7.90 × 10−5 3.01 × 10−6 2.29 × 10−4

RK4-05 2000 4.57 × 10−6 4.11 1.22 × 10−7 4.63 1.26 × 10−5 4.18
c2 = 0.5 4000 2.63 × 10−7 4.12 4.94 × 10−9 4.62 7.10 × 10−7 4.15

8000 1.55 × 10−8 4.08 2.06 × 10−10 4.59 4.14 × 10−8 4.10

1000 2.29 × 10−5 9.33 × 10−7 8.38 × 10−5

RK4-04 2000 1.32 × 10−6 4.11 3.67 × 10−8 4.67 4.31 × 10−6 4.28
c2 = 0.4 4000 7.10 × 10−8 4.22 1.38 × 10−9 4.74 2.20 × 10−7 4.29

8000 3.94 × 10−9 4.17 5.37 × 10−11 4.68 1.19 × 10−8 4.21

1000 3.79 × 10−4 1.55 × 10−5 1.36 × 10−3

RK4-03 2000 2.68 × 10−5 3.82 7.49 × 10−7 4.38 8.70 × 10−5 3.97
c2 = 0.3 4000 1.70 × 10−6 3.98 3.31 × 10−8 4.50 5.34 × 10−6 4.03

8000 1.05 × 10−7 4.02 1.44 × 10−9 4.52 3.27 × 10−7 4.03

Next, we modify the connection matrix C by multiplying it by a factor, Ã. As a result,
the connection matrix ÃC has a larger spectral radius. Figure 2 shows the solutions (the
excitatory and inhibitory neuron populations), and the phase plane plots for Ã = 0.5, 1, and
1.5. The spectral radius of the original connection matrix C is ρ = 28, so the corresponding
spectral radii of the connection matrices used in each row of this figure are 14, 28, and 42,
respectively. Table 4 illustrates the results of five RK methods with c2 varying from 0.3 to
0.7. For the two rows corresponding to ρ = 0.1 and ρ = 0.5, the smallest numerical error
occurs in the fifth column where c = 0.5 (the RK4-05 method). On the other hand, for the
other four rows where ρ g 1, the smallest errors are observed in the fourth column, which
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corresponds to the RK4-04 method (c2 = 0.4). In all cases, the smallest numerical errors are
obtained with either the RK4-05 or RK4-04 method.

Table 3. Comparison of nine fourth-order RK methods when c2 varies from 0.1 to 0.9. N = 8000. ϵ1,

ϵ2 and ϵ∞ represent the numerical errors measured in the L1, L2, and L∞ norms, respectively.

Method c2 ϵ1 ϵ2 ϵ∞

RK4-01 0.1 1.11 × 10−8 1.86 × 10−10 8.91 × 10−8

RK4-02 0.2 1.47 × 10−8 2.18 × 10−10 5.91 × 10−8

RK4-03 0.3 1.05 × 10−7 1.44 × 10−9 3.27 × 10−7

RK4-04 0.4 3.94 × 10−9 5.37 × 10−11 1.19 × 10−8

RK4-05 0.5 1.55 × 10−8 2.06 × 10−10 4.14 × 10−8

RK4-06 0.6 1.53 × 10−8 2.01 × 10−10 3.76 × 10−8

RK4-07 0.7 2.70 × 10−8 3.86 × 10−10 9.30 × 10−8

RK4-08 0.8 1.25 × 10−7 1.70 × 10−9 3.71 × 10−7

RK4-09 0.9 5.37 × 10−8 7.19 × 10−10 1.50 × 10−7

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Solutions for different matrix C using three fourth-order RK methods with c2 = 0.6, 0.5,

and 0.4. First row (a–c): Ã = 0.5; second row (d–f): Ã = 1; third row (g–i): Ã = 1.5. Left column: the

excitatory neural population; middle column: the inhibitory neural population; right column: the

phase plane plot.

Table 4. Comparison of L2 errors for fourth-order RK methods with different c2 values when Ã varies

from 0.1 to 5. The corresponding spectral radius ρ varies from 3 to 146. N = 8000.

Ã ρ c2 = 0.3 c2 = 0.4 c2 = 0.5 c2 = 0.6 c2 = 0.7

0.1 3 2.62 × 10−15 2.03 × 10−15 2.06 × 10−15 2.03 × 10−15 1.78 × 10−15

0.5 15 2.36 × 10−11 6.25 × 10−12 3.82 × 10−12 3.94 × 10−12 1.52 × 10−11

1 29 3.09 × 10−9 1.41 × 10−10 4.18 × 10−10 3.85 × 10−10 8.40 × 10−10

1.5 44 3.36 × 10−9 2.81 × 10−10 8.98 × 10−10 1.04 × 10−9 6.42 × 10−10

2 58 1.72 × 10−9 4.97 × 10−10 1.39 × 10−9 1.90 × 10−9 2.31 × 10−9

5 146 2.70 × 10−8 1.90 × 10−9 4.58 × 10−9 7.05 × 10−9 1.41 × 10−8
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Furthermore, through a series of tests, we examine the effect when one entry of the
connection matrix C is amplified. To accomplish this, we modify the last entry C22 to a
nonzero value: C22 = 2, so the connection matrix C becomes:

C =

(

24 −20
40 2

)

. (68)

We multiply each entry Cij by a factor, with values ranging from 0.1 to 5. The results
shown in Tables 5–8 correspond to the case where C11, C12, C21, and C22 are multiplied
by factors ³, ´, γ, and δ, respectively. We primarily compare RK4-04 and RK4-05, as the
other methods produce larger errors than these two methods for most of the test cases.
From Tables 5 and 7, we observe that the RK4-05 (c2 = 0.5) method produces smaller error
than the RK4-04 method, except the case when ³ = 1, γ = 0.5, and γ = 1. Table 6 shows
a different trend, where RK4-04 achieves a smaller error than the RK4-05 method when
´ g 0.5. Table 8 illustrates that smallest errors are obtained by the RK4-04 method.

In summary, we observe that the RK4-04 method achieves smaller errors compared to
the other methods when the coupling coefficient C12 in the excitatory equation is relatively
large. Conversely, in most other cases, the classical RK4-05 method produces the smallest
error among the methods tested.

Table 5. Comparison of L2 errors for fourth-order RK methods with different c2 values, as ³ varies

from 0.1 to 5. N = 8000.

³ ρ c2 = 0.3 c2 = 0.4 c2 = 0.5 c2 = 0.6 c2 = 0.7

0.1 28 2.59 × 10−14 4.40 × 10−15 3.98 × 10−15 4.18 × 10−15 1.19 × 10−14

0.5 29 4.88 × 10−13 8.17 × 10−14 8.48 × 10−14 7.43 × 10−14 1.61 × 10−13

1 29 3.09 × 10−9 1.41 × 10−10 4.18 × 10−10 3.85 × 10−10 8.40 × 10−10

1.5 30 4.08 × 10−11 5.34 × 10−11 2.45 × 10−11 1.27 × 10−11 3.35 × 10−11

2 30 1.95 × 10−10 1.61 × 10−10 9.07 × 10−11 5.58 × 10−11 6.21 × 10−11

5 113 7.08 × 10−10 2.86 × 10−9 1.83 × 10−9 1.45 × 10−9 2.33 × 10−9

Table 6. Comparison of L2 errors for for fourth-order RK methods with different c2 values, as ´ varies

from 0.1 to 5. N = 8000.

´ ρ c2 = 0.3 c2 = 0.4 c2 = 0.5 c2 = 0.6 c2 = 0.7

0.1 19 1.90 × 10−11 1.04 × 10−11 5.83 × 10−12 3.28 × 10−12 3.33 × 10−12

0.5 21 4.26 × 10−11 3.94 × 10−13 1.76 × 10−12 4.79 × 10−12 2.04 × 10−11

1 29 3.09 × 10−9 1.41 × 10−10 4.18 × 10−10 3.85 × 10−10 8.40 × 10−10

1.5 35 3.45 × 10−10 1.02 × 10−11 3.71 × 10−11 3.11 × 10−11 1.07 × 10−10

2 41 1.23 × 10−10 5.39 × 10−12 1.23 × 10−11 8.81 × 10−12 4.12 × 10−11

5 64 7.78 × 10−12 4.82 × 10−13 6.23 × 10−13 3.54 × 10−13 2.73 × 10−12

Table 7. Comparison of L2 errors for fourth-order RK methods with different c2 values, as γ varies

from 0.1 to 5. N = 8000.

γ ρ c2 = 0.3 c2 = 0.4 c2 = 0.5 c2 = 0.6 c2 = 0.7

0.1 19 2.17 × 10−11 1.48 × 10−11 8.61 × 10−12 5.35 × 10−12 5.68 × 10−12

0.5 21 5.98 × 10−9 7.38 × 10−11 1.59 × 10−10 1.21 × 10−10 2.41 × 10−9

1 29 3.09 × 10−9 1.41 × 10−10 4.18 × 10−10 3.85 × 10−10 8.40 × 10−10

1.5 35 6.25 × 10−11 3.08 × 10−12 2.54 × 10−12 1.39 × 10−12 2.61 × 10−11

2 41 1.91 × 10−11 1.98 × 10−12 1.35 × 10−12 1.23 × 10−12 8.85 × 10−12

5 64 1.26 × 10−11 2.70 × 10−12 1.87 × 10−12 1.87 × 10−12 7.33 × 10−12
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Table 8. Comparison of L2 errors for fourth-order RK methods with different c2 values, as δ varies

from 0.1 to 5. N = 8000.

δ ρ c2 = 0.3 c2 = 0.4 c2 = 0.5 c2 = 0.6 c2 = 0.7

0.1 28.4 1.57 × 10−9 6.10 × 10−11 2.23 × 10−10 2.17 × 10−10 4.20 × 10−10

0.5 28.7 2.17 × 10−9 9.43 × 10−11 3.03 × 10−10 2.86 × 10−10 5.84 × 10−10

1 29.1 3.09 × 10−9 1.41 × 10−10 4.18 × 10−10 3.85 × 10−10 8.40 × 10−10

1.5 29.5 4.18 × 10−9 1.88 × 10−10 5.47 × 10−10 4.96 × 10−10 1.16 × 10−9

2 29.9 5.50 × 10−9 2.34 × 10−10 6.93 × 10−10 6.18 × 10−10 1.55 × 10−9

5 32.2 2.60 × 10−11 1.92 × 10−12 2.06 × 10−11 2.89 × 10−11 1.92 × 10−11

4.2. Wilson–Cowan Equation of Three Neuron Populations

In this section, we apply our methods to the Wilson–Cowan system (5)–(7) for epileptic
dynamics. We conduct a series of simulations with parameters obtained from [7], as listed
in Table 9. In [7], these simulations are shown to exhibit good agreement with the clinical
EEG recordings. Unless otherwise stated, the initial condition is E(0) = I(0) = J(0) = 0,
and the simulations run until T = 3. High-resolution solutions with N = 128, 000 are used
as exact solutions when computing numerical errors.

Table 9. Parameters for the Wilson–Cowan model for epileptic dynamic simulations [7].

Test Figure in [7] (Äe, Äi, Äj) (P, Q, R) C

T01 3c (0.013, 0.013, 0.267) (3,−2, 0)





24 −20 −15
40 0 0
7 0 0





T02 3f (0.015, 0.013, 0.267) (0.5,−5,−5)





23 −15 −10
35 0 0
10 0 0





T03 3i (0.0225, 0.03, 0.12) (4,−5,−3)





25 −15 −10
35 0 0
10 0 0





T04 3l (0.015, 0.013, 0.267) (3,−5,−5)





23 −15 −10
35 0 0
10 0 0





T05 4 (0.013, 0.013, 0.267) (5,−2, 0)





38 −29 −10
40 0 0
20 0 0





T06 5d (0.017, 0.017, 0.25) (5,−2, 0)





38 −29 −10
40 0 0
6 0 0





T07 5e (0.017, 0.017, 0.25) (5,−2, 0)





38 −29 −10
40 0 0
15 0 0





T08 7 (0.013, 0.013, 0.267) (−0.5,−5,0)





35 −30 −10
40 0 0
15 0 0





First, single-spike waves (test cases: T01 through T03) and poly-spike waves (test
cases: T04 through T07) are plotted in Figures 3 and 4, respectively. These results align with
the simulations and the clinical data [7]. We then compare four methods, RK4-03 through
RK4-06, by examining their L2 error norms as c2 varies from 0.3 to 0.6, with N = 32, 000.
In Table 10, we list the L2 error norms for the seven tests. The RK4-05 method (c2 = 0.5)
achieves the smallest errors for most of the cases (T02, T04-07). In contrast, the RK4-04
method (c2 = 0.4) achieves the smallest errors for the first test case T01. We also see that
the RK4-06 method has the smallest error for the case T03.
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(a) (b) (c)

Figure 3. Excitatory populations for single-spike waves: (a) T01, (b) T02, and (c) T03. Results of

RK4-04 (c2 = 0.4) and RK4-05 (c2 = 0.5) are plotted in blue and red, respectively.

(a) (b)

(c) (d)

Figure 4. Excitatory populations for poly-spike waves: (a) T04, (b) T05, (c) T06, and (b) T07. Results

of RK4-04 (c2 = 0.4) and RK4-05 (c2 = 0.5) are plotted in blue and red, respectively.

Table 10. L2 errors of fourth-order RK methods with different c2 values for tests T01 through T07.

Test T01 T02 T03 T04 T05 T06 T07

c2 = 0.3 1.17 × 10−8 5.78 × 10−9 2.23 × 10−11 1.61 × 10−9 4.56 × 10−8 4.36 × 10−8 6.62 × 10−9

c2 = 0.4 5.81 × 10−10 7.87 × 10−10 1.52 × 10−11 1.84 × 10−10 4.89 × 10−9 5.58 × 10−9 6.04 × 10−10

c2 = 0.5 1.80 × 10−9 4.22 × 10−10 8.10 × 10−12 8.97 × 10−11 4.05 × 10−9 4.13 × 10−9 5.26 × 10−10

c2 = 0.6 1.77 × 10−9 6.14 × 10−10 4.48 × 10−12 1.44 × 10−10 6.40 × 10−9 6.14 × 10−9 8.83 × 10−10

Next, focusing on test case T04, we multiply either the connection matrix by a factor Ã

or the coupling coefficient C12 by a factor ´, with both Ã and ´ varying from 1 to 3. The
results of Ã-dependent solutions are shown in Figure 5 and Table 11. Table 12 shows the
´-dependent results. For relatively small Ã or ´, the RK4-05 method achieves smaller error
than the other methods. However, for relatively large Ã or ´, the RK4-04 method produces
the smallest errors among the four methods.

A similar observation can be made for a series of tests based on T07 (Figure 6), where
the connection matrix is multiplied by Ã, with Ã taking values 1, 1.5, and 2. The results are
illustrated in Table 13. When Ã = 1, the error of the RK4-05 method is about 15% smaller
than that of the RK4-04 method. However, when Ã = 1.5 and 2, the errors of RK4-04
method are 20% and 40% smaller than the error of the RK4-05 method, respectively.
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(a) (b) (c)

Figure 5. Excitatory populations for test T04 with connection matrix ÃC, where (a) Ã = 1, (b) Ã = 2,

and (c) Ã = 3. Results of RK4-04 (c2 = 0.4) and RK4-05 (c2 = 0.5) are plotted in blue and red,

respectively.

Table 11. L2 errors of fourth-order RK methods for test T04 with connection matrix ÃC, where Ã

varies from 1 to 3.

Method Ã = 1 Ã = 2 Ã = 3

RK4-03 (c2 = 0.3) 1.61 × 10−9 1.99 × 10−8 3.15 × 10−8

RK4-04 (c2 = 0.4) 1.84 × 10−10 2.46 × 10−9 3.20 × 10−9

RK4-05 (c2 = 0.5) 8.97 × 10−11 2.13 × 10−9 3.99 × 10−9

RK4-06 (c2 = 0.6) 1.44 × 10−10 3.19 × 10−9 6.21 × 10−9

Table 12. L2 errors of fourth-order RK methods for test T04 with coupling coefficient ´C12, where ´

varies from 1 to 3.

Method ´ = 1 ´ = 2 ´ = 3

RK4-03 (c2 = 0.3) 1.61 × 10−9 2.30 × 10−8 6.84 × 10−8

RK4-04 (c2 = 0.4) 1.84 × 10−10 5.45 × 10−11 3.61 × 10−9

RK4-05 (c2 = 0.5) 8.97 × 10−11 4.55 × 10−10 5.63 × 10−9

RK4-06 (c2 = 0.6) 1.44 × 10−10 1.91 × 10−9 1.06 × 10−8

(a) (b) (c)

Figure 6. Excitatory populations of test T07 with connection matrix ÃC, where (a) Ã = 1, (b) Ã = 1.5,

and (c) Ã = 2. Results of RK4-04 (c2 = 0.4) and RK4-05 (c2 = 0.5) are plotted in blue and

red, respectively.

Table 13. L2 errors of fourth-order RK methods for test T07 with connection matrix ÃC, where Ã

varies from 1 to 2.

Method Ã = 1 Ã = 1.5 Ã = 2

RK4-03 (c2 = 0.3) 6.62 × 10−9 2.26 × 10−8 2.19 × 10−9

RK4-04 (c2 = 0.4) 6.04 × 10−10 2.57 × 10−9 5.07 × 10−10

RK4-05 (c2 = 0.5) 5.26 × 10−10 3.31 × 10−9 9.02 × 10−10

RK4-06 (c2 = 0.6) 8.83 × 10−10 5.02 × 10−9 1.52 × 10−9

The last test is based on the parameters of T05, where the connection matrix is ÃC, and
P gradually increases from 0 to 5. The simulations run until T = 5. The P value increases
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to its maximum value when time reaches T/2, making P time-dependent and computed
using the following formula:

P(t) =

{

P1 + 2(P2 − P1)t/T, t < T/2
P2, t g T/2,

(69)

where P1 = 0 and P2 = 5. We try two cases of Ã, one where it is fixed at 1, and another
where it decreases from 2 to 1 using the following formula:

Ã(t) =

{

Ã1 + 2(Ã2 − Ã1)t/T, t < T/2
Ã2, t g T/2,

(70)

where Ã1 = 2 and Ã2 = 1.
The plots of excitatory neuron populations and the phase plane plot are illustrated

in Figure 7. Results at two resolutions, N = 16, 000 and N = 32, 000, are plotted, and
show no visible difference, indicating that the solution has achieved reasonable accuracy.
As P increases from 0 to 5, the wave transitions from single-spike to poly-spike wave,
regardless of whether Ã is fixed at 1 or gradually decreases from 2 to 1. For a quantitative
error analysis, Table 14 presents the L2 error norms of four methods (RK4-03 to RK4-06)
when N = 32, 000. Similarly to the previous tests, the RK4-04 and RK4-05 methods produce
smaller errors than the other methods. The error of the RK4-05 method is about 25% smaller
than that of the RK4-04 method when Ã is fixed. In contrast, when Ã is time-varying, the
error of the RK4-04 method is about 30% smaller than that of the RK4-05 method.

(a) (b)

(c) (d)

Figure 7. Excitatory populations and the phase plane plots for test T05 with P gradually increases

from 0 to 5. The connection matrix is ÃC. Upper row (a,b): Ã is fixed at 1; lower row (c,d): Ã gradually

decreases from 2 to 1. Left column (a,c): excitatory neuron populations. Results of two resolutions

N = 16,000 and N = 32,000 are plotted in red and blue, respectively. Right column (b,d): phase

plane plots.
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Table 14. L2 errors of fourth-order RK methods for test T05, as P gradually increases from 0 to 5. Ã is

fixed at 1 or gradually decreases from 2 to 1.

Method Ã = 1 Ã Decreases from 2 to 1

RK4-03 (c2 = 0.3) 2.19 × 10−6 1.82 × 10−6

RK4-04 (c2 = 0.4) 2.70 × 10−7 1.89 × 10−7

RK4-05 (c2 = 0.5) 2.18 × 10−7 3.06 × 10−7

RK4-06 (c2 = 0.6) 3.26 × 10−7 4.65 × 10−7

5. Discussion

The Wilson–Cowan model is a system of nonlinear differential equations for which an
analytical solution is not available, so it is traditionally solved using numerical methods.
In particular, the classical explicit fourth-order Runge–Kutta (RK4) method is one of the
most popular approaches. The four-stage, fourth-order RK methods we developed in this
work can be considered a generalization of the classical RK4 method by introducing a free
parameter c2. The classical fourth-order RK method corresponds to the case where c2 = 0.5.

Our work was motivated by recent developments in generalized iterated Crank–
Nicolson (ICN) algorithms, which achieve up to third-order accuracy [20]. We modified the
final update equation of the four-stage ICN method by introducing an additional coefficient,
enabling fourth-order accuracy. The order conditions (38)–(45) result in one free variable,
c2, from which the other coefficients can be calculated explicitly. In Table 1, we list nine sets
of RK coefficients where c2 varies from 0.1 to 0.9 in increments of 0.1. To our knowledge,
this is the first time these fourth-order RK methods (with c2 ̸= 0.5) have been proposed.

The introduction of a free parameter allows for the selection of the most efficient
numerical solver by comparing the performance of the methods with different parameter
values. One notable observation is that the accuracy of the methods is sensitive to the
connection matrix C, particularly to its spectral radius and the magnitude of the excitation-
inhibition coupling coefficient C12. In most simulations, the classical fourth-order RK
method (c2 = 0.5) produced smaller errors than the other methods tested, demonstrating
its robustness. However, in a few test cases where the spectral radii or coupling coefficients
were relatively large, the RK4-04 method (c2 = 0.4) demonstrated superior accuracy compared
to the other methods tested, including the classical fourth-order RK method. For instance, in
one of the test cases, as shown in Table 4, the numerical error of the RK4-04 method was less
than half that of the classical method when the spectral radius exceeded 100.

6. Conclusions

In this paper, we have developed a class of four-stage, fourth-order Runge–Kutta (RK)
methods based on a generalized iterated Crank–Nicolson procedure. The coefficients of the
proposed RK methods are derived as functions of a free parameter c2, with the classical
fourth-order RK (RK4) algorithm being a special case when c2 = 0.5. We use the notation
RK4-0x to denote the fourth-order RK method when c2 = 0.x. Specifically, the RK4-05
method corresponds to the classical RK4 method. This free parameter provides a convenient
way to compare the performance of different RK methods within this framework.

Focusing on the Wilson–Cowan systems with two and three neuron populations
modeling EEG epileptic dynamics, we conducted a series of numerical simulations to
evaluate the performance of the proposed methods in comparison with the classical RK4
(RK4-05) method. Our simulations included both single-spike and poly-spike waveforms,
as well as the transitions from single-spike to poly-spike waves. The results confirmed
that the proposed methods achieve fourth-order accuracy, and the simulated EEG waves
align with those reported by other research groups and the clinical data. In particular, the
RK4-05 (c2 = 0.5) and RK4-04 (c2 = 0.4) methods produced smaller errors than the other
methods tested. The comparison of the RK4-04 and the RK4-05 methods illustrated that
their numerical errors are sensitive to the spectral radius of the connection matrix and the
excitation-inhibition coupling coefficient.



Foundations 2024, 4 688

Our current analysis is based on numerical simulations focused on a specific type of
EEG wave associated with epileptic dynamics. In the future, we plan to extend our work to
other EEG applications, including insomnia and sleep regulation.
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