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Abstract: The Wilson-Cowan model has been widely applied for the simulation of electroencephalog-
raphy (EEG) waves associated with neural activities in the brain. The Runge-Kutta (RK) method
is commonly used to numerically solve the Wilson-Cowan equations. In this paper, we focus on
enhancing the accuracy of the numerical method by proposing a strategy to construct a class of
fourth-order RK methods using a generalized iterated Crank-Nicolson procedure, where the RK
coefficients depend on a free parameter c;. When c¢; is set to 0.5, our method becomes a special case
of the classical fourth-order RK method. We apply the proposed methods to solve the Wilson-Cowan
equations with two and three neuron populations, modeling EEG epileptic dynamics. Our simu-
lations demonstrate that when c; is set to 0.4, the proposed RK4-04 method yields smaller errors
compared to those obtained using the classical fourth-order RK method. This is particularly visible
when the spectral radius of the connection matrix or the excitation-inhibition coupling coefficient is
relatively large.

Keywords: Runge-Kutta method; iterated Crank—Nicolson method; Wilson-Cowan equations; EEG
simulation

1. Introduction

In computational neuroscience, the Wilson-Cowan model is an important tool for
studying neural activities in the brain [1-3]. It describes the interactions between excitatory
and inhibitory neuron populations, and is widely used to simulate electroencephalography
(EEG) waves [4-8]. For example, in [7], the Wilson-Cowan model is extended to a system of
three equations (one excitatory and two inhibitory neuron populations), and is employed to
simulate EEG waves in the context of epileptic dynamics. In [9], a four-population network
is introduced to study sleep regulation, consisting of excitatory, inhibitory, sleep-promoting,
and wake-promoting neurons.

The Wilson-Cowan model is a system of nonlinear ordinary differential equations
(ODEs). Due to its nonlinearity and the use of a sigmoid function, insights from the Wilson—
Cowan model rely mainly on numerical solutions. For instance, when the Wilson-Cowan
model is applied to modeling EEG signals, the solutions typically exhibit highly oscillatory
behavior. The robustness and efficiency of the used numerical methods then become
important considerations and integral parts for the validity of the solutions.

Here, the Crank-Nicolson (CN) method [10] is a widely used numerical algorithm
for solving differential equations. This algorithm produces an implicit system, which
is typically solved using an iterative solver, leading to the development of the iterated
Crank-Nicolson (ICN) method. The ICN algorithm has been applied to numerically
solve differential equations associated with diverse physical phenomena, including relativ-
ity [11-13], peridynamics [14], beam propagation [15,16], and electromagnetism (Maxwell’s
equations) [17,18]. The original ICN algorithm is a second-order accurate method [11],
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and it has recently been extended to third-order accuracy [19,20]. To our knowledge, no
work has been performed to generalize this method to fourth-order accuracy. It is worth to
noting that the ICN method can be viewed as a type of Runge-Kutta (RK) method, which is
commonly used to solve differential equations [21-23]. A more popular explicit RK method
is the classical fourth-order RK method, known as the RK4 method [23].

In this paper, we propose a strategy to extend the ICN algorithm to fourth-order
accuracy. Since the proposed methods can also be interpreted as RK methods, we refer
to them as Iterated Crank—-Nicolson Runge-Kutta (ICN-RK) methods. Specifically, we
develop a class of four-stage, fourth-order algorithms where the coefficients depend on
a free parameter. When this parameter is set to 0.5, the corresponding method is the
classical RK4 method. The proposed fourth-order RK methods are employed to solve
the Wilson—-Cowan equations for two and three neuron populations. The simulated EEG
signals include single-spike and poly-spike waves, as well as the transition from single to
poly-spike waves. The use of the free parameter enables us to investigate the relationship
between this parameter and the accuracy of solutions. Through a series of numerical
simulations, we examine the proposed RK methods as the free parameter varies from 0.1 to
0.9. First, we verify the convergence rates of these methods. Second, we confirm that the
EEG waves simulated using our methods are comparable to the simulation results and the
clinical data reported in [7]. Finally, we compare our methods to the classical fourth-order
RK method by evaluating their performance with different connection matrices, including
those with varying spectral radii and excitation-inhibition coupling coefficients.

The paper is organized as follows: In Section 2, we briefly review the Wilson-Cowan
equations. In Section 3, we present the derivation of a new class of fourth-order RK
methods based on a generalized ICN procedure. Section 4 provides numerical examples of
Wilson-Cowan equations for EEG simulations, followed by a discussion and conclusion.

2. The Wilson—-Cowan Model

The original Wilson-Cowan model can be written as a system of two differential
equations [1,2],

dE(t)

= = —E(t) + (1= rE(t))S(CuE(t) + Cpal(t) + P), @
Tl = 1) + (1~ I )S(CaE () + Cal(1) + Q) @

where E(t) and I(t) represent the excitatory and inhibitory neuron populations, respectively.
T and T; are time constants, and r is the refractory period. The coefficients C;; form a
connection matrix C, where Cq; and Cy; represent the feedback strength from the excitatory
and inhibitory neurons to themselves, respectively. C1, and Cp are the excitation-inhibition
coupling coefficients, where Cy, represents the inhibition strength from the inhibitory
neurons to the excitatory neurons, and Cy; represents the excitation strength from the
excitatory neurons to the inhibitory neurons. P and Q are the external inputs. S is a sigmoid

(logistic) function [1],
1
0=

where g indicates the steepness of the sigmoid function and b is the threshold. Because
of the sigmoid function S and nonlinearity, the Wilson-Cowan system generally does not
have analytical solutions. Traditionally, this system is solved using numerical methods. We
can write this system (1)—(2) in matrix form,

®)

%I =T !(-U+ AS(CU + B)), )

. E [ Te 0 . 1—rE 0 . C11 C12 . P
whereu—<l>,T—(0 Ti),A—( 0 1—r1>’c_<C21 sz),andB—(Q>.
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Using the matrix Equation (4), the Wilson-Cowan system can be generalized to higher
dimensions to model multiple excitatory and inhibitory neuron populations, where U
and B are n dimensional vectors and T, A, and C are n x n matrices. In [7], the general
Wilson-Cowan system with three neuron populations is used to simulate EEG for epileptic
dynamics. This three-population system includes one excitatory and two inhibitory neuron
populations, and the equations are given by [7]:

w B E(t) 4 S(CuE(®) + Caal(t) + ] () + P), ®
Tid;i(tt) = —I(t) + S(Ca E(t) + CoaI(t) + Co3/ (£) + Q), ©)
T/'d]di(tt) = —J(t) + S(C31 E(t) + CanI () + C33] () + R), )

where E(t) is the excitatory neuron population, I(t) and J(t) represent two inhibitory
neuron populations. 7, T;, and 7; are the three time constants. The refractory period  in the
original Wilson-Cowan system is chosen to be zero. The C;; terms form a 3 x 3 connectivity
matrix, and P, Q, and R are the three external inputs.

Similarly, system (5)—(7) can also be written in matrix form,

%‘ =T Y (~u+S(Cu+B)), (8)
where u = (E, I,])T, T = diag(t, Ti,T]'), C= (Cij), and B = (P,Q,R)". Here, v represents
the transpose of vector v. In fact, 7, C, and B can be time-dependent. For example, in [7], P
gradually increases from 3 to 5 in order to simulate the transition from single-spike wave
to poly-spike wave.

If we let f(t,u) = T~'(—u+ S(Cu + B)) in Equation (8), then the Wilson-Cowan
system can be written in the form of a standard differential equation,

)] ©)

To find a particular solution to this equation, we need an initial condition u(0) = uy,
where 1 is a constant.

3. Iterated Crank-Nicolson Runge-Kutta Methods

Since the Wilson—-Cowan system is a nonlinear system, commonly used numerical
methods include the Runge-Kutta algorithm, Crank-Nicolson method, and others. In this
section, we start with a general iterated Crank-Nicolson procedure, and construct a class of
fourth-order explicit Runge-Kutta methods for the nonlinear ODE system (9).

The Crank-Nicolson algorithm is based on the following implicit update equation [10]:

=y 4 h(;f(fmun) + ;f(tnﬂlunﬂ))- (10)

where 1 is the time step, and u" and u"*! represent the solutions at two consecutive time
levels, t, = nh and t,, 11 = t, + h, respectively.

The CN Equation (10) can be solved explicitly using iterations, leading to the following
iterated Crank—Nicolson (ICN) algorithm [11]:

ug = u" +hf(ty,u"), (11)

1 1 .
u]-:u”+h<2f(tn,u”)+zf(tn—i—h,u]-_l)), i=23..,s, (12)
™t =y, (13)
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where s represents the number of iterations. The original ICN method is second-order
accurate. Increasing the number of iterations does not increases the order of accuracy [11],
but it does reduce the numerical dissipation [20].

To extend the ICN method to higher orders, we modify the weight % to 6; in the
j-th iteration, and use a parameter-dependent time step c;i. This yields the following
generalized ICN algorithm [12,19]:

uy = u" + cihf (ty,u"), (14)
ujp=u" +cjh((1—=0;)f(tu, u") +6;f (tn + cj—1h,uj—1)), j=2,3,..5, (15)
u"™t =y, (16)

which can also be written as

ki = f(tq,u"), (17)
kj+1 :f<tn+C]h,Mn+C]h((1 —6]>k1 +9]k])), ]: 1,2,...,5—1, (18)
u™ =y 4 ch((1 — 65)ky + Bsks). (19)

For instance, when s = 3, the generalized ICN method can reach third-order accuracy
if the coefficients c; and 0; satisfy:

cp=1,c0=2/3,c3=1,0; =1/2,6, = 1/3,05 = 3/4. (20)

When the coefficients satisfy Condition (20), the method can be written as

ki = f(tn,u"), (21)
ko = f(fn +h,u + hk1), (22)
ks = f(tn 2 4 R+ 2hk2>, (23)
3 9 9
n+1 n 1 3
u =u + thl + thg. (24)

This RK method, (21)-(24), is third-order accurate, as it satisfies the criteria given
in [24]. Furthermore, if f = f(u) is linear, then this method is a strong stability preserving
method [24,25]. More detailed derivations are provided in [20].

When s = 4, Equations (17)—(19) become

= f(tn,u"), (25)

kz = f(tn + c1h, u" + c1hky), (26)
ks = f(tn + coh, u™ 4 coh[(1 — 62)k1 + 62k2]), (27)
ky = f(tn + c3h, u™ 4 c3h[(1 — 603)ky + 03k3]), (28)
W =" 4 cyh((1— 04)k1 + Oaky). (29)

For the nonlinear case, to achieve fourth-order accuracy, the coefficients must satisfy
the following conditions [22]:

1

c404c3 = 5 (30)
1

40405 = 3 (31)
1

C494C3 Z (32)

However, this system has no solution. Therefore, the algorithm given by
Equations (17)—(19) is not fourth order when s = 4, regardless of the choice of 6; and c;.
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To achieve fourth-order accuracy, we modify Equation (19) by including all k; in the
calculation of u" 1. The resulting algorithm becomes

ki = f(tn,u"), (33)
ko = f(tn + c1h, u" + c1hkq), (34)
ks = f(tn + coh, u" 4 coh[(1 — 62)ky + 62k2]), (35)
ky = f(ty + c3h, u" 4+ c3h[(1 — 603)ky + 03k3]), (36)
" =y + wihky + wohky 4+ wshks + wahky, (37)

and the coefficients must satisfy the following eight equations [22]:

w1 +wy w3z +wy =1, (38)
WoC1 + W3Cy 4 Wyc3 = %, (39)
wzc% + w3c% + w4c§ = %, (40)
W3 + w33 + wycl = %, (41)
w30202¢1 + wablzcacr = %, (42)
wgezczc% + ZU493C3C% = %, (43)
W392c§c1 + w493c§c2 = %, (44)
w40302c302¢1 = % (45)
One solution to the system of Equations (38)—(45) is
cl:czzl,g:l,@z:@g:l,wl:w4:1,w2:w3:1, (46)
2 6 3

where the RK algorithm (33)-(37) is exactly the classical fourth-order RK (RK4) method,

kl = f(ti’lr ul’l), (47)

h 1
k2:f(tn+§,u”+§hk1), (48)

h 1
ko = b+ "+ k), (49)
ks = f(tn +hu" + hks), (50)
u"tl =y 4 %h(kl + 2ko + 2k3 + ky). (51)

Now, we work on the general solution to the system of Equations (38)—(45), as each
solution set leads to a fourth-order RK method. We observe that Equations (42)—(44) lead to
the following equation:

405 —5¢y +3c; —4cic3+2c3 =0, (52)

s0, given two of the three unknowns, we can calculate the other one using this equation.
In this work, we focus on deriving a family of fourth-order RK algorithms when

c3 = 1, because the same cj is used in the classical RK4 method. Whencz =1,0 < ¢c; < 1,

C # %, and ¢, # %, we solve the system of Equations (38)—-(45) and obtain their explicit
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solutions. Each solution set leads to a fourth-order RK method. We summarize this result
in the following theorem.

Theorem 1. The Runge—Kutta algorithm (33)—(37) is fourth-order if c3 =1,0 < cp; <1, ¢y # %,
) # %, and the other parameters are calculated using the following sequence of equations explicitly:

¢y =4c3 —5c,+2, (53)
Cy — 1
0 = ———— 4
2= Sl —3) (54)
4C2 -3
0 T (1 — )2 (55)
1 2
§ — W3C2 + w3c;
w-Hr = —_— 56
2 c1(1—c1) 6)
- —c2(3 —wse2) + 01(§ — wac3) 57)
‘ c1(1—c1) '
1
03 = —
3 2401 C292?/U4 ! (58)
w =1—wy — w3z — wy. (59)

Proof. Equations (38)—(45) are the order conditions for the fourth-order RK method, as they
coincide with the fourth-order conditions given in Equations (235a)—(235h) in Butcher’s
book [22]. Next, we need to show that the coefficients computed using Equations (53)—(59)
satisfy the order conditions (38)-(45), ensuring that the proposed RK algorithm (33)—(37) is
fourth-order.

Note that when ¢; = % orcy; = %, the system of Equations (38)—(45) has no solution.
Ifc, = %, then ¢; = 1 by Equation (53), and the system of Equations (39)—(41) becomes
inconsistent. If ¢, = %, then ¢y = %, and the system of Equations (42)—(44) is inconsistent.
Therefore, we assume ¢, # }1 and %.

First, by substituting c3 = 1 into Equation (52), we obtain Equation (53) for calculating
c1. Next, we solve the system of Equations (42)—(44) for w360, and w403 in terms of ¢; and ¢y,

1

wsf2 = 24c1c0(1—cp)’ (60)
. 3— 4C2

By solving Equation (45) for 6,, and then Equation (60) for w3, we obtain
Equations (54) and (55) for calculating 6, and w3, respectively. Next, solving the system
of Equations (39)—(41) for w, and w4, which lead to Equations (56) and (57), respectively.
63 can then be calculated using Equation (45), yielding Equation (58). Note that 63 can
also be computed using Equation (61), resulting in the same solution. Finally, by solving
Equation (38) for wq, we obtain Equation (59). O

In particular, when ¢ is chosen to be a rational number, all other coefficients are
rational. Therefore, we obtain a class of fourth-order RK methods where the corresponding
coefficients are determined by a free parameter ¢, (c; # % and ¢y # %). For instance, if we
let ¢, vary from 0.1 to 0.9, and c3 is fixed at 1, the corresponding coefficients of fourth-order
RK methods are listed in Table 1. We use RK4-0x to denote the fourth-order RK method
with coefficients determined by the parameter 0.x. For example, RK4-05 is the classical
fourth-order RK method. When ¢; = 0.4, the corresponding RK method is RK4-04, and it
can be written as



Foundations 2024, 4

679
k1 == f(tn/ un)l (62)
16 16
ko = f(t —h,u" + —hkq), 63
2= f(tn + 5 55 1) (63)
2 37 15
ks = f(t, +=h,u" + —hk; + —hk»), 64
3= f(tn 5 ogo + 5¢ 2) (64)
127 315
ki = f(ty +h,u" — —hk; + —hk3), 65
4= f(ta 1881+ 1gs 3) (65)
h
W = U s (15391 -+ 3125k; + 4200ks -+ 1504k). (66)
Table 1. Coefficients for fourth-order RK methods when c¢3 = 1 and ¢, varies from 0.1 to 0.9.
Method 1 (o)) c3 0, 03 w1 wa w3 wy
77 225 1755 113 3125 325 659
RK4-01 5 0.1 1 1001 0 T %ei3B 3 1458
29 100 110 4 3125 275 131
RK4-02 % 0.2 1 319 31 —38 11136 34 192
3 175 105 19 3125 25 23
RK4-03 50 0.3 1 387 -3 258 6ot o — 301
16 75 315 19 3125 175 47
RK4-04 3 04 1 501 188 8 10368 i 34
1 1 2 2 1
RK4-05 1 05 1 1 1 1 2 2 1
11 50 35 7 3125 2 53
RK4-06 5 0.6 1 o 5 ua 7302 % 6
23 75 135 51 3125 25 73
RK4-07 50 0.7 1 3 5T ond 5589 % %
14 25 55 121 3125 25 31
RK4-08 35 0.8 1 —1I — 518 500 3502 — 38 in
37 25 65 143 3125 25 109
RK4-09 5 0.9 1 -1 3w 566 1413 -3 78

4. Numerical Simulations of EEG

In this section, we apply the proposed fourth-order RK methods as shown in Table 1
(RK4-01 to RK4-09) to the Wilson-Cowan equations, and compare their performance.

For the sigmoid function S(x) in Equation (3), we seta = 1 and b = 4, following [7].
The simulation runs from t = 0 to t = T, with the computational domain having N grid
points, so the step sizeh = T/N.

4.1. Wilson—Cowan Equation of Two Neuron Populations

In the first test, we solve the Wilson—-Cowan system (1)-(2). We set 7. = 7; = 0.013,

P=15,Q=-2,and
24 —-20
C= (40 0 ) (67)

These parameters were taken from [7], where the Wilson—-Cowan model was studied
for epileptic dynamics and compared with clinical data. In [7], the model includes three
neuron populations (one excitatory and two inhibitory populations). Ignoring the effect
of the second inhibitory neuron population reduces it to a system with two neuron pop-
ulations. The initial conditions are E(0) = I(0) = 0, and the simulation runs until time
T=1.

Figure 1a shows the numerical solutions where the excitatory (E) and inhibitory (1)
neuron populations are functions of time. Figure 1b illustrates the E-I phase plane where
the E-I curve converges to a limit cycle. A comparison of four different fourth-order RK
methods is illustrated in Table 2. All methods achieve fourth-order convergence rates,
measured by L1, Ly, and L error norms. Solutions from a very fine mesh N = 32,000 are
used as the exact solution. Among the methods tested in this example, RK4-03 produces
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the largest errors, RK4-05 and RK4-06 yield similar error magnitudes, and RK4-04 produces
the smallest error.

To provide a comprehensive comparison of all methods, we list the errors when
N = 8000 in Table 3. Among these nine methods, the RK4-04 method exhibits the best
accuracy. The RK4-05 and RK4-06 methods produce error magnitudes approximately 3 to 4
times larger than that of the RK4-04 method.

——Excitatory
Inhibitor

0.4

0.4

0.3

- 02

0.1

0 0.2 0.4 0.6 0.8 1 0

(a) (b)

Figure 1. Numerical solution of the Wilson-Cowan Equations (1) and (2). (a) Time course of
the excitatory (red curve) and the inhibitory (blue curve) neuron populations. (b) The excitatory-
inhibitory (E-I) phase plane plot. Parameters: 7. = 7; = 0.013, P = 1.5, Q = —2, and C is given in
Equation (67).

Table 2. Comparison of fourth-order RK methods when c; varies from 0.3 to 0.6. €1, €, and €«
represent the numerical errors measured in the L1, Ly, and L norms, respectively.

Method N €1 Rate € Rate €oo Rate

1000 7.96 x 1075 298 x 10 212 x 1074
RK4-06 2000 460 x 106 411 121 x 1077 4.62 117 x 1075 418
e =06 4000 2.61 x 1077 414 487 x 1072 4.64 6.50 x 107 416
8000 153 x 108 410 2.01 x 10710 4.60 3.76 x 1078 411

1000 7.90 x 1075 3.01 x 10 229 x 1074
RK4-05 2000 457 x 1076 411 1.22 x 1077 4.63 1.26 x 107> 418
=05 4000  2.63x1077 4.12 494 x107° 4.62 7.10 x 1077 415
8000 1.55 x 108 4.08 2.06 x 10710 459 414 x 108 410

1000 229 x107° 9.33 x 1077 838 x 10~°
RK4-04 2000 1.32 x 10~° 411 3.67 x 1078 4.67 431 x 107 428
cp =04 4000 7.10 x 1078 422 1.38 x 1072 4.74 220 x 1077 429
8000  3.94x107? 417 5.37 x 10711 4.68 1.19 x 108 421

1000 379 x 1074 1.55 x 105 136 x 1073
RK4-03 2000 2.68 x 107° 3.82 7.49 x 107 4.38 8.70 x 105 3.97
=03 4000 1.70 x 10~ 398 331 x108 450 534 x 107° 4.03
8000 1.05 x 107 4.02 1.44 x 10~ 452 327 x 1077 4.03

Next, we modify the connection matrix C by multiplying it by a factor, c. As a result,
the connection matrix cC has a larger spectral radius. Figure 2 shows the solutions (the
excitatory and inhibitory neuron populations), and the phase plane plots for ¢ = 0.5, 1, and
1.5. The spectral radius of the original connection matrix C is p = 28, so the corresponding
spectral radii of the connection matrices used in each row of this figure are 14, 28, and 42,
respectively. Table 4 illustrates the results of five RK methods with ¢, varying from 0.3 to
0.7. For the two rows corresponding to p = 0.1 and p = 0.5, the smallest numerical error
occurs in the fifth column where ¢ = 0.5 (the RK4-05 method). On the other hand, for the
other four rows where p > 1, the smallest errors are observed in the fourth column, which
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corresponds to the RK4-04 method (c; = 0.4). In all cases, the smallest numerical errors are
obtained with either the RK4-05 or RK4-04 method.

Table 3. Comparison of nine fourth-order RK methods when ¢, varies from 0.1 to 0.9. N = 8000. €1,
€ and €o represent the numerical errors measured in the L1, Ly, and Lo, norms, respectively.

Method c €1 €2 €0

RK4-01 0.1 1.11 x 108 1.86 x 10710 891 x 1078
RK4-02 0.2 1.47 x 108 2.18 x 10710 591 x 108
RK4-03 0.3 1.05 x 10~7 1.44 x 10~° 3.27 x 107
RK4-04 0.4 3.94 x 1077 5.37 x 10~ 11 1.19x 1078
RK4-05 0.5 1.55 x 108 2.06 x 10710 414 x 108
RK4-06 0.6 1.53 x 108 2.01 x 10710 3.76 x 1078
RK4-07 0.7 2.70 x 108 3.86 x 10710 9.30 x 108
RK4-08 0.8 125 x 1077 1.70 x 10~2 3.71 x 1077
RK4-09 0.9 537 x 1078 719 x 1010 1.50 x 10~7

RKd with ¢, =0.

0 005 01 015 02 025 03
E

RKA with ¢,=0.
|- — —RK4 with ¢,
RKd vith ¢,=0.4| {

RKA with ¢,=0.6

‘, ——RK4 wilh 6,205

RKA with ¢,=0.4

015

(i)
Figure 2. Solutions for different matrix C using three fourth-order RK methods with ¢; = 0.6, 0.5,
and 0.4. First row (a—): ¢ = 0.5; second row (d—f): ¢ = 1; third row (g-i): ¢ = 1.5. Left column: the

excitatory neural population; middle column: the inhibitory neural population; right column: the
phase plane plot.

Table 4. Comparison of L; errors for fourth-order RK methods with different ¢, values when ¢ varies
from 0.1 to 5. The corresponding spectral radius p varies from 3 to 146. N = 8000.

o p c =03 c =04 c = 0.5 cp = 0.6 c = 0.7

0.1 3 262x10715  203x1071% 206x1071% 203x107 1.78x10°1°
0.5 15 236 x10711  625x10712 382x10712 394x10712 152x10"1
1 29 309%x1079 141x10719 418x10710 385x10710 840x 10710
1.5 44 336x1077 281x10710 898x10710 1.04x1077 642x10"10
2 58 1.72x107° 497x10710 139x10° 190x10~° 231x107?

5 146 270x1078  1.90x 1072 458x10~2 7.05x1077 1.41x10°8
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Furthermore, through a series of tests, we examine the effect when one entry of the
connection matrix C is amplified. To accomplish this, we modify the last entry Cy to a
nonzero value: Cy = 2, so the connection matrix C becomes:

C= (iﬁ _22(’). (68)

We multiply each entry C;; by a factor, with values ranging from 0.1 to 5. The results
shown in Tables 5-8 correspond to the case where Cy1, Ci3, Cp1, and Cpp are multiplied
by factors «, 8, v, and J, respectively. We primarily compare RK4-04 and RK4-05, as the
other methods produce larger errors than these two methods for most of the test cases.
From Tables 5 and 7, we observe that the RK4-05 (c; = 0.5) method produces smaller error
than the RK4-04 method, except the case when &« = 1, 7 = 0.5, and y = 1. Table 6 shows
a different trend, where RK4-04 achieves a smaller error than the RK4-05 method when
B > 0.5. Table 8 illustrates that smallest errors are obtained by the RK4-04 method.

In summary, we observe that the RK4-04 method achieves smaller errors compared to
the other methods when the coupling coefficient Cy; in the excitatory equation is relatively
large. Conversely, in most other cases, the classical RK4-05 method produces the smallest
error among the methods tested.

Table 5. Comparison of L, errors for fourth-order RK methods with different c; values, as « varies
from 0.1 to 5. N = 8000.

1% p c =0.3 c =04 cp = 0.5 cp = 0.6 c = 0.7
0.1 28 259%x1071%  440x10715 398x1071° 418x1071° 1.19x10° M
0.5 29 488x10713 817x10714 848x1071¥ 743x107¥ 1.61x10713

1 29 309x 1077 141x10710 418x10710 385x10710 840x10°10
1.5 30 408x1071 534x1071 245x10711 127x10711 335x10"1

2 30 195x10710 161x10710 907x10711 558x10711 621x10°1!

5 113 708x10710 286x1077 1.83x1077 145x107° 233x107°

Table 6. Comparison of L; errors for for fourth-order RK methods with different c; values, as § varies
from 0.1 to 5. N = 8000.

B P c; =03 c =04 c =05 c = 0.6 c; =07

0.1 19 190x 10711 1.04x10711 583x10712 328x10712 333x10°12
0.5 21 426x1071  394x 10713 176x10712 479x10712 204x10"11
1 29 309%x1077 141x10710 418x1071° 385x10710 840x10°1°
1.5 35 345x 10710 1.02x10711 371x10711 311x10°11 1.07x10°10
2 41 1.23x10710 539x10712 123x1071 881x10712 4.12x10°1
5 64 778 x10712  482x10713 623x10713 354x10°1B 273x10712

Table 7. Comparison of L; errors for fourth-order RK methods with different ¢, values, as 7y varies
from 0.1 to 5. N = 8000.

0% p c =03 c =04 cp = 0.5 cy = 0.6 c =0.7

0.1 19 217 x10711 148 %1071 861x10712 535x10712 568x10712
0.5 21 598x 1079 738x10711 159x1071° 121x10710 241x10°
1 29 309x1077 141x10710 418x10710 385x10710 840x10°10
1.5 35 625x10711  3.08x10712 254x10712 139x10712 261x10"11
2 41 191x1071 198x10712 135x10712 123x10°12 8.85x 1012

5 64 126 x10711  270x10712 1.87x10712 187x10"12 7.33x10712
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Table 8. Comparison of L, errors for fourth-order RK methods with different ¢, values, as ¢ varies
from 0.1 to 5. N = 8000.

) P c; =03 c; =04 c =05 c = 0.6 c =07
0.1 28.4 157x1079 610x10~11 223x10"10 217x10~10 420x10~10
0.5 28.7 217x1077  943x1071 3.03x10710 286x10710 584 %1010

1 29.1 309%x1077 141x10710 418x10710 385x10710 840x10710
1.5 29.5 418x107% 1.88x10°10 547x10°10 496x10°10 1.16x107°

2 29.9 550x1077 234x10719 693x10719 618x10710 155x107?

5 32.2 260x1071 1.92x10712 206x1071 289x1071 1.92x10"1

4.2. Wilson—Cowan Equation of Three Neuron Populations

In this section, we apply our methods to the Wilson-Cowan system (5)-(7) for epileptic
dynamics. We conduct a series of simulations with parameters obtained from [7], as listed
in Table 9. In [7], these simulations are shown to exhibit good agreement with the clinical
EEG recordings. Unless otherwise stated, the initial condition is E(0) = I(0) = J(0) =0,
and the simulations run until T = 3. High-resolution solutions with N = 128,000 are used
as exact solutions when computing numerical errors.

Table 9. Parameters for the Wilson-Cowan model for epileptic dynamic simulations [7].

T07 5e (0.017,0.017,0.25) (5,—2,0)

o O

[68)
Q1
I
W
o
I
[y
o

T08 7 (0.013,0.013,0.267) (—0.5,-5,0)

Test Figure in [7] (Te, Ty Tj) (P,Q,R) C
24 -20 -15
TO1 3¢ (0.013,0.013,0.267) (3,-2,0) 0 0 0
7 0 0
23 —-15 -10
T02 3f (0.015,0.013,0.267) (0.5,—5,-5) 35 0 0
10 O 0
25 —-15 -10
TO3 3 (0.0225,0.03,0.12) (4,-5,-3) 3 0 0
10 O 0
23 —-15 -10
T04 3l (0.015,0.013,0.267) (3,-5,-5) 35 0 0
10 0 0
38 —-29 -10
T05 4 (0.013,0.013,0.267) (5,—2,0) 40 O 0
20 0 0
38 —-29 -10
T06 5d (0.017,0.017,0.25) (5,—2,0) 40 0 0
6 0 0
(38 -29 —10)

fly
U1
o
o o

First, single-spike waves (test cases: TO1 through T03) and poly-spike waves (test
cases: T04 through T07) are plotted in Figures 3 and 4, respectively. These results align with
the simulations and the clinical data [7]. We then compare four methods, RK4-03 through
RK4-06, by examining their L, error norms as c varies from 0.3 to 0.6, with N = 32, 000.
In Table 10, we list the L, error norms for the seven tests. The RK4-05 method (c; = 0.5)
achieves the smallest errors for most of the cases (T02, T04-07). In contrast, the RK4-04
method (c; = 0.4) achieves the smallest errors for the first test case TO1. We also see that
the RK4-06 method has the smallest error for the case T03.
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——RK4 (c,=0.5) ——RK4 (c,=0.5), 12 i—RK‘t (c,=0.5)
05 -~ -RK4 (¢,=0.4) 08 - - -RK4 (c,=0.4) - - -RK4 (,=0.4)

o

0 0.5 1 15 2 25 3 0 0.5 4 1.5 2 25 3
time time

() (b)

Figure 3. Excitatory populations for single-spike waves: (a) T01, (b) T02, and (c) T03. Results of
RK4-04 (c; = 0.4) and RK4-05 (c; = 0.5) are plotted in blue and red, respectively.

1.2 ——RK4 (c,=05)|{ 1.2 ——RK4 (c,=0.5)
- - -RK4 (c,=0.4) - - -RK4 (c,=04)
1 4 1
0.8 0.8 r‘
w w
0.6 0.6
0.4 0.4
0.2 0.2
0 0
0 0.5 1 1.5 2 25 3 0 0.5 1.5 2 25 3
time ime
(a) (b)
1.2 ——RKd (c,=05){ 1.2 —— RK4.(c,=0.5)
- - =RK4 (c,=0.4) - = =RK4 (c,=0.4)
1 S| 1
0.8 0.8
w w
0.6 0.6
0.4 0.4
0.2 0.2
0 0
0 0.5 1 1.5 0 0.5 1.5 2 2:6 3
time time
() (d)

Figure 4. Excitatory populations for poly-spike waves: (a) T04, (b) T05, (c) T06, and (b) T07. Results
of RK4-04 (c; = 0.4) and RK4-05 (c; = 0.5) are plotted in blue and red, respectively.

Table 10. L; errors of fourth-order RK methods with different c; values for tests TO1 through T07.

Test To1 To2 To03 To04 TO5 To6 T07
c =03 1.17 x 108 5.78 x 10~° 223 x 1071 1.61x107° 456 x 1078 4.36x 1078 6.62 x107°
=04 581x 10710  7.87x 10710 1.52 x 10711 1.84x 10710  489x10™° 558x107° 6.04x 10710
c =05 1.80 x 10~° 422x10710  810x 1072 897 x 10~ 405x107°  413x107° 526x 1071
c =0.6 1.77 x 10~° 6.14x10710 448 x 10712 144 x 10710  640x107° 614x107° 883 x 10710

Next, focusing on test case T04, we multiply either the connection matrix by a factor o

or the coupling coefficient Cj, by a factor 8, with both ¢ and § varying from 1 to 3. The
results of o-dependent solutions are shown in Figure 5 and Table 11. Table 12 shows the
B-dependent results. For relatively small ¢ or 8, the RK4-05 method achieves smaller error
than the other methods. However, for relatively large o or §, the RK4-04 method produces
the smallest errors among the four methods.

A similar observation can be made for a series of tests based on T07 (Figure 6), where
the connection matrix is multiplied by ¢, with ¢ taking values 1, 1.5, and 2. The results are
illustrated in Table 13. When ¢ = 1, the error of the RK4-05 method is about 15% smaller
than that of the RK4-04 method. However, when ¢ = 1.5 and 2, the errors of RK4-04
method are 20% and 40% smaller than the error of the RK4-05 method, respectively.
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——RK4 (c,=05)| 12
- - -RK4 (c,=0.4)|

——RK4 (c,=05)
- - -RK4 (c,=0.4)

0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3 0 0.5 4 15 2 25 3
time time time

(a) (b) (o)
Figure 5. Excitatory populations for test T04 with connection matrix cC, where (a) o =1, (b) 0 = 2,
and (c) o = 3. Results of RK4-04 (c; = 0.4) and RK4-05 (c; = 0.5) are plotted in blue and red,
respectively.

Table 11. L, errors of fourth-order RK methods for test T04 with connection matrix ¢C, where o

varies from 1 to 3.

Method c=1 c=2 c=3
RK4-03 (c; = 0.3) 1.61 x 1077 1.99 x 108 3.15x 1078
RK4-04 (c; = 0.4) 1.84 x 10710 246 x 1077 3.20x 1077
RK4-05 (c; = 0.5) 8.97 x 10~11 2.13x 1077 3.99 x 1077

RK4-06 (c; = 0.6) 1.44 x 10710 3.19 x 1077 621 x 1077

Table 12. L, errors of fourth-order RK methods for test T04 with coupling coefficient fC1,, where
varies from 1 to 3.

Method g=1 =2 B=3
RK4-03 (c; = 0.3) 1.61 x 1077 230 x 1078 6.84 x 1078
RK4-04 (c; = 0.4) 1.84 x 1010 5.45 x 10~ 3.61 x 107
RK4-05 (¢ = 0.5) 8.97 x 1011 455 x 10710 5.63 x 1079
RK4-06 (c; = 0.6) 1.44 x 10710 1.91 x 10~° 1.06 x 108

——RK4 (c,=05) 1.2 ——RK4 (c,=0.5) 1.2 ——RK4 (c,=05)
- - -RKd (c,=0.4) - - -RK4 (c,=0.4) - - -RK4 (c,=0.4)

time time time

Figure 6. Excitatory populations of test T07 with connection matrix ¢C, where (a) 0 =1, (b) r = 1.5,
and (c) ¢ = 2. Results of RK4-04 (c; = 0.4) and RK4-05 (c; = 0.5) are plotted in blue and

red, respectively.

Table 13. L, errors of fourth-order RK methods for test T07 with connection matrix cC, where o

varies from 1 to 2.

Method c=1 c=1.5 c=2
RK4-03 (c; = 0.3) 6.62 x 10~ 226x 1078 219 x 107
RK4-04 (c; = 0.4) 6.04 x 10710 257 x 107 5.07 x 1010
RK4-05 (c; = 0.5) 5.26 x 10710 3.31 x 1077 9.02 x 10710
RK4-06 (c; = 0.6) 8.83 x 1010 5.02 x 1079 152 x 1072

The last test is based on the parameters of T05, where the connection matrix is cC, and
P gradually increases from 0 to 5. The simulations run until T = 5. The P value increases
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to its maximum value when time reaches T /2, making P time-dependent and computed
using the following formula:

. P1+2(P2—P1)t/T, t<T/2

i _{ Py, £> 12, (69)

where P; = 0 and P, = 5. We try two cases of 0, one where it is fixed at 1, and another
where it decreases from 2 to 1 using the following formula:

o(t) = { o1 +2(p —o)t/T, t<T/2

07, t>T/2, 0

where 01 =2 and 0y = 1.

The plots of excitatory neuron populations and the phase plane plot are illustrated
in Figure 7. Results at two resolutions, N = 16,000 and N = 32,000, are plotted, and
show no visible difference, indicating that the solution has achieved reasonable accuracy.
As P increases from 0 to 5, the wave transitions from single-spike to poly-spike wave,
regardless of whether ¢ is fixed at 1 or gradually decreases from 2 to 1. For a quantitative
error analysis, Table 14 presents the L, error norms of four methods (RK4-03 to RK4-06)
when N = 32,000. Similarly to the previous tests, the RK4-04 and RK4-05 methods produce
smaller errors than the other methods. The error of the RK4-05 method is about 25% smaller
than that of the RK4-04 method when ¢ is fixed. In contrast, when ¢ is time-varying, the
error of the RK4-04 method is about 30% smaller than that of the RK4-05 method.

08
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: |
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0.8
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0 01 02 03 04 05 06 07 08 09 1
E

1.5 2 25 3
t

() (a)

Figure 7. Excitatory populations and the phase plane plots for test T05 with P gradually increases
from 0 to 5. The connection matrix is ¢C. Upper row (a,b): ¢ is fixed at 1; lower row (c,d): o gradually
decreases from 2 to 1. Left column (a,c): excitatory neuron populations. Results of two resolutions
N =16,000 and N = 32,000 are plotted in red and blue, respectively. Right column (b,d): phase
plane plots.
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Table 14. L errors of fourth-order RK methods for test T05, as P gradually increases from 0 to 5. ¢ is
fixed at 1 or gradually decreases from 2 to 1.

Method c=1 o Decreases from 2 to 1
RK4-03 (c; = 0.3) 219 x 107° 1.82x 1070
RK4-04 (c; = 0.4) 2.70 x 1077 1.89 x 10~7
RK4-05 (c; = 0.5) 218 x 1077 3.06 x 1077
RK4-06 (c; = 0.6) 3.26 x 1077 465x 1077

5. Discussion

The Wilson—-Cowan model is a system of nonlinear differential equations for which an
analytical solution is not available, so it is traditionally solved using numerical methods.
In particular, the classical explicit fourth-order Runge-Kutta (RK4) method is one of the
most popular approaches. The four-stage, fourth-order RK methods we developed in this
work can be considered a generalization of the classical RK4 method by introducing a free
parameter cp. The classical fourth-order RK method corresponds to the case where ¢, = 0.5.

Our work was motivated by recent developments in generalized iterated Crank—
Nicolson (ICN) algorithms, which achieve up to third-order accuracy [20]. We modified the
final update equation of the four-stage ICN method by introducing an additional coefficient,
enabling fourth-order accuracy. The order conditions (38)—(45) result in one free variable,
c2, from which the other coefficients can be calculated explicitly. In Table 1, we list nine sets
of RK coefficients where c; varies from 0.1 to 0.9 in increments of 0.1. To our knowledge,
this is the first time these fourth-order RK methods (with c; # 0.5) have been proposed.

The introduction of a free parameter allows for the selection of the most efficient
numerical solver by comparing the performance of the methods with different parameter
values. One notable observation is that the accuracy of the methods is sensitive to the
connection matrix C, particularly to its spectral radius and the magnitude of the excitation-
inhibition coupling coefficient C1,. In most simulations, the classical fourth-order RK
method (c; = 0.5) produced smaller errors than the other methods tested, demonstrating
its robustness. However, in a few test cases where the spectral radii or coupling coefficients
were relatively large, the RK4-04 method (c; = 0.4) demonstrated superior accuracy compared
to the other methods tested, including the classical fourth-order RK method. For instance, in
one of the test cases, as shown in Table 4, the numerical error of the RK4-04 method was less
than half that of the classical method when the spectral radius exceeded 100.

6. Conclusions

In this paper, we have developed a class of four-stage, fourth-order Runge-Kutta (RK)
methods based on a generalized iterated Crank-Nicolson procedure. The coefficients of the
proposed RK methods are derived as functions of a free parameter ¢, with the classical
fourth-order RK (RK4) algorithm being a special case when c; = 0.5. We use the notation
RK4-0x to denote the fourth-order RK method when ¢, = 0.x. Specifically, the RK4-05
method corresponds to the classical RK4 method. This free parameter provides a convenient
way to compare the performance of different RK methods within this framework.

Focusing on the Wilson—-Cowan systems with two and three neuron populations
modeling EEG epileptic dynamics, we conducted a series of numerical simulations to
evaluate the performance of the proposed methods in comparison with the classical RK4
(RK4-05) method. Our simulations included both single-spike and poly-spike waveforms,
as well as the transitions from single-spike to poly-spike waves. The results confirmed
that the proposed methods achieve fourth-order accuracy, and the simulated EEG waves
align with those reported by other research groups and the clinical data. In particular, the
RK4-05 (c; = 0.5) and RK4-04 (c; = 0.4) methods produced smaller errors than the other
methods tested. The comparison of the RK4-04 and the RK4-05 methods illustrated that
their numerical errors are sensitive to the spectral radius of the connection matrix and the
excitation-inhibition coupling coefficient.
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Our current analysis is based on numerical simulations focused on a specific type of
EEG wave associated with epileptic dynamics. In the future, we plan to extend our work to
other EEG applications, including insomnia and sleep regulation.
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