% applied sciences

Article

Ad Hoc Data Foraging in a Life Sciences Community Ecosystem

Using SoDa *

Kallol Naha ¥

check for
updates

Academic Editor: Zhibin Lv

Received: 12 October 2024
Revised: 25 December 2024
Accepted: 27 December 2024
Published: 10 January 2025

Citation: Naha, K,; Jamil, HM. Ad
Hoc Data Foraging in a Life Sciences
Community Ecosystem Using SoDa.
Appl. Sci. 2025, 15,621. https://
doi.org/10.3390/app15020621

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ / creativecommons.org/
licenses /by /4.0/).

and Hasan M. Jamil *#

Department of Computer Science, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, USA;

naha7197@vandals.uidaho.edu

* Correspondence: jamil@uidaho.edu; Tel.: +1-(208)-885-9654

t This paper is an extended version of our paper published in Jamil, H.M. Supporting Data Foragers in Scientific
Computing Community Ecosystems for Life Sciences. In Proceedings of the Information Integration and Web
Intelligence—26th International Conference, iiWAS 2024, Bratislava, Slovak Republic, 2—4 December 2024.

¥ These authors contributed equally to this work.

Abstract: Biologists often set out to find relevant data in an ever-changing landscape of
interesting databases. While leading journals publish descriptions of databases, they are
usually not recent and do not frequently update the list that discards defunct or poor-
quality databases. These indices usually include databases that are proactively requested
to be included by their authors. The challenge for individual biologists, then, is to discover,
explore, and select databases of interest from a large unorganized collection and effectively
use them in their analysis without too large of an investment. The advocation of the
FAIR data principle to improve searching, finding, accessing, and inter-operating among
these diverse information sources in order to increase usability is proving to be a difficult
proposition and consequently, a large number of data sources are not FAIR-compliant. Since
linked open data do not guarantee FAIRness, biologists are now left to individually search
for information in open networks. In this paper, we propose SoDa, for intelligent data
foraging on the internet by biologists. SoDa helps biologists to discover resources based on
analysis requirements and generate resource access plans, as well as storing cleaned data
and knowledge for community use. SoDa includes a natural language-powered resource
discovery tool, a tool to retrieve data from remote databases, organize and store collected
data, query stored data, and seek help from the community when things do not work
as anticipated. A secondary search index is also supported for community members to
find archived information in a convenient way to enable its reuse. The features supported
in SoDa endows biologists with data integration capabilities over arbitrary linked open
databases and construct powerful computational pipelines using them, capabilities that
are not supported in most contemporary biological workflow systems, such as Taverna
or Galaxy.

Keywords: large language model; intelligent user interface; FAIR; wrapper generation;
interoperability; ecosystem

1. Introduction

The extraction techniques needed to gather data that are stored in databases be-
hind firewalls are significantly different from browsing web page data on the internet [1].
The standard tools used to access deep web data are wrappers [2] and, more recently,
RESTful APIs [3]. Word-of-mouth [4] and web crawlers [5] also play a significant role in
the generation of resource indices, such as MBDL [6] or Pathguide [7]. While the compiled

Appl. Sci. 2025, 15, 621

https:/ /doi.org/10.3390/app15020621

Appl. Sci. 2025, 15, 621

2 of 22

resource indices help with the discovery and identification of interesting data sources and
analysis tools that users need, the process is completely manual, sluggish, and limited.
They are slow to update and to include new resources, and do not serve the unique needs
that users may have. In particular, they do not actively find resources of interest that are
not already indexed in the resource list.

Linked open data (LOD), on the other hand, has emerged as a promising approach to
provide interconnected, machine-readable datasets, but its effectiveness is often hampered
by issues related to data quality and accessibility. While LOD emphasizes openness,
the FAIR (Findable, Accessible, Interoperable, and Reusable) principles [8] extend this
concept, revealing significant gaps in compliance among LOD resources [9]. Tools such as
the FAIR-Checker [10] have been developed to evaluate and improve FAIRness in LOD; by
utilizing standardized metrics and criteria, this tool enhances transparency and reliability in
LOD practices. However, the widespread adoption of FAIR principles remains a challenge,
hindering the full realization of LOD’s potential in supporting scientific inquiry and data-
driven research. It is interesting to note that LOD does not imply FAIR, or vice-versa [11],
and both of these concepts are not supported by set standards and thus are very hard to
achieve. The question that remains open is how users can find the most useful and relevant
resources accessible via the open internet?

In this paper, we introduce the concept of data foraging and sharing in a community
resource ecosystem [12] that will be curated [13] and will evolve with time [14]. We believe
that the ingredients required to construct such an ecosystem are in place and a careful
integration of them is ultimately possible. We discuss the architecture and functionalities
of the proposed system called SoDa (stands for Solo Data Forager). In SoDa, we integrate
four basic subsystems—a resource recommender system, a data access protocol designer
or a wrapper system, a query processing system with the help of a schema matcher to
support interoperability, and a curation system for knowledge evolution (we invite readers
to consult [15] for a formal exposure to the concept of wrappers, and [16] for a discussion
on schema matchers. In the presentation to follow, we assume that readers are familiar with
these standard concepts in database integration technology). We illustrate the functionality
of SoDa using an example from life sciences research.

We would like to emphasize that while there are several prominent biological data
integration and workflow systems available (e.g., Galaxy [17], Taverna [18], Kepler [19],
VisFlow, etc.), they are largely limited in their capabilities, especially when integrating
arbitrary databases and constructing workflows using them. They are also not capable of
helping users find the data sources or tools needed to construct a computational pipeline.
Some of them are very powerful and supportive since they restrict the resource type they
support. For example, Taverna only supports web service compliant resources, while
Galaxy largely supports databases that have pre-arranged cooperative arrangements with
Galaxy. Such limitations hinder interesting data analysis and scientific expeditions using
interesting resources not supported by these systems. For example, the gene-disease
association database DisGeNet [20] is not supported by Galaxy or Taverna, nor can they
help users discover this database or make them use it in any analysis pipeline. The issue
we address in SoDa is as follows: with no prior knowledge or awareness, can a biologist
find DisGeNET and use it in a workflow along with another database that potentially has
schema disparity with it in a matter of minutes, all without writing a single line of code.

2. Related Research

Powerful data integration systems, such as Galaxy and Taverna, could be limiting
for some applications. For example, finding new resources and integrating them into the
Galaxy tool set requires significant expertise and coordination with the Galaxy developer

Appl. Sci. 2025, 15, 621

30f22

team, and thus is not suitable for ad hoc spur-of-the-moment usage for novel queries— it
requires planning, coordination, and technical knowledge. Taverna, on the other hand,
allows user-initiated resource integration, but requires web service compliance for resources.
Even when they do comply, the required tooling is extensive and requires significant
preparation and coding know-how. In both systems, implementing a scientific inquiry of
the form discussed in Section 3.1 will be extremely difficult, if not impossible, by a biologist
who is not computationally intelligent, and there are a large number of such biologists.

Recent efforts such as Voyager [21] for data discovery and integration though a step
in the right direction, it does not support many needs that we address in SoDa, some of
which are expressed in [22]. Such deficiencies in the contemporary system that supports an
end-to-end data discovery, integration and querying [23] are leading to custom application
developments such as BioBankUniverse [24] and DZL [25]. The landscape of data discovery,
scientific inquiry, and integration is being reshaped by the emerging LLM technology.
New application design platforms will need to support not only complex SQL queries
post discovery and integration, they must support automatic computation of predictive
and other forms of analyses only possible through the incorporation of machine learning
capabilities with querying engines. The SoDa system we introduce in this paper approaches
the science of scientific inquiry from these emerging perspectives.

3. SoDa Architecture

As shown in the conceptual model of SoDa in Figure 1, it has four major components:
(i) ResCom resource recommender, (ii) CroW wrapper generation system, (iii) Crowd
curation tool QCurator, and (iv) Application designer SoDaPro. ResCom helps identify
databases of interest when prompted using a natural language description of the required
data. It also helps generate a query plan. CroW is a semi-automatic wrapper generator that
helps SoDa extract data from deep web databases. If users make mistakes or the CroW’s
database access instructions fail to function as expected, users are able to seek community
help using QCurator to correct the errors. Finally, using SoDaPro subsystem’s QBuild tool,
users can construct queries or analytics and execute them.

In the sections to follow, we discuss these components on intuitive grounds. As a
preamble to the discussion of the architecture of SoDa, we introduce a potential scientific
expedition a biologist might want to carry out using our cloud-based analysis platform for
open science over linked open data.

3.1. Scientific Inquiry

In their quest to establish a definitive link between defects in sperm and male infertil-
ity [26], a biologist might want to follow the steps below once semen samples from both
fertile and infertile men are collected and sequenced (among several other steps before
and after).

1. Perform differential expression analysis to identify RNAs that are significantly differ-
entially expressed between fertile and infertile men using commonly used tools such
as DESeq2, edgeR, or Limma.

2. Use tools like DAVID, Enrichr, or clusterProfiler to perform Gene Ontology (GO) and
pathway enrichment analysis on the differentially expressed RNAs.

3. Identify biological processes, molecular functions, and pathways that are significantly
associated with the differentially expressed RNAs.

This project could be approached at multiple different levels depending on the biologist
or their expertise. For example, a more well informed and prepared researcher in fertility
research may already have collected sperm samples from both fertile and infertile men,
isolated RNA from these sperm samples, identified and quantified the RNA molecules

Appl. Sci. 2025, 15, 621

4 0f 22

present in the sperm samples using RNA sequencing and learned about the RNA profiles
of fertile and infertile men before entering differential expression analysis.

)

= T = 0 SoDa 5 W‘
: Resource 5 i SHELS ‘
@ ; |
I Description [~ | " (Esid !
! Database e : > N !
i ———— S| E & l
: & 813 ! |
i Database ® A = VisFlow SoDa }
: g— 14 : < Engine Database !
e |
| @ |
| o | —
i | Database ‘ SoDaPro |
L e o L D] User = |\t -
fm——————— = —————— T ——— | A N
=

Curation
Requests

Wrapper
Bank

Evolutionary
History

CroW Wrapper Generator

Figure 1. SoDa Architecture: the SoDa system consists of four interconnected sub-systems (i) ResCom
resource recommender, (ii) CroW wrapper generation system, (iii) Crowd curation tool QCurator,
and (iv) Application designer SoDaPro. ResCom parses natural language user requests or queries
and generates a query plan or workflow. It also identifies the required internet resources to compute
the query. CroW is a semi-automatic wrapper generator that helps SoDa extract data from deep
web databases. If users make mistakes or the CroW access instructions fail to function as expected,
users are able to seek community help using QCurator to correct the errors. Finally, using SoDaPro
subsystem’s QBuild query design tool, users can construct queries or analytics and execute them.

An investigator who just wants to understand a possible link between sperm defects
and its impact on fertility may not be as prepared as the researcher discussed above.
Therefore, an alternative to reach this stage is to use publicly available data in GEO [27] or
SRA [28] databases and start right away. However, the querying abstraction levels could be
highly varied. In a recent study on ProAb, we explored the interesting possibility of asking
this query at the highest possible abstraction level in natural English, likely as follows:

Is there a link between human spermatozoal RNA and infertility? Could I establish the
link computationally?

We consider the question, could a candidate workflow be developed that could be executed
fully automatically? However, in a cognate research in BioNursery, we demonstrated that
significant technological and knowledge gaps exist that hinder this approach, and often,
substantial human involvement is necessary.

In SoDa, the abstraction levels supported help find relevant data and tools automati-
cally but requires users’ involvement in selecting, isolating, and generating a plan of how
to compute the response to a scientific query. Steps 1 through 3 (described earlier) on
how to link sperm defects with male infertility is a plan that we treat as a computational
information extraction procedure that can be used to automate the query computation.
Once collected and archived, and once users already have a well articulated computational
process in mind, they are able to develop a computational pipeline to implement a scientific
inquiry using the smart SoDa GUI as described in the following sections.

It is perhaps interesting to note here that traditionally, users visit these database sites,
submit queries by hand and manually collect data by scrapping, copying or downloading
data, and then saving them in some way before analyzing them. A significant amount of

Appl. Sci. 2025, 15, 621

50f22

time is expended in the manual search of databases and tools, as well as the collection and
processing of data. In contrast, in SoDa, users are aided by resource identification tools,
data extraction, and query processing tools and the queries are computed almost instantly.

3.2. Resource Recommendation

Existing resources in SoDa can be browsed from a searchable index, or a specification
in the form of a paragraph for the resource needs can be used as a search key in natural
English. For example,

Need to find normalized sperm RNA-seq expression data for differential expression
analysis (using DESeq2, edgeR, or Limma).

The Resource ReCommender system ResCom accepts this request and suggests a ranked
list of databases, prioritizing the most relevant at the top. Not only does ResCom suggest
the databases, it also generates a possible scheme of a table that can be accessed via a web
link, i.e., a URL.

In response to the above request, as an example, ResCom will first search for a match-
ing data set in SoDa archive. In SoDa, all table schemes are semantically described in some
detail using natural language and their possible usage is also included in these descriptions.
These descriptions are stored in SoDa’s vector database for a possible linguistic analysis
using an LLM, such as ChatGPT, to ascertain query relevance.

In the event a table could not be identified, or the user requests an external search,
ResCom uses PubMed abstracts as the first level of descriptors of data to find a match. If a
sufficient match is found, the list of abstracts are organized, ranked in order of relevence,
and vectorized for semantic matching. Database links found in the abstracts are explored
exhaustively using a link, hoping to identify a database with the closest match and pre-
sented to the user for review with two options—accept or search next. The search ultimately
ends in a success or failure.

The process of successfully identifying resources undergoes a secondary step. In this
step, a machine-readable and editable description on the nature and capabilities of the
resource is generated (see Figure 2 showing this process for the resource description gen-
eration for the DisGeNET (https://www.disgenet.org/ (accessed on 1 December 2024)
database). The resource description can be used in multiple different ways. The major
use of the descriptions, however, is by the workflow generation system Needle [29], as
discussed in Section 3.5. Needle uses resource descriptions to identify schema heterogeneity
and schema matchers for their resolution, suitable wrappers for data access, and the trust-
worthiness of the resource. A crowd computing approach is adopted to ensure the accuracy
and usefulness of the generated resource description within a community knowledge
sharing ecosystem.

3.3. Accessing Resources

Once an external SoDa resource is identified, a wrapper needs to be generated to
facilitate real-time online access and ensure successful extraction. In SoDa, resources are
of two types—a deep web database (a database that can only be accessed via query form
submission or through an API), or an online analysis tool that returns a table on the appro-
priate submission of input parameters, again likely using forms. In SoDa, the underlying
data model is relational, and thus all its operations are conceived using a tabular repre-
sentation of data, although the engine is capable of processing TXT, CSV, XML, and JSON
formatted data.

Appl. Sci. 2025, 15, 621 6 of 22

Step 1: Computational Plan

Instruction:

Access the Male Infertility Knowledgebase (MIK) to find genes associated with
male infertility, specifically teratozoospermia. Use the search function to filter for
the disease of interest.

Source Paper:
Male Infertility Knowledgebase: decoding the genetic and disease landscape

Database Access Link:
http://mik.bicnirrh.res.in/

Instruction:

Access the DisGeNET database to find genes associated with obesity and other
diseases. Use the search function to filter for the disease interest and explore the
gene-disease associations

Source Paper:
The DisGeNET knowledge platform for disease genomics: 2019 update

Database Access Link:
‘http://www.disgenet.org/

(a) Computational plan generation.

Step 2: Process and Resource Description

Process Description:

create process MiKDB at http://mik.bicnirrh.res.in access webform postfix
/mip.php/ accepts filter (Phenotype String) returns table (Symbol GeneSymbol
primary key, ChrLoc string, Disease string);

Resource Description:

create resource MikDB (narrative “Browser access accepts an Entrez gene ID and
returns its disease association”, contributors {Alex, Abebi}, meta: matcher {Cupid,
OntoMatch}, wrapper {FastWrap}, mapping {Determination: Semantic}, validators
{Alex, Maya} ;

4 Go to FARyfier

Process Description:

create process DisGeNETb at https://www.disgenet.org/ access browser postfix
/browser/1/1/0/$Genes accepts table (Genes EntrezID) returns table (
DisGeNETKey EntrezID primary key, Disease DisID, Type string, Disease class string,
Score gda decimal (4,2),...);

Resource Description:

create resource DisGeNETb (narrative “Browser access accepts an Entrez gene ID
and returns its disease association”, contributors {Alex, Abebi}, meta: matcher
{Cupid, OntoMatch}, wrapper {FastWrap}, mapping {Determination: Semantic},
validators {Alex, Maya} ;

@ Go to FARRyfier | (

(b) Generating process description.

Figure 2. Resource discovery and resource description generation in ResCom: These figures show
how ResCom’s Resource Specification Analyzer finds relevant resources from PubMed database and
helps generate an execution plan and resource descriptions for the QBuild query builder using an
LLM with the help of users and the wrapper generation system CroW.

Appl. Sci. 2025, 15, 621

7 of 22

However, developing an access protocol for such resources is mostly a manual process,
largely because each one is unique, but follows a simple mathematical relation as follows.

YU (T—=T)

where 7 is a function (the wrapper generator) that maps a resource u € U (represented by
a URL) into a function w € Q) of the form

QC{w|lw:T =T}

Thus, y(u) : T — T or, y(u)(t) =t € T, whereu € U isa URL and t € T is a table.
The access plan we develop is a learned function, w from 7 (u), that would transform an
input table ¢ into a result table ' using the resource at the URL u.

To be able to develop the function w, we use a GUI-enabled public wrapper generation
system called CroW (stands for Crowd Wrapper Generator). CroW supports visual tools
and functions to help CroW to learn the form of behavior and data layouts so that a formula
can be learned, which CroW can then use to recreate the access plan for a site u when
requested by a query in real time (the wrapper generation process for the DisGeNET
database is shown in Figure 3). Once a wrapper is generated and tested, it can be archived
in a searchable wrapper bank (a wrapper bank is a storage, or a database, of wrapper
definitions in a machine-readable format, and thus can be reused as needed to retrieve
information from a deep web database) for community use, as shown in Figure 4.

« G % disgenetorg/browserf1/1/0/29974] Tt &
Chrome is being controlled by automated test software. x
Home About Search Download: Cytoscape = RDF disgenet2r Help Biomarkers COVID-19 Login Signup
A1CF_APOBEC1 complementation factor, 29974 < 1-250f71results > Add/Remove filter Download =~ Share
N. diseases: 71; N. variants?
{ Input gene symbo[} [GenelD J [Required table highligted in yellow J
’ s
r Y
Output scheme Fiterwitnincurentresuts: [|
A

r Y
Disease & Type & Disease Class * Semantic Type N.genes;& N.SNPsy%® Scoregav Elga® Elga=® N.PMIDs & N.SNPs g9, % FirstRef. & Last Ref. &
+ Glomerular Filtration ... * phenotype Diagnostic Procedure 399 1033 0.100 None 1.000 5 3 2016 2018
« Uric acid measureme... » phenotype Laboratory Procedure 264 1463 0.100 None 1.000 & 4 2015 2019
« Triglycerides measure... > phenotype Laberatory Procedure 563 1418 0.100 None 1.000 3 1 2017 2019
~ Creatinine measurem... > phenatvne Laboratory Procedure 124 243 0.100 None 1.000 2 2 2016 2017

Wrapper generation o — e = - -
VA ehavior and Behavior ndividual Behavior 0 5 0.100 None 1.000 1 1 2019 019

control panel

oot TiToteste TSmO Laboratory Procedure 486 1243 0.100 None 1.000 1 1 2018 2018
. = Wrapper Generation Panel - Table Gongenital, Hereditary, a. . > Disease or Syndrome 205 2354 0.100 None 1.000 1 12 2013 2013
. Select Table Laboratory Procedure 483 1142 0.100 None 1.000 1 1 2018 2018
~ Congenital, Hereditary, a... » Disease or Syndrome 206 2356 0.100 None 1.000 1 12 2013 2013
~ Dorie Neoplasms Neoplastic Process 3111 6892 0.100 None 1.000 1 9 2017 2017
~ Acute lymphocytic leu... > disease Neoplasms; Immune Sys... > Neoplastic Process 1293 222 0.060 None 0.667 6 2003 2018
Vi Acute Lym... > disease Neoplasms; Immune Sys... > Neoplastic Process 1096 261 0.060 None 0.667 6 2000 2018

Figure 3. CroW wrapper generation toolkit: CroW allows a deep web database page to be loaded in
HTML and manually identifies interesting features by marking them with a pointing device. It also
allows users to characterize the marked elements on the page. Once marked and requested, CroW
can generate resource descriptions in Needle, which SoDa can use to extract the data. This picture
shows such a process for the DisGeNET database.

Appl. Sci. 2025, 15, 621

8 of 22

List of Wrappers
(===)
Search:

D T Name Description Created On Updated On

1 Pathcard returns SuperPathway Name,Genes Count, Relevance Score 2023-12-2107:23:06 2023-12-2107:23:06
2 Ncbi returns PMID, Title, Year, Writers 2023-12-2107:24:28 2023-12-2107:24:28
3 Pubtator returns Title, Year, Writers 2023-12-2322:26:47 2023-12-23 22:26:47
P

Disgenet returns Disease Type, Disease Class,Semantic Type, N. genesd, N. SNPsd, Scoregda, ELgda, Elgda, N. PMIDs, N. SNPsgda 2023-12-24 21:36:29 2023-12-24 21:36:29
Showing 1to 4 of 4 entries
Previous n Next
Figure 4. SoDa wrapper bank: the wrappers generated using CroW, as in Figure 3, can be materialized
and stored for posterity. The table in this picture shows a searchable index of materialized wrappers
ready to be used in user applications.

3.4. Application Design

Application design using SoDa always involves registered resources in SoDa,
and never involves resources that SoDa has generated no access plans for. SoDa sup-
ports a graphical query builder and allows fairly complex query generation, and computed
view materialization, either temporarily or indefinitely. The application designer is called
QBuild (stands for Query Builder). Except for the directly stored tables, all references to a
table are virtual, which means, a reference to a table on the internet is made through the
use of a wrapper available in a SoDa wrapper database.

3.4.1. SoDa Query Language

QBuild uses our previously developed BioFlow query language construct extract to
access the referenced tables in real time and treats the extracted tables as traditional tables
in the back-end relational database, MySQL. The extract statement has a general form, as
shown in Figure 5.

extract A1, Ay, ..., Ay
using wrapper W, mapper M, filler F

at ¢

submit 7

Figure 5. BioFlow extract statement syntax: the extract statement can retrieve and return a table with
columns Ay, Ay, ..., A, from a deep web database at the URL ¢ by submitting each row in table r as
parameters to the database. Schema disparities are resolved automatically using the schema matcher
M, and tables are extracted using the wrapper W. If a form filling operation is required, it is carried
out using the filler F.

In this statement, a wrapper is a function that hides the internal details of a database
or web site and offers an abstract view of it. In this view, a deep web database or a web site
can be viewed as a table returned by the database or a site when it is supplied with a set of
input values. For example, the table in Figure 3 is returned by the DisGeNet database when
the GenelD 29974 (gene symbol A1CF) is submitted to it. A wrapper would accept this
GenelD and scrape the table from this HTML page and return a table in .txt or .CSV format.
A schema matcher, on the other hand, would resolve the schema disparities between two
views. For example, a user may refer to a column name as Gene, while the DisGeNET
database may refer to it as G_ID. A schema matcher may establish the correspondence that
says Gene and G_ID are identical. Finally, a filler is a function that helps mimic form filling
in web sites, such as submitting the GenelD 29974 to the DisGeNET database form at the
following URL: https://disgenet.com/ (accessed on 1 December 2024).

For any table 7, the set of column names by which it is defined is called the scheme or
r, denoted as r(R) where R is the set of column names. The extract statement above returns

Appl. Sci. 2025, 15, 621

9 of 22

a table t with column names Aj, Ay, ..., Ay, when it is supplied with a table r with columns
By,By,...,By. Thescheme S, = {A1, Ay, ..., Ay} is called the output scheme of the extract
statement, while the scheme of 7, i.e., S; = {By, By, ..., By}, is called the input scheme of
the extract statement.

BioFlow approaches the deep web resource querying problem declaratively. In this
approach, a deep web database is modeled as a function in an internet repository ¢. This
function, when prompted with a table 7; over a scheme S;, returns a table r, over a scheme
So. The extract statement above provides the syntax needed to implement this function.
The interesting and unique component of the extract statement is its using clause. This
option specifies the set of required tools needed to access a hidden web database. The
application of these tools provides the needed abstraction of the function and hides the
complexity of retrieving data resolving possible schema disparity using a schema matcher
and possible scraping of tables (in case it is returned as an HTML document) using the
wrapper W from the returned document. The wrapper essentially captures all necessary
access details, as discussed in Section 3.3, including converting returned data by database
d at ¢ into a tabular form. Any schema heterogeneity and mismatch between the input
scheme S; = R = {By, By, ..., By} and the output scheme S, = {A1,Ay,..., Ay} are
resolved by the schema matcher M, and the form filler F helps with the construction of the
endpoints needed to process each element in the input set. Both BioFlow and SQL play a
significant role in QBuild in the construction and execution of user workflow queries as
discussed in the following sections.

3.4.2. Query Builder Interface

As alluded to earlier, SoDa supports two types of query constructs—extract statement
for deep web data extraction, and select statement for querying tables. It also supports work-
flow orchestration using these two query types by allowing the logical sequencing of them.
It does so using a query construction toolbox similar to SQL’'s QBE query builders [30],
called QBuild, as introduced in the SoDaPro component of the SoDa architecture in Figure 1.
QBuild comprises two main GUI interfaces—one to construct the equivalent of the extract
statements to access deep web databases, and the other to write SQL queries to interro-
gate the locally stored databases in SoDa. Figure 6 shows the first of the two screens
of the QBuild query builder. Using this interface, users are able to retrieve data from
any deep web databases. The second interface to query locally stored data is shown in
Figure 7. We only briefly outline some of its features due to limited space. This interface is
rich in features and powerful compared to most contemporary visual SQL query builders;
it deserves a more complete discussion and is outside the scope of this article. Only a brief
discussion is presented below.

In both of these interfaces, the top bar above the multi-functional canvas shows
function selector buttons as icons that are active one at a time (in a similar way to radio
buttons). The icons are “Run” or “Play”, “Pause”, “StepThrough”, “Download” or “Save”,
“Delete” or “Restart”, and “Share”. Below this bar, there are five tabs that allow an extract
query, SQL query, SQL subquery, and a correlated SQL subquery to be written; a workflow
can then be assembled using extract and SQL queries. The screen below, called the canvas
or workspace, changes based on the selected tab as they have unique features and functions.
During execution, the results are shown as a pop-up window (as shown in Figure 8),
and execution trace is shown at the side panel that opens up on the right. When execution
terminates or is paused, the canvas returns to Edit mode.

Appl. Sci. 2025, 15, 621 10 of 22

Tables
Extract Query Subquery Corelated Workflows

Entrez_ID_Table

E Deep Web DB

) N https://disgenet.com/search?view=GENES&idents=???&source=ALL&tab=GDA
Disgenet_Diseases

Replace the '5925' parameter with ??7. Only one parameter is placeable

Entrez_ID_Table_Single Example: https://www.disgenet.org/browser/1/1/1/222/

Extract
MikDB

Disease,Disease_Class,Disease_Type,Elgda,First_Ref,Last_Ref,N_CTs,N_Chemicals,N_PMIDs,N_PMIDs_Chemicals,N_genesd,N_variantsd,N_variantsgda,Scoregda

Olezes Use comma-separated field names(filed name should not have any space, use underscore instead of space) such as Gene_Name, Gene_ID
MikDB_Query Wrapper
Workflows Possible fields for this wrapper:
Disease,Disease_Class,Disease_Type,Elgda,First_Ref,Last_Ref,N_CTs,N_Chemicals,N_PMIDs,N_PMIDs_Chemicals,N_genesd,N_variantsd,N_variantsgda,Scoregda
WorkFLow_1
Matcher Form Filler
Select Matcher
WorkELow 2 Cupid ed Disgenet Form Filler v
WorkFLow_3
Input Table
Table Column Filter
Table Name Input Column Filter
Entrez_ID_Table v Entrez_Gene_ID Scoregda > 0.01 and Elgda >= 0.1
Only one input column is acceptable.
Figure 6. QBuild interface: Using this graphical interface, users can retrieve data from deep web
databases without writing a single line of code. They can use the wrapper-constructed tool CroW
and stored schema matchers from the system libraries to construct a Needle query to extract data,
and store it for subsequent use.
>] M & @ <
Tables
Extract Query Subquery Corelated Workflows

Entrez_ID_Table
Show

Disgenet_Diseases . 5 < " < 5 . x :) x 3
158! =5 Disgenet_Diseases.Gene, Disgenet_Diseases.Gene_Full_Name, Disgenet_Diseases.Disease, Disgenet_Diseases.N_diseasesg, Disgenet_Diseases.N_genesd

Entrez_ID_Table_Single Comma separated, table.column format (e.g., tbl1.Gene, thl2.Scoregda)
MikDB ,
Link Tables Next
Table Key Table
Queries
Disgenet_Diseases v Foreign Key v MikDB v
MikDB_Query
. Filter
Disgenet_Query
And s
Workflows
Field Operator Value
WorkFLow_1
Disgenet_Diseases.Gene = INS
WorkFLow_2
WorkFLow_3

Figure 7. QBuild SQL query builder interface: This interface allows users to construct queries and
analytics using stored tables in ways similar to traditional relational database QBE [30] interfaces.

Appl. Sci. 2025, 15, 621

11 0f 22

Data Set

Do you want to save these data as an input table? Save as Input Table

Disease N_genesd N_variantsd Scoregda N_PMIDs N_Chemi _Chemi _vari First_Ref Last_Ref Elgda Disease |

disease

Renal cell
disease
carcinoma

Obesity ¥ disease

Endometrium 2128 . disease

Close

Figure 8. QBuild interface: The table shows the execution of the extract query constructed in Figure 6.
The table can be stored in multiple formats—TXT, CSV, JSON, or as a relational table.

The side panel on the left has three selectors—Tables, Queries, and Workflows. These
electors list stored tables in the SoDa database as well as previously constructed and stored
queries and workflows. Clicking on a table name shows two options, See and Load. “See”
shows the column names and a sample row of data to help understand the table. The
“Load” option, on the other hand, pulls up the entire table and lets users inspect the table in
full. However, unless the table is stored as a relational table, the queries (extract or SQL) are
usually stored (not the computed tables) and when requested, the queries are executed live
and the results are shown when Load option is chosen. This approach reduces the space
needed to store materialized tables at the cost of time to compute it live.

Both Queries and Workflow entries load the corresponding definitions into the
workspace or canvas in edit mode. Users are allowed to edit and execute queries or
workflows. An edited version can be stored—as a new query or workflow, or replace the
existing entries.

Deep Web Data Extraction

Figure 6 shows the Extract function in Edit mode. The fillable blocks in this interface
resemble the extract statement options of BioFlow. The interface in Figure 6 shows several
fillable entries that correspond to the extract statement in Figure 5. The Deep Web DB entry
allows entering the database URL ¢ in the extract statement in Figure 5. The Extract entry
enables listing the columns that users wish to retrieve from the deep web database. This is
called the “user view” of the database. It is interesting to note that these column names in
the user view need not match exactly with the column names in the deep web database at
¢, called the “database view”. The semantic match between the two views are resolved
and a proper correspondence is established using the schema matcher selected by the user
using the Schema Matcher entry just below. For this edition of SoDa, the schema matcher
Cupid [16] is a default choice.

Every deep web data extraction requires a wrapper. A wrapper can be pre-built and
stored using the CroW wrapper generation tool or can be constructed live using CroW
following the “Generate New Wrapper” option. The drop-down menu of the Wrapper
entry option allows a stored wrapper to be selected instead. The Form Filler entry helps
an end-point constructor to be selected from the stored Needle description of a deep web

Appl. Sci. 2025, 15, 621

12 of 22

database. Usually, a form filler generates individual end-points from the entries in the
input table r of the extract statement. Finally, the input table r can be selected from the
drop-down menu found toward the bottom in this interface. The current edition of SoDa
allows only one column as input parameter to the deep web database (Future editions will
allow multiple parameters and remove this restriction).The filter entry allows a Boolean
condition to be written to exclude unwanted parameters in the input table.

SQL Queries

While writing an extract query is straightforward, with only a few options, building an
SQL query, on the other hand, could turn complex. Figure 7 shows construction of a simple
join query using two stored tables—Disgenet_Diseases and MikDB, selected from the
drop-down menus. A Boolean filter condition can be specified using the filter constructor
below. The top Show option allows the columns that the users want to see to be listed. Note
that, as discussed earlier, the tables selected from the drop-down menus are usually stored
query specifications; the corresponding tables are computed live, and they are potentially
extract queries.

Though a relatively large class of SQL queries are simple and involve only select—
project—join (SPJ) operations over a set of relations, many require complex subqueries and
correlated subqueries. The logic and construction process of such queries are pretty tedious
and require substantial expertise in SQL. To simplify query construction using these SQL
features, SoDa supports two interfaces—subquery and correlated subquery. Basically, these
options allow queries constructed using the Query option to be linked in a systematic way
using a graphical user interface. A discussion on subquery and correlated subquery is
involved but is outside the scope of this paper. An independent and separate article on
query construction using QBuild is being planned for publication soon, and we will not
discuss the details in this article any further. Figure 9 shows the result of the SPJ] query
shown in Figure 7.

Data Set

Do you want to save these data as an input table? Save as Input Table

Gene Gene_Full_Name Disease N_diseasesg N_genesd
insulin Diabetes Mellitus 3105 5016
insulin Diabetes Mellitus 3105 5016
insulin Diabetes Mellitus 3105 5016
insulin Diabetes Mellitus 3105 5016
insulin Diabetes Mellitus 3105 5016
insulin Diabetes Mellitus 3105 5016
insulin Diabetes Mellitus 3105 5016
insulin Adult-Onset Diabetes Mellitus 3105 5034
insulin Adult-Onset Diabetes Mellitus 3105 5034
insulin Adult-Onset Diabetes Mellitus 3105 5034
insulin Adult-Onset Diabetes Mellitus 3105 5034
insulin Adult-Onset Diabetes Mellitus 3105 5034
insulin Adult-Onset Diabetes Mellitus 3105 5034
insulin Adult-Onset Diabetes Mellitus 3105 5034

insulin Diabetes Mellitus, Insulin-Dependent 3105 2509

Figure 9. QBuild SQL query builder interface: table returned by SoDa upon execution of the query in
Figure 7.
3.5. Workflow Query Construction

SoDa supports workflow orchestration using a cognate and separate system called
VisFlow (For a detailed discussion on VisFlow, we invite readers to consult the first edition

Appl. Sci. 2025, 15, 621

13 of 22

of VisFlow article in ACM TCBB. We note that the new and second edition of VisFlow
is currently under construction). While VisFlow has its own user base and maintains a
resource registry, SoDa shares its resource registry (wrapper bank: all stored data and their
Needle description) with VisFlow, and helps users construct workflow queries using the
full power of VisFlow. In the case of SoDa, simple workflows may involve a successive
set of BioFlow /SQL queries written using the QBuild application builder. Users build a
query, likely using multiple resources (SoDa treats each of the resources as a table or one
that returns a table) and save the results in a named view, then reusing the view in a later
query. All workflows in SoDa have a named script that can be retrieved from the left side
panel. In the event that VisFlow is used to construct a workflow, it can be stored in VisFlow,
but cannot be executed in SoDa. The query processor of SoDa can be viewed as a fusion of
the QBuild and VisFlow workflow systems, and together they form the SoDaPro system in
which VisFlow is accessed through QBuild. The Workflow option in Figure 7 can be used to
sequence named queries already built by dragging them from the left bar under the query
tab. Or, users can hop over to VisFlow system to use the SoDa resources to construct more
powerful workflows.

Since queries in SoDaPro potentially involve deep web databases, or online tools,
that are accessed at query time, the process may fail for various reasons. The reasons for
this include poor construction of the wrappers, failure of the schema matcher to resolve
heterogeneity, resource site evolution or modification, logical errors, or simply network
errors. All of the preceding causes are non-database operations that largely depend on
software or tool applications with non-deterministic behaviors. In the event that they
breakdown, debugging and fixing could be complicated simply because the clues could be
hidden inside many moving parts of the query execution apparatus. One less frustrating
way to fix such breakage or query errors is to seek help from more experienced or willing
users in the community using crowd computing, as discussed in Section 3.7.

3.6. Workflow Meta-Language

While the BioFlow query language discussed in Section 3.4.1 serves as the main vehicle
for query processing, its automatic construction requires additional engineering of meta-
information about the internet resources. This meta-information is generated by the ResCom
sub-system in Figure 1. It uses the FAIRBridge algorithm discussed in Section 3.4 to generate
two specific meta-information—process description and resource description expressed in a
language similar to Needle. We briefly illustrate the idea of how Needle helps generate
workflows in BioFlow below.

3.6.1. Process Descriptions

The process description of a resource captures how the resource functions behaviorally,
i.e., the structure of the table it returns, what it needs to compute a table, and how the
resource can be accessed. Typically, a workflow consists of a series of resources in which
information from one resource moves to the next, each computed using an extract statement
in BioFlow. To aid in the automatic construction of such a workflow node, we introduced
the create process statement along the lines of Needle’s create webtable statements as follows.

The create process statement below describes the functionalities of the browser-based
access to the DisGeNET database. It outlines how this database, when invoked, will return
a gene-disease association (GDA). The four required components are the process identifier,
the resource address and its features, and the input and output table schemes.

% process identifier
create process DisGeNETb
% access protocol

Appl. Sci. 2025, 15, 621

14 of 22

at https:/fwww.disgenet.org/
access browser
postfix /browser/1/1/0/$Genes

% input table scheme

accepts table (
Genes EntrezID) (

% output table scheme
DisGeNETKey EntrezID primary key,
Disease DislID,

Type string,
Disease_class string,
Score_gda decimal (4,2),

)

This statement helps to programmatically construct the endpoint (such as https://www.
disgenet.org/browser/1/1/0/29974/ (accessed on 1 December 2024) for a gene, e.g., A1CF,
using its Entrez ID 29974. We would like to note that the DisGeNET database recently
changed their access protocol and now this end-point must be constructed as https://
disgenet.com/search?view=GENES&idents=29974&source=ALL&tab=GDA (accessed on
1 December 2024)), which is needed to access the gene—disease association of a given gene
from the DisGeNET database. The $ sign in the postfix clause provides possible substitutions
in the accepts clause. On the other hand, the process description for API access by genes, is
constructed as follows in a similar but distinct way. Depending on the access type we wish
to adopt, an algorithmic construction of retrieval protocol is now possible from either of
these statements.

create process DisGeNETa
at https://www.disgenet.org/api/
access API
postfix /gda/gene/
authorization keyK
accepts table (

Genes EntrezID) (
DisGeNETKey EntrezID primary key,
Disease DisID,

Type string,
Disease_class string,
Score_gda decimal (4,2),

);

3.6.2. Resource Descriptions

In contrast to the process description, a resource description captures which compu-
tational tools are appropriate for a resource to function accurately, and how to determine
the reliability of the resource so that its candidacy as a trusted information source can be
reasoned. Thus, the intended usage of the resource description is to help automatically
find, assemble, and construct executable workflows that are semantically the most likely
implementation of a scientific inquiry. It does so by identifying the needed resources
and providing tools to seamlessly collect the required data and query them in a pipeline.
Recall that most of the resource descriptions in SoDa are contributed by a wide range
of community members, some with limited domain expertise or credibility as curators.

Appl. Sci. 2025, 15, 621

15 of 22

For example, FAIRBridge constructs the following resource description for the DisGeNET
site automatically from the corresponding process description.

% resource identifier
create resource DisGeNETD (
% resource narrative for machine consumption
narrative “This browser access accepts an Entrez
gene ID and returns its disease association”,
% process contributors
contributors { Alex, Abebi},
% applicable data integration tools
meta:
matcher {Cupid, OntoMatch},
wrapper {FastWrap},
mapping { Determination Process: Semantic Type/,
% process testers and validators
validators {Alex, Maya/,

)

Resource descriptions such as DisGeNETD provide higher level details of process descrip-
tions. Resource descriptions typically include operational guidance such as the types of
schema matchers and wrappers that work best for the resource or exceptions that must be
used for schema heterogeneities, e.g., the pair Determination Process: Semantic Type under
mapping is one such mapping. The meta entries listing validators can be used to determine

the credibility of the resource.

Using ResCom, we are now also able to generate process descriptions for the

MiKDB [31] database and MapBase ID mapping system as follows.

and

create process MIKDB
at http://mik.bicnirrh.ves.in/mip.php
access browser
postfix /mip.php/
accepts filter (
Phenotype String) (
Symbol GeneSymbol primary key,
ChrLoc string,
Disease string

)

create process MapBase
at https://www.mapbase.smartdblab.org
access browser (
Symbol GeneSymbol primary key,
GenelD string

)

3.6.3. Automated Workflow Construction

To compute the following interesting query

Q: Find all genes implicated in obesity related male infertility using the gene list in the
table crrews.

Using a set of genes (gene symbols) in a table called crrews (with scheme crrews(Symbol))
and the MiKDB [31] and DisGeNET databases, we proceed as follows. We first collect a

Appl. Sci. 2025, 15, 621

16 of 22

set of genes (gene symbols) from MiKDB database for a specific phenotype (e.g., terato-
zoospermia). We then submit those genes (Entrez IDs) to the DisGeNET database to find
the genes in the set that are also associated with obesity. The technical issue is that MiKDB
returns the gene list in the form of gene symbols, and DisGeNET requires the gene list in
the form of Entrez GenelDs, necessitating an ID conversion step, which we carry out using
MapBase. The entire workflow query generated by SoDa is as follows:

select Disease, Type, N_genes, Score_gda, EL_gda, N_PMIDs, First_Ref
from (extract Type, N_genes, Score_gda, EL_gda, N_PMIDs, First_Ref
using matcher S-match wrapper Web-Prospector
from https:/fwww.disgenet.org/browser/1/1/0/
submit (extract GenelD
using matcher S-match wrapper Web-Prospector
from https://www.mapbase.smartdblab.org
submit (with mikgenes as (extract Symbol, Phenotyoe
using matcher S-match wrapper Web-Prospector
from http://mik.bicnirrh.res.in/mip.php
)
select crrews.Symbol
from crrews natural join mikgenes
where Phenotype = “teratozoospermia”

)

)
where Disease = ‘obesity” and Score_gda > 0.01;

The execution of this query in SoDa will return the partial table shown in Figure 10. In the
above statement, S-Match [32] is a schema matcher, and Web-Prospector [33] is a wrapper.
An interesting observation is that SQL’s select statements and BioFlow’s extract statements
both uniformly accept each other where a table is expected, and thus allows nesting, as in
this query. In the event that the query needs to be broken down into smaller queries and
then strung together, SQL’s create view construct can be used in the usual way.

Disease

Type

N_genes Score_gda EL_gda N_PMIDs First_Ref

Figure 10. Results of query Q.

3.7. Crowd-Enabled Curation of Workflows When Pipelines Break

Platforms such as StackOverflow (https://stackoverflow.com/ (accessed on 1 De-
cember 2024)) or GitHub (https://github.com/ (accessed on 1 December 2024)) aid de-
velopers with code development projects. LLM-based systems, such as CoPilot (https:
/ /copilot.microsoft.com/ (accessed on 1 December 2024)) and Amazon Q (https://aws.
amazon.com/q/ (accessed on 1 December 2024)), are offering a more intelligent and faster
alternative to the traditional code development and debugging practices. Unfortunately,
when the applications, languages, and knowledge needed to code and debug are not in the
mainstream, such as BioFlow or Needle, such platforms need to be trained with enough
data to be useful. In particular, even a trained LLM will likely need access actual resources
to be able to offer debugging or even coding assistance [34,35].

Appl. Sci. 2025, 15, 621

17 of 22

SoDa’s crowd curation system, called QCurator, takes a more active support approach
for error tracing and bug fixing using a crowd computing approach. SoDa users have
the option to push a code segment or query to a community discussion board for help.
The discussion board has a special notification system that alerts relevant users of an
available help request as a ticket. Users may sign up as a participant crowd in the research
area or topic of choice. They are able to participate in the discussion by fixing problems and
errors, executing code fragments to see if they work, or opting out, and until they explicitly
exit the ticket, it stays active in their notification queue. The ticket is resolved until the
user who initiated the ticket exits from it, or all active participants do so. Note that the
ticket is also available for all members of the community in the general discussion board.
However, the general discussion board notification goes off only when the initiating user
exits the ticket. Finally, the discussion with and solutions of special users are also visible in
the general discussion board.

The look and feel of the QCurator discussion board is not much different than the
Stack Overflow or GitHub discussion boards, but the difference is more critical when it
comes to the notification and debugging approaches. Notifications are owned by the users
to whom they are specifically sent, and the notification to the general discussion board is
owned by the ticket-initiating user. Therefore, unless all of the owners exit the ticket, it
stays active in each of the owners’ dashboards. Finally, every user in the community has
access to the discussion board and is able to debug, modify, and execute the code fragments
on the forum directly from their dashboards.

4. Discussion

Technological limitations play a significant role in the design and functioning of SoDa.
Though possible in principle, SoDa’s objective of maintaining a no-coding environment
makes it difficult to fully achieve some of its goals. We highlight two major issues for which
SoDa has limited capability to address.

4.1. Complex Wrapper Generation

All internet resource access in SoDa requires an appropriate wrapper from its wrapper
bank. As discussed in Section 3.3, SoDa supports the wrapper generation tool, CroW. While
complex and innovative wrappers can be constructed using it, CroW currently cannot
design wrappers for multi-page forms for a database that uses JavaScript for form design.
For example, the online differential expression analyzer DEApp (https://yanli.shinyapps.
io/DEApp/ (accessed on 1 December 2024)) [36] could be an excellent alternative to
expression analyzers, DESeq2, edgeR, and Limma, available in libraries such as Python or R
However, these libraries are difficult to use in a no-coding environment; even though they
are self-contained, relatively easy to identify and codify, or written by CoPilot-type coding
systems, they still need significant programming experience to incorporate in procedures
that can be run on a system, such as SoDa.

The differential expression analysis in DEApp progresses in four steps—data input
(Figure 11a); low-expression removal (Figure 11b); DE analysis using libraries such as
DESeq2, edgeR, and Limma (Figure 12a); and finally DE analysis comparison (Figure 12b).
Though a multi-step process and somewhat complex, source complication is not how this
functions; it is how the interface is designed. In Figure 11b, the URL address at the top
shows that it did not change from Figure 11a, because it was designed using JavaScript,
which internally changes the form submission parameters that it collects from the user.
Though CroW is able to design multi-page hopping wrappers, it can only do so when the
forms are designed using traditional AJAX/JavaScript free technologies. Thus, for now,

Appl. Sci. 2025, 15, 621

18 of 22

SoDa only supports the inclusion of resources that are either one hop, multi-page-designed
with AJAX or JavaScript free technologies, or are API-based.

4.2. Complex Query Construction

The application design system discussed in Section 3.4 can be used to design fairly
complex BioFlow extract and SQL select queries. The extract statements are regarded as
resource access statements, and thus are not true querying instruments. Once the resources
are accessed and data extracted using extract, they can be queried with the full power of
SQL’s select constructs. Typical SQL queries involve sub- and correlated queries, as well
as aggregate functions. While designing query builder GUIs for SQL’s aggregate functions
is not too difficult, seamlessly incorporating all these features into the query builder is
difficult, especially when the users are assumed “naive” and have no true experience in
direct complex SQL query writing.

<« G @ % vyanlishinyapps.io/DEAPD/ x L@
% Bookmarks CCs2012 M vandalWeb (P TinyURL & Overleaf [EJ PDF Merge 4§k SWISH Mp3 Songs Slate sl Relational algebra... @ DeeplR &| VisFlow @ ReliQ [Documents » 3 All Bookmarks

Data input (single-factor) p

Input data: Single-factor Experiment =
Input 1: Raw Count Data Input 2: Meta-data Table

Upload your ‘Raw Count Data' here, if no file is selected, the demo file for single-factor experiment Upload your ‘Meta-data Table' here, if no file is selected, the corresponding demo file for single-
will be used and displayed. factor experiment will be used and displayed.
B8 Data Summarization
Browse... | Nofile selected Browse.. | Nofile selected
18 DE analysis
Separator Separator
O comma O comma
O Semicolon O Ssemicolon
® Tab @ Tab
‘The demo file of 'Raw Count Data for the single-factor experiment is available here The corresponding 'Meta-data Table' of the demo file for the single factor experiment is accessible
here

' SUBMIT -

Input Information Summary

There are 7 samples in the experiment: This is a single-factor experiment with factor - 'Treatment, the levels of this
factor are:
Con1, Con2, Con3, Cond, DHTI, DHT2, DHT3
Control, DHT

(a) Data input step.

< C @ % yanlishinyapps.io/DEAPP/ f O L @
* Bookmarks [J CCS2012 B¥ VandalWeb @ TinyURL & Overleat [PDFMerge 4% swisH [l Mp3 Songs [Slate gy Relational algebra... @ DeeplR [& VisFlow @ Relia [Documents » | [J AllBookmarks

& Introduction

B Data Input

Filtering processing 100%
Low Expression Removal =
R? t Summary Low Expression After Low Expression Removal
Removal Options

Library | Normalization Number Library | Normalization Number
sizes factors sizes factors
& ST Samples 7 be Samples 4
Conl | 9.79e+05 104 removed with conl | ©.78e+05 104
Tags 37435 . Tags 17633
CPMvalue atleastin
[DE analysi Con2 | 1.16e+06 104 e, Con2 | 116e+06 104
Con3 | 144e+06 103 * Samples Con3 | 144e406 103
i Method
Cond | 149e+06 102 2 Cond | 1486406 103
W Feedback DHTL | 182e+06 0.94 —— DHTL | 182e406 0.95
DHT2 | 183e+06 094 DHT2 | 183¢+06 095
DHT3 | 6.82e+05 100 DHT3 | 68let05 0.6

Sample Normalization Results Sample MDS Exploration
Normalized sample distribution MDS plot
ER Ll
T -
° | | 1 | ! ' 1 Lo
| ! | | 1 ' 1 o
s | | I i ' | 2
o 1 ! ! ! = 2 1Con
5 —_ = S ((%hn%l

(b) Filtering step.

Figure 11. Part 1: Stepwise differential expression analysis using DEApp: (a) shows the data input
step of the online differential gene expression analysis tool DEApp [36]. Once the input data and
their format are chosen, a filtering operation can be carried out at step 2, as shown in (b).

Appl. Sci. 2025, 15, 621

19 of 22

edgeR DE Analysis Options =

DE Analysis Group Levels DE Analysis Filtering Criteria
X DE Analysis is based on p-value or FDR adjusted p-value Fold Change (FC)
The available group levels are: Control, DHT.
O Nominal p-value 0.05 15

Please select any 2 levels from the above available group

" @ FDR adjusted p-value
levels for DE analysis.

Level 1 Level2

Control DHT
SUBMIT
Estimated BCV Summary DE Analysis Results DE Results Summary

Esitmated biological coefficient Show entries search: DHT-Control DE analysis
A
Esitmated tagwise dispersion can be Tag/Gene Name log2FC P FOR Number
summarized as below:
ENSG00000151503 5.819 0 0 down-regulated DEG 2015
Tagwise | Min. 0.000 F— o
- ENSG00000096060 5.007 0 0 on
Tagwise | 1stQu. | 0.016
up-regulated DEG 2041
Tagwise | Median | 0.033 ENSG00000166451 4687 2.43977679650353¢-278 1.43401947509156e-274
Tagwise | Mean | 0.103 ENSG00000127954 8.124 8.7663234932643¢-235 3.86441455391823¢-231 & Download
Tagwise | 3rdQu. | 0.0%9 ENSG00000162772 332 1.52285742483695¢-227 5.37050899443¢-224
Tagwise | Max. 2434

(a) DE analysis step.

Comparison analysis processing 100%
DE Analysis Comparison Options =

Methods for Comparison DE Analysis Group Levels DE Analysis Filtering Criteria

DE analysis method selection DE Analysis is Nominal p-value or FDR adjustedp- Fold Change (FC)
- The available group levels are: Control, basedion value

€ edgeR DHT 15
limma-voom O Nominal p-value .

Please select any 2 levels from the above

@ FDR adjusted p-
0 DESeq2 available group levels for DE analysis.
value
Group 1 Group 2
Control DHT

SUBMIT
Comparison Summary Comparison Venn-Diagram

Below results are based on the FDR-adjusted p with filtering level of FDR-adjusted p = 0.05 and FC =

No. identified DEGs

edgeR voom

limma-voom 3382
edgeR & limma-voom 3137
919 245
77.34% identified DEGs with edgeR were identified by both edgeR and limma-
92.76% identified DEGs with limma-voom were identified by both edgeR and 1

(b) Inter-analysis comparison step.

edgeR 4056

Figure 12. Part 2: Stepwise differential expression analysis using DEApp: DEApp allows computing
differential gene expression analysis using multiple algorithms and different filter conditions that
users are able to select using the interface in (a). Finally, a comparison of the expression analysis
using multiple methods can be compared, as shown in (b). The important observation is that all of
these four steps within DEApp are in sequence and have to be followed in succession, creating a
dependence or order.

Designing no-coding SQL interfaces has a long and rich research history [37,38]. While
there are numerous SQL query builders, both academic and commercial, most assume that
users are familiar with complex SQL syntax and semantics and aim to aid and expedite
query building. In particular, they are difficult to use when the query interleaves aggregate
functions and correlated subqueries to a too deep level [39]. Designing a query builder for
the general public, or biologists, for arbitrary database and intended arbitrary query has its
challenges. The recent emergence of LLM-based Text2SQL efforts [40] probably performs
better than most no-coding interfaces. Our interface too has limitations, but we are currently
exploring how to enhance our interface with LLM-powered SQL query generation by fine
tuning an LLM to BioFlow and Needle.

Appl. Sci. 2025, 15, 621

20 of 22

References

5. Conclusions

The main objective of SoDa is to support biologists in gathering data from online
resources in a searchable repository so that other biologists can also readily use these data.
The search for resources is truly flexible using text analysis of resource needs. As opposed
to fully automatic ProAb, SoDa is manual with a human-in-the-loop principle, and offers
relatively much lower failure possibilities. The downside is that users must know exactly
what they want to compute but not necessarily how to do it. SoDa supports a declarative
way of computing internet workflow queries involving heterogeneous resources. The cur-
rent edition of SoDa is experimental and does not support user data archiving for guest
users. Future editions of SoDa will support user accounts and allow data archival options
along with advanced query building options, likely using LLMs. Finally, as discussed in a
related article on DeeplR [41], the wrapper generation and their usage in data scraping has
its downsides. Not all deep web sites allow scraping, and designing wrappers to scrape
data is not efficient, even when building wrappers is not too difficult. However, these
problems are not an issue when deep web databases support data access through APIs,
which SoDa supports.

6. Software Availability

The first edition of SoDa is available for public use at http://dblab.nkn.uidaho.edu/soda/
(accessed on 1 December 2024). Also, a preliminary version of this article appeared in iiWAS
2024 proceedings [42]. While parts of the system are still under development, and are in flux,
the basic functions are active. The link with the sister workflow construction system, VisFlow,
and the wrapper generation system, Crow, are under construction and will be made available
soon. The authors also wish to acknowledge the contributions of Syed N Sakib, who helped to
develop the resource identification component ResCom (see Figures 1 and 2) and the crowd
curation system QCurator, as discussed in Sections 3.3 and 3.7, respectively.

Author Contributions: Conceptualization, H.M.].; Methodology, HM.].; Software, K.N.; Formal
analysis, H.M.].; Investigation, H.M.].; Writing—original draft, H.M.].; Writing—review & editing,
K.N.; Supervision, HM.].; Funding acquisition, H.M.]. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported in part by a National Institutes of Health IDeA grant
P20GM103408, a National Science Foundation CSSI grant OAC 2410668, and a US Department
of Energy grant DE-0011014.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interests.

1. Liu, J.; Lin, L,; Cai, Z.; Wang,]J.; Kim, H. Deep web data extraction based on visual information processing. |. Ambient Intell.
Humaniz. Comput. 2024, 15, 1481-1491. [CrossRef]

2. Liu, D.; Ma, L,; Liu, X. Research on Adaptive Wrapper in Deep Web Data Extraction. In Proceedings of the IOV 2015, Chengdu,
China, 19-21 December 2015; Volume 9502, pp. 409-423.

3. Bilthoff, F; Maleshkova, M. RESTful or RESTless—Current State of Today’s Top Web APIs. In Proceedings of the ESWC 2014,
Anissaras, Crete, Greece, 25-29 May 2014; Volume 8798, pp. 64-74.

4. Rodrigues, T.; Benevenuto, F.; Cha, M.; Gummadi, PK.; Almeida, V.A.F. On word-of-mouth based discovery of the web. In
Proceedings of the ACM SIGCOMM IMC 11, Berlin, Germany, 2 November 2011; pp. 381-396.

Appl. Sci. 2025, 15, 621 21 of 22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Li, Y.; Wang, Y.; Tian, E. A New Architecture of an Intelligent Agent-Based Crawler for Domain-Specific Deep Web Databases. In
Proceedings of the WI 2012, Macau, China, 4-7 December 2012; pp. 656—663.

Burks, C. Molecular Biology Database List. Nucleic Acids Res. 1999, 27, 1-9. [CrossRef]

Bader, G.D.; Cary, M.P; Sander, C. Pathguide: A Pathway Resource List. Nucleic Acids Res. 2006, 34, 504-506. [CrossRef] [PubMed]
Wilkinson, M.D.; Dumontier, M.; Aalbersberg, L].; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten,].W.; da Silva Santos,
L.B.; Bourne, PE.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 1-9.
[CrossRef] [PubMed]

Pattyn, F.; Wulbrecht, B.; Knecht, K.; Constandt, H. Assessment of FAIRness of Open Data Sources in Life Sciences. In Proceedings
of the (SWAT4LS 2017), Rome, Italy, 4-7 December 2017; Volume 2042.

Gaignard, A.; Rosnet, T.; De Lamotte, F,; Lefort, V.; Devignes, M.D. FAIR-Checker: Supporting digital resource findability and
reuse with Knowledge Graphs and Semantic Web standards. J. Biomed. Semant. 2023, 14, 16-20. [CrossRef]

Soiland-Reyes, S.; Goble, C.; Groth, P. Evaluating FAIR Digital Object and Linked Data as distributed object systems. Peer]
Comput. Sci. 2024, 10, €1781. [CrossRef] [PubMed]

Wandl-Vogt, E.; Ostojic, D.; Piringer, B.; Rainer, H.; Zsaytseva, K. Designing Collaborative Ecosystems and community
organization: Introducing the multidisciplinary portal on “Biodiversity and Linguistic Diversity: A Collaborative Knowledge
Discovery Environment”. In Proceedings of the DH 2017, Montréal, QC, Canada, 8-11 August 2017.

Antonazzo, G.; Urbano, J.; Marygold, S.J.; Millburn, G.H.; Brown, N.H. Building a pipeline to solicit expert knowledge from the
community to aid gene summary curation. Database |. Biol. Databases Curation 2020, 2020, baz152. [CrossRef] [PubMed]
Gendarmi, D.; Abbattista, F; Lanubile, F. Fostering Knowledge Evolution through Community-based Participation. In
Proceedings of the (CKC 2007)@(WWW2007), Banff, AB, Canada, 8 May 2007; Volume 273.

Dalvi, N.N.; Kumar, R.; Soliman, M.A. Automatic Wrappers for Large Scale Web Extraction. Proc. VLDB Endow. 2011, 4, 219-230.
[CrossRef]

Madhavan, J.; Bernstein, PA.; Rahm, E. Generic Schema Matching with Cupid. In Proceedings of the VLDB 2001, 27th
International Conference on Very Large Data Bases, Rome, Italy, 11-14 September 2001; pp. 49-58.

Jalili, V.; Afgan, E.; Gu, Q.; Clements, D.; Blankenberg, D.J.; Goecks, J.; Taylor, J.; Nekrutenko, A. The Galaxy platform for
accessible, reproducible and collaborative biomedical analyses: 2020 update. Nucleic Acids Res. 2020, 48, W395-W402. [CrossRef]
[PubMed]

Damkliang, K.; Tandayya, P. Middleware for running and debugging Taverna workflows utilising RESTful web services. Int.].
Simul. Process. Model. 2020, 15, 546-561. [CrossRef]

Altintas, L; Berkley, C.; Jaeger, E.; Jones, M.B.; Ludascher, B.; Mock, S. Kepler: An Extensible System for Design and Execution of
Scientific Workflows. In Proceedings of the 16th International Conference on Scientific and Statistical Database Management
(SSDBM 2004), Santorini Island, Greece, 21-23 June 2004; pp. 423—-424. [CrossRef]

Pinero, J.; Ramirez-Anguita,]. M.; Sauch-Pitarch, J.; Ronzano, F,; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge
platform for disease genomics: 2019 update. Nucleic Acids Res. 2019, 48, D845-D855. [CrossRef]

Bogatu, A.; Paton, N.W.; Douthwaite, M.; Freitas, A. Voyager: Data Discovery and Integration for Onboarding in Data Science. In
Proceedings of the EDBT 2022, Edinburgh, UK, 29 March-1 April 2022; pp. 2:537-2:548.

Diepenbroek, M. The Application of Semantic Resources and Technologies for the Discovery and Integration of Geo- and
Biosciences Data (invited paper). In Proceedings of the The Bolzano Summer of Knowledge @ FOIS 2021, and ICBO 2021, Bolzano,
Italy, 11-18 September 2021; Volume 2969.

Ouzzani, M.; Tang, N.; Fernandez, R.C. Data civilizer: End-to-end support for data discovery, integration, and cleaning. In
Making Databases Work: the Pragmatic Wisdom of Michael Stonebraker; Brodie, M.L., Ed.; Morgan & Claypool: San Rafael, CA, USA,
2019; Volume 22, pp. 291-300.

Pang, C.; Kelpin, FED.L.; van Enckevort, D.; Eklund, N.; Silander, K.; Hendriksen, D.; de Haan, M.; Jetten, J.; de Boer, T.; Charbon,
B.; et al. BiobankUniverse: Automatic matchmaking between datasets for biobank data discovery and integration. Bioinformatics
2017, 33, 3627-3634. [CrossRef]

Majeed, R.W.; Stohr, M.R.; Ruppert, C.; Gunther, A. Data Discovery for Integration of Heterogeneous Medical Datasets in the
German Center for Lung Research (DZL). In Proceedings of the (GMDS e.V.) 2018, Osnabruck, Germany, 2-6 September 2018;
Volume 253, pp. 65-69.

Burl, R.B.; Clough, S.; Sendler, E.; Estill, M.; Krawetz, S.A. Sperm RNA elements as markers of health. Syst. Biol. Reprod. Med.
2018, 64, 25-38. [CrossRef]

Clough, E.; Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, L.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.;
Sherman, PM.; et al. NCBI GEO: Archive for gene expression and epigenomics data sets: 23-year update. Nucleic Acids Res. 2023,
52, D138-D144. [CrossRef] [PubMed]

Katz, K.; Shutov, O.; Lapoint, R.; Kimelman, M.; Brister,].R.; O’Sullivan, C. The Sequence Read Archive: A decade more of
explosive growth. Nucleic Acids Res. 2021, 50, D387-D390. [CrossRef] [PubMed]

Appl. Sci. 2025, 15, 621 22 of 22

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

Jamil, H.; Naha, K. Mapping Strategies for Declarative Queries over Online Heterogeneous Biological Databases for Intelligent
Responses. In Proceedings of the SAC 2023, Tallinn, Estonia, 27-31 March 2023.

Yen, M.Y.; Scamell, R.W. A Human Factors Experimental Comparison of SQL and QBE. IEEE Trans. Softw. Eng. 1993, 19, 390-409.
[CrossRef]

Joseph, S.; Mahale, S.D. Male Infertility Knowledgebase: Decoding the genetic and disease landscape. Database 2021, 2021,
baab049. [CrossRef]

Giunchiglia, F.; Autayeu, A.; Pane, J. S-Match: An open source framework for matching lightweight ontologies. Semant. Web
2012, 3, 307-317. [CrossRef]

Mir, S.; Staab, S.; Rojas, I. Web-Prospector—An Automatic, Site-Wide Wrapper Induction Approach for Scientific Deep-Web
Databases. In BTW; Gesellschaft fiir Informatik e.V.: Bonn, Germay, 2009; pp. 87-106.

Sakib, F.A.; Khan, S.H.; Karim, A.H.M.R. Extending the Frontier of ChatGPT: Code Generation and Debugging. CoRR 2023,
abs/2307.08260. [CrossRef]

Saben, C.; Chandrasekar, P. Enabling BLV Developers with LLM-driven Code Debugging. CoRR 2024, abs/2401.16654.

Li, Y;; Andrade,]. DEApp: An interactive web interface for differential expression analysis of next generation sequence data.
Source Code Biol. Med. 2017, 12, 2. [CrossRef] [PubMed]

Miedema, D.; Fletcher, G. SQLVis: Visual Query Representations for Supporting SQL Learners. In Proceedings of the IEEE
VL/HCC 2021, St. Louis, MO, USA, 10-13 October 2021; pp. 1-9.

Murakawa, T.; Nakagawa, M. Graphical Expression of SQL Statements Using Clamshell Diagram. IEICE Trans. Inf. Syst. 2010,
93-D, 713-720. [CrossRef]

Taipalus, T. The effects of database complexity on SQL query formulation. J. Syst. Softw. 2020, 165, 110576. [CrossRef]

Li, J.; Hui, B,; Qu, G;; Yang, J.; Li, B.; Li, B.; Wang, B.; Qin, B.; Geng, R.; Huo, N,; et al. Can LLM Already Serve as A Database
Interface? A Blg Bench for Large-Scale Database Grounded Text-to-SQLs. In Proceedings of the NeurIPS 2023, New Orleans, LA,
USA, 10-16 December 2023.

Naha, K.; Jamil, H. A Declarative Query Language Enabled Autonomous Deep Web Search Engine. In Proceedings of the 39th
ACM/SIGAPP Symposium on Applied Computing, SAC 2024, Avila, Spain, 8-12 April 2024; pp. 305-312.

Jamil, H.M. Supporting Data Foragers in Scientific Computing Community Ecosystems for Life Sciences. In Proceedings of the
Information Integration and Web Intelligence—26th International Conference, iiWAS 2024, Bratislava, Slovakia, 2—4 December
2024; Proceedings, Part II; Volume 15343, pp. 118-123. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Research
	SoDa Architecture
	Scientific Inquiry
	Resource Recommendation
	Accessing Resources
	Application Design
	SoDa Query Language
	Query Builder Interface

	Workflow Query Construction
	Workflow Meta-Language
	Process Descriptions
	Resource Descriptions
	Automated Workflow Construction

	Crowd-Enabled Curation of Workflows When Pipelines Break

	Discussion
	Complex Wrapper Generation
	Complex Query Construction

	Conclusions
	Software Availability
	References

