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Abstract

We give the first tight sample complexity bounds for shadow tomography and classical shadows in
the regime where the target error is below some sufficiently small inverse polynomial in the dimension
of the Hilbert space. Formally we give a protocol that, given any𝑚 ∈ ℕ and 𝜀 ≤ 𝑂 (𝑑−12), measures
𝑂 (log(𝑚)/𝜀2) copies of an unknown mixed state 𝜌 ∈ ℂ𝑑×𝑑 and outputs a classical description of 𝜌
which can then be used to estimate any collection of𝑚 observables to within additive accuracy 𝜀.
Previously, even for the simpler task of shadow tomography – where the𝑚 observables are known
in advance – the best known rates either scaled benignly but suboptimally in all of𝑚,𝑑, 𝜀 [3, 31],
or scaled optimally in 𝜀,𝑚 but had additional polynomial factors in 𝑑 for general observables [19].
Intriguingly, we also show via dimensionality reduction, that we can rescale 𝜀 and 𝑑 to reduce to
the regime where 𝜀 ≤ 𝑂 (𝑑−1/2). Our algorithm draws upon representation-theoretic tools recently
developed in the context of full state tomography [11].
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1 Introduction

In this paper, we consider the well-studied and related problems of shadow tomography [1, 2, 3, 31]
and learning classical shadows [19, 18, 14]. In both problems, there is an unknown quantum state, and
the goal is to simultaneously estimate as many linear properties of this state as possible, using as few
copies of 𝜌 as possible. Such problems come up naturally in a variety of real-world laboratory settings,
see e.g. [28, 5, 4, 24, 21]. The power of these frameworks is that these shadow estimation tasks can
be performed efficiently. That is, to simultaneously predict𝑚 properties of the state, one only requires
poly(log𝑚) many copies of the state, and poly(log𝑚) time. Indeed, algorithms for classical shadows
have already shown immense potential in real-world evaluations [33, 30, 23].

Formally, we let 𝜌 ∈ ℂ𝑑×𝑑 be an arbitrary and unknown 𝑑-dimensional mixed state. In shadow
tomography, we are given a set of𝑚 linear observables {𝑂𝑖}𝑚𝑖=1 ⊂ ℂ𝑑×𝑑 satisfying 0 ⪯ 𝑂𝑖 ⪯ 𝐼 , and given
𝑛 copies of 𝜌, our goal is to estimate tr(𝑂𝑖𝜌) to accuracy 𝜀, for all 𝑖 = 1, . . . ,𝑚, with high probability.

In classical shadows, the setup is the same, except that the measurements must be chosen obliviously
with respect to the collection of observables {𝑂𝑖}𝑚𝑖=1. An algorithm for learning classical shadows can be
broken down into two phases. First, in the measurement phase, the algorithm performs measurements
on 𝑛 copies of 𝜌, to obtain a classical representation of 𝜌, which is referred to the classical shadow
of 𝜌. Then, in the estimation phase, the algorithm is given𝑚 observables {𝑂𝑖}𝑚𝑖=1, and it must output
estimates of tr(𝑂𝑖𝜌) to accuracy 𝜀 for all 𝑖 = 1, . . . ,𝑚, based solely on the observables and the classical
shadow of 𝜌.

Despite significant research interest in the area, prior to our work, the exact complexity of these tasks
for general 𝜌 and {𝑂𝑖}𝑚𝑖=1 was unknown, for any nontrivial regime of𝑚,𝑑, 𝜀. For shadow tomography,
the best known rate is due to [3, 31], who give an algorithm that uses

𝑛 = 𝑂

(
log2(𝑚) · log(𝑑)

𝜀4

)
copies of 𝜌, whereas the best known lower bound is the “trivial” bound of 𝑛 = Ω( log𝑚

𝜀2
) from the classical

setting. For classical shadows, the best known rate is due to [19], who give an algorithm that (for general
observables) requires 𝑛 = 𝑂 (𝑑 log𝑚

𝜀2
) copies of 𝜌. The best lower bound for classical shadows is due

to [14], who obtain a lower bound of

𝑛 = Ω
((√𝑑

𝜀
+ 1
𝜀2

)
log𝑚

)
,

which holds even when 𝜌 is pure. The lack of tight rates for these problems is in stark contrast to other
quantum learning settings such as full state tomography [26, 16, 10], state certification [25, 9], and
Pauli channel estimation [6, 7], where asymptotically tight sample complexities are known.

In this work, we initiate the study of these problems in what we call the high-accuracy regime, that is,
when 𝜀 = 𝑂 (𝑑−𝑐) for some 𝑐 sufficiently large. This is in contrast to much prior theoretical work on these
problems, which primarily focused on the “low-accuracy” regime where𝑚 and 𝑑 are large compared
to 𝜀−1. Our primary interest in this setting is two-fold. First, from a practical point of view, this is an
important setting: in practice, it is very often the case that we wish to obtain detailed information about
relatively small quantum systems [33, 30, 17]. Second, from a mathematical point of view, we find that
these problems exhibit new and very interesting properties within this regime.

Indeed, informally stated, our main algorithmic result (see Theorem 2.1) is a new, statistically optimal
estimator in this regime for both classical shadows and shadow tomography for general observables.
To our knowledge, this is the first time that tight rates have been established for these problems, in
any nontrivial regime of𝑚,𝑑, 𝜀. Qualitatively speaking, our results uncover the following, previously
unknown phenomena for these problems in the high-accuracy regime:
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• Shadow estimation no harder than classical counterpart. In the high-accuracy regime, we show
that the rate for shadow estimation matches the corresponding “trivial” lower bound in the classical
case, where the observables are diagonal matrices. To our knowledge, this is the first time where
tight rates have been demonstrated for either problem, and also the only known regime where the
quantum and classical rates match for general observables.

• Oblivious protocols can match adaptive ones. We show that in this regime, shadow tomography
and classical shadows are statistically equivalent. In other words, there is no statistical advantage for
the measurements to be chosen adaptively based on the set of linear observables of interest. This is
perhaps surprising, as all previously known statistically efficient algorithms for shadow tomography
crucially required measurements to be chosen based on the set of linear observables of interest.

• Representation theory for shadow estimation. From a technical point of view, one interesting
aspect of our work is that it deviates heavily from previous techniques on shadow estimation, and
instead builds upon representation theoretic techniques previously used for full state tomography [11].
This adds to a growing literature on the power of such representation theoretic tools for shadow
estimation [14, 13]; however, we emphasize that beyond this similarity, our techniques are quite
distinct from these works.

Finally, we also demonstrate a formal reduction to the “medium-accuracy” regime (see Lemma E.7).
That is, we show that without loss of generality, for the task of classical shadow estimation, one may
assume that 𝜀 ≤ 𝑂 (𝑑−1/2). This reduction works by demonstrating that by leveraging classical ideas
from dimensionality reduction [20], one can linearly trade off 𝑑 and 𝜀 in the sample complexity, as long
as 𝜀 ≥ 𝑂 (𝑑−1/2). While this still leaves a gap in the parameter landscape where we do not know the
correct rates, as our analysis currently requires 𝜀 ≤ 𝑂 (𝑑−12), at the very least this demonstrates that all
of the interesting action for this problem is in the setting where 𝜀 and 𝑑−1 are polynomially related. In
fact, we conjecture that the correct rate for classical shadows is

Θ

((
𝑑

𝜀
+ 1
𝜀2

)
· log𝑚

)
, (1)

as we conjecture that (1) the reduction holds up to the threshold of 𝜀 ≥ Ω(𝑑−1), and (2) our rate of
𝑂 (log𝑚/𝜀2) holds as long as 𝜀 ≤ 𝑂 (𝑑−1). However, it seems that improving the thresholds on both
fronts requires additional ideas, and we leave establishing this rate as interesting future work.

2 Our contributions

In this work, we give new algorithms for shadow tomography and for learning classical shadows. We
demonstrate that these algorithms obtain optimal sample complexities for both problems in the high-
accuracy regime. In fact, our rates match the “trivial” lower bounds for these problems, demonstrating
that in this regime, the quantum task is no harder than the classical one. To our knowledge, this is the
first time where tight rates have been demonstrated for either problem.

Perhaps surprisingly, we do this by giving a new algorithm for learning classical shadows which
matches the lower bound for the ostensibly easier task of shadow tomography. That is, we show that
in the high-accuracy regime, learning classical shadows is no harder than shadow tomography. More
formally, we show:
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Figure 1: Overview of our shadow estimation algorithm

Theorem 2.1. Let𝑚,𝑑 ∈ ℤ be fixed, and let 𝜀 = 𝑂 (𝑑−12). Then, there is an estimator which takes 𝑛 copies
of an unknown mixed state 𝜌 ∈ ℂ𝑑×𝑑 , where

𝑛 = 𝑂

(
log𝑚
𝜀2

)
,

and outputs a classical function 𝐹 : ℂ𝑑×𝑑 → [0, 1] so that for any fixed collection of𝑚 observables {𝑂𝑖}𝑚𝑖=1,
the function satisfies |𝐹 (𝑂𝑖) − tr(𝑂𝑖𝜌) | ≤ 𝜀 for all 𝑖 = 1, . . . ,𝑚 with high probability.

We pause here to make a couple of remarks on this result. First, as alluded to above, this clearly also
implies the same upper bound for shadow tomography, and moreover, this rate is tight, as it matches the
lower bound for shadow tomography (and estimating statistical queries).

Second, our rate is dimension independent. This is in contrast to prior rates for learning classical
shadows, and indeed, even the lower bound [14]. Note that our result does not violate this lower bound
because the dimension-dependent term vanishes in the high-accuracy regime, and indeed our result
suggests that for classical shadows the optimal dependence on 𝑑 ought to be a lower order term in 𝜀−1.

Thirdly, we obtain the optimal quadratic scaling in 1/𝜀, whereas the aforementioned upper bounds for
shadow tomography scale with 1/𝜀4. A recent work [8] shows that with polylog(𝑑)-copy measurements,
Ω(1/𝜀4) copies are necessary even in the special case when the observables are Pauli operators. We
show that if the number of copies that can be measured at once scales polynomially in the dimension,
then this lower bound no longer applies.

A reduction to the medium-accuracy regime As mentioned preivously, we also demonstrate the
following reduction to the medium-accuracy regime:
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Theorem 2.2 (informal, see Theorem E.7). Suppose that for all 𝑘, 𝜀′ satisfying 𝜀′ ≤ 𝑘−1/2, there is an
algorithm that solves classical shadows for 𝑘-dimensional states to error 𝜀′ (and constant failure probability)
with 𝑓 (𝑘, 𝜀′) copies. Let 𝑑, 𝜀 satisfy 𝜀 ≥ 100/

√
𝑑. Then, there is an algorithm that solves classical shadows

for 𝑑-dimensional states to error 𝜀 (and constant failure probability) that uses 𝑓 (100
√
𝑑/𝜀, 1/

√
𝑑) copies.

Here, we briefly pause to show how this translates to a reduction to the medium-accuracy regime.
The theorem states that to solve classical shadows to error 𝜀 for 𝑑 dimensional states, it suffices to
obtain an estimator for classical shadows in 𝑘 = 100

√
𝑑/𝜀 dimensions to error 𝜀′ = 1/

√
𝑑. Notice that

by the choice of parameters, we have that 𝑘 ≤ 𝑑, and thus consequently 𝜀′ ≤ 𝑑−1/2 ≤ 𝑘−1/2, so this
new problem is indeed in the medium-accuracy regime. In fact, in Section E we show a more general
reduction which allows us to linearly trade off 𝑑 and 𝜀.

Moreover, this reduction indeed recovers a linear tradeoff between 𝜀 and 𝑑 that we believe is optimal.
For instance, if we believe the conjectured rate (1) holds for all 𝜀 ≤ 𝑑−1/2 then a straightforward
computation demonstrates that this reduction yields the same rate holds for 𝜀 ≥ 100𝑑−1/2 as well.

3 Technical overview

Our approach is a departure from the aforementioned approaches to shadow tomography, which
automatically lose an extra log𝑑/𝜀2 factor because they involve an outer routine based on online
learning. Instead, our starting point is the recent approach of [11] for full state tomography.

Overview of [11]. Roughly speaking, the approach in that work consisted of two components: 1) a
reduction from tomography of arbitrary mixed states to tomography of mixed states which are a small
perturbation of the maximally mixed state, and 2) an analysis of Keyl’s estimator for learning the
perturbation that gives rise to such a state, rather than learning the state directly.

Let us first focus on step 2). We say call states that are small perturbations of 𝐼𝑑/𝑑 balanced states. If
we express an unknown balanced state 𝜌 as 𝜌 = 𝐼𝑑/𝑑 + 𝐸 for some perturbation 𝐸, then they observed
that the tensor product of 𝑡 copies of 𝜌 is close to the “linearized state”

𝜌 ′ ≜ (𝐼𝑑/𝑑)⊗𝑡 +
∑︁
sym

𝐸 ⊗ (𝐼𝑑/𝑑)⊗𝑡−1

where
∑

sym denotes the sum over all tensor products of one copy of 𝐸 and 𝑡 −1 copies of 𝐼𝑑/𝑑. Technically
this linearized state is not necessarily a density matrix, but for any POVM {𝑀𝑧}𝑧∈Z , one can still consider
measurement statistics of the form

∫
Z 𝑓 (𝑀𝑧)⟨𝜌 ′, 𝑀𝑧⟩ d𝑧, which correspond to the expectation of any

estimator 𝑓 applied to the outcome of “measuring” the linearized state.
Now consider a natural choice of 𝑓 in the context of state tomography: Keyl’s estimator. Whereas the

expected result of applying Keyl’s estimator to the actual state 𝜌 is hard to characterize, the upshot of
working with the linearization 𝜌 ′ is that it is much more amenable to calculations, and we can actually
explicitly compute the analogous result for 𝜌 ′. In particular, by taking 𝑓 and {𝑀𝑧}𝑧∈Z to be given by
Keyl’s estimator, the above measurement statistic

∫
Z 𝑓 (𝑀𝑧)⟨𝜌 ′, 𝑀𝑧⟩ d𝑧 turns out to be exactly given by a

perturbation of the maximally mixed state by some known multiple of 𝐸 (Corollary C.5), i.e. 𝐼𝑑/𝑑 + 𝑐𝐸
for some known factor 𝑐.

This means that if 𝐸 has sufficiently small norm, the expected result 𝔼[𝜌] of applying Keyl’s estimator
to the actual state 𝜌 is sufficiently close to this (Lemma C.4) that if we had access to 𝔼[𝜌], we could
simply estimate the perturbation 𝐸 via 𝑐−1(𝔼[𝜌] − 𝐼𝑑/𝑑). Of course in reality we only have access to
realizations of the state 𝜌 obtained by Keyl’s estimator, rather than their expectation, but using existing
bounds on the variance of Keyl’s estimator [26], we can control the deviation between 𝜌 and 𝔼[𝜌].

6



Adapting to the shadow estimation setting. In this work, we observe that even though the above
analysis was originally implemented in [11] to bound the accuracy of the estimate 𝐸 for perturbation 𝐸

obtained in Frobenius norm, essentially the same analysis translates naturally to bounding accuracy as
quantified by how close ⟨𝑂, 𝐸⟩ is to ⟨𝑂, 𝐸⟩ for an arbitrary observable 𝑂 . The only place where we need
to be somewhat careful is in controlling the variance of the estimator: instead of directly bounding the
expected squared distance between 𝜌 and 𝔼[𝜌], we need to bound the expected squared discrepancy
𝔼[⟨𝑂, 𝜌 − 𝔼[𝜌]⟩2]. While it may be tempting to simply bound this by applying Cauchy-Schwarz and
appealing to the existing bound on 𝔼[∥𝜌 − 𝔼[𝜌]∥2𝐹 ], this is lossy by dimension-dependent factors.
Instead, we need to exploit the rotation-invariance of Keyl’s estimator to get a tighter bound on this
variance (see Eq. (C) onwards).

The above discussion is already sufficient to prove our main result in the special case where 𝜌 is
balanced. It gives rise to an estimate for 𝐸, and thus for 𝜌, which is oblivious in the sense that it does not
depend on the choice of observable 𝑂 above. Furthermore, our algorithm only needs 𝑂 (log(1/𝛿)/𝜀2)
samples to produce an estimate 𝜌 for which |⟨𝑂, 𝜌 − 𝜌⟩| ≤ 𝜀 with probability 1 − 𝛿 . As 𝜌 is oblivious to
𝑂 , it can be used to estimate any set of𝑚 observables 𝑂1, . . . ,𝑂𝑚 with probability 1 −𝑚𝛿 . By taking
𝛿 = 𝑂 (1/𝑚), we obtain Theorem 2.1 in the special case of balanced states. We then appeal to part 1) of
the analysis in [11], which allows us to effectively reduce from the case of arbitrary mixed states to the
case of balanced states.

Reduction to the balanced case. Here we summarize how we adapt their approach in this step to our
shadow estimation setting. At the end we comment on how it compares to the implementation in [11]
for full state tomography.

Roughly speaking, this part of the proof is based on a certain “splitting” operation Split (see
Definition D.1) that linearly maps any 𝑑-dimensional mixed state to an 𝑂 (𝑑)-dimensional one whose
eigenvalues are upper bounded by 1/𝑑 . Importantly, given measurement access to 𝜌⊗𝑡 , one can simulate
measurement access to Split(𝜌)⊗𝑡 , and furthermore there is a dual operation DSplit (see Definition D.2)
that can be applied to any observable𝑂 such that the expectation value ⟨𝑂, 𝜌⟩ is equal to ⟨DSplit(𝑂), Split(𝜌)⟩.

We can then reduce to the case that 𝜌 is balanced as follows: we obtain a crude estimate 𝜌 for 𝜌
using low-accuracy state tomography (Theorem D.5), and then we “recenter” Split(𝜌) around Split(𝜌)
to get an 𝑂 (𝑑)-dimensional state which is sufficiently close to maximally mixed. Importantly, using
the description of 𝜌 and by simulating measurement access to Split(𝜌 ′), we can simulate measurement
access to this recentered state and thus reduce to the case where the unknown state is balanced (in
𝑂 (𝑑) dimensions).

We remark that the primary difference between our implementation of this splitting technique and the
one in [11] is our use of DSplit, which is specific to the shadow estimation setting. For state tomography,
[11] considered a different operation. Roughly speaking, they defined a procedure Rec which inverts
the mapping given by Split, so that once one has an estimate for the perturbation corresponding to the
recentered state, their final estimator is given by applying Rec to this estimate. In contrast, because our
goal is not to estimate the state in Frobenius norm, but rather to estimate it well enough to answer
expectation value queries, we need an operation dual to Split instead of an operation inverse to it. This
leads us to consider the operation DSplit sketched above.

4 Outlook

In this work we gave the first algorithm for classical shadows to achieve optimal sample complexity
𝑂 (log𝑚/𝜀2) for general observables in some nontrivial regime, namely when the target accuracy 𝜀 is
inverse polynomial in the dimension 𝑑 of the Hilbert space. In contrast, prior work either suffered from
extraneous logarithmic factors in𝑚 and 𝑑 and polynomial factors in 1/𝜀, or required polynomial factors
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in 𝑑 . Interestingly, our proof leverages ideas from the recent work of [11] on full state tomography. The
central idea is to formulate an (approximately) unbiased estimate of the state by analyzing the behavior
of Keyl’s estimator on a certain linearization of the batch of copies of the unknown state.

The natural question left open by our work is to handle the low-accuracy regime, that is, to lift
the assumption that 𝜀 ≤ 1/poly(𝑑). Unfortunately in the low-accuracy regime, the linearization trick
mentioned above no longer applies. Resolving this would settle the main open question of [1], i.e.
showing that in all parameter regimes, the sample complexity of shadow tomography is no worse than
that of its classical analogue.

Another interesting direction for future work is to understand how the sample complexity of classical
shadows changes under additional constraints on 𝜌, e.g. if it has low rank or is preparable with a shallow
quantum circuit. In the special case where 𝜌 is rank-1, this was settled in the work of [14]. The recent
work of [13] obtained an improved upper bound for general low-rank states compared to the result
of [19].
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A Representation Theory and Keyl’s POVM

Our algorithm will be based on Keyl’s POVM [22] which is at the heart of most quantum state tomography
algorithms that use entangled measurements [32, 26, 27, 11]. Defining Keyl’s POVM requires some
basic concepts from representation theory. In the following, we list the ones relevant to our discussion
here; see [32] for a more detailed exposition.

Definition A.1. [Young Tableaux] We have the following standard definitions:

• Given a partition 𝜆 ⊢ 𝑛, a Young diagram of shape 𝜆 is a left-justified set of boxes arranged in rows,
with 𝜆𝑖 boxes in the 𝑖th row from the top.

• A standard Young tableaux (SYT) 𝑇 of shape 𝜆 is a Young diagram of shape 𝜆 where each box is filled
with some integer in [𝑛] such that the rows are strictly increasing from left to right and the columns
are strictly increasing from top to bottom.

• A semistandard Young tableaux (SSYT) 𝑇 of shape 𝜆 is a Young diagram of shape 𝜆 where each box is
filled with some integer in [𝑑] for some 𝑑 and the rows are weakly increasing from left to right and
the columns are strictly increasing from top to bottom.

We recall the correspondence between Young tableaux and representations of the symmetric and general
linear groups:

Definition A.2. We say a representation 𝜇 of 𝐺𝐿𝑑 over a complex vector space ℂ𝑚 is a polynomial
representation if for any 𝑈 ∈ ℂ𝑑×𝑑 , 𝜇 (𝑈 ) ∈ ℂ𝑚×𝑚 is a polynomial in the entries of 𝑈 .

Fact A.3 ([29]). The irreducible representations of the symmetric group 𝑆𝑛 are exactly indexed by the
partitions 𝜆 ⊢ 𝑛 and have dimensions dim(𝜆) equal to the number of standard Young tableaux of shape 𝜆.
We denote the corresponding vector space Sp𝜆.

Fact A.4 ([12]). For each 𝜆 ⊢ 𝑛, there is a (unique) irreducible polynomial representation of 𝐺𝐿𝑑
corresponding to 𝜆. We denote the corresponding map and vector space (𝜋𝜆,𝑉 𝑑

𝜆
). The dimension dim(𝑉 𝑑

𝜆
) is

equal to the number of semistandard Young tableaux of shape 𝜆 with entries in [𝑑]. This representation,
restricted to 𝑈𝑑 is also an irreducible representation.

Theorem A.5 (Schur-Weyl Duality [12]). Consider the representation of 𝑆𝑛 ×𝐺𝐿𝑑 on (ℂ𝑑 )⊗𝑛 where the
action of the permutation 𝜋 ∈ 𝑆𝑛 permutes the different copies of ℂ𝑑 and the action of 𝑈 ∈ 𝐺𝐿𝑑 is applied
independently to each copy. This representation can be decomposed as a direct sum

(ℂ𝑑 )⊗𝑛 =
⊕
𝜆⊢𝑛

ℓ (𝜆)≤𝑑

Sp𝜆 ⊗ 𝑉 𝑑
𝜆
.

Definition A.6 (Schur Subspace). We call Sp𝜆 ⊗ 𝑉 𝑑
𝜆
the 𝜆-Schur subspace. Given integers 𝑛,𝑑 and 𝜆 ⊢ 𝑛,

we define Π𝑑
𝜆
: (ℂ𝑑 )⊗𝑛 → Sp𝜆 ⊗ 𝑉 𝑑

𝜆
to project onto the 𝜆-Schur subspace.

Theorem A.7 (Gelfand-Tsetlin Basis [12]). Let 𝑛,𝑑 be positive integers. For each partition 𝜆 ⊢ 𝑛 where
𝜆 has at most 𝑑 parts, there is a basis 𝑣1, . . . , 𝑣𝑚 of 𝑉 𝑑

𝜆
with 𝑚 = dim(𝑉 𝑑

𝜆
) such that for any matrix

𝐷𝛼 = diag(𝛼1, . . . , 𝛼𝑑 ), we have 𝑣†𝑖 𝜋𝜆 (𝐷𝛼 )𝑣𝑖 = 𝛼 𝑓 (𝑖 ) for all 𝑖 where 𝑓 (𝑖 ) are each 𝑑-tuples that give the
frequencies of 1, 2, . . . , 𝑑 in each of the different semi-standard tableaux of shape 𝜆.

Definition A.8 (Maximal-weight Vector). For a partition 𝜆 ⊢ 𝑛, we define the maximal weight vector
𝑣𝜆 ∈ 𝑉 𝑑

𝜆
to be the vector given by Theorem A.7 with 𝑓 (𝑖 ) = 𝜆𝑖 for all 𝑖.
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Remark A.9. Note that for a given partition 𝜆 = (𝜆1, . . . , 𝜆𝑑 ), there is a semi-standard tableaux of shape 𝜆
with frequencies 𝜆1, . . . , 𝜆𝑑 (where we just fill the 𝑖th row with all entries equal to 𝑖) so the vector defined
above indeed exists.

Definition A.10 (Weak Schur Sampling). We use the term weak Schur sampling to refer to the POVM on
ℂ𝑑𝑛×𝑑𝑛 with elements given by Π𝑑

𝜆
for 𝜆 ranging over all partitions of 𝑛 into at most 𝑑 parts.

Definition A.11 (Keyl’s POVM [22]). We define the following POVM on ℂ𝑑𝑛×𝑑𝑛 : first perform weak Schur
sampling to obtain 𝜆 ⊢ 𝑛. Then discard the permutation register (corresponding to the subspace Sp𝜆). Within
the remaining subspace 𝑉 𝑑

𝜆
, measure according to

dim(𝑉 𝑑
𝜆
){𝜋𝜆 (𝑈 )𝑣𝜆𝑣†𝜆𝜋𝜆 (𝑈 )†}𝑈

where 𝑈 ranges over Haar random unitaries. Note that the outcome of the measurement consists of a
partition 𝜆 ⊢ 𝑛 and a unitary 𝑈 ∈ ℂ𝑑×𝑑 .

Definition A.12 (Schur Weyl Distribution). Given integers 𝑛,𝑑 and a tuple (𝛼1, . . . , 𝛼𝑑 ) with 𝛼𝑖 ≥ 0 and
𝛼1 + · · · + 𝛼𝑑 = 1, the Schur-Weyl distribution SW𝑛 (𝛼) is a distribution over partitions 𝜆 ⊢ 𝑛 into at most 𝑑
parts obtained by measuring the state diag(𝛼1, . . . , 𝛼𝑑 )⊗𝑛 via weak Schur sampling. When 𝛼 is uniform,
we may write SW𝑛

𝑑
instead.

B Basic Facts

Claim B.1. Let 𝑋,𝑌 ∈ ℂ𝑑×𝑑 be Hermitian matrices. Then

𝔼𝑈 [(𝑈 †𝑋𝑈 )⟨𝑈 †𝑋𝑈 ,𝑌 ⟩] = 1
𝑑2 − 1

(
∥𝑋 ∥2𝐹 − tr(𝑋 )2

𝑑

) (
𝑌 − tr(𝑌 )𝐼

𝑑

)
+ tr(𝑋 )2tr(𝑌 )𝐼

𝑑2

where the expectation is over a Haar random unitary 𝑈 .

Claim B.2. Let 𝛼 = (𝛼1, . . . , 𝛼𝑑 ) be a vector of nonnegative weights summing to 1. Then for 𝜆 ∼ SW𝑛 (𝛼),
with probability at least 1/2,

𝑑∑︁
𝑖=1

𝜆2𝑖 ≥ 𝑛1.5

4
.

Claim B.3. Let 𝛼 = (𝛼1, . . . , 𝛼𝑑 ) be a vector of nonnegative weights summing to 1. Then for 𝜆 ∼ SW𝑛 (𝛼),

𝔼

[
𝑑∑︁
𝑖=1

𝜆2𝑖

]
≤ 2((𝛼2

1 + · · · + 𝛼2
𝑑
)𝑛2 + 𝑛1.5)

Lemma B.4. Let 0 ≤ 𝜆 ≤ 1. Given 𝑡 copies of an unknown state 𝜌, and given a description of a density
matrix 𝜎 , it is possible to simulate any measurement of (𝜆𝜌 + (1 − 𝜆)𝜎)⊗𝑡 using a measurement of 𝜌⊗𝑡 .

C Balanced Case

We begin by presenting our algorithm for the case when 𝜌 is close to maximally mixed. In this case,
given 𝑛 total copies of 𝜌, our algorithm sets 𝑡 = 0.01𝑑2 and measures 𝑛/𝑡 copies of 𝜌⊗𝑡 , each using Keyl’s
POVM. Recall that Keyl’s POVM involves first obtaining a partition 𝜆 and then obtaining a unitary𝑈 . The
estimator that we construct after measuring according to Keyl’s POVM will be 𝑈 diag(𝜆1/𝑡, . . . , 𝜆𝑑/𝑡)𝑈 †,
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which we call Keyl’s estimator. We then average this estimator (with some appropriate linear rescaling)
over all 𝑛/𝑡 batches to construct our final estimate for 𝜌. In Theorem C.6, we prove that this estimator
successfully solves classical shadows.

We will rely on a few of the intermediate lemmas from [11]. We begin with a few definitions. Note
that Keyl’s POVM is symmetric over the unitary in the following sense.

Definition C.1. We say a POVM {𝑀𝑧}𝑧∈Z in ℂ𝑑𝑡×𝑑𝑡 is copy-wise rotationally invariant if it is equivalent to

{𝑈 ⊗𝑡𝑀𝑧 (𝑈 †)⊗𝑡𝑑𝑈 }𝑧∈Z

where 𝑈 ∈ ℂ𝑑×𝑑 is a random unitary drawn from the Haar measure.

Definition C.2. Let {𝑀𝑧}𝑧∈Z be a POVM in ℂ𝑑𝑡×𝑑𝑡 that is copywise rotationally invariant. We say a
function 𝑓 : {𝑀𝑧}𝑧∈Z → ℂ𝑑×𝑑 is rotationally compatible with the POVM if

𝑓 (𝑈 ⊗𝑡𝑀𝑧 (𝑈 †)⊗𝑡 ) = 𝑈 𝑓 (𝑀𝑧)𝑈 †

for all 𝑧 ∈ Z and unitary 𝑈 .

Fact C.3. Keyl’s POVM is copy-wise rotationally invariant and the estimator (𝜆,𝑈 ) → 𝑈 diag(𝜆1/𝑡, . . . , 𝜆𝑑/𝑡)𝑈 †

is rotationally compatible with Keyl’s POVM.

Proof. This follows immediately from Theorem A.5.

When the state 𝜌 is close to maximally mixed, we can bound the mean of Keyl’s estimator
𝑈 diag(𝜆1/𝑡, . . . , 𝜆𝑑/𝑡)𝑈 † as follows.

Lemma C.4. [11] Let {𝑀𝑧}𝑧∈Z be a POVM in in ℂ𝑑𝑡×𝑑𝑡 that is copywise rotationally invariant. Let
𝑓 : {𝑀𝑧}𝑧∈Z → ℂ𝑑×𝑑 be a rotationally compatible estimator such that tr(𝑓 (𝑀𝑧)) = 0 for all 𝑧 ∈ Z . Let
𝑋 = (𝐼𝑑/𝑑 + 𝐸)⊗𝑡 and let 𝑋 ′ = (𝐼𝑑/𝑑)⊗𝑡 +

∑
sym 𝐸 ⊗ (𝐼𝑑/𝑑)⊗𝑡−1. Assume that ∥𝐸∥𝐹 ≤

( 0.01
𝑡

)4. Then



∫
Z
𝑓 (𝑀𝑧)⟨𝑋 − 𝑋 ′, 𝑀𝑧⟩ d𝑧






𝐹

≤
105𝑡2 ∥𝐸∥2𝐹

𝑑

√︄∫
Z

∥ 𝑓 (𝑀𝑧)∥2𝐹 tr(𝑀𝑧)
𝑑𝑡

d𝑧 .

Corollary C.5. [11] Let {𝑀𝜆,𝑈 }𝜆,𝑈 be Keyl’s POVM where 𝜆 ranges over partitions of 𝑡 and 𝑈 ranges over
unitaries in ℂ𝑑×𝑑 . Let 𝑋 ′ = (𝐼𝑑/𝑑)⊗𝑡 +

∑
sym 𝐸 ⊗ (𝐼𝑑/𝑑)⊗𝑡−1. Then∑︁

𝜆⊢𝑡

∫
𝑈 diag(𝜆1/𝑡, . . . , 𝜆𝑑/𝑡)𝑈 † · ⟨𝑀𝜆,𝑈 , 𝑋

′⟩ d𝑈 =
𝐼𝑑

𝑑
+ 𝑑𝐸

𝑡 (𝑑2 − 1) 𝔼𝜆∼SW𝑡
𝑑

[ 𝑑∑︁
𝑗=1

𝜆2𝑗 − (𝑡2/𝑑)
]
.

We can now prove the main theorem in the balanced case.

Theorem C.6. Let 𝜌 =
𝐼𝑑
𝑑
+ 𝐸 be an unknown quantum state in ℂ𝑑×𝑑 . Assume that ∥𝐸∥𝐹 ≤

√
𝜀/𝑑2. Then

for any target accuracy 𝜀 ≤ 1/𝑑12, there is an algorithm that measures 𝑂 (1/𝜀2) copies of 𝜌 and returns
𝐸 ∈ ℂ𝑑×𝑑 such that for any Hermitian matrix 𝑂 ∈ ℂ𝑑×𝑑 ,

Pr
[���⟨𝑂, 𝐸⟩ − ⟨𝑂, 𝐸⟩

��� ≥ 𝜀 · ∥𝑂 ∥𝐹√
𝑑

]
≤ 0.1 .
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Algorithm 1 Shadows for balanced states

Input:𝑚 copies of 𝜌⊗𝑡 for some unknown quantum state 𝜌 ∈ ℂ𝑑×𝑑

for 𝑗 ∈ [𝑚] do
Measure 𝜌⊗𝑡 according to Keyl’s POVM
Let 𝜆 ⊢ 𝑡 be the partition and 𝑈 be the unitary obtained from the measurement
Set 𝐷 𝑗 = 𝑈 diag(𝜆1/𝑡, . . . , 𝜆𝑑/𝑡)𝑈 †

end for
Compute 𝜃 = 𝔼𝜆∼SW𝑡

𝑑
[∑𝑗 𝜆

2
𝑗 ] − (𝑡2/𝑑)

Compute 𝐸 =
𝑡 (𝑑2−1)

𝑑𝜃

(
𝐷1+···+𝐷𝑚

𝑚
− 𝐼𝑑

𝑑

)
Output: 𝐸

Proof. We run Algorithm 1 with 𝑡 = 0.01𝑑2 and𝑚 = 106/(𝜀2𝑑2) (note that the total number of copies
used is then indeed 𝑂 (1/𝜀2)). The POVM in Algorithm 1 is clearly copywise rotationally invariant and
the estimator is rotationally compatible with it. Let us use the shorthand {𝑀𝑧}𝑧∈Z to denote this POVM
and for 𝑀𝑧 corresponding to unitary 𝑈 and partition 𝜆, we let 𝑓 (𝑀𝑧) = 𝑈 diag(𝜆1/𝑡, . . . , 𝜆𝑑/𝑡)𝑈 †. We
have

𝔼

[
𝐷1 + · · · + 𝐷𝑚

𝑚

]
=

∫
Z
𝑓 (𝑀𝑧)⟨𝑀𝑧, (𝐼𝑑/𝑑 + 𝐸)⊗𝑡 ⟩ d𝑧

where the expectation is over the randomness of the quantum measurement in Algorithm 1. We can
make the estimator 𝐷 𝑗 have trace 0 by simply subtracting out 𝐼𝑑/𝑑 and adding it back at the end. Thus,
by Lemma C.4 and Corollary C.5, recalling the definition of 𝜃 in Line 7 of Algorithm 1, we have



𝔼 [

𝐷1 + · · · + 𝐷𝑚

𝑚

]
− 𝐼𝑑

𝑑
− 𝑑𝜃𝐸

𝑡 (𝑑2 − 1)






𝐹

≤
105𝑡2 ∥𝐸∥2𝐹

𝑑

√︄∫
Z

∥ 𝑓 (𝑀𝑧)∥2𝐹 tr(𝑀𝑧)
𝑑𝑡

d𝑧

≤
105𝑡2 ∥𝐸∥2𝐹

𝑑
.

Thus, if 𝐸 is the output of Algorithm 1, then


𝔼[𝐸] − 𝐸





𝐹
≤

105𝑡3 ∥𝐸∥2𝐹
𝜃

.

Next, we compute the variance of the estimator. Note that WLOG, we can assume the observable 𝑂 has
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tr(𝑂) = 0 since our estimator 𝐸 is always traceless. We have

𝔼
[
⟨𝑂, 𝐸 − 𝔼[𝐸]⟩2

]
≤ 𝑑2𝑡2

𝑚𝜃2 𝔼
[
⟨𝑂,𝐷1 − 𝔼[𝐷1]⟩2

]
≤ 4𝑑2𝑡2

𝑚𝜃2

(
𝔼

[〈
𝑂,𝐷1 −

𝐼𝑑

𝑑

〉2])
≤ 8𝑑2𝑡2

𝑚𝜃2

(
𝔼

[
𝔼𝑈

[〈
𝑈 †𝑂𝑈, 𝐷1 −

𝐼𝑑

𝑑

〉2] ])
≤ 8𝑑2𝑡2

𝑚𝜃2

∥𝑂 ∥2𝐹 𝔼[∥𝐷1∥2𝐹 ]
𝑑2

=
8 ∥𝑂 ∥2𝐹
𝑚𝜃2 𝔼𝜆∼SW𝑡 (𝜌 ) [

∑︁
𝑗

𝜆2𝑗 ]

where in the above, we used that ∥𝐸∥𝐹 ≤ 1/(10𝑑)8 so

0.9(𝐼𝑑/𝑑)⊗𝑡 ⪯ 𝜌⊗𝑡 ⪯ 1.1(𝐼𝑑/𝑑)⊗𝑡

and thus when measuring 𝜌⊗𝑡 with Keyl’s POVM (which is rotationally invariant), the rotation of
the outcome is approximately uniform up to a factor of 2. Now by Claim B.3, we can upper bound
𝔼𝜆∼SW𝑡 (𝜌 ) [

∑
𝑗 𝜆

2
𝑗 ] ≤ 2(∥𝜌 ∥2𝐹 𝑡2 + 𝑡1.5) ≤ 4𝑡1.5 where recall that we set 𝑡 ≤ 0.01𝑑2. Also by Claim B.2,

we have 𝜃 ≥ 𝑡1.5/4. Thus, putting everything together, we conclude

𝔼
[
⟨𝑂, 𝐸 − 𝐸⟩2

]
≤ 2 · 1010𝑡3 ∥𝐸∥4𝐹 ∥𝑂 ∥2𝐹 + (10 ∥𝑂 ∥𝐹 )2

𝑚𝑡1.5
≤

𝜀2 ∥𝑂 ∥2𝐹
102𝑑

.

The desired statement then follows from Chebyshev’s inequality.

D Splitting Reduction

As in [11], when 𝜌 is not balanced, we reduce to the balanced case via a splitting reduction.

Definition D.1. Let 𝑏1, . . . , 𝑏𝑑 ∈ ℤ≥0. We define Split𝑏1,...,𝑏𝑑 to be a linear map that sends any𝑀 ∈ ℂ𝑑×𝑑 to
a square matrix with dimension 2𝑏1 + · · · + 2𝑏𝑑 defined as follows. The rows and columns of Split𝑏1,...,𝑏𝑑 (𝑀)
are indexed by pairs ( 𝑗, 𝑠) where 𝑗 ∈ [𝑑] and 𝑠 ∈ {0, 1}𝑏 𝑗 and these are sorted first by 𝑗 and then
lexicographically according to 𝑠. Now the entry indexed by row ( 𝑗1, 𝑠1) and column ( 𝑗2, 𝑠2) is defined as

• If 𝑏 𝑗1 ≤ 𝑏 𝑗2 then the entry is 𝑀 𝑗1 𝑗2/2𝑏 𝑗2 if 𝑠1 is a prefix of 𝑠2 and is 0 otherwise

• If 𝑏 𝑗1 > 𝑏 𝑗2 then the entry is 𝑀 𝑗1 𝑗2/2𝑏 𝑗1 if 𝑠2 is a prefix of 𝑠1 and is 0 otherwise

As an example, we have the following splitting of a 2 × 2 matrix with 𝑏1 = 2, 𝑏2 = 1.

Split2,1

( [
𝑎11 𝑎12
𝑎21 𝑎22

] )
=



0.25𝑎11 0 0 0 0.25𝑎12 0
0 0.25𝑎11 0 0 0.25𝑎12 0
0 0 0.25𝑎11 0 0 0.25𝑎12
0 0 0 0.25𝑎11 0 0.25𝑎12

0.25𝑎21 0.25𝑎21 0 0 0.5𝑎22 0
0 0 0.25𝑎21 0.25𝑎21 0 0.5𝑎22


We can also define a dual map to Split.
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Definition D.2. Let 𝑏1, . . . , 𝑏𝑑 ∈ ℤ≥0. We define DSplit𝑏1,...,𝑏𝑑 to be a linear map that sends any𝑀 ∈ ℂ𝑑×𝑑

to a square matrix with dimension 2𝑑1+· · ·+2𝑏𝑑 defined as follows. The rows and columns ofDSplit𝑏1,...,𝑏𝑑 (𝑀)
are indexed by pairs ( 𝑗, 𝑠) where 𝑗 ∈ [𝑑] and 𝑠 ∈ {0, 1}𝑏 𝑗 and these are sorted first by 𝑗 and then
lexicographically according to 𝑠. Now the entry indexed by row ( 𝑗1, 𝑠1) and column ( 𝑗2, 𝑠2) is defined as

• 𝑀 𝑗1 𝑗2 if 𝑠1 is a prefix of 𝑠2 and or 𝑠2 is a prefix of 𝑠1 and 0 otherwise

We have the following basic properties.

Claim D.3. Let 𝑏1, . . . , 𝑏𝑑 ∈ ℤ≥0. We have the following statements for any 𝑀, 𝑁 ∈ ℂ𝑑×𝑑 :

•


Split𝑏1,...,𝑏𝑑 (𝑀)




𝐹
≤ ∥𝑀 ∥𝐹

• ⟨Split𝑏1,...,𝑏𝑑 (𝑀),DSplit𝑏1,...,𝑏𝑑 (𝑁 )⟩ = ⟨𝑀, 𝑁 ⟩

•


DSplit𝑏1,...,𝑏𝑑 (𝑁 )




𝐹
≤ 2

√
2𝑏1 + · · · + 2𝑏𝑑 ∥𝑁 ∥

Proof. The first two statements follow immediately from the definitions. To verify the third, for each
integer𝑘, let𝑆𝑘 ⊆ [𝑑] denote the set of indices 𝑗 such that𝑏 𝑗 = 𝑘. Note that the entries ofDSplit𝑏1,...,𝑏𝑑 (𝑁 )
are obtained by taking the entries of 𝑁 and duplicating each a certain number of times – an entry 𝑁 𝑗1 𝑗2

appears 2max(𝑏 𝑗1 ,𝑏 𝑗2 ) times. Thus,

DSplit𝑏1,...,𝑏𝑑 (𝑁 )


2
𝐹
=

∑︁
𝑗1, 𝑗2∈[𝑑 ]

2max(𝑏 𝑗1 ,𝑏 𝑗2 )𝑁 2
𝑗1 𝑗2

≤
∞∑︁
𝑘=0

2𝑘
∑︁

𝑗1∈𝑆𝑘 or 𝑗2∈𝑆𝑘
𝑁 2

𝑗1 𝑗2

≤
∞∑︁
𝑘=0

2𝑘 (2|𝑆𝑘 | ∥𝑁 ∥2)

= 2(2𝑏1 + · · · + 2𝑏𝑑 ) ∥𝑁 ∥2

and this gives the desired inequality.

Claim D.4 ([11]). Given measurement access to 𝜌⊗𝑡 where 𝜌 ∈ ℂ𝑑×𝑑 is a state, Split𝑏1,...,𝑏𝑑 (𝜌) is a valid
state and we can simulate measurement access to access to Split𝑏1,...,𝑏𝑑 (𝜌)

⊗𝑡 .

To complete the reduction, our full algorithm first obtains a rough estimate 𝜌 ′ of 𝜌 via tomography
and then applies the splitting reduction in the eigenbasis of 𝜌 ′

Theorem D.5 ([15]). For any 𝛿, 𝜀 < 1 and unknown state 𝜌 ∈ ℂ𝑑×𝑑 , there is an algorithm that makes
unentangled measurements on 𝑂 (𝑑2 log(1/𝛿)/𝜀2) copies of 𝜌 and with 1 − 𝛿 probability outputs a state 𝜌
such that ∥𝜌 − 𝜌 ∥𝐹 ≤ 𝜀.

Theorem D.6. Let 𝜌 be an unknown quantum state in ℂ𝑑×𝑑 . Then for any target accuracy 𝜀 ≤ 1/𝑑12 and
failure probability 𝛿 , there is an algorithm that measures 𝑂 (log(1/𝛿)/𝜀2) copies of 𝜌 and stores classical
information (of 𝑂 (𝑑2 log(1/𝛿)) real numbers) such that given any Hermitian matrix 𝑂 ∈ ℂ𝑑×𝑑 , it can
produce an estimate 𝜏 (from only this classical information) with

Pr [|⟨𝑂, 𝜌⟩ − 𝜏 | ≥ 𝜀 ∥𝑂 ∥] ≤ 𝛿 .
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Proof. First, we apply Theorem D.5 with half of the total copies to learn a state 𝜌 ′ such that

∥𝜌 ′ − 𝜌 ∥𝐹 ≤ 𝑑𝜀 ≤
√
𝜀

𝑑5 .

Now let𝑈 be the matrix that diagonalizes 𝜌 ′. We will work in the𝑈 -basis where say 𝜌 ′ = diag(𝜆1, . . . , 𝜆𝑑 ).
For each 𝑗 ∈ [𝑑] let 𝑏 𝑗 be the smallest nonnegative integer such that 2𝑏 𝑗 ≥ 𝑑𝜆 𝑗 . Note that we must
have 2𝑏1 + · · · + 2𝑏𝑑 ≤ 4𝑑. Also, Split𝑏1,...,𝑏𝑑 (𝜌

′) is a diagonal matrix with all entries at most 1/𝑑 so

Split𝑏1,...,𝑏𝑑 (𝜌
′)


 ≤ 1/𝑑. Let 𝑘 = 2𝑏1 + · · · + 2𝑏𝑑 . Now let

𝜎 =
1
3

(
4𝐼𝑘
𝑘

− Split𝑏1,...,𝑏𝑑 (𝜌
′)
)
.

Note that 𝜎 is a quantum state in ℂ𝑘×𝑘 . Now by Claim D.4 and Lemma B.4, we simulate access to copies
of the state

𝜌 =
3
4
𝜎 + 1

4
Split𝑏1,...,𝑏𝑑 (𝜌) .

Note that 



𝜌 − 𝐼𝑘

𝑘






𝐹

=





14Split𝑏1,...,𝑏𝑑 (𝜌 − 𝜌 ′)





𝐹

≤
√
𝜀

𝑑5 .

Thus, we can apply Theorem C.6 using 𝑂 (1/𝜀2) copies to obtain an estimate 𝐸 for 𝜌 − 𝐼𝑘
𝑘
. We get that

Pr
[����〈DSplit𝑏1,...,𝑏𝑑 (𝑂), 𝜌 − 𝐼𝑘

𝑘

〉
−

〈
DSplit𝑏1,...,𝑏𝑑 (𝑂), 𝐸

〉���� ≥ 4𝜀 ∥𝑂 ∥
]
≤ 0.1

where we used Claim D.3. When the above holds, then we set

𝜏 = ⟨𝑂, 𝜌 ′⟩ + 4⟨DSplit𝑏1,...,𝑏𝑑 (𝑂), 𝐸⟩

and then get
|⟨𝑂, 𝜌⟩ − 𝜏 | ≤ 16𝜀 ∥𝑂 ∥ .

To complete the proof and get 1−𝛿 success probability, note that we can repeat the above 𝑐 = 10 log(1/𝛿)
times independently to obtain estimates 𝐸1, . . . 𝐸𝑐 . Then for a given query 𝑂 we compute estimates
𝜏1, . . . , 𝜏𝑐 as above and output the median of these estimates.

E Reducing to Small 𝜀 via Random Projection

In this section, we show how to reduce to the case where 𝜀 ≤ 1/
√
𝑑 by first applying a random “projection"

(we will actually use matrices with Gaussian entries so it is not technically a projection). We show
in Claim E.2 that we have an unbiased estimator after the projection and we bound the variance in
Claim E.3.

Definition E.1. For 𝑘 matrices 𝑉1 ∈ ℂ𝑑×𝑚, . . . ,𝑉𝑘 ∈ ℂ𝑑×𝑚 and a matrix 𝑀 ∈ ℂ𝑑×𝑑 , we write 𝑀𝑉1,...,𝑉𝑘 to
be the 𝑘 × 𝑘 matrix whose 𝑖 𝑗 entry is tr(𝑉 †

𝑖
𝑀𝑉𝑗 ) when 𝑖 ≠ 𝑗 and is 0 otherwise.

Claim E.2. Let 𝑑,𝑚 be integers. Let 𝑀, 𝑁 ∈ ℂ𝑑×𝑑 be traceless Hermitian matrices. Let 𝑉1, . . . ,𝑉𝑘 ∈ ℂ𝑑×𝑚

be matrices with entries drawn i.i.d. from 𝑁 (0, 1/𝑑). Then

𝔼[⟨𝑀𝑉1,...,𝑉𝑘 , 𝑁𝑉1,...,𝑉𝑘 ⟩] =
𝑘 (𝑘 − 1)𝑚

𝑑2 ⟨𝑀, 𝑁 ⟩ .
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Proof. Let 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 . We have

𝔼[𝑀𝑉1,...,𝑉𝑘 [𝑖, 𝑗]𝑁𝑉1,...,𝑉𝑘 [𝑖, 𝑗]] = 𝔼[tr(𝑉 †
𝑖
𝑀𝑉𝑗 )tr(𝑉 †

𝑖
𝑁𝑉𝑗 )]

=
1
𝑑
𝔼[⟨𝑉 †

𝑖
𝑀,𝑉

†
𝑖
𝑁 ⟩]

=
𝑚

𝑑2 ⟨𝑀, 𝑁 ⟩ .

Now summing the above over all 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 gives us

𝔼[⟨𝑀𝑉1,...,𝑉𝑘 , 𝑁𝑉1,...,𝑉𝑘 ⟩] =
𝑘 (𝑘 − 1)𝑚

𝑑
⟨𝑀, 𝑁 ⟩ .

Now we bound the variance of the above quantity.

Claim E.3. Let 𝑀, 𝑁 ∈ ℂ𝑑×𝑑 be traceless Hermitian matrices. Let 𝑉1, . . . ,𝑉𝑘 ∈ ℂ𝑑×𝑚 be matrices whose
entries are drawn i.i.d. from 𝑁 (0, 1/𝑑). Then

Var(⟨𝑀𝑉1,...,𝑉𝑘 , 𝑁𝑉1,...,𝑉𝑘 ⟩) ≤ 6

(
𝑚2𝑘2 ∥𝑀 ∥2𝐹 ∥𝑁 ∥2𝐹

𝑑4 + 𝑚𝑘2⟨𝑀2, 𝑁 2⟩
𝑑4 +

𝑚𝑘3 ∥𝑀𝑁 ∥2𝐹
𝑑4

)
.

Proof. We can write

⟨𝑀𝑉1,...,𝑉𝑘 , 𝑁𝑉1,...,𝑉𝑘 ⟩ =
∑︁

𝑖, 𝑗∈[𝑘 ],𝑖≠𝑗
tr(𝑉 †

𝑖
𝑀𝑉𝑗 )tr(𝑉 †

𝑖
𝑁𝑉𝑗 ) .

Define
𝑃𝑖 𝑗 = tr(𝑉 †

𝑖
𝑀𝑉𝑗 )tr(𝑉 †

𝑖
𝑁𝑉𝑗 ) ,

for any pairs (𝑖1, 𝑗1) and (𝑖2, 𝑗2) that are disjoint, Cov(𝑃𝑖1 𝑗1, 𝑃𝑖2 𝑗2) = 0. Now we compute Cov(𝑃𝑖 𝑗1, 𝑃𝑖 𝑗2) =
0 where 𝑖, 𝑗1, 𝑗2 are all distinct. We have

𝔼[𝑃𝑖 𝑗1𝑃𝑖 𝑗2] = 𝔼𝑉𝑖 [𝔼𝑉𝑗1
[tr(𝑉 †

𝑖
𝑀𝑉𝑗1)tr(𝑉

†
𝑖
𝑁𝑉𝑗1)] 𝔼𝑉𝑗2

[tr(𝑉 †
𝑖
𝑀𝑉𝑗2)tr(𝑉

†
𝑖
𝑁𝑉𝑗2)]]

= 𝔼𝑉𝑖

[
1
𝑑2 ⟨𝑉

†
𝑖
𝑀,𝑉

†
𝑖
𝑁 ⟩2

]
=

1
𝑑2

(
𝑚 𝔼𝑣 [(𝑣𝑀𝑁𝑣†)2] +𝑚(𝑚 − 1) (𝔼𝑣 [𝑣𝑀𝑁𝑣†])2

)
=
𝑚2tr(𝑀𝑁 )2

𝑑4 +
𝑚 ∥𝑀𝑁 ∥2𝐹

𝑑4 + 𝑚tr((𝑀𝑁 )2)
𝑑4

where the vector 𝑣 is a 𝑑-dimensional vector with entries drawn from 𝑁 (0, 1/𝑑). Also

𝔼[𝑃𝑖 𝑗1] 𝔼[𝑃𝑖 𝑗2] =
(
𝔼𝑉𝑖 ,𝑉𝑗

[tr(𝑉 †
𝑖
𝑀𝑉𝑗 )tr(𝑉 †

𝑖
𝑁𝑉𝑗 )]

)2
=

(
𝔼𝑉𝑖

[
1
𝑑
⟨𝑉 †

𝑖
𝑀,𝑉

†
𝑖
𝑁 ⟩

] )2
=
𝑚2

𝑑2 (𝔼𝑣 [𝑣𝑀𝑁𝑣†])2

=
𝑚2tr(𝑀𝑁 )2

𝑑2
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and thus,

Cov(𝑃𝑖 𝑗1, 𝑃𝑖 𝑗2) =
2𝑚 ∥𝑀𝑁 ∥2𝐹

𝑑4

Next, we can compute Var(𝑃𝑖 𝑗 ) for 𝑖 ≠ 𝑗 . We have

𝐸 [𝑃2
𝑖 𝑗 ] = 𝔼𝑉𝑖 ,𝑉𝑗

[tr(𝑉 †
𝑖
𝑀𝑉𝑗 )2tr(𝑉 †

𝑖
𝑁𝑉𝑗 )2]

=
1
𝑑2 𝔼𝑉𝑖

[


𝑉 †
𝑖
𝑀




2
𝐹




𝑉 †
𝑖
𝑁




2
𝐹
+ 2⟨𝑉 †

𝑖
𝑀,𝑉

†
𝑖
𝑁 ⟩2

]
=
𝑚2 ∥𝑀 ∥2𝐹 ∥𝑁 ∥2𝐹

𝑑4 + 2𝑚⟨𝑀2, 𝑁 2⟩
𝑑4 + 2𝑚2tr(𝑀𝑁 )2

𝑑4 +
2𝑚 ∥𝑀𝑁 ∥2𝐹

𝑑4 + 2𝑚tr((𝑀𝑁 )2)
𝑑4

and recall

𝔼[𝑃𝑖 𝑗 ]2 =
𝑚2tr(𝑀𝑁 )2

𝑑4

so

Var(𝑃𝑖 𝑗 ) =
𝑚2 ∥𝑀 ∥2𝐹 ∥𝑁 ∥2𝐹

𝑑4 + 2𝑚⟨𝑀2, 𝑁 2⟩
𝑑4 + 𝑚2tr(𝑀𝑁 )2

𝑑4 +
2𝑚 ∥𝑀𝑁 ∥2𝐹

𝑑4 + +2𝑚tr((𝑀𝑁 )2)
𝑑4 .

Thus, we can bound

Var(⟨𝑀𝑉1,...,𝑉𝑘 , 𝑁𝑉1,...,𝑉𝑘 ⟩) ≤ 6

(
𝑚2𝑘2 ∥𝑀 ∥2𝐹 ∥𝑁 ∥2𝐹

𝑑4 + 𝑚𝑘2⟨𝑀2, 𝑁 2⟩
𝑑4 +

𝑚𝑘3 ∥𝑀𝑁 ∥2𝐹
𝑑4

)
as desired.

Corollary E.4. Let 𝑀, 𝑁 ∈ ℂ𝑑×𝑑 be Hermitian matrices such that ∥𝑀 ∥1 ≤ 1 and ∥𝑁 ∥op ≤ 1. Let 𝑘 be a
parameter and let 𝑉1, . . . ,𝑉𝑘 ∈ ℂ𝑑×2𝑑/𝑘 be matrices whose entries are drawn i.i.d. from 𝑁 (0, 1/𝑑). Then
for any parameter 𝛾 > 0,

Pr
[����⟨𝑀, 𝑁 ⟩ − 𝑑

2(𝑘 − 1) ⟨𝑀𝑉1,...,𝑉𝑘 , 𝑁𝑉1,...,𝑉𝑘 ⟩
���� ≥ 𝛾

]
≤ 20𝑑

𝑘2𝛾2 .

Proof. This follows from combining Claim E.2 and Claim E.3 and applying Chebyshev’s inequality.

Before we can complete the reduction, we need a few basic matrix concentration bounds. The
following statements follow from standard matrix concentration inequalities.

Claim E.5. Let𝑉1, . . . ,𝑉𝑘 ∈ ℂ𝑑×2𝑑/𝑘 be matrices whose entries are drawn i.i.d. from 𝑁 (0, 1/𝑑). Then with
probability 0.99,

0.1𝐼𝑑 ⪯
𝑘∑︁
𝑖=1

𝑉𝑖𝑉
†
𝑖
⪯ 10𝐼𝑑 .

Also let 𝑁 ∈ ℂ𝑑×𝑑 be a fixed matrix with ∥𝑁 ∥op ≤ 1. Then with probability 0.99

𝑁𝑉1,...,𝑉𝑘




op ≤ 10 .

Before we formalize the reduction, we first need the following definition:
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Definition E.6. We say that an algorithm solves classical shadows with parameters 𝑑, 𝜀 with probability 𝑝
using 𝑓 (𝑑, 𝜀, 𝑝) copies if for an arbitrary unknown state 𝜌, the algorithm makes measurements on 𝑓 (𝑑, 𝜀, 𝑝)
copies of 𝜌 and stores classical information such that for any observable𝑂 ∈ ℂ𝑑×𝑑 , the algorithm can access
only the classical information and produce an estimate 𝜏 such that with probability 𝑝,

|⟨𝑂, 𝜌⟩ − 𝜏 | ≤ 𝜀 ∥𝑂 ∥ .

With this, we can now show:

Theorem E.7. Assume we are given parameters 𝑑, 𝜀, 𝑘 such that 𝑑 ≥ 𝑘 ≥ 100
√
𝑑/𝜀. Then if there is an

algorithm for solving classical shadows with probability 0.9 for parameters𝑘, 0.1𝜀𝑘/𝑑 using 𝑓 (𝑘, 0.01𝜀𝑘/𝑑, 0.9)
samples, then for any 𝛿 > 0, there is also an algorithm for solving classical shadows with parameters 𝑑, 𝜀
that succeeds with probability 1 − 𝛿 and uses 𝑓 (𝑑, 𝜀, 1 − 𝛿) ≤ 𝑂 (𝑓 (𝑘, 0.01𝜀𝑘/𝑑, 0.9) + 1/𝜀2) · log(1/𝛿)
samples.

Proof. It suffices to prove the statement with 𝛿 = 1/3 and then we can simply take log(1/𝛿) independent
runs of the algorithm and output the median of the estimates.

Now draw 𝑉1, . . . ,𝑉𝑘 ∈ ℂ𝑑×2𝑑/𝑘 with i.i.d. entries drawn from 𝑁 (0, 1/𝑑). Recall by Claim E.5, with
probability 0.99,

0.1𝐼𝑑 ⪯
𝑘∑︁
𝑖=1

𝑉𝑖𝑉
†
𝑖
⪯ 10𝐼𝑑 . (2)

Assuming the above holds, we define

𝑌 = 𝐼𝑑 − 0.1
𝑘∑︁
𝑖=1

𝑉𝑖𝑉
†
𝑖

and construct the following quantum channel. We map a matrix 𝑀 ∈ ℂ𝑑×𝑑 to a block diagonal matrix
with a 𝑑 × 𝑑 block consisting of 𝑌 1/2𝑀𝑌 1/2 and a 𝑘 × 𝑘 block with entries given by 0.1tr(𝑉 †

𝑖
𝑀𝑉𝑗 ) for all

𝑖, 𝑗 ∈ [𝑘] (this is similar to the matrix 𝑀𝑉1,...,𝑉𝑘 except the diagonal is included as well). It is clear that
this map is completely positive and trace preserving. We run all copies of 𝜌 through this channel and
then measure them according to the POVM (Π, 𝐼𝑑+𝑘 − Π) where Π is the projector onto the 𝑘 × 𝑘 block.
We keep all of the copies for which the measurement outcome is Π and discard the rest. Let

𝛼 = tr(𝑉 †
1 𝜌𝑉1) + · · · + tr(𝑉 †

𝑘
𝜌𝑉𝑘 ) .

Note that by (2), 𝛼 ≥ 0.1. Let 𝛽 be the fraction of samples that we actually keep. Since we have more
than 𝑂 (1/𝜀2) samples, with 0.99 probability, 0.1𝛼 − 0.001𝜀 ≤ 𝛽 ≤ 0.1𝛼 + 0.001𝜀. Note that all of these
copies are now in the state

𝜌 ′ =
𝜌𝑉1,...,𝑉𝑘 + diag(tr(𝑉 †

1 𝜌𝑉1), . . . , tr(𝑉 †
𝑘
𝜌𝑉𝑘 ))

tr(𝑉 †
1 𝜌𝑉1) + · · · + tr(𝑉 †

𝑘
𝜌𝑉𝑘 )

.

We now run the classical shadows algorithm with parameters 𝑘, 0.01𝜀𝑘/𝑑 on this 𝑘 × 𝑘 matrix. As
long as enough samples are kept in the previous step i.e. 𝛽 ≥ 0.1𝛼 − 0.001𝜀, we have enough copies
remaining to run this algorithm. Given a query, 𝑂 , we construct the matrix 𝑂𝑉1,...,𝑉𝑘 and then compute
an estimate 𝜏 ′ for ⟨𝜌 ′,𝑂𝑉1,...,𝑉𝑘 ⟩.

WLOG assume ∥𝑂 ∥op ≤ 1. Then by the assumption about the classical shadows algorithm, and as
long as



𝑂𝑉1,...,𝑉𝑘




op ≤ 10 (which happens with 0.99 probability by Claim E.5), our estimate 𝜏 ′ satisfies

|𝜏 ′ − ⟨𝜌 ′,𝑂𝑉1,...,𝑉𝑘 ⟩| ≤
0.1𝜀𝑘
𝑑
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with probability at least 0.9. Now we output the estimate

𝜏 =
5𝑑𝛽

(𝑘 − 1)𝜏
′ .

Assuming that the previous inequality holds,����𝜏 − 10𝛽
𝛼

⟨𝜌,𝑂⟩
���� ≤ ����10𝛽𝛼 ⟨𝜌,𝑂⟩ − 5𝑑𝛽

(𝑘 − 1) ⟨𝜌
′,𝑂𝑉1,...,𝑉𝑘 ⟩

���� + 0.6𝜀

=
10𝛽
𝛼

����⟨𝜌,𝑂⟩ − 𝑑

2(𝑘 − 1) ⟨𝜌𝑉1,...,𝑉𝑘 ,𝑂𝑉1,...,𝑉𝑘 ⟩
���� + 0.6𝜀

where the last step uses that 𝑂𝑉1,...,𝑉𝑘 is 0 on the diagonal by definition. Now by Corollary E.4, with
probability 0.9, the above quantity is at most 0.8𝜀. Also assuming 0.1𝛼 − 0.001𝜀 ≤ 𝛽 ≤ 0.1𝛼 + 0.001𝜀,
we have ����10𝛽𝛼 − 1

���� ≤ 0.1𝜀 .

This immediately implies that our estimate 𝜏 has |𝜏 − ⟨𝜌,𝑂⟩| ≤ 𝜀. Overall, combining the failure
probabilities over all of the steps, the total failure probability is less than 1/3, so with 2/3 probability,
the estimate 𝜏 is 𝜀-accurate and we are done.
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