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Abstract

A fundamental notion of distance between train and test distributions from the field of domain
adaptation is discrepancy distance. While in general hard to compute, here we provide the first
set of provably efficient algorithms for testing localized discrepancy distance, where discrepancy is
computed with respect to a fixed output classifier. These results imply a broad set of new, efficient
learning algorithms in the recently introduced model of Testable Learning with Distribution Shift
(TDS learning) due to Klivans et al. (2023).

Our approach generalizes and improves all prior work on TDS learning: (1) we obtain universal
learners that succeed simultaneously for large classes of test distributions, (2) achieve near-optimal
error rates, and (3) give exponential improvements for constant depth circuits. Our methods further
extend to semi-parametric settings and imply the first positive results for low-dimensional convex
sets. Additionally, we separate learning and testing phases and obtain algorithms that run in fully
polynomial time at test time.

1 Introduction

Distribution shift remains a central challenge in machine learning. While practitioners may exert some
level of control over a model’s training distribution, they have far less insight into future, potentially
adversarial, test distributions. Developing algorithms that can predict whether a trained classifier will
perform well on an unseen test set is therefore critical to the widescale deployment of modern foundation
models.

A heavily-studied framework for modeling distribution shift is domain adaptation, where a learner
has access to labeled examples from some training distribution, unlabeled examples from some test dis-
tribution and is asked to output a hypothesis with low error on the test distribution. Over the last twenty
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years, researchers in domain adaptation and related fields [BDBCP06, BCK+07, MMR09, BDBC+10,
RMH+20, ZLWJ20, KM21b, HKM23, KZZ24] have established bounds for out-of-distribution general-
ization in terms of some type of distance between train and test distributions. By far the most commonly
studied notion is discrepancy distance:

discC(D,D′) = sup
f1,f2∈C

∣∣∣ P
x∼D

[f1(x) ̸= f2(x)]− P
x∼D′

[f1(x) ̸= f2(x)]
∣∣∣

Estimating or even testing discrepancy distance, however, seems difficult, as its definition involves
an enumeration over all classifiers from some underlying function class (in Section 7 we give the first
hardness result for computing discrepancy distance in general). As such, obtaining provably efficient
algorithms for domain adaptation has seen little progress (none of the above works give polynomial-time
guarantees).

In search of efficient algorithms for learning with distribution shift with certifiable error guaran-
tees, recent work by [KSV24b] defined the Testable Learning with Distribution Shift (TDS learning)
framework. In this model (similar to domain adaptation), a learner receives labeled examples from train
distribution D, unlabeled examples from test distribution D′, and then runs a test. If the (efficiently
computable) test accepts, the learner outputs h that is guaranteed to have low test error with respect to
D′. No guarantees are given if the test rejects, but it must accept (with high probability) if the marginals
of D and D′ are equal. This framework has led to the first provably efficient algorithms for learning with
distribution shift for certain concept classes (for example, halfspaces) [KSV24b, KSV24a].

It is straightforward to see that if algorithm A learns concept class C in the (ordinary) PAC/agnostic
model, and we have an efficient localized discrepancy tester for C, then C is learnable in the TDS frame-
work: simply apply the discrepancy tester to the output of A and accept if this quantity is small. A
dream scenario would be to augment all known PAC/agnostic learning algorithms with associated local-
ized discrepancy testers. This is nontrivial in part because we cannot make any assumptions on the test
distribution D′ (our test has to always accept or reject correctly). Nevertheless, our main contribution is
a suite of new discrepancy testers for well-studied function class/training distribution pairs that unifies
and greatly expands all prior work on TDS learning.

1.1 Our Contributions

Optimal Error Guarantees via L1 Sandwiching. The work of [KSV24b] used a moment-matching
approach to show that the existence of L2 sandwiching polynomial approximators implies TDS learning
up to a constant factor of the optimum error. Although their result implies TDS learning for several fun-
damental concept classes, the L2 sandwiching requirement seems restrictive for classes such as constant-
depth circuits or polynomial threshold functions. In Theorem 3.1, we provide TDS learning results in
terms of the much more well-understood notion of L1 sandwiching, resolving one of the main ques-
tions left open in [KSV24b]. As such, we obtain exponential improvements for TDS learning constant
depth circuits (AC0), and the first results for degree-2 polynomial threshold functions (see Table 1). Our
result also bridges a gap between TDS learning and testable agnostic learning [RV23], since the latter
has been known to be implied by L1 sandwiching [GKK23]. Additionally, in the agnostic setting, the
error guarantees we achieve are essentially optimal (as opposed to the constant-factor approximation by
[KSV24b]).

Universal TDS Learners. A natural and important goal in TDS learning is to design algorithms that
accept and make trustworthy predictions whenever the distribution shift is benign. In Theorems 3.4
and 3.5, we give the first TDS learners that are guaranteed to accept whenever the test marginal falls in
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a wide class of distributions that are not necessarily close to the training distribution (in say statistical
distance) but, instead, share some mild structural properties. In the literature of testable agnostic learning,
testers with relaxed completeness criteria are called universal [GKSV23b]. Our universal TDS learners
accept all distributions that are sufficiently concentrated and anti-concentrated and work for convex sets
with low intrinsic dimension (Theorem 3.4) and halfspace intersections (Theorem 3.5). Surprisingly, our
algorithms can handle distributions that are heavy-tailed and multimodal, for which efficient (ordinary)
agnostic learning algorithms are not known to exist. Our algorithms exploit localization guarantees from
the training phase (e.g., subspace or boundary recovery) to relax the requirements of the testing phase.

Fully Polynomial-Time Testing. All of the TDS learners we provide consist of two decoupled phases.
In the training phase, the algorithm uses labeled training examples to output a candidate hypothesis
h. The testing phase receives the candidate h and uses unlabeled test examples to decide whether to
reject or accept and output h. Separation of the two phases is an important feature of our approach,
as it may be desirable for these tasks to be performed by distinct parties who have different amounts of
available (computing) resources. Efficient implementations of the testing phase are of utmost importance,
especially for potential users of large pre-trained models who need to certify that the candidate model
at hand is safe to deploy. In Theorem 3.5, we give the first TDS learner for intersections of halfspaces
that runs in fully polynomial test time, and additionally improves the overall runtime of the previous
state-of-the-art TDS learner for intersection of halfspaces by [KSV24a]. In fact, our TDS learner’s
overall runtime is polynomial in the dimension d, while the time complexity of the TDS learner given by
[KSV24a] involved a factor of dO(log(1/ϵ)), where ϵ is the error parameter.

1.2 Our Techniques

Our approach for designing TDS learners focuses on efficient algorithms for testing a new notion of
localized discrepancy distance:

Definition 1.1 (Localized Discrepancy). Let D be a distribution over X ⊆ Rd and let H, C ⊆ {±1}X be
hypothesis and concept classes respectively. Define neighborhood N to be a function N : H → 2C . For
f̂ ∈ H, the (f̂ ,N)-localized discrepancy from D to D′ is defined as:

disc
f̂ ,N

(D,D′) = sup
f∈N(f̂)

(
P

x∼D′
[f̂(x) ̸= f(x)]− P

x∼D
[f̂(x) ̸= f(x)]

)
Testing localized discrepancy is clearly easier than testing the traditional (global) discrepancy dis-

tance, since global discrepancy is defined with respect to a supremum over all pairs of concepts within
some given class, while localized discrepancy only depends on a small neighborhood of concepts around
some given reference classifier f̂ .

Assume for a moment that we have fixed a neighborhood function N and have obtained a learner
that always outputs a classifier close to the ground truth function f∗ (i.e., f∗ ∈ N(f̂)). In this case, if we
can test localized discrepancy, then we obtain a TDS learner as follows: output f̂ if the corresponding
localized discrepancy is small and reject otherwise (recall f̂ is close to the ground truth for both training
and test distributions).

The algorithmic challenge is finding a definition of neighborhood that admits both an efficient learner
(for outputting a classifier close to the ground truth) and an efficient localized discrepancy tester. Smaller
neighborhoods make the learning problem more difficult while larger neighborhoods make discrepancy
testing more challenging.
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Ultimately, the correct choice of neighborhood depends on the properties of the concept class C and
the training distribution. For our main applications below we briefly describe the choice of neighborhood
and high level algorithmic approach.

Classes with Low-Degree Sandwiching Approximators. We show that the existence of degree-ℓ L1-
sandwiching approximators for a class C over X ⊆ Rd turns out to be sufficient to design a localized
discrepancy tester that runs in time dO(ℓ) where the notion of neighborhood is widest possible, i.e.,
N(f̂) = C.1 In this case, the requirement for the training algorithm is minimal, as the ground truth
f∗ lies within C, which coincides with N(f̂). The proposed tester is based on estimating the chow
parameters of the reference hypothesis f̂ under the test marginal and checking whether they closely
match the chow parameters of f̂ under the training marginal. For more details, see Section 3.1.

Convex Sets with Low Intrinsic Dimension. For convex sets with few relevant dimensions, there are
algorithms from standard PAC learning that guarantee approximate recovery of the relevant subspace.
This guarantee allows one to choose a much stronger notion of neighborhood while still ensuring that
f∗ ∈ N(f̂). The appropriate notion of neighborhood contains low-dimensional concepts whose relevant
subspace is geometrically close to the subspace of the reference hypothesis. The corresponding tester
exhaustively checks that the marginal D′ is well-behaved on the relevant subspace. For more details, see
Section 3.2.

Intersections of Halfspaces. For intersections of halfspaces, we prove a structural result stating that
finding a hypothesis with low Gaussian disagreement with the ground truth f∗ implies approximate
pointwise recovery of the boundary of f∗. It is therefore sufficient to check whether the marginal of the
test distribution assigns unreasonably large mass near the boundary of the training output hypothesis f̂ ,
which can be done in fully polynomial time. Any proper algorithm for learning halfspace intersections
under Gaussian training marginals is then sufficient for our purposes. For more details, see Section 3.3.

1.3 Related Work

Domain Adaptation. In the past two decades, there has been a long line of research on generalization
bounds for domain adaptation. The work of [MMR09] introduced the notion of discrepancy distance, fol-
lowing work by [BDBCP06, BDBC+10], which used similar notions of distance between distributions.
Other important notions of distribution similarity include bounded density ratios [SSK12] and related
notions [KM21b, KZZ24]. A type of localized discrepancy distance was defined by [ZLWJ20] and used
to provide improved sample complexity bounds for domain adaptation. None of the above works give
efficient (polynomial-time) algorithms. Here, we give a more general notion of localization and use it to
obtain efficient and universal algorithms for TDS learning.

TDS Learning and Related Models. The framework of TDS learning was defined by [KSV24b],
where it was shown that any class that admits degree-ℓ L2-sandwiching approximators can be TDS
learned in time dO(ℓ) up to error O(λ), where λ is the standard (and necessary) benchmark for the error
in domain adaptation when the training and test distributions are allowed to be arbitrary. Here, we show
that the relaxed notion of L1-sandwiching approximators suffices for TDS learning and we improve the
error guarantee to nearly-match the information-theoretically optimal λ (see Section 3.1). For inter-
sections of halfspaces under Gaussian training marginals, [KSV24a] gave TDS learners with improved

1The discrepancy is still localized, since it is defined with respect to a reference hypothesis f̂ .
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guarantees compared to those given by [KSV24b] through L2 sandwiching. Our TDS learners for half-
space intersections are superior to the ones from [KSV24a] in terms of overall runtime, universality and
test-time efficiency (see Section 3.3).

Another related framework for learning with distribution shift is PQ learning, which was defined by
[GKKM20]. In PQ learning, the learner may reject regions of the domain where it is not confident to
make predictions, but the total mass of these regions under the training distribution must be small. In fact,
PQ learning is known to imply TDS learning (see [KSV24b]). However, the only known algorithms for
PQ learning, which were given by [GKKM20, KK21], require access to oracles for learning primitives
that are known to be hard even for simple classes (see [KK21]).

The framework of TDS learning is also related to testable agnostic learning, where the goal of the
tester is to certify a near-optimal error guarantee. Testable agnostic learning was defined by [RV23] and
there are several subsequent works in this framework [GKK23, GKSV23a, GKSV23b, DKK+23]. There
are many important differences between TDS learning and testable agnostic learning, including the fact
that, in testable agnostic learning, there is no distribution shift and that in TDS learning, the learner does
not have access to labels from the distribution on which it is evaluated. In particular, testable agnostic
learning is only defined in the presence of noise in the labels, while TDS learning is meaningful even
when the labels are generated noise-free (i.e., realizable learning).

PAC Learning. In the standard framework of PAC learning, there is an abundance of algorithmic ideas
and techniques that aim to achieve efficient learning, under various assumptions (see e.g., [LW94, BK97,
KOS04, KLT09, KOS08a, Vem10b, Vem10a, GKM12, KKM13, DKS18a, DTK22]). In this work, we
make use of polynomial regression [KKMS08], dimension reduction techniques [Vem10a], as well as
techniques for robustly learning geometric concepts [DKS18b], in order to obtain efficient TDS learners.
In fact, our approach of designing TDS learning algorithms through localized discrepancy testing sheds
a light on what kinds of guarantees from the training algorithms are desirable for learning in the presence
of distribution shift. For example, we show that if approximate subspace recovery is guaranteed after
training, then the discrepancy testing problem can be relaxed to an easier, localized version. Moreover,
our results on TDS learning halfspace intersections emphasize the importance of proper learners in the
context of learning with distribution shift.

2 Preliminaries

We use standard big-O notation (and Õ to hide poly-logarithmic factors), Rd is the d-dimensional
euclidean space and Nd the standard Gaussian over Rd, {±1}d is the d-dimensional hypercube and
Unif({±1}d) the uniform distribution over {±1}d, N is the set of natural numbers N = {1, 2, . . . } and
x ∈ Rd denotes a vector with x = (x1, . . . ,xd) and inner products x · v. See also Appendix A.

Localized Discrepancy Testing. Testing localized discrepancy (Definition 1.1) is defined as follows.

Definition 2.1 (Testing Localized Discrepancy). For a set D of distributions and D over X and ϵ > 0,
we say that T is a (N, ϵ)-tester for localized discrepancy from D with respect to D, if, T , upon receiving
f̂ ∈ H and a set X of mT i.i.d. examples from some distribution D′ over X satisfies:

(a) (Soundness.) With probability at least 3/4: If T accepts, then disc
f̂ ,N

(D,D′) ≤ ϵ .

(b) (Completeness.) If D′ ∈ D, then T accepts with probability at least 3/4.
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For a concept class C, a distribution D over X , ϵ ∈ (0, 1), we say that C has ϵ-L1 sandwiching
degree ℓ with respect to D if for any f ∈ C, there exist polynomials pup, pdown over X with degree at
most ℓ such that (1) pdown(x) ≤ f(x) ≤ pup(x) for all x ∈ X and (2) Ex∼D[pup(x)− pdown(x)] ≤ ϵ.

Learning Setting. For X ⊆ Rd, the learner is given labeled samples from a training distribution Dtrain
XY

over X × {±1} with X -marginal Dtrain
X = D and unlabeled examples from the marginal Dtest

X of a test
distribution Dtest

XY over X × {±1}. For a concept class C ⊆ {X → {±1}}, in the realizable setting,
there is f∗ ∈ C that generates the labels for both Dtrain

XY and Dtest
XY . In the agnostic setting, the standard

goal in domain adaptation is to achieve an error guarantee that is competitive with the information-
theoretically optimal joint error λ = minf∈C(err(f ;Dtrain

XY ) + err(f ;Dtest
XY )), achieved by some f∗ ∈ C,

where err(f ;Dtrain
XY ) = P(x,y)∼Dtrain

XY
[y ̸= f(x)] (and similarly for err(f ;Dtest

XY )).

Definition 2.2 (Universal TDS Learning). Let C be a concept class over X ⊆ Rd, D a distribution over
X and D some class of distributions over X . The algorithm A is said to D-universally TDS learn C with
respect to D up to error ψ and probability of failure δ if, upon receiving mtrain labeled samples from
a training distribution Dtrain

XY with X -marginal D and mtest unlabeled samples from a test distribution
Dtest

XY , w.p. at least 1− δ, algorithm A either rejects, or accepts and outputs a hypothesis h : X → {±1}
such that:

(a) (Soundness.) If A accepts, then the output h satisfies err(h;Dtest
XY ) ≤ ψ.

(b) (Completeness.) If Dtest
X ∈ D then A accepts.

In the agnostic setting, parameter ψ may depend on λ = λ(C;Dtrain
XY ,Dtest

XY ), whereas in the realizable
setting, ψ = ϵ ∈ (0, 1). If D = {D}, then we simply say that A ψ-TDS learns C w.r.t. D.

Note that the success probability for TDS learning can be amplified through repetition [KSV24b]
and we will consider δ = 0.1 unless specified otherwise.

3 Technical Overview

3.1 Classes with Low Sandwiching Degree

Prior work on TDS learning by [KSV24b] showed that the existence of degree-ℓ L2-sandwiching approx-
imators implies TDS learning in time dO(ℓ). A major question left open was whether the more traditional
notion of L1 sandwiching (see Definition 4.1) suffices for TDS learning. We answer this question in the
affirmative, and as a consequence we obtain exponential improvements in the runtime of TDS learning
for constant depth circuits (AC0) and the first TDS learning results for degree-2 polynomial threshold
functions (see Table 1). For more details, see Section 4.

Theorem 3.1 (L1-sandwiching implies TDS learning). Let ϵ, δ ∈ (0, 1) and let C ⊆ {X → {±1}} be a
concept class such that the ϵ-approximate L1-sandwiching degree of C under D is ℓ(ϵ) ∈ N. Then, there
exists a TDS learning algorithm for C with respect to D up to error λ + opttrain + O(ϵ) and fails with
probability at most δ with time and sample complexity poly(dℓ(ϵ), 1ϵ ) log(1/δ).

Note that prior work [KSV24b] had only obtained a bound ofO(λ) in the above error guarantee. Our
techniques allow us to achieve the optimal dependence of simply λ.

For Gaussian and uniform halfspaces, intersections and functions of halfspaces, as well as for de-
cision trees over the uniform distribution, the L2-sandwiching approach of [KSV24b] provided TDS
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Concept class Training Marginal Time Prior Work

1 Degree-2 PTFs
Nd or

Unif({±1}d) dÕ(1/ϵ9) None

2 Circuits of size s, depth t Unif({±1}d) dO(log(s/ϵ))O(t) d
√
s·O(log(s/ϵ))O(t)

only for formulas

Table 1: New results for TDS learning through L1 sandwiching. For constant-depth formulas, we achieve
an exponential improvement compared to [KSV24b] (which used L2-sandwiching), and our results work
for circuits as well.

learning algorithms with similar runtime as the one obtained here, but their error guarantee was O(λ)+ ϵ
instead of λ + opttrain + ϵ (where opttrain = minf∈C err(f ;Dtrain

XY )), which is the best known upper
bound on the error, even information theoretically (see [BDBC+10, DLLP10]).

Localized discrepancy testing via Chow matching. The improvements we obtain here are based on
the idea of substituting the moment-matching tester of [KSV24b] with a more localized test, depending
on a candidate output hypothesis f̂ provided by a training algorithm run on samples from the training
distribution. In particular, we estimate the Chow parameters [OS08] Ex∼Dtest

X
[f̂(x)xα] for all low-degree

monomials xα =
∏d

i=1 x
αi
i and reject if they do not match the corresponding quantities Ex∼D[f̂(x)x

α]
under the training marginal. We obtain the following result.

Proposition 3.2 (Informal, see Theorem 4.3). For any class C with low sandwiching degree under D, the
low-degree chow matching tester is a tester for localized discrepancy for the neighborhood N(f̂) = C,
i.e., it certifies that Px∼Dtest

X
[f̂(x) ̸= f(x)] ≤ Px∼D[f̂(x) ̸= f(x)] + ϵ for all f ∈ C.

Proof Outline. The main observation for obtaining the localized discrepancy testing result is that the
disagreement between two functions is a linear function of their correlation, i.e., 2Px∼Dtest

X
[f̂(x) ̸=

f(x)] = 1− Ex∼Dtest
X

[f̂(x)f(x)], and, because f ∈ C, it is sandwiched by two polynomials pup, pdown,

which implies Ex∼Dtest
X

[f̂(x)f(x)] ≥ Ex∼Dtest
X

[f̂(x)pup(x)]− Ex∼Dtest
X

[pup(x)− pdown(x)]. The latter
quantity can be certified to be close to the corresponding quantity under the training marginal D by Chow
(and moment) matching.

Although the notion of neighborhood we require here is quite generic, it is sufficient to provide
significant improvements over prior work. The discrepancy tester is localized in the sense that it certifies
properties of the tested marginal distribution that are related to a particular candidate hypothesis f̂ , but
actually considers the whole concept class C to be inside the neighborhood of f̂ . Since the concept f∗

that achieves λ = minf∈C(err(f ;Dtrain
XY ) + err(f ;Dtest

XY )) lies within C by definition, the total test error
of f̂ is directly related to the error achieved by the training algorithm, whenever the Chow matching
tester accepts.

3.2 Non-Parametric Low-Dimensional Classes

For non-parametric classes like convex sets over Rd, dimension-efficient TDS learning is impossible,
even from an information-theoretic perspective [KSV24b] and 2Ω(d) time is required even in the real-
izable setting. However, the best known upper bound on the L1 sandwiching degree for convex sets is
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given indirectly by known results in approximation of convex sets by intersections of halfspaces (see,
e.g., [DNS23] and references therein) and implies a TDS learning algorithm that runs in time doubly
exponential in d. Improving on the doubly exponential bound based on L1-sandwiching, we provide a
realizable TDS learner with singly exponential (in poly(d)) runtime for convex sets that are ϵ-balanced,
meaning that the Gaussian mass of both the interior and the exterior of the convex set is at least ϵ.
For convex sets with only a few relevant dimensions, our results actually give dimension-efficient TDS
learners. For more details, see Section 5.

Theorem 3.3 (TDS Learning of Convex Subspace Juntas). For ϵ ∈ (0, 1/2), d, k ∈ N, let C be the class
of ϵ-balanced convex sets over Rd with k relevant dimensions. There is an O(ϵ)-TDS learner for C with
respect to Nd in the realizable setting, which, for the training phase, uses poly(d)2poly(k/ϵ) samples and
time and, for the testing phase, uses poly(d)(k/ϵ)O(k) samples and time.

We note that the balancing assumption is mild, since it can be tested by using examples from the
training distribution and has been used in prior work on realizable TDS learning of intersections of
halfspaces with respect to the Gaussian distribution [KSV24a].

Universal TDS Learners. Importantly, the TDS learner of Theorem 3.3 can be made universal with
respect to a wide class of distributions that enjoy some mild concentration and anti-concentration proper-
ties. The cost is an exponential deterioration of the runtime of the training phase. In other words, finding
a hypothesis with better performance on the training distribution suffices to give error guarantees for a
wide range of test distributions, including, for example, multi-modal and heavy-tailed distributions. We
believe that this result is interesting even from an information-theoretic perspective. In Table 2 in the
appendix, we give a more precise trade-off between universality and training runtime.

Let Dk be the class of distributions D over Rd such that Ex∼D[(v · x)4] ≤ C for any v ∈ Sd−1 and
for any subspace W ⊆ Rd of dimension at most k, the marginal density of D on W is upper bounded by
Ck2 , where C is some positive universal constant. Then the following is true.

Theorem 3.4 (Universal TDS Learning of Convex Subspace Juntas). There is a Dk-universal O(ϵ)-TDS
learner for k-dimensional ϵ-balanced convex sets over Rd with respect to Nd in the realizable setting,
which, for the training phase, uses poly(d) exp(2−O(k2/ϵ)) samples and time and, for the testing phase,
uses poly(d)kO(k3/ϵ2) samples and time.

We remark that the testing time for the universal TDS learner of Theorem 3.4 is still singly expo-
nential in poly(k), although the dependence on ϵ is exponentially worse. Having lower testing runtime
is a desirable feature because the potential users of large machine learning models might have limited
resources compared to those available during training. We provide a more thorough discussion about this
feature in the following section.

Cylindrical grids tester for localized discrepancy. To obtain our TDS learning results of Theo-
rems 3.3 and 3.4, we once more make use of the localized discrepancy testing framework. In particular,
we identify low-dimensionality (Definition 5.1) and boundary smoothness (Definition 5.4) of the under-
lying concept class as sufficient conditions for efficient testing of localized discrepancy when the notion
of localization is defined with respect to the subspace neighborhood (Theorem 5.7). The subspace neigh-
borhood Ns(f̂) contains low-dimensional concepts f whose relevant subspace is geometrically close to
the relevant subspace for f̂ (see Definition 5.2). For TDS learning, we combine such testers with known
learning algorithms for subspace recovery of low-dimensional convex sets (see, e.g., [Vem10a, KSV24a]
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and Theorem 5.13) to ensure that the training phase will output some hypothesis f̂ such that the ground
truth f∗ lies within Ns(f̂).

In other words, we exploit the existence of training algorithms with stronger guarantees (i.e., approx-
imate subspace recovery) than merely training error bounds, to relax the discrepancy testing problem
to a low-dimensional localized version, while still providing end-to-end results for TDS learning. This
relaxation not only improves the testing runtime, but also enables universality, since the localized dis-
crepancy between two distributions can be much smaller than the global discrepancy between them (see
also [ZLWJ20] and references therein).

The idea behind the localized discrepancy tester for the subspace neighborhood is to split the dis-
agreement between f̂ and an arbitrary concept f ∈ Ns(f̂) under the test distribution in two parts: (1)
the disagreement between f̂ and a rotated version f̃ of f where the input x is projected on the relevant
subspace of the given hypothesis f̂ instead of the actual, unknown relevant subspace of f and (2) the dis-
agreement between f̃ and f . For part (2), we use the fact that the relevant subspace of f is geometrically
close to the relevant subspace for f̂ (since f ∈ Ns(f̂)). We conclude that f and f̃ can only disagree far
from the origin and, hence, testing that the test marginal is appropriately concentrated suffices to give the
desired bound.

Low-dimensional disagreement between concepts with smooth boundaries. For part (1), we use
the fact that the k-dimensional relevant subspace V for f̂ is known. We construct a grid on V and run
tests to certify that the probability (under the test marginal) of falling inside each of the cells is not
unreasonably large. In order to bound the size of the grid, we also test that the probability of falling far
from the origin on the subspace V is appropriately bounded. We then argue that the disagreement region
can be approximated reasonably well by discretizing with respect to an appropriately refined grid. To
ensure that the discretization of the near-boundary region does not introduce a significant error blow-up,
it is important that f̂ and f̃ have smooth boundaries (see Figure 2 in the appendix).

3.3 Fully Polynomial-Time Testers

Algorithms for TDS learning that are efficient in testing time, can be useful to check whether a pre-
trained model can be applied to a particular population, without the need for overly expensive resources.
Here, we focus on the class of balanced intersections of halfspaces (see Definition 6.9) and provide
the first TDS learner for this class that runs in fully polynomial time during test time. Moreover, the
proposed tester is universal with respect to a wide class of distributions that satisfy some concentration
and anticoncentration properties.

Let D1 be the class of distributions D over Rd such that for any v ∈ Sd−1 we have Ex∼D[(v·x)4] ≤ C
and, also, that the one-dimensional density of the projection v · x where x ∼ D is upper bounded by C,
where C is some positive universal constant. Then the following is true (see also Theorem 6.10).

Theorem 3.5 (Universal TDS Learning of Balanced Intersections). For ϵ ∈ (0, 1/2), d, k ∈ N, there is
a D1-universal O(ϵ)-TDS learner for the class of ϵ-balanced intersections of k halfspaces over Rd w.r.t.
Nd in the realizable setting, which, for the training phase, uses poly(d) exp(O(k5/ϵ)) samples and time
and, for the testing phase, uses poly(d, k, 1/ϵ) samples and time.

For comparison, the previous state-of-the-art TDS learning algorithm for halfspace intersections by
[KSV24a] had overall runtime dO(log(k/ϵ)) + poly(d) exp(O(k6/ϵ8)) and testing runtime dO(log(k/ϵ)) +
poly(d)(k/ϵ)O(k2) (although training and testing were not explicitly separated). Hence, the overall run-
time of the algorithm of Theorem 3.5 is better than the previous state-of-the-art, but also enjoys two
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additional properties: (1) the testing time is fully polynomial and (2) the tester is universal with respect
to a wide class (of unimodal and even heavy-tailed distributions).

We note that it is not by chance that these two properties are satisfied simultaneously: they both re-
late to the fact that it suffices to solve a simple discrepancy testing problem. Since the tested property is
relaxed, more distributions should satisfy it and testing the property can be made efficient. For compar-
ison, as well as to provide a TDS learner with better overall runtime in some regimes, we may trade-off
universality and test-time efficiency to obtain the following result (see Theorem 6.10).

Theorem 3.6 (TDS Learning of Balanced Intersections). For ϵ ∈ (0, 1/2), d, k ∈ N, there is an O(ϵ)-
TDS learner for the class of ϵ-balanced intersections of k halfspaces over Rd w.r.t. Nd in the realizable
setting, which, for the training phase, uses poly(d)(k/ϵ)O(k3) samples and time and, for the testing
phase, uses (dk)O(log(1/ϵ)) samples and time.

Remark 3.7. The algorithms of Theorems 3.5 and 3.6 can both tolerate some amount of noise, i.e., pro-
vide an O(ϵ) error guarantee even when λ = minf∈C(err(f ;Dtrain

XY ) + err(f ;Dtest
XY )) is non-zero (but

sufficiently small). For Theorem 3.5, the amount of noise that can be tolerated is λ = exp(−Õ(k/ϵ)),
while for Theorem 3.6, the tolerated amount is λ = (k/ϵ)−O(k) (see Table 3). The amount of noise toler-
ated by the non-universal tester is more, because the test is more expensive and, therefore, does a better
job in translating the guarantees of the training phase to guarantees for the test error. For comparison, the
Chow matching tester of Theorem 3.1 runs much more expensive tests and can, therefore, tolerate much
more noise, i.e., λ = O(ϵ).

Discrepancy testing through boundary proximity. We once more use the framework of localized
discrepancy testing, in order to obtain TDS learners with strong guarantees. In order to achieve fully
polynomial-time performance, we aim to use a tester that is as simple as possible. In particular, for
a given halfspace intersection f̂ , we test whether the probability that an example drawn from the test
marginal falls close to the boundary of f̂ , i.e., close to at least one of the defining halfspaces (see
Lemma 6.13 and Definition 6.3). We also test concentration of the test distribution marginal.

Interestingly, we show that these two tests are sufficient for certifying low localized discrepancy from
the Gaussian distribution with respect to the notion of disagreement neighborhood Ne, i.e., f ∈ Ne(f̂) if
the Gaussian disagreement Px∼Nd

[f(x) ̸= f̂(x)] between f and f̂ is small enough (see Definition 6.2).
In particular, we show that if f is a balanced intersection and f ∈ Ne(f̂), then f and f̂ can only differ
either (1) far from the origin or (2) close to the boundary of f̂ (see Proposition 6.4 and Lemma 6.12).
Importantly, this property is point-wise: for any x ∈ Rd such that f(x) ̸= f̂(x), x will either satisfy (1)
or (2) and, hence, no distribution over Rd can fool our tester.

In the heart of our proof is a geometric lemma which demonstrates that any balanced convex set is
locally balanced as well (Lemma 6.12), meaning that for any point x ∈ Rd, there is a large number of
points near x with the same label as x. Therefore (unless the norm of x is large), any hypothesis f̂ with
low Gaussian disagreement from the ground truth f∗, must encode all of the local structure (or boundary)
of f∗ that is not very far from the origin. To show this, we use a geometric argument about convex sets
(see Figure 1 for the case when the label of x is 1. The other case is simpler and follows by the existence
of a separating hyperplane between a convex set and any point outside it).

Since we have a localized discrepancy tester with respect to the disagreement neighborhood, all we
need from the training phase is to output some intersection of halfspaces f̂ with low training error (so
that the ground truth f∗ lies within Ne(f̂)). Hence, we may use any proper PAC learning algorithm for
intersections of halfspaces under the Gaussian distribution. We use the algorithm by [DKS18b] (see also
Theorem 6.11).
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Figure 1: If x lies within a balanced convex set K, then many points close to x lie within K as well, i.e.,
there is a cone R′ with R′ ⊆ B(x, ϱ) ∩ K, where B(x, ϱ) is a ball around x. The ball centered at xc

exists due to the fact that K is balanced: any balanced convex set contains some ball with non-negligible
radius. The convex hull of x and the ball at xc lies within K. (See also Fig. 3)

Remark 3.8. We note that the three important properties we used to apply the method of boundary
proximity are that (1) the hypothesis f̂ returned by the learning algorithm admits an efficient boundary
proximity tester and (2) the ground truth f∗ is locally balanced and (3) that f̂ and f∗ are both low-
dimensional. For more details, see Section 6.

4 Chow Matching Tester

We now focus on functions that have low-degree sandwiching polynomials approximators under the
training distribution.

Definition 4.1 (L1-sandwiching polynomials). Consider X ⊆ Rd and a distribution D over X . For
ϵ > 0 and f : X → {±1}, we say that the polynomials pup, pdown : X → R are ϵ-approximate
L1-sandwiching polynomials for f under D if the following are true.

1. pdown(x) ≤ f(x) ≤ pup(x), for all x ∈ X .

2. Ex∼D[pup(x)− pdown(x)] ≤ ϵ

We say that the ϵ-approximate L1-sandwiching degree of C under D is at most ℓ and with (coefficient)
bound B if for any f ∈ C there are ϵ-approximate L1-sandwiching polynomials pup, pdown for f such
that deg(pup), deg(pdown) ≤ ℓ and each of the coefficients of pup, pdown are absolutely bounded by B.

It turns out that given a function class C with low degree sandwiching approximators, we can test
localized discrepancy of a hypothesis f̂ with respect to a very global notion of neighborhood: the entire
concept class C. We state the definition here.

Definition 4.2 (Global Neighborhood). The global (H, C) neighborhood is defined as N(f̂) = C for all
f̂ ∈ H. We denote this by NC .

4.1 Discrepancy Testing Result

We now present our discrepancy tester for concept classes with bounded ϵ-approximate L1 sandwiching
degree. The primary advantage of this tester is it’s global nature: given a hypothesis f̂ , it certifies low
localized discrepancy with respect to every function in the concept class.

Theorem 4.3 (Chow Matching Tester). Let D be a distribution over a set X ⊆ Rd. Let C ⊆ {X →
{±1}} be a concept class. Let ϵ > 0,mconc ∈ N. Let H = {±1}X . Assume that the following are true.
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1. (L1-sandwiching) The ϵ
3 -approximate L1-sandwiching degree of C w.r.t. D is ℓ with bound B.

2. (Chow-concentration) For any function f̂ ∈ H, ifX ∼ D⊗m withm ≥ mconc, then with probabil-
ity at least 9/10, we have that for all α ∈ Nd with ∥α∥1 ≤ ℓ,

∣∣ED[f̂(x) · xα]− EX [f̂(x) · xα]
∣∣ ≤

ϵ
Bd2ℓ

.

Then, there exists a (NC , ϵ)-tester T for localized discrepancy from D with respect to {D} that uses
mconc +O( 1

ϵ2
) samples and runs in time poly

(
mconc, d

ℓ, 1ϵ
)
.

Proof. For an input distribution D′ and function f̂ ∈ H, the tester runs Algorithm 1 with mconc samples
X from D′ and function f̂ as input. We now prove it’s correctness.

Soundness We first consider the case where T accepts D′. Let f∗ = argmaxf∈C
(
Px∼D′

[
f̂(x) ̸=

f(x)
]
−Px∼D

[
f̂(x) ̸= f(x)

])
. Since Px∼D′ [f̂(x) ̸= f∗(x)] = (1−ED′ [f∗(x) · f̂(x)])/2, it is sufficient

to prove a lower bound on the second term. From a Chernoff bound, we have that ED′ [f∗(x) · f̂(x)] ≥
EX [f∗(x) · f̂(x)]− ϵ with probability at least 3/4 when |X| ≥ C/ϵ2 for some universal constant C ≥ 1.
We now bound EX [f∗(x) · f̂(x)]. Let pup, pdown be ϵ-approximate L1-sandwiching polynomials for f∗

under D. We have that

E
X
[f∗(x) · f̂(x)] = E

X
[(f∗(x)− pup(x)) · f̂(x)] + E

X
[pup(x) · f̂(x)]

≥ E
X
[pdown(x)− pup(x)] + E

X
[pup(x) · f̂(x)] ≥ E

D
[pdown(x)− pup(x)] + E

D
[pup(x) · f̂(x)]− 3ϵ

≥ E
D
[f∗(x) · f̂(x)] + E

D
[(pup(x)− f∗(x)) · f̂(x)]− 4ϵ ≥ E

D
[f∗(x) · f̂(x)]− 5ϵ .

The first inequality follows from the fact that pdown(x) ≤ f∗(x) ≤ pup(x). To obtain the second
inequality, we use the fact that the tester accepts if and only if |EX [xα]− ED[x

α]| < ∆ and |EX [f̂(x) ·
xα] − ED[f̂(x) · xα]| < ∆ for ∆ = ϵ

Bd2ℓ
and all α ∈ N such that ∥α∥1 ≤ ℓ. Since the coefficients

of pup, pdown are bounded by B and each have at most d2ℓ monomials, we obtain the second inequality.
The last two inequalities use the fact that ED[pup(x)− pdown(x)] ≤ ϵ.

Thus, we obtain that ED′ [f∗(x) · f̂(x)] ≥ ED[f
∗(x) · f̂(x)]− 6ϵ with probability at least 3/4. This

implies that Px∼D′ [f∗(x) ̸= f̂(x)] ≤ Px∼D[f
∗(x) ̸= f̂(x)]+3ϵ. From the definition of f∗, we therefore

have that disc
f̂ ,NC

(D,D′) ≤ 3ϵ with probability at least 3/4 when the tester accepts.

Completeness In this case, we have that D′ = D. Clearly, from our assumption on Chow concentra-
tion, we have that with probability at least 4/5, |EX [xα]−ED[x

α]| < ∆ and |EX [f̂(x) ·xα]−ED[f̂(x) ·
xα]| < ∆ for ∆ = ϵ

Bd2ℓ
and all α ∈ N such that ∥α∥1 ≤ ℓ. Thus, with probability at least 4/5, the tester

will accept.

Algorithm 1: Chow Matching Tester

Input: Set X from D′, function f̂ : X → {±1}, parameters ϵ > 0, ℓ ∈ N, B > 0
Set ∆ = ϵ

Bd2ℓ

For each α ∈ Nd with ∥α∥1 ≤ ℓ, compute the quantity M̂α = EX [f̂(x) · xα].
Accept if |M̂α − ED[f̂(x) · xα]| < ∆ and |EX [xα]− ED[x

α]| < ∆ for all α with ∥α∥1 ≤ ℓ.
Reject otherwise.
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4.2 Applications to TDS Learning

In this section we prove that any concept class with L1 sandwiching polynomials can be TDS learned.
This improves on the results of Klivans et al. 2023 which proved that L2 sandwiching implies TDS
learning. In particular, our result implies a new TDS learning algorithm for the class of all constant depth
circuits(AC0) which was unknown in prior work. We also achieve tight dependence on the parameter λ
as compared to prior work which was off by constant factors.

Algorithm 2: TDS learning through Chow matching

Input: Sets Strain from Dtrain
XY , Xtest from Dtest

X , Training Algorithm
A, ϵ ∈ (0, 1), ℓ ∈ N, B > 0

Let f̂ be the output of A when run on input Strain
Run the Chow matching tester(Algorithm 1) with inputs Xtest, f̂ , ϵ, ℓ and B with source
distribution Dtrain

X .
Accept and output f̂ if the Chow matching tester accepts.
Reject otherwise.

We now state our general theorem about the connection between L1 sandwiching and TDS learning.
In contrast to prior work, we completely decouple the training and testing phase of the TDS learner.

Theorem 4.4 (L1-sandwiching implies TDS learning). Let D be a distribution over a set X ⊆ Rd. Let
C ⊆ {X → {±1}} be a concept class. Let ϵ, δ ∈ (0, 1). Let H = {±1}X . Assume that the following
are true.

1. (L1-sandwiching) The ϵ-approximate L1 sandwiching degree of C under D is ℓ with bound B.

2. (Chow-concentration) For any function f̂ ∈ H, if X ∼ D⊗m with m ≥ mconc, then w.p. at least
9/10, we have that for all α ∈ Nd with ∥α∥1 ≤ ℓ,

∣∣ED[f̂(x) · xα]− EX [f̂(x) · xα]
∣∣ ≤ ϵ

Bd2ℓ
.

3. (Agnostic Learning Algorithm) There exists an algorithm A that takes mtrain samples from Dtrain
XY ,

runs in time Ttrain, and outputs w.p. at least 1 − δ
2 a hypothesis f̂ such that P(x,y)∼Dtrain

XY
[y ̸=

f̂(x)] ≤ errA.

Then, there exists an algorithm usingmtrain labelled samples from the training distribution, O
(
(mconc+

1/ϵ2) log(1/δ)
)

unlabelled test samples, runs in time Ttrain + poly
(
mconc, d

ℓ, 1ϵ , log(1/δ)
)

and TDS
learns C with respect to D up to error λ+ errA + ϵ and fails with probability at most δ.

Proof. Let Dtrain
XY be the training distribution with marginal Dtrain

X = D and let Dtest
XY be the test distri-

bution with marginal equal . Let Strain be a set of mtrain samples from Dtrain
XY and let Xtest be a set of

mconc + 1/ϵ2 samples from Dtest
X . Run Algorithm 2 with inputs Strain, Xtest,A, ϵ, ℓ and B. We now

prove it’s correctness.

Soundness We first consider the case when the input distribution is accepted. This happens when
Dtest

X is accepted by the Chow Matching tester from Algorithm 1. From Theorem 4.3, we have that with
probability at least 3/4 , disc

f̂ ,NC
(Dtrain

X ,Dtest
X ) ≤ ϵ. This probability can be boosted to 1 − δ/2 by

repeating the Chow matching tester O
(
log(1/δ)

)
times with independent samples and accepting if and

only if a majority of the tests accept. Let f∗ = argminf∈C{err(f ;Dtrain
XY ) + err(f ;Dtest

XY )}. That is,
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λ = err(f∗;Dtrain
XY ) + err(f∗;Dtest

XY ). From Definition 4.2 and the fact that disc
f̂ ,NC

(Dtrain
X ,Dtest

X ) ≤ ϵ,
we have that

P
x∼Dtest

X

[f∗(x) ̸= f̂(x)]− P
x∼Dtrain

X

[f∗(x) ̸= f̂(x)] ≤ ϵ (4.1)

We also have that err(f̂ ;Dtrain
XY ) ≤ errA with probability at least 1− δ/2 from the error guarantee of A.

We are now ready to bound err(f̂ ;Dtest
XY ). We have that

err(f̂ ;Dtest
XY ) ≤ err(f∗;Dtest

XY ) + P
x∼Dtest

X

[f∗(x) ̸= f̂(x)]

≤ err(f∗;Dtest
XY ) + P

x∼Dtrain
X

[f∗(x) ̸= f̂(x)] + ϵ

≤ err(f∗;Dtest
XY ) + P

(x,y)∼Dtrain
XY

[f∗(x) ̸= y] + P
(x,y)∼Dtrain

XY

[f̂(x) ̸= y]

≤ err(f∗;Dtrain
XY ) + err(f∗;Dtest

XY ) + errA ≤ λ+ errA + ϵ .

The first and third inequalities follow from the triangle inequality. The second inequality follows from
Equation (4.1). The penultimate inequality follows from the error guarantee of A. The last inequality
follows from the definition of λ.

Completeness This follows immediately from the completeness guarantee of Theorem 4.3. As seen
before, the success probability can be boosted to 1− δ/2. Thus, the tester accepts when Dtest

X = Dtrain
X

with probability at least 1− δ/2.

Remark 4.5. The above theorem completely decouples training and testing. This is in contrast to the Kli-
vans et al. 2023 which don’t make this distinction. In particular, this forces their output hypothesis to be
polynomial threshold function. In our theorem, the hypothesis can be any function output by the training
algorithm A that achieves low error. This is also in contrast with the other TDS learning algorithms in
this paper that require additional structure from the hypothesis output by the training algorithm.

In fact, we can drop Assumption 3 from Theorem 4.4 entirely, if we restrict our training algorithm.
In particular, we use the following theorem from [KKMS08].

Theorem 4.6 (Theorem 5 from [KKMS08]). Let D be a distribution on X × {±1} for X ⊆ Rd with
marginal DX . Let ϵ, δ ∈ (0, 1). Let C be a class of functions such that for all f ∈ C, there exists
polynomials p of degree ℓ such that Ex∼Dx [|f(x) − p(x)|] ≤ ϵ. Then there exists an agnostic learning
algorithm A that has run time and sample complexity at most poly(dℓ, 1/ϵ, log(1/δ)) that outputs a
hypothesis f̂ such that with probability at least 1− δ, we have that

P
(x,y)∼D

[y ̸= f̂(x)] ≤ inf
f∈C

P
(x,y)∼D

[f(x) ̸= y]

Armed with this, we give our end to end result that L1 sandwiching implies TDS learning.

Theorem 4.7 (L1-sandwiching implies TDS learning). Let D be a distribution over a set X ⊆ Rd. Let
C ⊆ {X → {±1}} be a concept class. Let ϵ, δ ∈ (0, 1). Let H = {±1}X . Assume that the following
are true.

1. (L1-sandwiching) The ϵ-approximate L1 sandwiching degree of C under D is ℓ with bound B.

2. (Chow-concentration) For any function f̂ ∈ H, if X ∼ D⊗m with m ≥ mconc, then w.p. at least
9/10, we have that for all α ∈ Nd with ∥α∥1 ≤ ℓ,

∣∣ED[f̂(x) · xα]− EX [f̂(x) · xα]
∣∣ ≤ ϵ

Bd2ℓ
.
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Then, there exists an algorithm that takes poly(dℓ, 1/ϵ) labelled samples from the training distribution,
O
(
(mconc + 1/ϵ2) · log(1/δ)

)
unlabelled test samples, runs in time poly

(
mconc, d

ℓ, 1ϵ , log(1/δ)
)

and
TDS learns C with respect to D up to error λ+ opttrain + ϵ and fails with probability at most δ.

Proof. Observe that L1 sandwiching polynomials are also L1 approximating polynomials. Thus, C sat-
isfies the requirements of Theorem 4.6. Thus, we can run Algorithm 2 with A instantiated to be the
algorithm from Theorem 4.6. The proof of correctness follows from Algorithm 2.

We now argue that when Dtrain
X ∈ {Unif{±1}d,Nd}, then we have that Assumption 2 of Theo-

rem 4.4 is always true with mconc ≤ poly(dℓB/ϵ).

Lemma 4.8. Let D ∈ {Unif{±1}d,Nd}. Let f be a function taking values in {±1}. Let ℓ ∈ N. Let
X ∼ D⊗mconc for mconc ≥ poly(dℓ/ϵ). Then, with probability atleast 9/10 over S, we have that for all
α ∈ Nd with ∥α∥1 ≤ ℓ, ∣∣E

D
[f(x) · xα]− E

X
[f(x) · xα]

∣∣ ≤ ϵ.

Proof. For α ∈ Nd, let Ẑ = EX [f(x) · xα] be the empirical mean over the samples. Let Z =

ED[f(x) · xα] be the true mean. Clearly, EX [Ẑ] = Z. Thus, we have that PX [|Ẑ − Z| ≥ ϵ] ≤ VarX [Ẑ]
ϵ2

.
We have that VarX [Ẑ] ≤ 1

mconc
Var[f(x) · xα]. We have that Var[f(x) · xα] ≤ ED[x

2α] from the
fact that f takes values in {±1}. When D = Unif{±1}d, x2α = 1. When D = Nd, we have that
ED[x

2α] ≤ poly(dℓ)(see Proposition 2.5.2 [Ver18]). Thus, Thus, choosing mconc = poly(dℓ/ϵ), we
have that PX [|Ẑ − Z| ≥ ϵ] ≤ ϵ

dΩ(ℓ) . Taking a union bound over all α ∈ Nd completes the proof.

Applying Theorem 4.7, Lemma 4.8 and the bounds on the sandwiching degrees(Lemmas B.13, B.14
and B.17) from Appendix B.2, we immediately get the following results on TDS learning as corollaries.

Corollary 4.9 (TDS learning for degree 2 PTFs with respect to Unif{±1}d or Nd). Let C be the class of
degree-2 PTFs. Let ϵ > 0 and ℓ = Õ(1/ϵ9). Then, there exists an algorithm that runs in time dO(ℓ) and
TDS learning C with respect to Unif{±1}d or Nd with error at most opttrain + λ+ ϵ.

Corollary 4.10 (TDS learning for depth-t AC0). Let C be the class of depth-t AC0 circuits of size s on
{±1}d. Let ϵ > 0 and ℓ = (log s)O(t) log(1/ϵ). Then, there exists an algorithm that runs in time dO(ℓ)

and TDS learning C with respect to Unif{±1}d with error at most opttrain + λ+ ϵ.

5 Cylindrical Grids Tester

We focus on functions whose values only depend on the projection of the input on some low-dimensional
subspace, i.e., we focus on the class of subspace juntas, which is formally defined as follows.

Definition 5.1 (Subspace Junta). We say that a function f : Rd → {±1} is a k-subspace junta if there
exists W ∈ Rk×d with ∥W∥2 = 1 and WW⊤ = Ik as well as a function F : Rk → {±1} such that

f(x) = fW (x) = F (Wx) for any x ∈ Rd

Since such functions only depend on a low-dimensional subspace, one might hope to exploit this
property to obtain more efficient discrepancy testers. However, the relevant subspaces of different sub-
space juntas can be completely different and the low dimensional structure of a class of subspace juntas
does not seem enough to provide significant improvements for global discrepancy testing. Nevertheless,
it turns out that testing the localized discrepancy with respect to a notion of subspace neighborhood can
be benefited by the low-dimensional structure. In particular, we define the notion of subspace neighbor-
hood as follows.
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Definition 5.2 (Subspace Neighborhood). Let H be the class of k-subspace juntas (see Definition 5.1)
and C be some concept class. We define the (γs, γe)-subspace neighborhood Ns : H → Pow(C) as
follows for any f̂ = f̂V ∈ H.

Ns(f̂V ) = {fW ∈ C | ∥W − V ∥2 ≤ γs and P
x∼N

[f(x) ̸= f̂(x)] ≤ γe}

To design efficient testers for localized discrepancy in terms of the subspace neighborhood, we also
use the notion of boundary of concepts and we require the boundaries to be smooth, meaning that the
measure of the region close to the boundaries scales proportionally to its thickness. Formally, we provide
the following definitions.

Definition 5.3 (Boundary of Concept). Let F : Rk → {±1} some concept. For ϱ ≥ 0, we denote ∂ϱF
the ϱ-boundary of F , i.e., the region {x ∈ Rk : ∃z ∈ Rk with ∥z∥2 ≤ ϱ and F (x+ z) ̸= F (x)}.

Definition 5.4 (Smooth Boundary). Let F : Rk → {±1}. For σ ≥ 1, we say that F has σ-smooth
boundary with respect to Nk if for any ϱ ≥ 0

P
x∼Nk

[x ∈ ∂ϱF ] := P
x∼Nk

[∃z : ∥z∥2 ≤ ϱ, F (x+ z) ̸= F (x)] ≤ σϱ

As we will show shortly, the choice of the subspace neighborhood not only enables obtaining faster
localized discrepancy testers, but also testers that are guaranteed to accept much wider classes of distri-
butions. This is because the properties of the test marginal that need to be tested in order to ensure low
localized discrepancy are much simpler, compared to the properties required for global discrepancy. Such
properties are not only easy to test, but are also satisfied by more distributions. The structural properties
we will require for the completeness criteria of our algorithms are concentration in every direction and
anti-concentration of low-dimensional marginals. More formally, we consider structured distributions to
be as follows.

Definition 5.5 (Structured Distributions). For µc : N → R+, µac : R+ → R+, k, d ∈ N with k ≤ d, we
say that the distribution D over Rd is (µc, µac)-structured on k-dimensions (w.r.t. Nk), if the following
are true.

1. (Concentration) For any v ∈ Sd−1 and p ∈ N, we have Ex∼D′ [(v · x)2p] ≤ µc(p).

2. (Anti-concentration) For any subspace U of dimension k, if Q is the density of the marginal of D
on U we have Q(x)

Nk(x)
≤ µac(R) for any x ∈ Rk with ∥x∥2 ≤ R.

Moreover, if k = d, we simply say that D is (µc, µac)-structured.

Remark 5.6. We note that the two conditions of Definition 5.5 are not always independent. For example,
if µac(R) = O(1), then the distribution Q of condition 2 is subgaussian, which implies a bound on µc(p)
for all p ∈ N (i.e., implies some version of condition 1). However, the anti-concentration condition
does not always imply the concentration condition (e.g., if µac(R) = Θ(eR

2/2)) and both conditions are
important.

For example, isotropic log-concave distributions are structured on k-dimensions with µc(p) ≤ (O(p))2p

and µac(R) = (O(k))k exp(R
2

2 ).
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5.1 Discrepancy Testing Result

We now provide our main localized discrepancy testing result for subspace juntas with smooth bound-
aries, where we use some free parameters R, p that can be chosen according to how structured the target
accepted class of distribution is.

Theorem 5.7 (Discrepancy Testing through Cylindrical Grids). Let µc : N → R≥1, µac : R+ → R≥1,
p ∈ N, R, σ, σ̂ ≥ 1 and γs, γe ∈ (0, 1). Let also H (resp. C) be a class whose elements are k-subspace
juntas over Rd with σ̂-smooth (resp. σ-smooth) boundaries. Consider D to be the class of distributions
over Rd that are (µc, µac)-structured on k-dimensions and Ns : H → Pow(C) the (γs, γe)-subspace
neighborhood. For any ϵ ∈ (0, 1), there is a (Ns, ψ + ϵ)-tester (Algorithm 3) for localized discrepancy

from Nd with respect to D with sample complexity m = 10µc(2)
(µc(1))2

d4+ 12R2p

kµc(p)
+ 14k(

√
2π exp(R2))k

µac(R
√
k)ηk

ln(3Rη )+

O( 1
ϵ2
) and time complexity O(md3 + mdk(2⌈Rη ⌉)

k), where η = γsRp

2σ̂
√
k

√
µc(1)/µc(p) and the error

parameter ψ is

ψ =
14kµc(p)

R2p
+ 12

(2kR2pµc(1) lnµac(R
√
k)

µc(p)

) 1
2
µac(R

√
k)σγs + 2µac(R

√
k)γe

Algorithm 3: Cylindrical Grids Tester

Input: Set X of points in Rd, matrix V ∈ Rk×d, parameters p ∈ N, R ≥ 1, η > 0
Compute the matrix M = Ex∼X [xx⊤] and reject if the largest eigenvalue is larger than 2µc(1).
Compute the quantity Px∼X [∥V x∥∞ > R] and reject if the value is larger than 2kµc(p)

R2p .
Let I = {−⌈Rη ⌉, . . . ,−1, 0, . . . , ⌈Rη ⌉ − 1} and consider the grid
Gη,R = {[i1η, (i1 + 1)η]× · · · × [ikη, (ik + 1)η] : i1, . . . , ik ∈ I}

for each grid cell G ∈ Gη,R do
Compute the quantity Px∼X [V x ∈ G] and reject if the value is larger than
2µac(R

√
k)Px∼N [V x ∈ G].

Otherwise, accept.

For different target distribution classes we obtain different results, that reveal a trade-off between
universality and the size of the subspace neighborhood tested. To accept wider classes of distributions, we
restrict to testing localized discrepancy with respect to narrower neighborhoods, which is parameterized
by γs and γe in the following corollary. Eventually, for applications in TDS learning, this will result into
requiring the training algorithm to provide stronger error guarantees by using more training examples
and time.

Corollary 5.8. Let ϵ ∈ (0, 1), let H, C, σ, σ̂ be as in Theorem 5.7 and let Ns : H → Pow(C) be the
(γs, γe)-subspace neighborhood (on k dimensions). For a class of distributions D over Rd, there is a
(Ns, ϵ)-tester for localized discrepancy from Nd with respect to D in each of the following cases for
appropriately large universal constants C1, C2 ≥ 1.

1. D = {Nd}, σγs ≤ γe ≤ ( ϵ
C1k

)C2 . The tester has time & sample complexity poly(d)(kϵ )
O(k)(σσ̂)k.

2. D is the class of C-subgaussian and isotropic log-concave measures over Rd for some C = O(1)
and σγs ≤ γe ≤ ( ϵ

C1
)C2k. The tester has time and sample complexity poly(d)(kϵ )

O(k2)(σσ̂)k.

3. D is the class of isotropic log-concave measures over Rd and also σγs ≤ γe ≤ ( 1
C1

)−C2k2 log
2(1/ϵ).

The tester has time and sample complexity poly(d)kO(k3 log2(1/ϵ))(σσ̂)k.
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4. D is the class of distributions over Rd that are (µc, µac)-structured on k-dimensions, with µc(2) ≤
C and µac(R) ≤ Ck2eR

2/2 for some C = O(1) and σγs ≤ γe ≤ ( 1
C1

)−C2k2/ϵ. The tester has

time and sample complexity poly(d)kO(k3/ϵ2)(σσ̂)k.

Proof. To apply Theorem 5.7 in each case, it suffices to show bounds for µc(p) and µac(R
√
k) for

each of the choices for D. We then pick p = log(1/ϵ) in Cases 1,2 and 3 and p = 1 in Case 4 and
R sufficiently small to achieve error guarantee ϵ. For Case 1, µc(p) ≤ (Cp)p and µac(R

√
k) ≤ 1.

For case 2, µc(p) ≤ (2Cp)p and µac(R
√
k) ≤ (Ck)kekR

2/2. Finally, for Case 3, µc(p) ≤ (Cp)2p

and µac(R
√
k) ≤ (Ck)kekR

2/2. These bounds follow from properties of log-concave and subgaussian
distributions (see, e.g., [LV07, Ver18]).

In order to prove Theorem 5.7, we first provide a tester which can certify that the mass assigned by
the tested distribution to the region near the boundary of any function with smooth boundary is bounded.
Structured distributions (Definition 5.5) indeed have this property and the proposed tester can certify it
universally over the class of such distributions.

This can be done by considering a cover the low-dimensional space by a grid of bounded size and
checking whether the probability of falling within each of the grid cells is appropriately bounded. To
account for grid cells that are far from the origin, it suffices to check that the tested distribution is suffi-
ciently concentrated. If these tests pass, then we have a certificate that the mass of the tested distribution
close to the boundary of any smooth function is appropriately bounded, because such regions can be
covered by the union of a relatively small number of grid cells (see Figure 2).

Lemma 5.9 (Grids Tester). Let µc : N → R+, µac : R+ → R+, p ∈ N, R, σ ≥ 1 and ϱ ∈ (0, 1). There
is a tester T which, upon receiving a set X of vectors in Rk, and in time |X| · (O(R

√
k

ϱ ))k, either accepts
or rejects and satisfies the following.

(a) (Soundness.) If T accepts, then for any F : Rk → {±1} with σ-smooth boundary we have

P
x∼X

[x ∈ ∂ϱF ] ≤
2kµc(p)

R2p
+ 4σϱµac(R

√
k)

(b) (Completeness.) If X consists of at least 12R2p

kµc(p)
+ 14k(3

√
2πk exp(R2))k

µac(R
√
k)ϱk

ln(9Rk
ϱ ) i.i.d. examples from

some (µc, µac)-structured distribution over Rk, then T accepts with probability at least 99%.

Proof. Let η = ϱ

3
√
k

be some parameter, I = {−⌈Rη ⌉, . . . ,−1, 0, . . . , ⌈Rη ⌉ − 1} be a set of indices and
Gη,R = {[i1η, (i1 +1)η]× · · · × [ikη, (ik +1)η] : i1, . . . , ik ∈ I} the corresponding finite grid with cell
length η (each cell corresponds to a hypercube in Rk, the cartesian product of k intervals each of length
η). The tester does the following.

1. Computes the quantity Px∼X [∥x∥∞ > R] and rejects if the computed value is larger than 2kµc(p)
R2p .

2. For each cell G in the grid Gη,R, computes the quantity Px∼X [x ∈ G] and rejects if the computed
value is Px∼X [x ∈ G] > 2µac(R

√
k)Px∼Nk

[x ∈ G].

3. Otherwise, the tester accepts.
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Soundness. Suppose that the tester T has accepted. This means that the quantities Px∼X [∥x∥∞ > R]
and Px∼X [x ∈ G] are appropriately bounded (for any G ∈ Gη,R). Let F be any function with σ-smooth
boundary with respect to Nk.

Consider G̃ ⊆ Gη,R to be the set of grid cells that have non-empty intersection with the set ∂ϱF (see
Definition 5.3), i.e., G̃ := {G ∈ Gη,R : G ∩ ∂ϱF ̸= ∅}. Observe that if x ∈ ∂ϱF then either ∥x∥∞ > R,
or x ∈ G for some G ∈ G̃, because the grid covers the set {x : ∥x∥∞ ≤ R}. Moreover, if x ∈ G̃,
then there is a point y ∈ G̃ ∩ ∂ϱF that falls in the same cell as x and, therefore, ∥x − y∥2 ≤ η

√
k,

because each cell has length η. This implies that x ∈ ∂ϱ+η
√
kF . We overall have the following (see also

Figure 2).
∂ϱF \ {x : ∥x∥∞ > R} ⊆

⋃
G∈G̃

G ⊆ ∂ϱ̃F , where ϱ̃ := ϱ+ η
√
k (5.1)

Figure 2: Discretization of smooth boundary

Combining the first inclusion in expression (5.1) with the fact that the tester has accepted, the quantity
Px∼X [x ∈ ∂ϱF ] is bounded as follows.

P
x∼X

[x ∈ ∂ϱF ] ≤ P
x∼X

[∥x∥∞ > R] +
∑
G∈G̃

P
x∼X

[x ∈ G]

≤ 2kµc(p)

R2p
+ 2µac(R

√
k)
∑
G∈G̃

P
x∼Nk

[x ∈ G]

For anyG,G′ ∈ G̃ withG ̸= G′, the events that x ∈ G and that x ∈ G′ are mutually exclusive. Therefore∑
G∈G̃ Px∼Nk

[x ∈ G] = Px∼Nk
[x ∈ ∪G∈G̃G] ≤ Px∼Nk

[x ∈ ∂ϱ̃F ], where the final inequality follows
from the second inclusion in expression (5.1). Since F has σ-smooth boundary, we have Px∼Nk

[x ∈
∂ϱ̃F ] ≤ σϱ̃. Overall, we have

P
x∼X

[x ∈ ∂ϱF ] ≤
2kµc(p)

R2p
+ 2σ(ϱ+ η

√
k)µac(R

√
k)

≤ 2kµc(p)

R2p
+ 4σϱµac(R

√
k) , as desired.
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Completeness. Suppose, now, that the examples X are drawn i.i.d. from a (µc, µac)-structured distri-
bution Q. We first show that, with probability at least 1− 1

200 , we have Px∼X [∥x∥∞ > R] ≤ 2kµc(p)
R2p .

We first bound the quantity Px∼Q[∥x∥∞ > R], by using Markov’s inequality as follows.

P
x∼Q

[∥x∥∞ > R] ≤ k sup
v∈Sk−1

P
x∼Q

[|v · x| > R]

≤ k
supv∈Sk−1 Ex∼Q[(v · x)2p]

R2p

≤ kµc(p)

R2p
, since Q is structured.

By the multiplicative Chernoff bound2, we have that Px∼X [∥x∥∞ > R] ≤ 2Px∼Q[∥x∥∞ > R] with
probability at least 1− exp(−|X |kµc(p)

2R2p ) ≥ 1− 1
200 , since |X| ≥ 12R2p

kµc(p)
.

We will show that for each G ∈ Gη,R, Px∼X [x ∈ G] ≤ 2µac(R
√
k)Px∼Nk

[x ∈ G], with probability
at least 1− exp(− |X|

2 µac(R
√
k)ηk/(

√
2πeR

2
)k). The desired result then follows by a union bound over

Gη,R (where |Gη,R| ≤ (3R/η)k) and the fact that |X| ≥ 14k(
√
2π exp(R2))k

µac(R
√
k)ηk

ln(3Rη ).

We first bound Px∼Q[x ∈ G] as follows by using the fact that Q is structured & ∥x∥2 ≤ ∥x∥∞
√
k ≤

R
√
k for all x ∈ G (because G ∈ Gη,R).

P
x∼Q

[x ∈ G] =

∫
x∈G

Q(x) dx ≤ µac(R
√
k)

∫
x∈G

N (x) dx = µac(R
√
k) P

x∼N
[x ∈ G]

By the multiplicative Chernoff bound, we once more have that Px∼X [x ∈ G] ≤ 2Px∼Q[x ∈ G] with
probability at least 1 − exp(− |X|

2 µac(R
√
k)Px∼N [x ∈ G]) and conclude the proof by observing that

Px∼N [x ∈ G] ≥ ( η√
2π exp(R2)

)k.

Remark 5.10. We note that Lemma 5.9 is not specialized to the Gaussian distribution. The only re-
quirement is that the distribution of the completeness criterion is structured with respect to the same
distribution for which the functions F of the soundness criterion have smooth boundary. In particular, in
Definition 5.5, the anti-concentration condition 2 is defined with respect to the Gaussian, but it could also
be defined with respect to some other distribution. The concentration condition 1 is always the same.

We are now ready to prove Theorem 5.7. The idea is that if a function f lies within the subspace
neighborhood of another function f̂ , then the disagreement region between the two functions is bounded
by the union of: (1) their disagreement after projecting on the relevant subspace for f̂ (since the subspace
is known, it can be tested exhaustively, similarly to Lemma 5.9) and (2) the region far from the origin
(for which testing concentration suffices).

Proof of Theorem 5.7. Let D′ be the unknown distribution and X a set of m i.i.d. samples from D′

and let η = γsRp

2σ̂
√
k

√
µc(1)
µc(p)

. Let (f̂V , X) be an instance of the localized discepancy testing problem (see
Definition 1.1). We run Algorithm 3 with input (X,V, p,R, η) and accept (or reject) accordingly.

Soundness. Suppose that the algorithm accepts. We will show that Px∼X [f̂(x) ̸= f(x)] ≤ ψ for any
f ∈ Ns(f̂). Since the event that f̂(x) ̸= f(x) is independent for each x ∈ X , we may apply the
Hoeffding bound to show that Px∼D′ [f̂(x) ̸= f(x)] ≤ ψ + ϵ with probability at least 3/4 whenever

2We use the version of the Chernoff bound that uses an upper bound on the expectation rather than the exact value, through
a standard coupling argument.
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|X| ≥ 3
ϵ2

. To bound the empirical quantity, we have the following, for Rs = Rp(µc(1)/µc(p))
1/2 and

ϱ = γsRs

σ̂ .

P
x∼X

[F (Wx) ̸= F̂ (V x)] ≤ P
x∼X

[F (Wx) ̸= F (V x)]︸ ︷︷ ︸
P1

+ P
x∼X

[F (V x) ̸= F̂ (V x)]︸ ︷︷ ︸
P2

For the term P1, we observe that F (Wx) = F ((W − V )x+ V x) and therefore

P1 ≤ P
x∼X

[∥(W − V )x∥2 ≥ γsRs] + P
x∼X

[∃z ∈ Rk : ∥z∥2 ≤ γsRs, F (V x+ z) ̸= F (V x)]

= P
x∼X

[∥(W − V )x∥2 ≥ γsRs] + P
x∼X

[V x ∈ ∂γsRsF ]

By applying Chebyshev’s inequality for the first term in the above expression and Lemma 5.9 for the
second term (note that we have chosen η ≤ γsRs

3
√
k

and Algorithm 3 runs the tester corresponding to
Lemma 5.9), we obtain the following bound for P1 (recall that ∥W − V ∥2 ≤ γs and ∥(W − V )x∥2 ≤
∥W − V ∥2∥ projU x∥2, where U is the span of the columns of the matrix W − V ).

P1 ≤
k supv∈Sd−1 Ex∼X [(v · x)2]

R2
s

+
2kµc(p)

R2p
+ 4σγsRsµac(R

√
k)

≤ 2kµc(1)

R2
s

+
2kµc(p)

R2p
+ 4σγsRsµac(R

√
k)

The last inequality follows from the spectral bound on the empirical covariance matrixM = Ex∼X [xx⊤]
implied by Algorithm 3 upon acceptance.

For the term P2, consider the set of grid cells G̃ with non-zero intersection with the disagreement
region, i.e., G̃ = {G ∈ Gη,R : there is x with V x ∈ G and F (V x) ̸= F̂ (V x)}. Recall that ϱ = η

√
k

and let G̃in be the interior part of G̃, i.e., G̃in = {G ∈ G̃ : for any x with V x ∈ G we have F (V x) ̸=
F̂ (V x)}}.

Let x be such that ∥V x∥∞ ≤ R, F (V x) ̸= F̂ (V x) and V x /∈ ∂ϱF ∪ ∂ϱF̂ . It must be that V x
lies within some grid cell in G̃in. To see this, note that V x must be in exactly one grid cell G in G̃ (by
definition of G̃) and if this grid cell was in G̃ \ G̃in, this would imply that for some x′ with V x′ ∈ G we
would have either F (V x) ̸= F (V x′) or F̂ (V x) ̸= F̂ (V x′) (because F, F̂ disagree on V x but agree on
V x′). However, ∥V x− V x′∥2 ≤ η

√
k = ϱ, because they are in the same grid cell and we conclude that

V x ∈ ∂ϱF ∪ ∂ϱF̂ , which is a contradiction. Overall, we have the following.

P2 ≤ P
x∼X

[∥V x∥∞ > R]︸ ︷︷ ︸
P21

+ P
x∼X

[V x ∈ ∂ϱF ]︸ ︷︷ ︸
P22

+ P
x∼X

[V x ∈ ∂ϱF̂ ]︸ ︷︷ ︸
P23

+
∑

G∈G̃in

P
x∼X

[V x ∈ G]

︸ ︷︷ ︸
P24

For the term P21, we use the bound implied by Algorithm 3, for the terms P22, P23 we apply Lemma 5.9
and for the term P24, we use the fact that (upon acceptance) Px∼X [V x ∈ G] ≤ 2µac(R

√
k)Px∼N [V x ∈

G] to obtain the following.

P24 ≤ 2µac(R
√
k)
∑

G∈G̃in

P
x∼N

[V x ∈ G]

≤ 2µac(R
√
k) P

x∼N
[F (V x) ̸= F̂ (V x)]
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We bound the quantity Px∼N [F (V x) ̸= F̂ (V x)] as follows.

P
x∼N

[F (V x) ̸= F̂ (V x)] ≤ P
x∼N

[F (Wx) ̸= F̂ (V x)] + P
x∼N

[F (Wx) ̸= F (V x)]

≤ γe + P
x∼N

[∥(W − V )x∥2 > γsR
′] + P

x∼N
[V x ∈ ∂γsR′F ]

≤ γe + 4ke−
R′2
2k + σγsR

′

where the last inequality follows from Gaussian concentration and the fact thatF has σ-smooth boundary.
By choosing R′ = (2k ln(R

2pµac(R
√
k)

µc(p)
))1/2, we obtain that

P24 ≤ 2µac(R
√
k)γe +

4kµc(p)

R2p
+ 2σγsµac(R

√
k)
(
2k ln

(R2pµac(R
√
k)

µc(p)

))1/2
Overall, for the term P2 we have the following bound.

P2 ≤
10kµc(p)

R2p
+ 10σγsR

p

√
2kµc(1)

µc(p)
µac(R

√
k)(lnµac(R

√
k))1/2 + 2γeµac(R

√
k)

Combining the bounds for P1 and P2, we obtain the desired result.

Completeness. Suppose, now, that D′ ∈ D. It suffices to show that all the tests will accept with
probability at least 3/4. For the quantity Px∼X [∥V x∥∞ > R] as well as the quantities Px∼X [V x ∈ G],
we apply the Chernoff Bound as described in the proof of completeness of the grid tester (see the proof
of Lemma 5.9). For the quantity M = Ex∼X [xx⊤], we use the Chebyshev’s inequality on each of the
random variables Mij = Ex∼X [xixj ], the fact that E[M2

ij ] ≤ µc(2) and a union bound over i, j ∈
[d].

5.2 Application to TDS Learning

Interestingly, in learning theory, there are algorithms that are guaranteed to recover the relevant subspace
for certain classes of subspace juntas that have some additional properties. This enables us to use the
discrepancy tester of Theorem 5.7 to obtain end-to-end results for TDS learning, because the training
phase can guarantee that the ground truth lies within the subspace neighborhood of the output hypothesis
f̂ , for which we have efficient localized discrepancy testers. Here, we present a TDS learning result for
balanced convex subspace juntas in the realizable setting. The class of balanced convex subspace juntas
is defined as follows.

Definition 5.11 (Balanced Convex Subspace Juntas). A concept f : Rd → {±1} is a β-balanced convex
k-subspace junta if it is β-balanced (see Definition A.1), convex and a k-subspace junta (see Defini-
tion 5.1).

We make use of known algorithms from PAC learning that are guaranteed to approximately recover
the effective ground-truth subspace in terms of geometric distance, which is important since the tester of
Theorem 5.7 works with respect to the subspace neighborhood and obtain the following theorem, which
underlines a trade-off between training time and universality.

Theorem 5.12 (TDS Learning of Convex Subspace Juntas). For β ∈ (0, 1/2), d, k ∈ N, let C be the
class of β-balanced convex k-subspace juntas over Rd. For any ϵ ∈ (0, 1), there is a (decoupled)
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ϵ-TDS learner for C with respect to Nd in the realizable setting, which, for the learning phase, uses
poly(d)( 1β )

poly(k/ϵ) samples and time and, for the testing phase, uses poly(d)(k/ϵ)O(k) samples and
time. Moreover, in the same setting, there is a D-universal ϵ-TDS learner for C for each of the cases
listed in Table 2.

Class D over Rd Training Time and Samples Testing Time and Samples

1
1-subgaussian &

Isotropic Log-Concave
poly(d)( 1β )

poly(1/ϵk) poly(d)(k/ϵ)O(k2)

2 Isotropic Log-Concave poly(d)( 1β )
2−O(k2 log2(1/ϵ))

poly(d)kO(k3 log2(1/ϵ))

3

Fourth Moments Bound:
E[(v · x)4] ≤ C∥v∥42 &
Dimension-k Marginals

Density Bound: Ck2

poly(d)( 1β )
2−O(k2/ϵ)

poly(d)kO(k3/ϵ2)

Table 2: Specifications for D-universal (ϵ, δ)-TDS learning of β-balanced convex k-subspace juntas. The
properties that define the class D in line 3, hold for some given universal constantC ≥ 1, for all members
of D, for all v ∈ Rd and the density bound holds for any projection on some k-dimensional subspace of
any member of D.

In order to obtain a TDS learner for some class C, one might hope to learn a hypothesis f̂ during the
training phase, such that the subspace neighborhood of f̂ (see Definition 5.2) contains the ground truth.
Then, the test error can be bounded simply by running the localized discrepancy tester of Theorem 5.7,
assuming that both f̂ and the class C have smooth boundaries. In Appendix B.1, we show that, indeed,
convex subspace juntas have smooth boundaries. However, for the learning guarantee, prior work in
standard PAC learning implicitly provides the following weaker guarantee regarding subspace retrieval
for convex subspace juntas, which, as we show, is, nevertheless, still sufficient for our purposes.

Theorem 5.13 (Implicit in [Vem10a], see also [KSV24a]). For any γ ∈ (0, 1), β ∈ (0, 1/2), there is an
algorithm that, upon receiving a number of i.i.d. examples from Nd, labeled by some β-balanced convex
k-subspace junta f∗(x) = F ∗(W ∗x), runs in time poly(d)( 1β )

poly(k/γ) and returns, w.p. at least 0.99,
some polynomial q̂ : Rk → {±1} of degree at most poly(k/γ) and some V ∈ Rk×d with V V ⊤ = Ik
such that the following are true for the hypothesis f̂(x) = sign(q̂(V x)) and some f(x) = F ∗(Wx) with
WW⊤ = Ik.

(a) f ∈ Ns(f̂), where Ns is the k-dimensional (γ, γ)-subspace neighborhood, i.e., ∥W − V ∥2 ≤ γ
and Px∼Nd

[f(x) ̸= f̂(x)] ≤ γ.

(b) For any x ∈ Rd with ∥W ∗x∥2 ≤
√
k/γ, we have f(x) = f∗(x).

We are now ready to prove Theorem 5.12.

Proof of Theorem 5.12. Our plan is to combine Theorem 5.7 with Theorem 5.13. We will use an ad-
ditional test, to account for the fact that Theorem 5.13 does not provide exact subspace recovery, but,
rather, recovery of the effectively relevant subspace (see Item (b)).

Suppose that the training distribution Dtrain
XY has marginal Dtrain

X = Nd and that the labels (both in
training and in test distribution Dtest

XY as well) are generated by some β-balanced convex k-subspace junta
f∗ : Rd → {±1}, where f∗(x) = F ∗(W ∗x) for some W ∗ ∈ Rk×d with W ∗W ∗⊤ = Ik.
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Learning Phase. The learner runs the algorithm of Theorem 5.13 for γ chosen so that the error pa-
rameter ϵ′(γ) of Theorem 5.7 is at most ϵ′ ≤ ϵ/3 using labeled examples from Dtrain

XY and computes
f̂(x) = sign(q̂(V x)) with the corresponding specifications. For the particular choice of γ, see Corol-
lary 5.8, where σ = poly(k) according to Lemma B.8.

Testing Phase. The tester first computes the maximum eigenvalue of the matrix Ex∼Xtest [xx
⊤] using

samples Xtest drawn from Dtest
X and rejects if the quantity is larger than 2. Then, the tester runs the

localized discrepancy tester of Theorem 5.7 and rejects or accepts accordingly.

Testing Run-Time. To bound the testing run-time we use Corollary 5.8, where σ = poly(k) (because
C is the class of convex subspace juntas and due to Lemma B.8) and σ̂ = poly(k/γ), because f̂ is
a polynomial threshold function of degree poly(k/γ) and, therefore, has poly(k/γ)-smooth boundary
according to Lemma B.1.

Soundness. If the tester accepts & |Xtest| ≥ poly(1/ϵ), then we have Px∼Dtest
X

[∥W ∗x∥2 >
√
k/γ] ≤

Px∼Xtest [∥W ∗x∥2 >
√
k/γ] + ϵ/6 (by the Hoeffding bound) and Px∼Xtest [∥W ∗x∥2 >

√
k/γ] ≤ 2γ ≤

ϵ/6 for γ ≤ ϵ/12. Hence, overall, by combining Theorem 5.13 with the guarantees from the fact that the
testing phase has accepted, we have

err(f̂ ;Dtest
XY ) = P

x∼Dtest
XY

[f∗(x) ̸= f̂(x)]

≤ P
x∼Dtest

X

[∥W ∗x∥2 >
√
k/γ] + P

x∼Dtest
X

[f̂(x) ̸= f(x)]

≤ ϵ

3
+ P

x∼Nd

[f̂(x) ̸= f(x)] +
ϵ

3

≤ 2ϵ

3
+ γ ≤ ϵ ,

where we used the soundness property of the cylindrical grids tester (Theorem 5.7 and Corollary 5.8)
and the fact that f is a hypothesis with the properties specified in Theorem 5.13 and, in particular, lies
within the subspace neighborhood of f̂ .

Completeness. Combine the completeness guarantee of Theorem 5.7 and the fact that Ex∼Xtest [xx
⊤]

has, with probability at least 0.99, bounded maximum eigenvalue whenever Dtest
X lies within D (for any

D in Table 2) and |Stest| ≥ poly(d).

6 Testing Boundary Proximity

We now focus on classes of low-dimensional concepts (see Definition 5.1) that are locally structured. In
particular, we consider subspace juntas that are locally balanced, meaning that near any point x in the
domain, there are several points with the same label as x. This condition is important to ensure that there
are, for example, no zero measure regions over the (Gaussian) training distribution that contain signif-
icant information about the ground truth. We will show that this condition actually enables significant
improvements for the testing runtime for TDS learning. More formally, we give the following definition.
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Definition 6.1 (Locally Balanced Concepts). For R ≥ 1 and r, β ∈ (0, 1), we say that a function
F : Rk → {±1} is (R, r)-locally β-balanced if for any ϱ ≤ r and x ∈ Rk with ∥x∥2 ≤ R, the following
is true.

P
z∼Nk

[F (z) = F (x) | z ∈ Bk(x, ϱ)] > β

For a subspace junta f(x) = F (Wx), we say that f is (R, r)-locally β-balanced on the relevant subspace
if F is (R, r)-locally β-balanced.

For locally balanced concepts, it is possible to obtain efficient localized discrepancy testers with
respect to the disagreement neighborhood, i.e., the neighborhood of concepts that have low disagreement
with the reference hypothesis f̂ under the Gaussian distribution (or, in general, the reference distribution
at hand).

Definition 6.2 (Disagreement Neighborhood). Let H and C be some concept classes. We define the
(Gaussian) γe-disagreement neighborhood Ne : H → Pow(C) as follows for any f̂ ∈ H.

Ne(f̂) = {f ∈ C | P
x∼N

[f(x) ̸= f̂(x)] ≤ γe}

We also define the boundary proximity tester, which directly tests whether the probability of falling
close to the boundary of some reference hypothesis f̂ is appropriately bounded. This testing problem
can be solved efficiently, for example, for the fundamental class of halfspace intersections.

Definition 6.3 (Boundary Proximity Tester). For σ̂ ≥ 1, ϱ ∈ (0, 1), let H be some class of functions from
Rd to {±1} and let D be some class of distributions over Rd. The tester T is called a (ϱ, σ̂)-boundary
proximity tester for H with respect to D if, upon receiving some f̂ ∈ H and a set X of points in Rd, the
tester either accepts or rejects and satisfies the following.

(a) (Soundness.) If T accepts, then Px∼X [x ∈ ∂ϱf̂ ] ≤ σ̂ϱ.

(b) (Completeness.) If X consists of (at least) mT i.i.d. examples from some distribution in D, then
the tester T accepts with probability at least 99%.

Note that the complexity of boundary proximity testing depends on the simplicity of f̂ and, therefore,
considering applications in TDS learning, where f̂ is the output of the learning algorithm, highlights the
importance of proper learning algorithms that output some simple hypothesis with low error. Since the
hypothesis is simple, disagreement-localized discrepancy testing is tractable and since its error is low,
the ground truth is likely within the disagreement neighborhood and disagreement-localized discrepancy
testing suffices to guarantee low test error.

6.1 Discrepancy Testing Result

In order to obtain a localized discrepancy tester assuming access to a boundary proximity tester, we
first show a simple proposition connecting local balance condition with boundary proximity testing. In
particular, if two functions have low Gaussian disagreement, but one of them is locally balanced, then
all of the points of disagreement are either close to the boundary of the other function, or far from the
origin.

Proposition 6.4 (Localization of Disagreement from Locally Balanced Concepts). Let F, F̂ : Rk →
{±1}, where F is (R, ϱ)-locally β-balanced and F, F̂ have disagreement γ = β inf∥x∥2≤R Pz∼Nk

[z ∈
Bk(x, ϱ)], i.e., Pz∼Nk

[F (z) ̸= F̂ (z)] ≤ γ. Then, for any x with ∥x∥2 ≤ R and F (x) ̸= F̂ (x), we have
x ∈ ∂ϱF̂ .
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Proof of Proposition 6.4. Suppose, for contradiction, that there exists some x ∈ Rk with ∥x∥2 ≤ R
and F (x) ̸= F̂ (x), for which x /∈ ∂ϱF̂ . Then, it must be that F̂ (z) = F̂ (x) for all z ∈ Bk(x, ϱ)

(otherwise, x ∈ ∂ϱF̂ ). We have that Pz∼Nk
[F (z) ̸= F̂ (z)] ≥ Pz∼Nk

[z ∈ Bk(x, ϱ) and F (z) ̸= F̂ (z)]

and also F (z) ̸= F̂ (z) is equivalent to F (z) ̸= F̂ (x) (because F̂ (z) = F̂ (x)), which, in turn, is
equivalent to F (z) = F (x) (because F (x) ̸= F̂ (x)). Overall, Pz∼Nk

[F (z) ̸= F̂ (z)] ≥ Pz∼Nk
[z ∈

Bk(x, ϱ) and F (z) = F (x)] > γ, by assumption, and we reached contradiction.

Remark 6.5. Note that Proposition 6.4 is not specialized to the Gaussian disagreement between F and
F̂ , but would also work for any distribution Q, if the local balance (Definition 6.1) was also defined w.r.t.
Q.

We combine the boundary proximity tester with a moment matching tester for concentration (to
bound the probability of falling far from the origin) to obtain a non-universal localized discrepancy tester
(Theorem 6.6). If we instead use a spectral tester for concentration, we obtain a universal localized
discrepancy tester (Theorem 6.7).

Theorem 6.6 (Discrepancy Testing through Boundary Proximity). Let p ∈ N, R, σ̂ ≥ 1, r, β ∈ (0, 1)

and 0 ≤ γe ≤ βrk

kk/2
e−2R2

. Let also H and C be a classes whose elements are k-subspace juntas
over Rd and Ne : H → Pow(C) the γe-disagreement neighborhood. Assume that the elements of
C are (R, r)-locally β-balanced on the relevant subspaces and let T be a (ϱ, σ̂)-boundary proximity
tester for H w.r.t. Nd, requiring mT samples, with ϱ = (γeβ )1/k

√
ke2R

2/k. For any ϵ ∈ (0, 1), there
is a (Ne, ψ + ϵ)-tester for localized discrepancy from Nd with respect to Nd with sample complexity
m = mT +O(dk)4p+1+O( 1

ϵ2
), that calls T once and uses additional timeO(md2p+1), where the error

parameter ψ is

ψ = 2
(4kp
R2

)p
+ σ̂

√
k
(γe exp(2R2)

β

)1/k
Proof of Theorem 6.6. Let ϱ = (γe/β)

1/k
√
k exp(2R2/k), ∆ = 1

(2kd)2p
and let (f̂ , X) be an instance of

the localized discrepancy problem (see Definition 1.1). The algorithm does the following.

1. For each α ∈ Nd with ∥α∥1 ≤ 2p, compute the quantities Mα = Ex∼X [xα] = Ex∼X [
∏

i∈[d] x
αi
i ]

and reject if for some α as such, we have |Mα − Ex∼N [xα]| > ∆.

2. Run the boundary proximity tester T with inputs (ϱ, f̂ ,X) and reject if T rejects.

3. Otherwise, accept.

Soundness. Assume, first, that all of the tests have passed. We will show that for any f ∈ Ne(f̂),
we have Px∼X [f(x) ̸= f̂(x)] ≤ ψ. Since the event that f̂(x) ̸= f(x) is independent for each x ∈ X ,
we may apply the Hoeffding bound to show that Px∼D′ [f̂(x) ̸= f(x)] ≤ ψ + ϵ with probability at
least 3/4 whenever |X| ≥ 3

ϵ2
. Since f and f̂ are k-subspace juntas, we have that f(x) = F (Wx) and

f̂(x) = F̂ (V x) for W,V ∈ Rk×d so that WW⊤ = V V ⊤ = Ik. Let U ∈ R2k×d be a matrix such that
UU⊤ = I2k and the span of the rows of U contains the span of the rows of W and of V taken together.
This, together with the fact that WW⊤ = Ik, imply that for any x ∈ Rd we have Wx = WU⊤Ux and,
similarly, V x = V U⊤Ux (the part of x that falls within the subspace spanned by the rows of W does
not change by applying the projection matrix U⊤U and the remaining part is irrelevant). Moreover, we
have that ∥U∥2 = ∥U⊤∥2 = ∥W∥2 = ∥V ∥⊤2 = 1. Let F ′(z) = F (WU⊤z) and F̂ ′(z) = F̂ (V U⊤z).

We have that Px∼N [F ′(Ux) ̸= F̂ ′(Ux)] ≤ γe, by assumption. By Proposition 6.4, applied on
F ′, F̂ ′, and since γe ≤ βrk

kk/2
e−2R2

, we have that for any x ∈ Rd such that F ′(Ux) ̸= F̂ ′(Ux) (i.e.,
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F (Wx) ̸= F̂ (V x))) at least one of the following is true: (a) ∥Ux∥2 ≥ R or (b) Ux ∈ ∂ϱF̂
′. According

to Proposition 6.8, Ux ∈ ∂ϱF̂ ′ implies that V U⊤Ux ∈ ∂ϱF̂ , which, in turn, implies that V x ∈ ∂ϱF̂ ,
since V x = V U⊤Ux and therefore, by Proposition 6.8 we also have that x ∈ ∂ϱf̂ . Therefore, overall,
we have

P
x∼X

[f(x) ̸= f̂(x)] ≤ P
x∼X

[∥Ux∥2 ≥ R] + P
x∼X

[x ∈ ∂ϱf̂ ]

In order to bound the term Px∼X [∥Ux∥2 ≥ R], we use the fact that the test of step 1 of the algorithm
has passed. In particular, by applying Markov’s inequality appropriately, we obtain that Px∼X [∥Ux∥2 ≥
R] ≤ 1

R2p Ex∼X [∥Ux∥2p2 ]. Note that the expression ∥Ux∥2p2 corresponds to a polynomial of degree at
most 2p and corresponding to coefficient vector whose absolute (ℓ1) norm is bounded by (4kd2)p. In
particular, we have that (for all x ∈ Rd) ∥Ux∥2p2 =

∑
α∈Nd cαx

α (recall that xα =
∏

i∈[d] x
αi
i ), where∑

α∈Nd |cα| ≤ (4kd2)p and cα = 0 whenever ∥α∥1 > 2p. Therefore, by linearity of expectation, we have
Ex∼X [∥Ux∥2p2 ] =

∑
α cα Ex∼X [xα] =

∑
α cα(Ex∼N [xα]+∆α) = Ex∼N [∥Ux∥2p2 ]+

∑
α cα∆α, where

|∆α| ≤ 1
(2kd)2p

for any α with ∥α∥1 ≤ 2p. Hence, overall, we have Ex∼X [∥Ux∥2p2 ] ≤ Ex∼N [∥Ux∥2p2 ]+

1 ≤ 2(4kp)p, which implies that Px∼X [∥Ux∥2 ≥ R] ≤ 2 (4kp)p

R2p .
For the term Px∼X [V x ∈ ∂ϱF̂ ], we use the fact that the tester T has accepted and hence we have

Px∼X [x ∈ ∂ϱf̂ ] ≤ σ̂ϱ ≤ σ̂(γe exp(2R
2)

βk−k/2 )1/k. We have shown that Px∼X [f(x) ̸= f̂(x)] ≤ ψ, as desired.

Completeness. Suppose now that X consists of i.i.d. examples from the Gaussian distribution Nd. To
ensure that with probability at least 9/10, the tests of step 1 pass, we pick |X| ≥ (Cdk)

∆2 , for some suffi-
ciently large C. This is because the Gaussian moments concentrate (e.g., due to Chebyshev’s inequality)
as well as a union bound. For step 2, it suffices that |X| ≥ mT .

We now give our universal discrepancy tester though testing boundary proximity.

Theorem 6.7 (Universal Discrepancy Testing through Boundary Proximity). In the setting of Theo-
rem 6.6, if the tester T works with respect to a class D of distributions over Rd such that for some µc ≥ 1
we have supv∈Sd−1 Ex∼D[(v · x)4] ≤ µc for all D ∈ D, then there is a (Ne, ψ + ϵ)-tester for localized
discrepancy from Nd with respect to D with sample complexity m = mT + 20d4 + 3

ϵ2
, that calls T once

and uses additional time O(md2 + d3), where the error parameter ψ is

ψ =
4kµc
R2

+ σ̂
√
k
(γe exp(2R2)

β

)1/k
Proof of Theorem 6.7. Let ϱ = (γe/β)

1/k
√
k exp(2R2/k) and let (f̂ , X) be an instance of the localized

discrepancy problem (see Definition 1.1). The algorithm is similar to the one used in Theorem 6.6, but
for the first step, instead of matching low degree moments, we compute the maximum eigenvalue of the
second moment matrix.

1. Compute the maximum eigenvalue of the matrix M = Ex∼X [xx⊤] and reject if the computed
value is larger than 2µc.

2. Run the boundary proximity tester T with inputs (ϱ, f̂ ,X) and reject if T rejects.

3. Otherwise, accept.
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Soundness. For the proof of soundness, we use a similar argument to the one for Theorem 6.6, but we
instead bound the term Ex∼X [∥Ux∥2p2 ] for p = 1 and as follows

E
x∼X

[∥Ux∥22] =
2k∑
i=1

E
x∼X

[(ui · x)2] ≤ 2k sup
v∈Sd−1

E
x∈X

[(v · x)2] ≤ 4kµc ,

where ui denotes the vector corresponding to the i-th row of U .

Completeness. The completeness for step 1 follows by an application of Chebyshev’s inequality to the
random variables corresponding to each of the entries of the matrix M and a union bound, to show that
the Frobenius norm (and hence the operator norm) of the matrix M − Ex∼D[xx

⊤] is sufficiently small
(where D is some distribution in D and X consists of independent draws from D).

In the proofs of Theorems 6.6 and 6.7 we have used the following usedul proposition.

Proposition 6.8. Let f : Rd → {±1} be a k-subspace junta, i.e., f(x) = F (Wx), where F : Rk →
{±1} and W ∈ Rk×d with WW⊤ = Ik. Then, we have x ∈ ∂ϱf if and only if Wx ∈ ∂ϱF .

Proof. Note, first that since WW⊤ = Ik and k ≤ d, we have that ∥W∥2 = 1. Consider x ∈ ∂ϱf . Then,
by Definition 5.3, we have that there exists z ∈ Rd with ∥z∥ ≤ ϱ and f(x+ z) ̸= f(x). Note that for the
same x and z we have F (Wx+Wz) ̸= F (Wx). Since ∥W∥2 = 1, we have that ∥Wz∥2 ≤ ∥z∥2 ≤ ϱ.
Let z̃ =Wz ∈ Rk. We have ∥z̃∥2 ≤ ϱ and F (Wx+ z̃) ̸= F (Wx), i.e., Wx ∈ ∂ϱF .

For the other direction, suppose that Wx ∈ ∂ϱF . Then, there is z̃ ∈ Rk with ∥z̃∥2 ≤ ϱ such that
F (Wx + z̃) ̸= F (Wx). We have that z̃ = Ikz̃ = WW⊤z̃. Let z = W⊤z̃. We have z̃ = Wz and
∥z∥2 = ∥W⊤z̃∥2 ≤ ∥W⊤∥2∥z̃∥2 = ∥W∥2∥z̃∥2 ≤ ϱ. We have that f(x + z) = F (Wx + Wz) =
F (Wx+ z̃) ̸= F (Wx) = f(x). Hence, x ∈ ∂ϱf .

6.2 Application to TDS Learning

We now focus on the class of balanced intersections of halfspaces, which is formally defined as follows.

Definition 6.9 (Balanced Halfspace Intersections). A concept f : Rd → {±1} is called a β-balanced
intersection of k halfspaces if it is β-balanced (see Definition A.1) and there are w1,w2, . . . ,wk ∈ Sd−1

and τ1, τ2, . . . , τk ∈ R such that f(x) = 2
∏k

i=1 1{wi · x ≥ τi} − 1 for all x ∈ Rd.

We will now combine Theorems 6.6 and 6.7 with results from robust learning ([DKS18b]) to obtain
the following theorem regarding TDS learning balanced intersections of halfspaces with respect to Gaus-
sian training marginals. Our results indicate a trade-off between the training runtime and testing runtime
and are robust to some amount of noise (in terms of the parameter λ).

Theorem 6.10 (TDS Learning of Balanced Halfspace Intersections). For β ∈ (0, 1/2), d, k ∈ N, let C
be the class of β-balanced intersections of k halfspaces Rd. For any ϵ ∈ (0, 1) with ϵ = O( β

k2
), there is

a D-universal ψ-TDS learner for C w.r.t. Nd in the agnostic setting for each of the cases listed in Table 3.

For the learning phase of the algorithm of Theorem 6.10, we use an algorithm from [DKS18b] in the
context of learning with nasty noise. Since the algorithm works under nasty noise, it will also work in
the agnostic setting. The following result follows from [DKS18b, Theorem 5.1].
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Class D over Rd Training Time Testing Time Error Guarantee ψ

Gaussian Nd poly(d)( k
ϵβ )

O(k3) (dk)O(log(1/ϵ)) ( k
ϵβ )

O(1)λ
1

12k + ϵ

Fourth Moments Bound:
E[(v · x)4] ≤ C∥v∥42 &
Dimension-1 Marginal

Densities Bounded by C

poly(d)( kβ )
k32O( k

3

ϵ
) poly(d, k, 1/ϵ) ( kβ )

O(1)2O( 1
ϵ
)λ

1
12k + ϵ

Table 3: Specifications for D-universal ψ-TDS learning of β-balanced k-halfspace intersections. The
properties that define the class D in line 2, hold for some given universal constantC ≥ 1, for all members
of D, for all v ∈ Rd and the density bound holds for all one-dimensional projections of any member of
D.

Theorem 6.11 (Reformulation of Theorem 5.1 in [DKS18b]). Let C be some hypothesis class that con-
sists of intersections of k halfspaces. For any γ ∈ (0, 1), there is an algorithm that, upon receiving
a number of i.i.d. examples from some labeled distribution Dtrain

XY whose marginal is Nd, runs in time
poly(d)( kγ )

O(k2) and returns, w.p. at least 0.99, some intersection of k halfspaces f̂ : Rd → {±1}
such that for any distribution Dtest

XY over Rd × {±1}, if f∗ ∈ C is the intersection that achieves

λ = minf∈C(err(f ;Dtrain
XY ) + err(f ;Dtest

XY )), then we have f∗ ∈ Ne(f̂), where Ne is the (Ckλ
1
12 + γ)-

disagreement neighborhood (see Definition 6.2), where C is some sufficiently large universal constant.

Note that for the above reformulation of Theorem 5.1 in [DKS18b], we used the following reasoning.

Their algorithm returns f̂ with the guarantee that err(f̂ ;Dtrain
XY ) ≤ O(kopt

1
12
train) + γ, where opttrain =

minf∈C err(f ;Dtrain
XY ) ≤ err(f∗;Dtrain

XY ) ≤ λ. Therefore Px∼Nd
[f̂(x) ̸= f∗(x)] ≤ err(f̂ ;Dtrain

XY ) +

err(f∗;Dtrain
XY ) ≤ Ckλ

1
12 + γ, which implies that f∗ ∈ Ne(f̂).

Our plan is to use the discrepancy testers of Theorems 6.6 and 6.7. To this end, we have to show that
(1) balanced halfspace intersections are locally balanced and (2) there is a boundary proximity tester (see
Definition 6.3) for the class. It turns out that any convex set that is globally balanced (see Definition A.1),
is also locally balanced (see Definition 6.1), as we show in the following lemma.

Lemma 6.12 (Globally Balanced Convex Sets are Locally Balanced). For β ∈ (0, 1), let F : Rk →
{±1} be the indicator of a (globally) β-balanced convex set K ⊆ Rk, let C ≥ 1 some sufficiently large

universal constant and let R ≥ 1. Then, F is (R, β
Ck log k )-locally β′-balanced for β′ = βk exp(− 1

2
R)

(Ck2R ln( 1
β
))k

.

Proof of Lemma 6.12. Let ϱ ≤ β
Ck log k . We will first show that for any x ∈ Rk with ∥x∥2 ≤ R and

F (x) = −1, we have Pz∼Nk
[F (z) = −1 | z ∈ Bk(x, ϱ)] ≥ 1

2e
−ϱR. We have that x ̸∈ K and, therefore,

there is a separating hyperplane between x and K, due to the convexity of K. This hyperplane does not
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pass through x and, hence, at least half of Bk(x, ϱ) is outside K. We obtain the following.

P
z∼Nk

[F (z) = −1 | z ∈ Bk(x, ϱ)] =
Pz∼Nk

[F (z) = −1 and z ∈ Bk(x, ϱ)]

Pz∼Nk
[z ∈ Bk(x, ϱ)]

≥
1
2 vol(Bk(x, ϱ))

vol(Bk(x, ϱ))
·
infz∈Bk(x,ϱ)Nk(z)

supz∈Bk(x,ϱ)
Nk(z)

≥ 1

2
·
exp(−1

2(∥x∥2 + ϱ)2)

exp(−1
2(∥x∥2 − ϱ)2

≥ 1

2
e−

1
2
ϱ∥x∥2 ≥ 1

2
e−

1
2
ϱR

For the case where F (x) = 1, we first prove the following claim, which states that when a convex
set is (globally) balanced, it must contain some Euclidean ball with non-negligible mass.

Claim. Since K is β-balanced and convex, there is xc ∈ Rk such that Bk(xc, r) ⊆ K, where r = β
Ck log k ,

∥xc∥2 ≤ Rc = (2k ln(8kβ ))1/2 and C ≥ 1 is a sufficiently large universal constant.

Proof. Since K is balanced, we have Px∼Nk
[F (x) = 1] > β. We now use Lemma B.8 to obtain that

Px∼Nk
[x ∈ ∂rF ] ≤ C

2 rk log k. We have the following.

P
x∼Nk

[F (z) = 1, ∀z ∈ Bk(x, r)] = P
x∼Nk

[F (x) = 1 and F (x+ z) = 1, ∀z with ∥z∥2 ≤ r]

= P
x∼Nk

[F (x) = 1]− P
x∼Nk

[F (x) = 1 and ∃z : ∥z∥2 ≤ r and F (x+ z) ̸= 1]

≥ P
x∼Nk

[F (x) = 1]− P
x∼Nk

[∃z : ∥z∥2 ≤ r and F (x+ z) ̸= F (x)]

= P
x∼Nk

[F (x) = 1]− P
x∼Nk

[x ∈ ∂rF ]

> β − C

2
rk log k =

β

2

Moreover, since Px∼Nk
[∥x∥2 > Rc] ≤ 4ke−

R2
c

2k = β/2, we overall have that

P
x∼Nk

[F (z) = 1, ∀z ∈ Bk(x, r) and ∥x∥2 ≤ Rc] > 0

Since the probability of such an x is positive, by the probabilistic method, there is some xc as desired.

We have shown that for some xc with ∥xc∥2 ≤ Rc, we have Bk(xc, r) ⊆ K. Let now x ∈ Rk with
∥x∥2 ≤ R and F (x) = 1 (x ∈ K). Since K is convex, if K′ is the convex hull of {x} ∪ Bk(xc, r),
we have K′ ⊆ K. We will show that K′ ∩ Bk(x, ϱ) contains some cone R′ with non-trivial mass (see
Figure 3).

Let y be any point on the surface of Bk(xc, r) such that the tangent hyperplane of Bk(xc, r) on
y passes from x. Then, if we let θ to be the angle ŷxxc, we have sin θ = ∥y − xc∥/∥x − xc∥2 =
r/∥x − xc∥2, because x̂yxc = π/2, by definition of y. Note that the triangle defined by x,y and xc

lies within K′ and hence within K as well. Since this is true for any y as defined above, we have that K
contains a rotational cone R with vertex x, angle θ and height h ∈ [∥x− xc∥2 − r, ∥x− xc∥]. Note that
the volume of K′ ∩ Bk(x, ϱ) is decreasing in ∥x − xc∥2, as long as ϱ ≤ r. Therefore, we may assume
that ∥x− xc∥2 = R+Rc (which implies that h ≥ 1 ≥ ϱ ≥ ϱ cos θ). Let R′ = R∩ Bk(x, ϱ).
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Figure 3: If x ∈ K, then there is a cone R′ ⊆ Bk(x, ϱ) ∩ K

By observing that R′ contains a cone of angle θ, height ϱ cos θ, where cos θ ≥ 1/2 and ϱ ≤ R, we
overall have the following.

P
z∼Nk

[F (z) = 1 | z ∈ Bk(x, ϱ)] =
Pz∼Nk

[F (z) = 1 and z ∈ Bk(x, ϱ)]

Pz∼Nk
[z ∈ Bk(x, ϱ)]

≥ vol(R′)

vol(Bk(x, ϱ))
·
infz∈Bk(x,ϱ)Nk(z)

supz∈Bk(x,ϱ)
Nk(z)

≥ ϱ cos θ(ϱ sin θ)k−1(2π)(k−1)/2k−((k−1)/2+1)

ϱk(2π/k)k/2
· exp(−ϱR/2)

≥ (sin θ)k−1

2
√
2πk

· e−
1
2
ϱR ≥

( β

Ck2R ln(1/β)

)k
e−R/2

Combining the two cases considered (F (x) = −1 and F (x) = 1), we obtain the desired result.

Finally, we show that there is a boundary proximity tester for the class of halfspace intersections.

Lemma 6.13 (Boundary Proximity Tester for Halfspace Intersections). Let D be some class of distri-
butions over Rd such that for each distribution in D, any one-dimensional marginal has density upper
bounded by C > 0. Then, for any ϱ ∈ (0, 1), there is a (ϱ, 3Ck)-boundary proximity tester for the class
of intersections of k halfspaces over Rd with time and sample complexity poly(d, k, 1/ϱ).

Proof. The tester receives some intersection of halfspaces f = 2
∏k

i=1 1{wi · x − τi} − 1 and mT
samples X from some unknown distribution over Rd and does the following.

1. If for some i ∈ [k] we have Px∼X [|wi · x− τi| ≤ ϱ] > 3Cϱ, then reject.

2. Otherwise, accept.

Soundness then follows from the fact that Px∼X [x ∈ ∂ϱf ] ≤
∑

i∈[k] Px∼X [|wi · x − τi| ≤ ϱ] and
a Hoeffding bound. Completeness follows from the fact that under any distribution D in D, we have
Px∼D[|wi · x − τi| ≤ ϱ] ≤ 2Cϱ, due to the density upper bound in the direction wi and a Chernoff
bound.

All of the ingredients of the proof of Theorem 6.11 are now in place.

Proof of Theorem 6.11. The theorem follows by combining either Theorem 6.6 or Theorem 6.7 with
Theorem 6.11, Lemma 6.12 and Lemma 6.13. Note that since the parameter λ is unknown to the algo-
rithm, we will run the corresponding discrepancy tester (either of Theorem 6.6 or of Theorem 6.7) for
all possible values of the parameter ϱ (of the discrepancy tester) within an O(ϵ/k2)-net of the interval
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[0, β
Ck log k ], where we know that the tester has to accept with high probability (we can amplify the suc-

cess probability for each fixed value of ϱ through repetition). We accept if the (amplified) discrepancy
tester accepts for all the values of ϱ in the net. In total, we will need poly(k, 1/ϵ) repetitions.

7 NP-Hardness of Global Discrepancy Testing

In this section, we prove that there exist worst case pairs of distributions such that testing the globalized
discrepancy between them with respect to the class of halfspaces is hard. These results also extend to the
class of constant degree polynomial threshol functions. This motivates our study of localized notions of
discrepancy. We now define the notion of discrepancy (globalized).

Definition 7.1 (Discrepancy). Let D1, D2 be two distributions on Rd and let F be a set of boolean
functions on Rd. We say that the discrepancy between D1 and D2 with respect to F , denoted by
discF (D1, D2) is,

discF (D1, D2) = sup
f1,f2∈F

(∣∣∣ P
x∼D1

[f1(x) ̸= f2(x)]− P
x∼D2

[f1(x) ̸= f2(x)]
∣∣∣)

We prove our hardness result by reducing the following problem of learning constant degree PTFs
with noise to the problem of identifying if the discrepancy between two distributions is large/small.

Definition 7.2. For constants ϵ > 0, k ∈ N, let PTF−MA(k, ϵ) refers to the following promise problem:
Given a set of tuples {xi, yi}i∈[n] where xi ∈ Rd and yi ∈ {±1} for all i ∈ [n], distinguish between the
following two cases:

• There exists a halfspace h such that 1
n

∑n
i=1 1{h(xi) = yi} ≥ 1− ϵ,

• For every degree k PTF g, we have that 1
n

∑n
i=1 1{g(xi) = yi} ≤ 1

2 + ϵ

This problem is known to be NP hard through a reduction from label cover.

Lemma 7.3 ([BGS18]). For any constant k ∈ N, ϵ > 0, PTF−MA(k, ϵ) is NP-hard.

Given a set S ⊆ Rd, let US denote the uniform distribution on that set. We define decision version
of the problem of discrepancy testing for which we prove our NP-hardness result.

Definition 7.4. For constants ϵ > 0 and a class F of boolean functions on Rd, let DISC(F , ϵ) be the
following promise problem: Given sets S, S′ ⊆ Rd, distinguish between the two cases:

• discF (US , US′) ≥ 1− ϵ

• discF (US , US′) ≤ ϵ

We are now ready to state and prove our result on the NP-hardness of DISC(F , ϵ) when F is the class
of constant degree polynomial threshold functions.

Theorem 7.5. Let k ∈ N and ϵ > 0. Let F be the class of PTFs of degree k. The problem DISC(F , ϵ) is
NP-hard.
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Proof. We give a reduction from PTF−MA(2k, ϵ) to DISC(F , 8ϵ). The input to PTF−MA(2k, ϵ) is a set
of tuples {xi, yi}i∈[n] where xi ∈ Rd and yi ∈ {±1} for all i ∈ [n]. Let S+ = {xi | yi = +1, i ∈ [n]}
and S− = {xi | yi = −1, i ∈ [n]}. We assume that

∣∣ |S+|
n − 1

2

∣∣ ≤ ϵ and
∣∣ |S−|

n − 1
2

∣∣ ≤ ϵ. Otherwise, there
exists a trivial halfspace(taking constant value) that achieves success probability greater than 1

2 + ϵ and
this can easily be checked in polynomial time. We say that S+, S− are ϵ-unbiased if the above property
holds. We now complete the proof by proving the following two claims and using Lemma 7.3.

Claim (Completeness). Let S+, S− be ϵ-unbiased. If there exists a halfspace h s.t. 1
n

∑n
i=1 1{h(xi) =

yi} ≥ 1− ϵ, then discF (US+ , US−) ≥ 1− 8ϵ.

Proof. We have that |S+|
n Px∼US+ [h(x) = 1]+ |S−|

n Px∼US+ [h(x) = 0] ≥ 1−ϵ. Thus, simplifying some
terms, we obtain that

1− ϵ ≤ |S−|
n

+
|S+|
n

· P
x∼US+

[h(x) = 1]− |S−|
n

· P
x∼US−

[h(x) = 1]

≤ 1

2
+

1

2
·
(

P
x∼US+

[h(x) = 1]− P
x∼US−

[h(x) = 1]
)
+ 3ϵ

where the last inequality follows from the fact that S+, S− are ϵ-unbiased. Thus, (Px∼US+ [h(x) =
1]− Px∼US− [h(x) = 1]) ≥ 1− 8ϵ. Let g be the the halfspace that always outputs −1. Clearly, we have
that discF (US+ , US−) ≥ (Px∼US+ [h(x) ̸= g(x)]− Px∼US− [h(x) ̸= g(x)]) ≥ 1− 8ϵ.

Claim (Soundness). Let S+, S− be ϵ-unbiased. If there is no degree 2k PTF h with 1
n

∑n
i=1 1{h(xi) =

yi} ≥ 1
2 + ϵ, then discF (US+ , US−) ≤ 8ϵ.

Proof. Say discF (US+ , US−) ≥ 8ϵ. Since F is closed under complements, we obtain without loss of
generality that there exist two PTFs h1, h2 of degree d s.t. Px∼US− [h1(x) ̸= h2(x)]− Px∼US+ [h1(x) ̸=
h2(x)] ≥ 1

2 + ϵ. Consider the function g(x) = h1(x) · h2(x). We have that g is a degree 2k PTF. Thus,
we obtain that

1

n

n∑
i=1

1{g(x) = y} =
|S−|
n

· P
x∼US−

[g(x) = −1] +
|S+|
n

· P
x∼US+

[g(x) = 1]

=
|S−|
n

· P
x∼US−

[h1(x) ̸= h2(x)] +
|S+|
n

· (1− P
x∼US+

[h1(x) ̸= h2(x)])

≥ 1

2
+

1

2

(
P

x∼US−
[h1(x) ̸= h2(x)]− P

x∼US+

[h1(x) ̸= h2(x)
)
− 3ϵ

≥ 1

2
+ ϵ

where the penultimate inequality follows from the fact that S+, S− are ϵ-unbiased and the last inequality
follows from our lower bound on the discrepancy. Since there exists no PTF of degree 2k that succeeds
with probability 1

2 + ϵ, we have a contradiction.

This concludes the proof of Theorem 7.5.
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A Extended Preliminaries

We use standard big-O notation (and Õ to hide poly-logarithmic factors), Rd is the d-dimensional
euclidean space and Nd the standard Gaussian over Rd, {±1}d is the d-dimensional hypercube and
Unif({±1}d) the uniform distribution over {±1}d, N is the set of natural numbers N = {1, 2, . . . } and
x ∈ Rd denotes a vector with x = (x1, . . . ,xd) and inner products x · v. For α ∈ Nd, we denote
with xα the product

∏
i∈[d] x

αi
i , Mα = E[xα] and ∥α∥1 =

∑
i∈[d] αi. For a polynomial3 p over Rd and

α ∈ Nd, we denote with pα the coefficient of p corresponding to xα, i.e., we have p(x) =
∑

α∈Nd pαx
α.

If p is a polynomial over {±1}d, then we express it in its multilinear form, using only coefficients pα
with α ∈ {0, 1}d, i.e., p(x) =

∑
α∈{0,1}d pαx

α. We define the degree of p and denote deg(p) the max-
imum degree of a monomial whose coefficient in p is non-zero. We use standard notations for norms
∥x∥1 =

∑
i∈[d] |xi|, ∥x∥2 = (

∑
i∈[d] x

2
i )

1/2 and ∥x∥∞ = maxi∈[d] |xi|. We denote with Sd−1 the d− 1

dimensional sphere on Rd and, for x ∈ Rk and r > 0, Bk(x, r) = {y ∈ Rd : ∥x− y∥2 ≤ r}.
For any v1,v2 ∈ Rd, we denote with v1·v2 the inner product between v1 and v2 and we let ∡(v1,v2)

be the angle between the two vectors, i.e., the quantity θ ∈ [0, π] such that ∥v1∥2∥v2∥2 cos(θ) = v1 ·v2.
For v ∈ Rd, τ ∈ R, we call a function of the form x 7→ sign(v ·x) an origin-centered (or homogeneous)
halfspace and a function of the form x 7→ sign(v · x+ τ) a general halfspace over Rd.

We let X ⊆ Rd be either the d-dimensional hypercube {±1}d or Rd. For a distribution D over
X , we use ED (or Ex∼D) to refer to the expectation over distribution D and for a given set X , we
use EX (or Ex∼X ) to refer to the expectation over the uniform distribution on X (i.e., Ex∼X [g(x)] =
1

|X|
∑

x∈X g(x), counting possible duplicates separately). We let R+ = (0,∞).
We define the notion of balance as follows.

Definition A.1 (Balanced Concepts). For β ∈ (0, 1), we say that a function f : Rd → {±1} is (globally)
β-balanced if for any x ∈ Rd we have Pz∼N [f(z) = f(x)] > β.

B Additional Tools

B.1 Boundary Smoothness of Structured Concepts

In this section, we prove that low dimensional polynomial threshold functions and convex sets have
smooth boundary, i.e., a non-asymptotic anticoncentration bounds that scales linearly with the distance
from the boundary. We first prove that PTFs have smooth boundary.

Lemma B.1 (Smooth Boundary for PTFs). Let p be a polynomial of degree ℓ over Rk. Let F : Rk →
{±1} be the function defined as F (x) = sign(p(x)). Then, F has a Cℓ3k-smooth boundary with respect
to Nk for a large universal constant C.

Proof. Let C be a large universal constant that we fix later. Let δ = 3Cℓ3γk. Define the set S :=
{x | ∃i ∈ [ℓ], ∥∇ip(x)∥2 > (Cℓ3/δ) · ∥∇i−1p(x)∥2}. Observe that Px∼Nk

[x ∈ ∂γF ] ≤ Px∼Nk
[x ∈

S] + Px∼Nk
[x ∈ ∂γf | x /∈ S]. We bound these two terms separately. To bound the first term, we use

the following theorem from [KM21a].

Lemma B.2 (Lemma 1.6 from [KM21a]). Let C be a large universal constant. For any polynomial
p : Rk → R of degree ℓ and x ∼ Nk, the following event occurs with probability at least 1− δ:

∥∇ip(x)∥2 ≤ (Cℓ3/δ)∥∇i−1p(x)∥2, for all 1 ≤ i ≤ ℓ.
3In Sections 5 and 6, we use the notation p to denote natural numbers and use q for polynomials instead.
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Thus, we have that Px∼Nk
[x ∈ S] ≤ δ. Now consider a point x /∈ S. From a multivariate taylor

expansion, we have that p(x+z) = p(x)+
∑

α∈Nk,1≤|α|≤ℓ
∂αp(x)

α! ·zα. Thus, for z ∈ Rk with ∥z∥2 ≤ γ,
we obtain that

|p(x)− p(x+ z)| ≤
∑

1≤|α|≤ℓ

∣∣∂αp(x)∣∣ · ∥z∥|α|∞ ≤
∑
i∈[ℓ]

∥z∥i2 · ∥∇ip(x)∥1

≤
∑
i∈[ℓ]

γiki∥∇ip(x)∥2 ≤
∑
i∈[l]

γiki(Cℓ3/δ)i|p(x)| ≤ |p(x)|/2 .

The first inequality follows from the multivariate Taylor expansion. The third inequality follows from
the fact that ∥z∥2 ≤ γ and the bound on the number of monomials of size i by k2i. The penultimate
inequality follows from the definition of the set S and the last inequality is true by our choice of δ.

Since |p(x)− p(x+ z)| ≤ |p(x)|/2, we have that F (x) = F (x+ z) for all z ∈ Rk with ∥z∥2 ≤ γ.
Thus, we have that Px∼Nk

[x ∈ ∂γF | x /∈ S] = 0. Thus, we have that Px∼Nk
[x ∈ ∂γF ] ≤ 3Cℓ3γk.

We now move on to proving that low dimensional convex sets. To prove this, we will crucially use
the notion of Gaussian surface area (an asymptotic anticoncentration bound) that we will now define.

Definition B.3 (Gaussian Surface Area). Let f be a boolean function. The Gaussian surface area Γ(f)
is defined as

Γ(f) = lim inf
δ→0

1

δ
P

z∼N (0,Ik)

[
z ∈ Aδ

f \Af

]
,

where Af = 1{x | f(x) = 1}, Aδ
f = {u : minv∈Af

∥u− v∥2 ≤ δ}.

We prove that convex sets have smooth boundary in two steps. We first prove that the set of points
inside the set that are close to it’s boundary have small mass. To do this, we use a noise sensitivity
argument (Lemma B.5). Then, we prove that points outside it that are close to the boundary (Lemma B.7).
This will follow from an argument uses the definition of Gaussian Surface area and a bound on this
quantity for convex sets due to [Bal93]. Together, these two lemmas imply that convex sets have smooth
boundary.

The following lemma will be useful in proving the smooth boundary of the interior of the set.

Lemma B.4. Let λ ∈ (0, 1/2). Let S be a convex set on Rk and let f(x) = 1{x ∈ S} be the indicator
function of S. Then, we have that Px∼Nk

[f(x) ̸= f(x/
√
1− λ)] ≤ k log k

√
λ.

Proof. For any vector w ∈ Rk with ∥w∥2 = 1, let fw : R+ → R be the function defined as fw(r) =
f(r · w). Also, note that fw is the indicator function of a one dimensional convex set. Observe that
Px∼Nk

[f(x) ̸= f(x/
√
1− λ)] ≤ sup∥w∥2=1 Pr∼χ2(k)[fw(

√
r) ̸= fw(

√
r/
√
1− λ)] from the fact that

the k dimensional Gaussian conditioned on pointing in direction w is distributed as
√
rw where r ∼

χ2(k). Here, χ2(k) is the one dimensional Chi-squared distribution with mean k.
We have thus reduced the problem to one dimension. Consider a function g : R → R such that

g(x) = 1{x ∈ [
√
a/(1− λ),

√
b/(1− λ)]} where a, b are from R+ ∪ {+∞}. All one dimensional

indicators of convex sets are of this form. We will now prove that Pr∼χ2(k)[g(
√
r) ̸= g(

√
r/
√
1− λ)] ≤

kλ log(k/λ).
Observe that Pr∼χ2(k)[g(

√
r) ̸= g(

√
r/1− λ)] ≤ Pr∼χ2(k) [r ∈ [a, a/(1− λ)] ∪ [b, b/(1− λ)]]. It

suffices to bound Pr∼χ2(k)[r ∈ [a, a/(1−λ)]] for a ∈ R+ as the claim then follows from a union bound.
We bound this by splitting into two cases.
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Case 1: a ≥ 2k log(k/λ). Since χ2(k) is the distribution of the sum of squares of k independent
N (0, 1) Gaussian random variables, we have that Pr∼χ2(k)[r ≥ a] ≤ k Px∼N (0,1)[|x|2 ≥ a/k] ≤
ke−a/(2k). Thus, when a ≥ 2k log(k/λ), we have that Pr∼χ2(k)

[
r ∈ [a, a/(1 − λ)]

]
≤ Pr∼χ2(k)

[
r ≥

a
]
≤ λ.

Case 2: a < 2k log(k/λ). Let ψ be the density function for χ2(k). It is a standard fact from probability
that ψ(x) = xk/2−1

2k/2Γ(k/2)
e−x/2. For k = 1, it is a fact that ψ(x) ≤ 1. For k ≥ 2, by taking a derivative, we

can see that this density function is maximized at x = k − 2. We obtain that

ψ(x) =
(k − 2)k/2−1

2k/2Γ(k/2)
e−k/2+1 ≤ ((k − 2) · e)k/2−1

2k/2(k/2)k/2−1
e−k/2+1 ≤ 1

2

where the second inequality follows from the fact that Γ(t) ≥
(
t
e

)t−1 for all t ≥ 2 and Γ(1) = 1. We
have that

P
r∼χ2(k)

[
r ∈ [a, a/(1− λ)]

]
≤ ∥ψ∥∞ · a (1/(1− λ)− 1) ≤ 4kλ log(k/λ) ≤ 4k log k

√
λ .

We get the first inequality from the upper bound on the density. The second follows from the fact that
1/(1 − λ) ≤ 1 + 2λ when λ < 1/2. The third inequality follows from the assumption on a. The final
inequality follows from the fact that x log(1/x) ≤

√
x.

We are now ready to prove the set of points inside the convex set that are close to it’s boundary have
small mass under the Gaussian.

Lemma B.5. Let S be a convex set on Rk. Let ϱ ∈ (0, 1). Then, we have that Px∼Nk
[x ∈ S ∩ ∂ϱS] ≤

Ck log kϱ where C is a large universal constant.

Proof. Define the function f : Rk → R as f(x) = 1{x ∈ S}. We now use a restatement of Corollary 12
from [KOS08b].

Lemma B.6. Let g be a boolean function on Rk. For any λ ∈ (0, 1), it holds that

P
x,y∼Nk

[
g (x) ̸= g

(√
1− λx+

√
λy
)]

≤ C
√
λΓ(g)

for large universal constant C.

Let g be the function g(x) = f(x/
√
1− λ). Observe that g is also an indicator of a convex set. From

[Bal93] we have that Γ(g) ≤ 4k1/4. Thus, applying Lemma B.6 to g, we obtain that for any λ ∈ (0, 1)

P
x,y∼Nk

[
f(x/

√
1− λ) ̸= f

(
x+

√
λ

1− λ
y

)]
≤ C

√
λk1/4

where C is a large constant. Combining the above expression with Lemma B.4, we obtain that for any
λ ∈ (0, 1/2),

P
x,y∼Nk

[
f(x) ̸= f

(
x+

√
λ

1− λ
y

)]
≤ C

√
λk1/4 + 2k log k

√
λ . (B.1)
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Now, consider any point p in S ∩ ∂ϱS. Since S is convex, there exists a hyperplane h(x) = 1{w ·
x+ b ≥ 0} for w ∈ Rk with ∥w∥2 = 1 and b ∈ R such that h(y) = 1 for all y ∈ S and w · p+ b ≤ ϱ.
This hyperplane correponds to the tangential plane whose normal vector is the line joining p and the
point closest to it in ∂S. We have that for any γ > 0, Pz∼Nk

[w · γz ≤ −ϱ] ≥ 1
2 − ϱ

2γ as the Gaussian
density is upper bounded by 1 pointwise. Thus, for any γ > 0, Pz∼Nk

[f(p + γz) ̸= f(p)] ≥ 1
2 − ϱ

2γ .
Combining this with Equation (B.1), we obtain that(

1

2
− ϱ

2
·
√

1− λ

λ

)
· P
x∼Nk

[x ∈ S ∩ ∂ϱS] ≤ C
√
λk1/4 + 2k log k

√
λ .

Setting λ = 4ϱ2 and rearranging terms, we obtain that Px∼Nk
[x ∈ S ∩ ∂ϱS] ≤ C ′k log kϱ where C ′ is a

sufficiently large universal constant.

We now prove the smoothness result for points outside the set.

Lemma B.7. Let S be a convex set on Rk. Let ϱ ∈ (0, 1). Then, we have that Px∼Nk
[x ∈ Sc ∩ ∂ϱS] ≤

Ck1/4ϱ where C is a sufficiently large universal constant.

Proof. For t > 0, define the set St as St = {x ∈ Rk | infy∈S∥x− y∥2 ≤ t}. We have that

P
x∼Nk

[x ∈ Sc ∩ ∂ϱ] = P
x∼Nk

[x ∈ Sϱ \ S]

=

∫ ϱ

t=0

∫
x∈∂St

N (x; 0, Ik)dx dt ≤
∫ ϱ

t=0
Ck1/4 dt ≤ Ck1/4ϱ

where C is a large universal constant. We obtained the penultimate inequality using the definition of
Gaussian surface area.

We now state our final result on the smooth boundary of convex sets.

Lemma B.8 (Smooth Boundary for Convex sets). Let S be a convex set. Let F : Rk → {±1} be the
function defined as F (x) = 1{x ∈ S}. Then, F has a Ck log k-smooth boundary with respect to Nk for
a sufficiently large universal constant C.

Proof. The proof is immediate from Lemma B.5 and Lemma B.7.

B.2 Sandwiching Polynomials

In this section, we present known results from pseudorandomness literature on the existence of sandwich-
ing polynomials for various function classes with respect to Unif{±1}d and Nd. Although previously
known, these results are mostly not stated in the manner in which we need them. In particular, the coef-
ficient bounds are not explicity stated in previous work. We state these results in terms of existence of
sandwiching polynomials with coefficient bounds for completeness.

We now introduce the important notion of (δ, ℓ)-independent distributions.

Definition B.9 ((δ, ℓ)-independent distribution). Let D,D′ be distributions on Rd. For δ > 0 and ℓ ∈ N,
we say that the distribution D′ is (δ, ℓ)-independent with respect to D if

∣∣Ex∼D[x
α] − Ex∼D′ [xα]

∣∣ ≤ δ
for all α ∈ Nd.
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We drop the ”with respect to D” when the distribution is clear from context. Let D,D′ be distri-
butions on X ⊆ Rd and f : X → {±1}. For ϵ > 0, we say that D′ ϵ-fools f with respect to D if∣∣Ex∼D[f(x)] − Ex∼D′ [f(x)]

∣∣ ≤ ϵ (again, we drop the ”with respect to” when the target distribution is
clear from context). For a concept class C, we say that D′ ϵ-fools C with respect to D if D′ ϵ-fools f with
respect to D for all functions f ∈ C.

We will use the following result from [GKK23] which is a generalization of a result from [Baz09].
We will only need one direction of the result which we state below.

Lemma B.10. [Theorem 3.2 from [GKK23]] Let D be a distribution on X ⊆ Rd. Let δ, ϵ > 0 and
ℓ ∈ N. Let f : X → Rd be a function that satisfies the following property: given any distribution D′

that is (δ, ℓ)-independent with respect to D, we have that
∣∣Ex∼D[f(x)]−Ex∼D′ [f(x)]

∣∣ ≤ ϵ. Then, there
exists degree ℓ polynomials pdown, pup such that pdown ≤ f ≤ pup and Ex∼D[pup(x) − pdown(x)] +
δ(|pup|+ |pdown|) ≤ ϵ.

B.2.1 Sandwiching Polynomials: Boolean

In this section, the target distrbution is Unif{±1}d. We will find the following lemma useful.

Lemma B.11. Let ϵ > 0 and ℓ ∈ N. Let f : {±1}d → {±1} be a function such that all (0, ℓ)-
independent distributions ϵ-fool f . Then, there exists polynomials pup, pdown of degree ℓ and coefficients
bounded by O(dℓ) such that pdown ≤ f ≤ pup and Ex∼Unif{±1}d [pup(x)− pdown(x)] ≤ O(ϵ).

Proof. We use the following theorem from [AGM03] that states that for any (δ, ℓ)-distribution , there
exists a (0, ℓ) distribution that is ϵ-close to it in TV distance.

Lemma B.12 (Theorem 2.1 from [AGM03]). For δ > 0 and ℓ ∈ N, let D be a (δ, ℓ)-independent
distribution on {±1}d. Then, there exists a distribution D′ that is (0, ℓ)-independent such that the TV
distance between D and D′ is at most δdℓ.

From the above claim, we have that any (ϵ/dℓ, ℓ)-independent distribution 2ϵ-fools f . Thus, from
Lemma B.10, there exists polynomials pup, pdown of degree ℓ with coefficients bounded by O(dℓ) such
that Ex∼Unif{±1}d [pup(x)− pdown(x)] ≤ 2ϵ. This proves the claim.

Lemma B.13 (Sandwiching polynomials for degree 2 PTFs). Let C be the class of degree 2 PTFs. For
ϵ > 0, theO(ϵ)-approximate L1 sandwiching degree of C under Unif{±1}d is at most ℓ = Õ(1/ϵ9) with
coefficient bound O(dℓ).

Proof. From [DKN10], we have that (0, ℓ)-independent distributions ϵ-fools C when ℓ = Õ(1/ϵ9). Now,
we apply Lemma B.11 to finish the proof.

Lemma B.14 (Sandwiching polynomials for depth-t AC0). Let C be the class of depth-t AC0 circuits of
size s on {±1}d. For ϵ > 0, the O(ϵ)-approximate L1 sandwiching degree of C under Unif{±1}d is at
most ℓ = (log s)O(t) log(1/ϵ) with coefficient bound O(dℓ).

Proof. From [Bra10, Tal17, HS19], we have that (0, ℓ)-independent distributions ϵ-fools f when ℓ =
(log s)O(t) log(1/ϵ). Now, we apply Lemma B.11 to finish the proof.
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B.2.2 Sandwiching Polynomials: Gaussian

Lemma B.15. Let ϵ > 0 and ℓ ∈ N. Let f : Rd → {±1} be a function such that all (0, ℓ)-independent
distributions ϵ-fool f . Then, there exists polynomials pup, pdown of degree ℓ and coefficients bounded by
O(dℓ) such that pdown ≤ f ≤ pup and Ex∼Nd

[pup(x)− pdown(x)] ≤ O(ϵ).

Proof. From Lemma B.10, we have that there exists pup, pdown of degree ℓ such that Ex∼Nd
[pup(x) −

pdown(x)] ≤ 2ϵ and pdown ≤ f ≤ pup. The claim now follows from the following lemma(proof is
included in the end of this section) that states that any sandwiching polynomial with respect to Nd must
have bounded coefficients.

Lemma B.16. Let f : Rd → {±1} be a function, and let pup and pdown be degree-ℓ polynomials satis-
fying the following (i) for every x ∈ Rd we have pup(x) ≥ f(x) ≥ pdown(x). (ii) Ex∈N (0,I)[pup(x) −
pdown(x)] ≤ 1. Then, the polynomials pup and pdown both have coefficients bounded by 2 · (10d)ℓ in
absolute value.

Lemma B.17 (Sandwiching polynomials for degree 2 PTFs). Let C be the class of degree 2 PTFs. For
ϵ > 0, the O(ϵ)-approximate L1 sandwiching degree of C under Nd is at most ℓ = Õ(1/ϵ8) with
coefficient bound O(dℓ).

Proof. From [DKN10], we have that (0, ℓ)-independent distributions ϵ-fools C when ℓ = Õ(1/ϵ8). Now,
we apply Lemma B.15 to finish the proof.

In the remainder of this section, we prove Lemma B.16. We will use the notion of Hermite polynomi-
als. Recall that for i = 0, 1, 2, · Hermite polynomials {Hi} are the unique collection of polynomials over
R that are orthogonal with respect to Gaussian distribution. In other words Ex∈N (0,1)[Hi(x)Hj(x)] = 0
whenever i ̸= j. In this work, we normalize the Hermite polynomials s.t.: Ex∈N (0,1)[Hi(x)Hi(x)] = 1.
It is a standard fact from theory of orthogonal polynomials that H0(x) = 1, H1(x) = x and for i ≥ 2
Hermite polynomials satisfy the following recursive identity:

Hi+1(x) ·
√

(i+ 1)! = xHi(x) ·
√
i!− i ·Hi−1(x) ·

√
(i− 1)!

Proposition B.18. Each coefficient of Hi is bounded by 2i in absolute value.

Proof. This follows immediately from the recursion relation.

Proposition B.19. All coefficients of multi-dimensional polynomial Hi1(x1)Hi2(x2) · · ·Hid(xd) are
bounded by 2i1+i2+···+id .

Proof. Each monomial of Hi1(x1)Hi2(x2) · · ·Hid(xd) can be expressed as
∏

j mj(xj) where each
mj(xj) is a monomial of Hij (xj). But we know that the coefficient of mj is bounded by 2ij in ab-
solute value. Thus, each coefficient of Hi1(x1)Hi2(x2) · · ·Hid(xd) is at most 2i1+i2+···+id .

Proposition B.20. Let p be a polynomial over Rd of degree ℓ. Suppose that p satisfies

E
x∈N (0,I)

[(p(x))2] ≤ 1,

then every monomial of p has a coefficient of at most (2d)ℓ in absolute value.
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Proof. For an element x ∈ Rd we let (x1, · · · ,xd) be its coordinates. We expand p(x) as a sum of
multidimensional Hermite polynomials4:

p(x) =
∑

i1,i2,···id≥0
i1+i2+···id≤ℓ

αi1,i2,··· ,idHi1(x1)Hi2(x2) · · ·Hid(xd) (B.2)

Due to orthogonality of Hermite polynomials, we have:∑
i1,i2,···id≥0
i1+i2+···id≤ℓ

α2
i1,i2,··· ,id = E

x∈N (0,I)
[(p(x))2] ≤ 1

In particular, this implies that each coefficient αi1,i2,··· ,id is bounded by 1 in absolute value. Com-
bining this with Equation B.2, Proposition B.19 and the fact that there are at most dℓ ways to choose
i1, i2, · · · id ≥ 0 satisfying

∑
j ij ≤ ℓ, we see that each coefficient of p bounded by (2d)ℓ in absolute

value.

Finally, we need the following standard fact.

Fact B.21 (Gaussian Hypercontractivity [Bog98],[Nel73]). If p : Rd → R is a polynomial of degree at
most ℓ, for every t ≥ 2,

E
x∼N (0,Id)

[|p(x)|t]
1
t ≤ (t− 1)ℓ/2

√
E

x∼Nd

[p2(x)] .

The following is a standard corollary:

Proposition B.22. If p : Rd → R is a polynomial of degree ℓ, then√
E

x∈N (0,I)
[(p(x))2] ≤ eℓ E

x∈N (0,I)
[|p(x)|]

Proof. The proof is standard, and is included here for completeness (a completely analogous proof for
the Boolean case can be found in Theorem 9.22 from [O’D14]). Let λ > 0 be a parameter and let
θ = 1

2
λ

1+λ . Using Generalized Holder’s inequality and Gaussian Hypercontractivity, we have

√
E

x∈N (0,I)
[(p(x))2] ≤

(
E

x∈N (0,I)
[|p(x)|]

)θ (
E

x∈N (0,I)
[(p(x))2+λ]

) 1−θ
2+λ

≤

≤
(

E
x∈N (0,I)

[|p(x)|]
)θ
(
(1 + λ)ℓ/2

√
E

x∈N (0,I)
[(p(x))2]

)1−θ

Overall, (√
E

x∈N (0,I)
[(p(x))2]

)θ

≤ (1 + λ)(1−θ)ℓ/2

(
E

x∈N (0,I)
[|p(x)|]

)θ

Taking power 1/θ of both sides and recalling that θ = 1
2

λ
1+λ we get:√

E
x∈N (0,I)

[(p(x))2] ≤ (1 + λ)
(1−θ)

θ
ℓ/2 E

x∈N (0,I)
[|p(x)|] = (1 + λ)(

1
λ
− 1

2)ℓ E
x∈N (0,I)

[|p(x)|].

Finally, taking λ→ 0 proves the proposition.
4Note that the expansion below is always possible for a degree ℓ polynomials because polynomials of the form

Hi1(x1)Hi2(x2) · · ·Hid(xd) are polynomials of degree at most ℓ that are linearly independent, because they are orthonor-
mal with respect to the standard d-dimensional Gaussian.
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Finally, we are ready to prove Theorem B.16.

Proof of Theorem B.16. Without loss of generality5, we bound the coefficients of pup(x). We have

E
x∈N (0,I)

[|pup(x)|] ≤ E
x∈N (0,I)

[|f(x)|] + E
x∈N (0,I)

[|pup(x)− f(x)|] ≤

≤ E
x∈N (0,I)

[|f(x)|] + E
x∈N (0,I)

[pup(x)− pdown(x)] ≤ 2.

Note that in the last inequality the value of Ex∈N (0,I)[|f(x)|] is bounded by 1 because f is {±1}-valued,
and Ex∈N (0,I)[pup(x) − pdown(x)] was bounded by 1 by the premise of the theorem. Combining the
equation above with Proposition B.22, we get√

E
x∈N (0,I)

[(pup(x))2] ≤ 2 · eℓ.

Finally, together with Proposition B.20 implies that each coefficient of pup
2·eℓ is bounded by (2d)ℓ in abso-

lute value. This allows us to conclude that each coefficient of pup is bounded by 2 · (10d)ℓ in absolute
value.

5This is indeed without loss of generality, because the function −f is bounded from above by −pdown and from below by
−pup.

45


	Introduction
	Our Contributions
	Our Techniques
	Related Work

	Preliminaries
	Technical Overview
	Classes with Low Sandwiching Degree
	Non-Parametric Low-Dimensional Classes
	Fully Polynomial-Time Testers

	Chow Matching Tester
	Discrepancy Testing Result
	Applications to TDS Learning

	Cylindrical Grids Tester
	Discrepancy Testing Result
	Application to TDS Learning

	Testing Boundary Proximity
	Discrepancy Testing Result
	Application to TDS Learning

	NP-Hardness of Global Discrepancy Testing
	Extended Preliminaries
	Additional Tools
	Boundary Smoothness of Structured Concepts
	Sandwiching Polynomials
	Sandwiching Polynomials: Boolean
	Sandwiching Polynomials: Gaussian



