2024 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE) | 979-8-3503-7623-4/24/$31.00 ©2024 IEEE | DOI: 10.1109/TALE62452.2024.10834288

Mixing up Gemini and AST in ExplainS for
Authentic SQL Tutoring

Hunter Clark
Department of Computer Science
University of Idaho, USA
clar9853 @vandals.uidaho.edu

Abstract—Mastering SQL is a key data science competence.
While most large language models are able to translate natural
language queries to SQL, their ability to tutor learners and
authentically assess student assignments are at the least fragile. In
this paper, we introduce ExplainS as an experimental prototype.
In this web-based system, we augment Gemini with abstract
syntax tree (AST) to enhance Gemini’s semantic analysis power
to be able to assist and tutor students better. This edition
of ExplainS provides a collection of exercises with varying
difficulty levels, covering core SQL concepts. Users interact with
a dynamic schema display, and their queries are validated against
carefully crafted solutions. To provide context-aware personalized
feedback, ExplainS leverages Gemini and the SQLglot library to
analyze query AST differences between user queries and correct
solutions, pinpointing the root cause of errors. This emerging
research is part of a wider Data Science effort, and in this paper,
we only focus on the meaningful feedback generation component
of the ExplainS system.

Index Terms—SQLglot, Authentic Assessment, Tutoring, Per-
sonalized Feedback, Large Language Models.

I. INTRODUCTION

SQL (Structured Query Language) is a foundational tech-
nology for interacting with relational databases. Its widespread
use emphasizes the importance of effective SQL learning.
However, traditional learning methods often fall short, pro-
viding static examples and limited opportunities for guided
practice, and many students find it difficult to learn SQL and
manage data using it. Tutoring systems have been developed
to teach SQL [23], help students learn [3, 21, 26] and assess
their progress [14]. Though generating feedback in the learning
process has been a complicated issue [11, 22], several systems
[16, 17] offer interesting solutions to this problem.

Assessment of students’ SQL assignments [8, 9, 13, 19] has
also met with serious challenges and continues to remain so.
Query understanding [10] and query equivalence [6] have been
logical approaches to SQL assignment grading. Assessment
systems [12] have leveraged query equivalence with limited
success due to theoretical limitations. But, recent research
suggests that SQL equivalence, and thus assessment of SQL
assignments, may have a brighter future using large language
models (LLM) [4, 29].

However, exploiting the powers of LLMs such as ChatGPT,
Gemini, or Llama remained largely focused on text-to-SQL
generation [7, 15, 24, 28], and not many research have utilized
LLMs for tutoring or assessment purposes of SQL assignments

Hasan M. Jamil =
Department of Computer Science
University of Idaho, USA
jamil@uidaho.edu

though opportunities emerged recently [1, 5, 18, 20, 27]. In this
paper, we introduce a new LLM-based SQL tutoring system,
called ExplainS (stands for Explainable SQL), to address
these limitations through a web-based platform that combines
interactive exercises with personalized feedback. Users engage
with dynamic schema representations while constructing their
queries. ExplainS’s integration of LLMs enables the generation
of insightful guidance tailored to individual learner’s errors and
misconceptions.

II. RELATED WORKS

Learning is about acquiring the knowledge to understand
and solve problems, and just not knowing the answers to
problems. The process of learning vary widely between stu-
dents and not one size fits all. One of the major goals of a
tutoring and assessment system is to support students in their
learning process with tools to sharpen their creative abilities
and improve analytical capacities. It is, therefore, not sufficient
to just solve an SQL problem for a student [7, 15, 26, 28],
but help them learn how to write one.

The tutoring and assessment systems that do aim to improve
learning outcomes often fail to address the main challenges
of tutoring and assessment. For example, a long series of
research on SQL-Tutor [25] addresses learning outcome by
focusing on issues that are tangential to actual crafting of SQL
statements and the problems students face to learn coding in
SQL. SQLTOR [26], however, leveraged AST to analyze stu-
dent’s queries toward generating guidance, and a progressive
study plan using machine learning from task difficulties they
face mainly to help the instructors design SQL tutorials. An
interesting tutoring system, SQLearn [9], also leveraged cosine
similarity of ASTs to measure students’ query similarity with
correct/reference solutions. A similar AST inspired tutoring
system is ItsSQL [21] which has similar goals.

SQL Tester [13] shows that use of an assessment system
helps improve student engagement. The aSQLg system’s [14]
assessment of SQL assignments largely are of syntactic in
nature, and helps student learn the correct syntax, but does
not offer much support to learn the semantic deficiencies.
In contrast to these systems, ExplainS combines AST with
Gemini to fill in gaps in these systems. It also serves both as
a tutor and a grader. In the sections to follow, we discuss the
features and techniques used in ExplainS in details.

Authorized licensed use limited to: UNIVERSITY OF IDAHO. Downloaded on August 29,2025 at 18:56:22 UTC from IEEE Xplore. Restrictions apply.

III. COMPLEMENTING LLMS WITH AST

Reid et al. [21] demonstrate that providing multiple ref-
erence solutions to an SQL query assignment improves the
chances of establishing equivalence of students’ solution with
a correct one. The subtext of this research is that many tutoring
and assessment systems fail to accurately tutor and grade
student assignments. The theoretical query rewriting system
Cosette [6], and systems based on AST similarity [2] try
to address these limitations significantly differently. Cosette
though accurate in determining query equivalence, it can do
so for very simple queries, and its it only can return a true-false
response. AST similarity on the other hand is heuristic driven
and in some cases it can return decisions that are incorrect
or inaccurate. Because structural dissimilarity does not entail
non-equivalence as ItsSQL [21] suggests.

A. AST as an Aid for Feedback Generation

Traditional SQL feedback systems often rely on simplistic
error messages that merely point out the existence of a
problem, leaving learners to decipher the underlying cause.
ExplainS takes a more insightful approach by utilizing ASTs to
pinpoint the exact structural differences between a user’s query
and the correct solution. An AST represents an SQL query’s
underlying grammatical structure as a hierarchical tree. The
Python SQLglot tool has a function called AST Diff. When
two queries are compared for differences, AST diff prints what
a test query needs to change to match the solution query’s
AST. This allows for a test query to be compared with a correct
solution and discover clues to provide insightful feedback. In
ExplainS, when a user submits a (test) query to try and solve
the exercise, SQLglot AST Diff is used to check what a user
query would need to change to match the solution query.

We discuss the idea using the example Q1 below.

Q1: List all pets (PetID, Name, TypeofPet) living
in South Alex, NE and owned by a minor who has
no income. List the pets in ascending order of their
names and in descending order of their pet type
when the names are identical.

The assumed correct or reference query to compute the re-
sponse is the SQL query below in the context of the three
tables in the database with the schemes shown in Fig 3.

SELECT pets.PetID, pets.Name,

FROM pets LEFT JOIN owns ON
pets.PetID = owns.PetID
LEFT JOIN owners ON owns.OID = owners.OID

WHERE pets.City = ’South Alex’ AND
pets.State= 'NE’ AND owners.Age < 18 AND
owners.AnnualIncome <= 0

ORDER BY pets.Name asc , pets.TypeofPet desc

pets.TypeofPet

Now consider the student query or test SQL query as follows
submitted as a solution. One obvious discrepancy or difference
with the reference query is that the test query does not have
a filter for age to exclude minors as required by the query.
Our expectation is that ExplainS should be able to identify
this semantic error and suggest a remedy.

SELECT pets.PetID, pets.Name, pets.TypeofPet

FROM pets LEFT JOIN owns ON
pets.PetID = owns.PetID
LEFT JOIN owners ON owns.OID = owners.OID
WHERE pets.City = ’South Alex’ AND
pets.State= "NE’ AND
owners.AnnualIncome <= 0
ORDER BY pets.Name asc , pets.TypeofPet desc

B. AST Similarity

It is easy to demonstrate that while two identical ASTs
represent identical queries, and thus will compute identical
responses on the same database (computationally equivalent),
dissimilarity of ASTs does not entail non-equivalence of
queries. Therefore, regardless of the similarity functions used
to discover AST edit distances, as was done in SQLearn
system [9], dissimilarity or a high edit distance will not be
useful to discover functional equivalence as in Cosette [6].
Such similarity may help queries such as Q1, but will not for
queries such as Q2 below,

Q2: List all pets (PetID, Name, State) which ate
every most expensive foods in each class of food
(ClassofFood) produced by Purina.

for which several equivalent SQL queries could be written.

This is essentially a division query. To solve this query,
we need to identify the most expensive food items in every
category produced by Purina in a set S. Then, we need to find
a pet which has eaten each one of these food items in .S, and
do so for all pets, and list them.

SELECT p.PetID, p.Name, p.State
FROM Pets p NATURAL JOIN Owns o
WHERE
(SELECT COUNT (*)
FROM (SELECT DISTINCT FoodID
FROM Purchases pu NATURAL JOIN
(SELECT FoodID, ClassofFood,
MAX (Price) as mPrice
FROM Foods
WHERE Brand=’Purina’
GROUP BY ClassofFood) m
WHERE p.PetID = pu.PetID) =
(SELECT COUNT (*)

FROM (SELECT FoodID, ClassofFood,
MAX (Price) as mPrice
FROM Foods

WHERE Brand=’Purina’
GROUP BY ClassofFood));

Figs 1(a) and 1(b) were generated by ChatGPT as candidates
for query Q2. Query in Fig 1(a) happens to be incorrect, as this
query will not generate pets who ate all the most expensive
foods in each category. It will list a pet if it ate any of the
most expensive foods, but query in Fig 1(b) is correct.

It should be apparent that their ASTs will be vastly different
that the SQL query above. In particular, the ASTs of the
SQL query above and the query in Fig 1(b) though very
different, they will compute identical responses as they are
functionally identical. The question is, could a tutoring system
identify the similarity of these two queries by analyzing the
two corresponding ASTs, and report an error and recommend
corrective steps for the pairs involving Fig 1(a). The answer to

Authorized licensed use limited to: UNIVERSITY OF IDAHO. Downloaded on August 29,2025 at 18:56:22 UTC from IEEE Xplore. Restrictions apply.

" p.PetID, p.Name, p.State
Pets p
2 JOIN Owns o ON p.PetID = o.PetID
| Purchases pu ON pu.PetID = p.PetID
| Foods £ ON pu.FoodID = f.FoodID

- f.Brand =
f.Price = (
I MAX(f2.Price)
| Foods f2
E f2.ClassofFood = f.ClassofFood
f2.Brand =

(a) SQL Query Written by ChatGPT for Query Q2.

| p.PetID, p.Name, p.State
Pets p
01 ON p.PetID = o.PetID

- f.ClassofFood
I Foods f
- f.Brand =
f.ClassofFood
i MAX(£.Price) >
) MAX(f.Price) > (
MAX (£2.Price)
Foods f2
- f2.Brand =
) £2.ClassofFood = f.ClassofFood

| Purchases pu
- pu.PetID = p.PetID

pu.FoodID = (
: £3.FoodID
| Foods £3
E £3.Brand =

) £3.ClassofFood = f.ClassofFood

BY £3.Price [

(b) Amended SQL Query for Query Q2.

Fig. 1. SQL queries written by ChatGPT.

this question is substantially difficult to answer without more
research, which we plan to do. But, currently we are able to
answer this question for non-equivalent query ASTSs.

C. LLM as an Error Message Interpreter

A possible set of suggestions for the students could include
messages such as

Your query has some differences from the expected
solution. Here are some suggestions to improve it.

o Add the condition AND owners.Age < 18
to the WHERE clause.

e Change the ORDER BY clause to ORDER
BY pets.Name ASC, pets.TypeofPet
DESC.

Our goal is to use SQLglot’s AST Diff function to first
identify the query difference, then discover the steps that are
needed to make the test query similar to the reference query
in ways similar to the concept of “edit distance”, and then use
extensive prompt engineering and potentially training an LLM
on AST Diff to generate the needed suggestions. We believe
that there is an opportunity to create an SQL self-learning
platform that provides feedback on how a user can improve
their query. It also provides best practice recommendations as
shown above with the capitalization of DESC and ASC in the
above LLM recommendations. In the next few sections, we
discuss how we approach the implementation of ExplainS to
acheive this goal.

IV. ARCHITECTURE OF EXPLAINS

The logic model of the ExplainS is shown in Fig 2. Once
students work on an SQL assignment available in the assign-
ment database, they submit their solutions in two possible
modes — tutoring or assessment, by first selecting one of the
three difficulty levels — Beginner, Intermediate or Hard. Once
submitted, the query is analyzed, executed and compared with
reference solutions before a feedback is generated. While the
assessment currently is at the true/false level, a part credit
attribution is also possible.

SQLGlot ASTDiff
9 @

Assignment
Database and
Reference SQL
Solutions

v
Error Report
and
. Suggestions

Fig. 2. ExplainS Tutoring Pipeline.

Authorized licensed use limited to: UNIVERSITY OF IDAHO. Downloaded on August 29,2025 at 18:56:22 UTC from IEEE Xplore. Restrictions apply.

A. System Design

ExplainS leverages the Django web framework for its
data management and templating capabilities with a goal to
providing a scalable foundation for the interactive learning
environment. The front-end, while currently basic, employs
out-of-the-box CSS and Bootstrap for a clean and organized
look. The system’s core functionality is built around the
following key components.

1) Database Support: SQL assignments and tests in the as-
signment database are always based on live database schemes
and instances against which they are tested. ExplainS uses
the Python Faker library to generate a comprehensive mock
dataset for each of its database scheme in the SQL exercises,
and provides functionalities to create realistic data. This ap-
proach fosters an engaging learning experience by allowing
users to practice against datasets that resemble real-world
scenarios. The database used is PostgreSQL. Once students
choose an assignment or test for use, the correspond database
is initiated and loaded to support the tutoring or assessment
functions.

A syntax analyzer rigorously parses user queries before
onward processing to ensure validity of submitted queries,
and generates first-level errors messages that are syntactic in
nature using PostgreSQL engine. Error handling mechanisms
is graceful and manages invalid SQL syntax (caught during
parsing) or database-level execution errors. Informative mes-
sages are provided to the user in both cases.

B. User Interface

ExplainS’s user interface prioritizes a seamless learning
experience. This section will provide a visual tour of its key
elements, highlighting features that promote intuitive interac-
tion and effective feedback delivery.

a) Query Input Area: In ExplainS, a user is provided an
exercise problem, a schema, an area to write an sql query (see
Fig 3). There are also three button options. The options are
preview, submit query and next. Preview allows a user to see
data output of the query they have written without Gemini
feedback. Submit query is what provides Gemini feedback to
the user along with the output of the user generated query.
Next takes a user to another exercise

List all pets (PetID, Name, TypeofPet) living in South Alex, NE and owned by a minor who has no income. List the pets in ascending order of their
names and in descending order of their pet type when the names are identical.

Schema Description:

Pets(PetID, Name, Age, Street#, City, ZipCode, State, TypeofPet)
Owners(0ID, LastName, Street#, City, ZipCode, State, Age, Annuallncome)
Owns (PetID, Year, OID, PetAgeatOwnership, PricePaid)

Likes(PetID, TypeofFood)

Foods(FoodID, Name, Brand, Typeoffood, Price, Itemdeight, ClassofFood)
Purchases (0ID, FoodID, PetID, Month, Year, Quantity)

Your SQL Query:

SELECT * FROM Pets|

Fig. 3. ExplainS’s Query Input Area.

b) Schema Visualization: ExplainS is designed with the
understanding that learning is also visual. For this reason a
preview button is provided, as shown in Fig 4, so a user
can preview the data output of the query prior to getting
feedback from Gemini to provide user’s the opportunity to
make adjustments to their query prior to Gemini providing
the correction steps.

Your SQL Query:

SELECT * FROM Pets|

Results

1 Brian 4 06212 Michael Run Apt. 762 Josephfurt 78958 TX cat 853

2 Benjamin n 76906 Philip Burg Gaineston 04042 D fish 768

3 David 7 45352 Brown Isle Suite 708 Haleymouth 02310 TN cat 891

4 David 11 5606 Bailey Coves Apt. 161 Nelsonland 11438 GU bird 651

5 James 2 3201 Garcia Loaf Suite 669 Deannaton 62774 HI cat 741

Fig. 4. Interactive Schema Visualization in ExplainS.

C. Gemini Prompt Construction

To generate the most helpful feedback, ExplainS carefully
crafts prompts for Gemini. These prompts include the follow-
ing components.

o User Query: The original query submitted by the user.

« AST Difference: The transformations calculated by SQL-
glot, highlighting discrepancies between the user’s query
and the solution.

o Exercise: The exercise problem the user is asked to solve.

The system works by fetching the solution query from the
exercises dataset and when a user submits a query, SQLglot’s
AST Diff is called. The output of AST diff is fed to Gemini
through a prompt, along with the user query and the exercise
problem. Gemini then interprets the AST Diff and provides
steps on how a user can make corrections to their query to
correctly solve the exercise problem. A sample prompt is
shown in Fig 5.

D. Feedback Generation

This core module leverages an LLM, Gemini, in conjunc-
tion with the SQLglot library to provide context-aware and
personalized feedback. It analyzes the AST diff between a
user’s query and the correct solution to provide feedback on
what needs to change about the user’s query to be correct.

a) The Role of SQLglot: The SQLglot library is crucial
for pinpointing specific differences between the user’s query
and the correct solution. It parses both queries into ASTs,
as shown in Fig 6, and calculates the transformations needed
to convert the user’s AST into the solution AST. These
transformations highlight the precise areas where the user’s
understanding might have diverged.

b) Integrating the Large Language Model: Gemini, the
LLM, is used to interpret the AST differences identified
by SQLglot. Based on this analysis, the module generates
guidance tailored to the specific errors or misconceptions

Authorized licensed use limited to: UNIVERSITY OF IDAHO. Downloaded on August 29,2025 at 18:56:22 UTC from IEEE Xplore. Restrictions apply.

user_ast = parse_one(user_query)
solution_ast = parse_one(solution_gquery)

transformations = diff(user_ast, solution_ast)

prompt = f"""{exercise}

User Query: {user_query}

kxTask:sx

Identify the specific changes needed in the User Query to make it produce the exact same output
as the Solution Query. Analyze the User Query, Solution Query, and the provided AST Diff to
pinpoint these required modifications.

then provide guidance to the user on how they need to adjust their query to match the solution
skQutput Format:sx

Provide clear instructions on what the user query needs to match the solution query and the exercise,
in a step-by-step format.

Only provied correction steps no AS diff output. Do Not provde output of transformations.

Do Not provide the solution query only the steps needed to match the solution.

Only provide the changes needed to match the solution query. Try to not repeat yourself.

AST Diff: {transformations}"""

response = model.generate_content(prompt)
gemini_feedback = response.text
feedback = f"Your query has some differences from the expected solution. Here are some suggestions: {gemini_feedback}"

Fig. 5. Example of a Prompt Structure Sent to Gemini.

AST Diff

SQLGIot can calculate the semantic difference between two expressions and output changes in a form of a
seqguence of actions needed to transform a source expression into a target one:

from sqlglot import diff, parse_one
diff(parse_one("SELECT a + b, ¢, d"), parse_one("SELECT ¢, a - b, d"))

[
Remove (expression=Add (
this=Column(
this=Identifier(this=a, quoted=False)),
expression=Column(
this=Identifier(this=b, quoted=False)))),
Insert(expression=Sub(
this=Column(
this=Identifier(this=a, quoted=False)),
expression=Column(
this=Identifier(this=b, quoted=False)))),
Keep(
source=Column(this=Identifier(this=a, quoted=False)),
target=Column(this=Identifier(this=a, quoted=False))),

Fig. 6. SQLglot AST Diff Example.

Authorized licensed use limited to: UNIVERSITY OF IDAHO. Downloaded on August 29,2025 at 18:56:22 UTC from IEEE Xplore. Restrictions apply.

present in the user’s query. This feedback focuses not only
on correcting the syntax but also on improving the user’s
conceptual understanding of SQL constructs.

When a user submits the query, Gemini reads the SQLglot
AST Diff and identifies what changes are needed for the user
submitted query to match the solution query and provides
correction steps (e.g., Fig 7).

Your query has some differences from the expected solution. Here are some suggestions: - Change "SELECT * FROM Pets " to SELECT PetiD,
Name, TypeofPet, Age, Annualincome FROM Pets" - Add a WHERE clause to filter the results to only include pets that live in South Alex, NE and
are owned by a minor who has no income. - The WHERE clause should look something like this: *WHERE City = 'South Alex' AND State = 'NE'
AND Age < 18 AND Annualincome = 0" - Order the results first by name in ascending order (A to Z) and then by pet type in descending order
(e.g., "Bird" would come before "Cat"). - The ORDER BY clause should look something like this: "ORDER BY Name ASC, TypeofPet DESC'

Results
1 Brian 4 06212 Michael Run Apt. 762 Josephfurt 78958 ™ cat 853
2 Benjamin n 76906 Philip Burg Gaineston 04042 [») fish 768
3 David 7 45352 Brown Isle Suite 708 Haleymouth 02310 TN cat 891

Fig. 7. Gemini Feedback

E. Feedback Panel

The Feedback panel appears in red, as shown in Fig 7, and
provides correction steps to the user on how to fix their query
to match the solution query. If the user query is correct, as
shown in Fig 8, and matches the solution query’s AST then
feedback saying the user query matches the solution in green.

Problem 2

List all pet owners and their pets (OID, LastName, PetID, Name) who buy the most expensive food for the pet type.

Schema Description:

Pets(PetID, Name, Age, Street#, City, ZipCode, State, TypeofPet)
Owners(0ID, LastName, Street#, City, ZipCode, State, Age, Annuallncome)
Owns(PetID, Year, OID, PetAgeatOunership, PricePaid)

Likes(PetID, TypeofFood)

Foods(FoodID, Name, Brand, TypeofFood, Price, ItemWeight, ClassofFood)
Purchases(0ID, FoodID, PetID, Month, Year, Quantity)

Your SQL Query:

Your query's results match the expected solution.
Results
833 Jones 79 Robert
757 Horne 158 Tammy
804 Larsen 81 Margaret

Fig. 8. Example of ExplainS’s Feedback Panel for a Correct Query.

V. CURRENT FUNCTIONALITIES

ExplainS offers the following core features to support a
focused and interactive SQL learning experience:

A. Guided Practice:

A structured exercise set introduces fundamental SQL con-
cepts (SELECT, WHERE, aggregation, joins, etc.), gradually
increasing in complexity. This measured progression fosters a
strong foundation and facilitates the development of problem-
solving skills.

1) Dynamic Schema Display: An interactive visualization
of the relevant database structure provides context for query
formulation. By clearly presenting table relationships and at-
tributes, this feature reduces guesswork and empowers learners
to build queries with confidence.

2) Personalized Feedback: Leveraging Gemini, ExplainS
analyzes submitted queries and compares them to solution
queries. AST transformations are pinpointed, and the feedback
mechanism generates tailored correction steps. This guidance
promotes error understanding and helps users bridge the gap
between their attempts and correct solutions.

3) Query Previewing: The ability to preview query re-
sults before submission empowers learners to experiment and
iteratively refine their solutions. This immediate feedback
loop reinforces understanding and encourages a self-directed
learning approach

B. Exercise Navigation

Users can navigate through a curated series of beginner-level
exercises. This structured pathway provides a well-defined
starting point and a sense of achievable progress within the
learning journey.

VI. DISCUSSION
A. Novelty and Impact

ExplainS distinguishes itself from traditional SQL learning
tools in several aspects:

1) Dynamic Schema Visualization: ExplainS’s dynamic
schema visualization transcends the limitations of static exam-
ples. Rather than merely observing a diagram, learners actively
engage with the data model. Below are key aspects that set
this visualization apart:

a) Beyond Static: Static examples often present a sin-
gle, isolated view of a database. In contrast, ExplainS’s dy-
namic visualization empowers users to interactively explore
relationships (through filtering, utilizing joins, cte’s, window
functions, etc.), developing a comprehensive understanding of
the data model’s structure.

b) Query Formulation as Discovery: The visualization
becomes a discovery tool, enabling learners to identify valid
joins, relevant columns, and reduce guesswork in query con-
struction. This hands-on approach promotes confidence in
query formulation.

c) Conceptual Understanding: A strong mental model
of the schema is crucial for writing efficient and accurate
SQL. ExplainS’s visualization facilitates the development of
this mental model, fostering long-term SQL proficiency.

2) Personalized Feedback: ExplainS utilizes an LLM, like
Gemini, to deliver personalized feedback that goes far beyond
the capabilities of traditional error messages. Here’s how this
integration creates a more impactful learning experience:

a) Pinpointing the Root Cause: Generic errors often sim-
ply state that something is wrong ("Incorrect syntax near X”).
In contrast, LLM-powered feedback leverages SQLglot’s AST
diff analysis to identify the precise conceptual or syntactic
source of the error (misconceived join, improper aggregation,
etc.).

Authorized licensed use limited to: UNIVERSITY OF IDAHO. Downloaded on August 29,2025 at 18:56:22 UTC from IEEE Xplore. Restrictions apply.

b) Guiding Towards Resolution: Instead of merely point-
ing out a problem, ExplainS’s feedback aims to guide the
learner step-by-step towards the solution. This guidance could
involve breaking down a complex transformation, suggesting
alternative SQL techniques, or providing hints grounded in the
error’s context.

c) Addressing Misconceptions: Over time, LLM feed-
back can be tailored to address recurring patterns in user
errors. This allows the system to provide explanations that
target common SQL misconceptions, actively promoting the
development of strong conceptual understanding.

d) Adapting to the Learner: LLMs can be fine-tuned
to match a user’s current skill level. Feedback could adjust
its complexity, whether providing high-level guidance for
beginners or more nuanced explanations for those with some
experience.

B. The Ideal Vision

ExplainS envisions a future where Gemini acts as a true
SQL coach. A tiered feedback system would be implemented
alongside a grading mechanism. On initial incorrect submis-
sions, the feedback would prioritize guidance with escalating
specificity:

1) Attempt 1: High-level hints (“Check your joins,” "Re-
examine your WHERE clause”).

2) Attempt 2: More targeted advice ("You’re not joining
correctly, check the table...,” ”Your WHERE clause has too
many/too few filters.”).

3) Attempt 3: If still unresolved, provide the correct solu-
tion with an explanation of the changes made.

C. Focus on Guided Practice

ExplainS adopts a structured approach to practice, recog-
nizing its paramount importance in the SQL learning journey.
Contrasting with the often overwhelming nature of unstruc-
tured resources, guided exercises provide a framework that
promotes mastery by fostering a logical progression of skills
and a deep understanding of core SQL concepts.

Exercises are meticulously designed to span three distinct
difficulty levels:

1) Beginner: Introduces foundational concepts (SELECT,
FROM, WHERE, simple aggregations, basic joins). Exercises
focus on clear problem statements and emphasize building
core query-writing mechanics.

2) Intermediate: Assumes fluency with the basics and
introduces more complex scenarios. Exercises incorporate
multiple joins, nested queries, advanced aggregations, and the
use of window functions. The focus shifts towards problem-
solving and applying SQL constructs strategically.

3) Advanced: Challenges learners with real-world-inspired,
open-ended problems, demanding the synthesis of various
techniques. These exercises promote solution optimization,
nuanced SQL reasoning, and encourage exploration beyond
the explicitly taught concepts.

D. Tiered Exercise Structure

This tiered exercise structure fosters true mastery for several
reasons:

1) Scaffolding Knowledge: By starting with the fundamen-
tals and gradually increasing complexity, learners build upon
a solid base. This prevents gaps in understanding that might
hinder the application of advanced concepts later.

2) Targeted Practice: Each difficulty level reinforces spe-
cific skills. Exercises are crafted to expose common mistakes
and misconceptions, allowing learners to address them directly.

3) Conceptual Solidification: Progressing through exercises
translates to working with increasingly elaborate datasets and
data relationships. This constant interaction reinforces the
connection between SQL syntax and the underlying logic of
data manipulation.

4) Motivation and Success: Clearly defined levels, coupled
with achievable challenges within each tier provide learners
with a sense of accomplishment and the drive to advance
further.

E. Planned Future Developments

ExplainS envisions an evolution into a comprehensive SQL
tutoring system. Key development goals include:

1) Advanced Feedback Mechanism: By training a special-
ized LLM on vast datasets of AST differences and queries,
ExplainS aims to provide nuanced and explanatory feedback.
This transition from simple correction steps to tutoring-like”
guidance would significantly enhance the platform’s value for
learners.

2) Automated Grading System: A robust automated grading
system would streamline assessment and deliver rapid perfor-
mance feedback. This feature would not only benefit learners
by providing instant evaluation but also scale ExplainS’s utility
in classroom or self-learning settings.

3) Expanded Exercise Dataset: ExplainS aspires to offer a
diverse range of exercises covering a wider spectrum of diffi-
culty levels. Introducing more complex schemas and problem
scenarios would cater to learners at various stages and keep
the platform engaging.

4) LLM-Driven Solution Generation: Fine-tuning an LLM
to independently generate accurate solution queries would
transform the learning experience. Users and the AI could
collaborate on solutions, fostering both critical thinking in
learners and potentially refining the LLM’s own SQL pro-
ficiency.

VII. CONCLUSION

ExplainS addresses the limitations of traditional SQL learn-
ing practices, especially feedback generation, by providing
a dynamic and engaging environment for guided practice.
Key innovations that distinguish ExplainS include interactive
schema visualization, personalized feedback, and structured
and progressive difficulty leveled based exercise. The current
edition of ExplainS includes our initial design ideas of explain-
able SQL, semantic error trapping and feedback generation
that we believe are more effective compared to contemporary

Authorized licensed use limited to: UNIVERSITY OF IDAHO. Downloaded on August 29,2025 at 18:56:22 UTC from IEEE Xplore. Restrictions apply.

approaches. While several systems used AST and LLM for
tutoring systems individually, we made them work together
for an improved tutoring system.

ExplainS envisions a continued evolution into a compre-
hensive SQL tutoring system. As discussed earlier, future de-
velopment goals include enhanced LLM feedback, automated
grading, and inclusion of expanded learning resources. One
of the most important enhancements will be development of
an algorithm to test semantic equivalence of AST trees that is
not addressed in this paper. Once available, automatic grading
will be fairly accurate. We believe ExplainS strives to empower
learners of all backgrounds to achieve SQL mastery. It holds
the potential to change how SQL is taught, making the learning
process more effective, engaging, and accessible.

ACKNOWLEDGEMENT

This Research was supported in part by a National Institutes
of Health IDeA grant P20GM103408, a National Science
Foundation CSSI grant OAC 2410668, and a US Department
of Energy grant DE-0011014.

REFERENCES

[1] N. P. Bakas, M. Papadaki, E. Vagianou, I. T. Christou, and
S. A. Chatzichristofis. Integrating llms in higher education,
through interactive problem solving and tutoring: Algorithmic
approach and use cases. In EMCIS 2023, Dubai, United Arab
Emirates, December 11-12, 2023, Proceedings, Part I, volume
501 of LNBIP, pages 291-307. Springer, 2023.

P. Bhuse, J. Jain, A. Shaju, V. John, A. Joshi, and R. Rajendran.
Sqlearn: A browser based adaptive SQL learning environment.
In AIS 2021, Held as Part of the HCII 2021, Virtual Event,
July 24-29, 2021, volume 12792 of Lecture Notes in Computer
Science, pages 139-152. Springer, 2021.

I. Bider and D. Rogers. YASQLT - yet another SQL tutor -
A pragmatic approach. In ER 2016 Workshops, Gifu, Japan,
November 14-17, 2016, volume 9975 of LNCS, pages 197-206,
2016.

N. Carr, F. R. Shawon, and H. M. Jamil. An experiment
on leveraging chatgpt for online teaching and assessment of
database students. In IEEE TALE 2023, Auckland, New Zealand,
November 28 - Dec. 1, 2023, pages 1-8. IEEE, 2023.

S. Chen, X. Xu, H. Zhang, and Y. Zhang. Roles of chatgpt
in virtual teaching assistant and intelligent tutoring system:
opportunities and challenges. In WSSE 2023, Tokyo, Japan,
September 22-24, 2023, pages 201-206. ACM, 2023.

S. Chu, C. Wang, K. Weitz, and A. Cheung. Cosette: An
automated prover for SQL. In CIDR 2017, Chaminade, CA,
USA, January 8-11, 2017. www.cidrdb.org, 2017.

X. Dong, C. Zhang, Y. Ge, Y. Mao, Y. Gao, L. Chen, J. Lin,
and D. Lou. C3: zero-shot text-to-sql with chatgpt. CoRR,
abs/2307.07306, 2023.

M. Fabijanic, G. Dambic, and J. Sasunic. Automatic, con-
figurable, and partial assessment of student SQL queries with
subqueries. In MIPRO 2022, Opatija, Croatia, May 23-27,
2022, pages 542-547. 1EEE, 2022.

S. Ganesan, T. Gong, and J. Lee. Sqlearn: Automated SQL
statement assessment using structure-based analysis. In SIGCSE
2024, Volume 2, Portland, OR, USA, March 20-23, 2024, pages
1644-1645. ACM, 2024.

A. Gilad, Z. Miao, S. Roy, and J. Yang. Understanding queries
by conditional instances. In SIGMOD 22, Philadelphia, PA,
USA, June 12 - 17, 2022, pages 355-368. ACM, 2022.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

[27]

(28]

(29]

A. Hull and B. du Boulay. Motivational and metacognitive
feedback in sql-tutor. Comput. Sci. Educ., 25(2):238-256, 2015.
M. Karimzadeh and H. M. Jamil. Visql: An intelligent online
SQL tutoring system. In IEEE ICALT 2022, Bucharest, Roma-
nia, July 1-4, 2022, pages 212-213. IEEE, 2022.

A. Kleerekoper and A. Schofield. SQL tester: an online SQL
assessment tool and its impact. In ACM ITiCSE 2018, Larnaca,
Cyprus, July 02-04, 2018, pages 87-92. ACM, 2018.

C. Kleiner, C. Tebbe, and F. Heine. Automated grading and
tutoring of SQL statements to improve student learning. In
Koli Calling ’13, Koli, Finland, November 14-17, 2013, pages
161-168. ACM, 2013.

J. Li, B. Hui, G. Qu, J. Yang, B. Li, B. Li, B. Wang, B. Qin,
R. Geng, N. Huo, X. Zhou, C. Ma, G. Li, K. C. Chang,
F. Huang, R. Cheng, and Y. Li. Can LLM already serve as
A database interface? A big bench for large-scale database
grounded text-to-sqls. In NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023.

Z. Miao, T. Chen, A. Bendeck, K. Day, S. Roy, and J. Yang.
I-Rex: An interactive relational query explainer for SQL. Proc.
VLDB Endow., 13(12):2997-3000, 2020.

Z. Miao, S. Roy, and J. Yang. Explaining wrong queries
using small examples. In SIGMOD 2019, Amsterdam, The
Netherlands, June 30 - July 5, 2019, pages 503-520, 2019.

B. D. Nye, D. Mee, and M. G. Core. Generative large language
models for dialog-based tutoring: An early consideration of
opportunities and concerns. In AIED Workshop 2023, Tokyo,
Japan, July 7, 2023, volume 3487 of CEUR Workshop Pro-
ceedings, pages 78-88. CEUR-WS.org, 2023.

J. R. Prior. Assesql: an online, browser-based SQL skills
assessment tool. In ITiCSE '14, Uppsala, Sweden, June 23-25,
2014, page 327. ACM, 2014.

J. Rajala, J. Hukkanen, M. Hartikainen, and P. Niemeld. “Call
me Kiran” - ChatGPT as a tutoring chatbot in a computer
science course”. In Mindtrek 2023, Tampere, Finland, October
3-6, 2023, pages 83-94. ACM, 2023.

S. A. Reid, F. Kammer, J. Kunz, T. Pellekoorne, M. Siepermann,
and J. Wolfer. Itssql: Intelligent tutoring system for SQL. CoRR,
abs/2311.10730, 2023.

C. F. Reilly. Experience with active learning and formative
feedback for a SQL unit. In IEEE FIE 2018, San Jose, CA,
USA, October 3-6, 2018, pages 1-9. IEEE, 2018.

U. Rohm, L. Brent, T. Dawborn, and B. Jeffries. SQL for data
scientists: Designing SQL tutorials for scalable online teaching.
Proc. VLDB Endow., 13(12):2989-2992, 2020.

S. Sun, Y. Zhang, J. Yan, Y. Gao, D. Ong, B. Chen, and
J. Su. Battle of the large language models: Dolly vs llama
vs vicuna vs guanaco vs bard vs chatgpt - A text-to-sql parsing
comparison. In EMNLP 2023, Singapore, December 6-10, 2023,
pages 11225-11238, 2023.

F. Tahir, A. Mitrovic, and V. Sotardi. Investigating the causal
relationships between badges and learning outcomes in sql-tutor.
Res. Pract. Technol. Enhanc. Learn., 17(1):7, 2022.

I. Vagin, O. Havrylenko, J. P. M. Bastida, and A. Chukhray.
Computer intelligent tutoring system “sqltor”. In ICT in Edu-
cation, Research and Industrial Applications. Kherson, Ukraine,
June 12-15, 2019, volume 2387 of CEUR, pages 525-530, 2019.
G. Yadav, Y. Tseng, and X. Ni. Contextualizing problems to
student interests at scale in intelligent tutoring system using
large language models. In AIED 2023 Workshops, Tokyo, Japan,
July 7, 2023, volume 3487 of CEUR, pages 17-25, 2023.

X. Zhang, K. Khedri, and R. Rawassizadeh. Can llms substitute
sql? comparing resource utilization of querying llms versus
traditional relational databases. CoRR, abs/2404.08727, 2024.
F. Zhao, L. Lim, I. Ahmad, D. Agrawal, and A. E. Abbadi.
Llm-sql-solver: Can llms determine SQL equivalence? CoRR,
abs/2312.10321, 2023.

Authorized licensed use limited to: UNIVERSITY OF IDAHO. Downloaded on August 29,2025 at 18:56:22 UTC from IEEE Xplore. Restrictions apply.

