
Learning to Design Novel Programming Languages

using CodeBlock Syntax Checker

Spencer Reed

Department of Computer Science

University of Idaho, USA

reed7385@vandals.uidaho.edu

Hasan M. Jamil �

Department of Computer Science

University of Idaho, USA

jamil@uidaho.edu

Abstract—In a programmer’s pursuit of using or creating
new programming languages, finding errors in the syntax of
code can present many issues. Languages with little to no
documentation and incomprehensible exception handling and
reports are frustrating to work with and can create confusion
when trying to locate where in the code the program has faulted.
In this paper we present CodeBlock, a parser generator and
syntax checker for arbitrary programming languages. CodeBlock
is a block based grammar builder for any programming language
that constructs a parsing expression grammar for the language
based on user built expressions. This grammar can then be used
within the CodeBlock website or in the CodeBlock Node.JS
application to test the syntax of either written code, or files
containing code in the language, reporting comprehensible error
messages if errors in syntax are found. Our eventual goal is to
incorporate CodeBlock into a compiler design tutoring system,
called CompiTS, in which it will play a central role in teaching
students how to design new programming languages and test the
effectiveness of the new language using rapid prototyping and a
translational approach to implementation. This is an emerging
research, and in this paper, we only focus on the syntax checking
component of the CompiTS system.

Index Terms—Syntax Checker, Compiler Design, Tutoring
System, Language Design.

I. INTRODUCTION

Syntax checking or parsing is fundamental to all language

based computer applications [24], during system design or

when instructions are supplied for machine interpretation and

execution. Students build special purpose syntax checkers and

analyzers at a considerable cost and effort. Computer science

students also practice new language designs in courses such

as compiler construction and programming languages design.

The main concept they must master in these exercises is the

grammar and syntax rules. Currently, they learn and practice

these concepts by designing parsers and implementing them

in a case by case basis. They must redesign the parsers in the

event of errors or needed modifications at a considerable time

cost, the time they could use to learn more useful things.

A. Background

Error handling in programming languages is the undertaking

of giving feedback to programmers when errors in their code

have been identified. Programming languages such as Python

and Java feature built in error handling and reporting functions

that check a programmer’s code for any exceptions raised that

would prevent the program from executing. For instance, when

a syntax error is found in Python code, its parser reports to

the programmer the line where the error was found and the

token in this line that created the exception.

While a handful of popular programming languages contain

exception handling features such as these, more often than

not it is up to the programmer to locate where exactly their

code has thrown the error. This is often tedious, requiring the

programmer to work through their program line by line until

they find where the issue has occurred.

To alleviate programmers from painstakingly searching

through their code, many sites have been created to check

the syntax of various programming languages. For example,

various syntax checkers can be found online for challeng-

ing languages such as PHP and SQL. The downsides of

these syntax checkers are that they only analyze one specific

language, and they do not exist for every language. New

programming languages or languages with less recognition

may not have one of these tools built for them. To address

these issues we present in this paper CodeBlock, a parsing

expression grammar generator and syntax checker for arbitrary

programming languages. Our CodeBlock system explores an

alternative method of checking the syntax of any programming

language by first allowing the user constructing a parsing

expression grammar (PEG) for the language they would like

to check the syntax of. Our system contrasts other syntax

checkers found online by allowing users to build their language

dynamically using a simplified, block-based format to assign

the grammar rules. This allows programmers of any skill level

to easily create their grammar from the ground up.

B. Related Works

Compiler design is a foundational course in all computer

science curricula [11]. Yet, only a handful tutoring systems

could be found [7, 8, 23]. One of the major ingredients

of compiler design is syntax parser and analyzer. As Ali

and Smith [3] suggests, implementation of parsers makes a

difference in how the machines interpret them. Therefore,

learning to implement the right grammar and parsing them

accurately matters [9].

Not only novice computer scientists learn how to implement

language parsers [1, 10], advanced students also implement

parsers and syntax checkers for their research [4, 15, 20] as

well. New languages for advanced applications are also devel-

Authorized licensed use limited to: UNIVERSITY OF IDAHO. Downloaded on August 29,2025 at 18:56:53 UTC from IEEE Xplore.  Restrictions apply. 



oped routinely, yet tools to conceive new languages through

syntax modeling and testing is difficult to find. In this paper,

we develop a new online syntax design and checking system,

called CodeBlock, with a goal to integrate it with a compiler

tutoring system along the line of ITT [7, 8]. CodeBlock

is able to help design arbitrary language syntax grammar

and learn the rules, and check the syntax for admissibility

under the stored rules of an input program. CodeBlock allows

online submission of syntax grammars, memorizing them and

downloading developed grammar to be integrated with user

codes, all through an API as well as from the cloud applicatio.

C. Presentation Plan

The rest of this paper is organized as follows. In Sec II, we

present an analysis of parsing expression grammars and how

they are structured within CodeBlock. In Sec III, we outline

the method of generating these grammars using a block-based

format. Sec IV gives a more in depth analysis of how this

grammar is translated from simple blocks to parser generation

strings. In Sec V, we present the ASP.NET Core web API

developed for database use in the system. In Sec VI, the

methods of receiving and uploading grammars constructed

using CodeBlock is presented for use in subsequent grammar

construction and syntax checking sections. Sec VII presents an

overview of a Node.JS application developed in order to check

the syntax of code aligned to defined CodeBlock grammars

without the need of accessing the CodeBlock site every time.

Finally, we briefly outline the design of the language design

tutoring system in which CodeBlock is a component in Sec

VIII before we conclude in Sec IX.

II. PARSING EXPRESSION GRAMMARS FOR USE IN

CODEBLOCK

Parsing expression grammars, or PEGs, are formal grammar

descriptions of the rules used for recognizing strings in some

programming language. These descriptions contain parsing

expressions, or patterns that a given string can either match, or

not match, with no in-between [21]. PEGs contain designated

starting expressions as well, where expressions that reference

each other can start from. The grammar will accept any strings

that start with these expressions and match the rules following

it. PEGS are similar to widely used context-free grammars

(CFGs), however PEGs do not allow for any ambiguity in the

strings passed to it.

An example of a parsing expression grammar is found in

the following example:

• exp → sum ;

• sum → addop ((”+” | ”-”) addop)* ;

• addop → mulop ((”*” | ”/”) mulop)* ;

• mulop → value (””̂ mulop)? ;

• value → [0-9]+ | ”(” exp ”)” ;

The string 4 + 5 / 3 is valid in this grammar. The parse tree

for this string would be as shown in Fig 1.

These grammars do not allow for more than one parse tree to

be created for them, and as such parsing expression grammar

do not allow for ambiguity in design. PEGs also function

Fig. 1. Parse tree for ”4 + 5 / 3” in a parsing expression grammar

based on ”ordered choice” parsing. This means that the parser

will check the first expression in a grammar rule first, and if

the string it is parsing does not pass it moves onto the next,

accepting the first expression found that works for the string

given. This allows for a great deal of control when structuring

a grammar, with the programmer easily able to change what

will be checked first when parsing.

In this section, we present the structure of the parsing

expression grammar constructed by the CodeBlock system.

To follow up, we discuss how this grammar is passed into

and parsed using PeggyJS, a Javascript API tool used to parse

PEGs on runtime.

A. CodeBlock Grammar

A CodeBlock grammar is constructed in three separate

chunks.

1) Keywords

2) Initial Keywords

3) Grammar Rules

The keywords section of a CodeBlock grammar contains the

expression tokens used in the grammar rules. These tokens

each define a rule in the grammar, and are able to reference

each other within their rules in the file created when down-

loading a grammar from CodeBlock as follows.

Keywords:

start token1 token2 token3

The initial keywords section of a CodeBlock grammar contains

the tokens for the starting expressions of the grammar. These

tokens define the expressions that the grammar can start with

when parsing a string.

Initial Keywords:

start

The start keyword in the above example would be the name of

the expression used to start the parsing process of the grammar.

Lastly, the grammar rules section of a CodeBlock grammar

contains all of the names and definitions for each expression

Authorized licensed use limited to: UNIVERSITY OF IDAHO. Downloaded on August 29,2025 at 18:56:53 UTC from IEEE Xplore.  Restrictions apply. 



within the grammar, and what each expression allows accord-

ing to the grammar. These rules are constructed in a similar

manner to Backus-Naur Form, using #= to separate the left and

right hand sides rather than ::=. The rules section is structured

as in the following example:

Rules:

start #= token1 / token2

token1 #= [a-zA-Z]+ token2

token2 #= token3 ’b’ token3

token3 #= [0-9]

In this grammar, a string could either start with the expression

defined by token1 or the expression defined by token1 through

start’s definition. The token token1 can be 1 or more letters

followed by the token token2, which can be any number as

defined in the token token3, the letter b, then any number

again. The user must construct this grammar by defining

its keywords and rules themselves initially in the manner

described in Sec III.

These three sections are separated by the CodeBlock system

when the user defines them, or when a grammar file is fed into

the system. A full grammar file in this format would combine

the previous sections and be structured as in the example

below.

Keywords:

start token1 token2 token3

Initial Keywords:

start

Rules:

start #= token1 / token2

token1 #= [a-zA-Z]+ token2

token2 #= token3 ’b’ token3

token3 #= [0-9]

This file is then traversed when the user desires to check the

syntax of code, reading each section and storing their values

into different arrays to be used further. The way this is done

is described in further detail in Sec VI.

B. Peggy Utilization

When a grammar in the format defined in Sec II-A is read

into the CodeBlock website, the Rules section is manipulated

into a string readable by the PeggyJS API [16]. This API

allows for generating PEGs while a program is running by

feeding it a string containing the tokens and rules of a

language. It then allows a user to parse strings in the grammar,

returning error messages when a syntax error is found. Strings

used to generate PEGs in this manner must start with the initial

keywords contained in parentheses, followed by a newline,

and followed further by definitions for each token. Each

definition must also be separated by a newline character. Ana

string creating a grammar using this API can be found in the

following example, with newline characters added in for better

visibility of the string.

”start = (programStart)

programStart = type’ ’funcStart’ ’funcBody’ ”}’

type = ’int’ / ’void’

varDecl = ID’ ”=” ’[0-9]+

ID = [a-zA-Z]+

funcStart = [a-zA-Z]+’(){’

funcBody = ”varDecl’;’”

This example showcases a string capable of generating a PEG

for a small language using the PeggyJS API able to define an

initial function with a type of int or void followed by an id for

the function as well as the interior of the function, allowing

for a variable definition. The string ”void updateVar() var =

91; ” is a valid string in this grammar, with the syntax tree in

Fig 2.

Fig. 2. Parse Tree for void updateVar() var = 91;

In the CodeBlock system, the Rules section of the grammar

file is traversed and each expression found is added to a

string in this format. This string is then fed into the API’s

.generate() function, creating a parser for the grammar. Strings

in the language are then able to be used with this parser. The

CodeBlock system then returns ”Correct Syntax!” to the user

if no errors are found, or customized error messages to the user

displaying the location of a syntax error if one is discovered

by the parser.

III. BLOCK-BASED GRAMMAR GENERATION

To create a program for building functional grammars usable

by programmers of any level, a method to construct the

grammars in an easily digestible manner had to be considered.

This section describes the method of generating PEGs within

CodeBlock. To create the grammars, a block-based drag and

drop method has been developed for use in the CodeBlock

website. This has been done in order for ease of use, regardless

of skill in coding languages.

Block-based programming works by dragging predefined

’blocks’ within a designated coding area, as opposed to typing

code directly. An example of this coding method is the Scratch

language. Scratch works by dragging jigsaw style blocks with

code baked into them in its coding area. These blocks slot in

place within and next to each other, building code simply by

reading these blocks in order.

CodeBlock employs a similar method to Scratch for the

purpose of generating its grammar to use within the system.

The CodeBlock website features a coding area used to define

Authorized licensed use limited to: UNIVERSITY OF IDAHO. Downloaded on August 29,2025 at 18:56:53 UTC from IEEE Xplore.  Restrictions apply. 



individual expression rules. Users of the website are able to

drag keyword blocks, defined initially by the user, into this

area. To create these blocks, the user writes each keyword

they would like to use in the grammar within an input box

labeled ”Input Keywords”, separated by spaces or commas.

This generates unique draggable token blocks on the left-hand

side of the website UI for each keyword input using the HTML

Drag and Drop API script.

Once these keywords have been input, the corresponding

blocks can be drug into the grammar construction area on

the site. A definition block such as ”is defined by” can then

be dragged to this area as well. Continuing from this set-up,

additional blocks can be added to this area, outlining the right-

hand side of the expression rules. The blocks ”any letter”,

”an integer value” and ”the character ” can be found within

the list of blocks and once drug into the rule definition, the

regular expressions corresponding to them used in the system

are added to the parsing expression.

An example of this block-based rule building can be found

in the Fig 3, showing the definition of ”varDecl” from the

grammar in Sec II-B.

Fig. 3. Expression definition for a ”varDecl” rule

To define more than one rule that a single expression

can move through, there exists an ”or defined by” block in

the CodeBlock grammar construction area that adds a ’/’

character to the expression string. This character allows for

”or” statements in Peggy’s grammar generator, producing a

separate path for an expression to follow when parsing a string.

After an expression has been fully defined, it is submitted

and added to the site’s memory. It is also pushed into the

CodeBlock web API’s database memory separately, defined

in Sec V. A button on the site labeled ”Clear Blocks” can be

pressed to erase the blocks in the construction area, allowing

for new expressions to be built and added to memory.

To ensure that the PEG reads strings starting with the correct

expression, a separate input bar was added to the UI labeled

”Initial Keywords”. Listing keywords here in the same way

as the other keyword input bar and submitting the keywords

places the initial expression names into a separate Javascript

string array, read when creating the grammar string for passing

to the generate function.

IV. BLOCK TO STRING LITERAL TRANSLATION

To build the grammar string of words and regular expres-

sions passed into the Peggy API to generate a parser, the

arrays of strings mentioned are built and updated dynamically

whenever users add keywords, initial keywords or rules using

the blocks on the site. When initiating a syntax check for the

grammar, the Initial Keywords and Rules arrays are read into

different parts of the overall grammar string.

A. Starting Expression Strings

The starting expression is created first by reading the Initial

Keywords array. In the expression generated based on the

example shown in Sec II-A, the starting expression string

generated would be as follows.

”start = (programStart)”

In this string, the Peggy parser knows to start with the

expression named ”programStart”

Another example of a starting expression generated when

multiple initial keywords are found instead of a singular

starting expression would be structured as follows.

”start = (programStart / startExp)”

This string teaches the parser that strings can either start

following the ”programStart” or ”startExp” expressions and

their rules.

As mentioned previously, starting keywords can be updated

at any time, which will update the string as well allowing

for more starting expressions dynamically. Regardless of how

many expression names are held in the array, this initial ex-

pression will follow the same format, with more ’/’ characters

separating additional expression names.

B. Expression Rules

When constructing expressions as in Fig 1, each block is

read separately into a temporary string array when the rule is

submit. For the example in the Fig 1, the array would have

the following contents:

1) tempRuleArray[0] = ”varDecl ”

2) tempRuleArray[1] = ”= ”

3) tempRuleArray[2] = ”ID ”

4) tempRuleArray[3] = ” ’=’ ”

5) tempRuleArray[4] = ”[0-9]”

6) tempRuleArray[5] = ”+”

These are then combined into the ruleGrammar array in one

index location with space characters being defined simply as

’ ’ for readability in the parser generator. The final outcome

for this singular expression is what is shown in Sec II-B:

ruleGrammar[3] = ”varDecl = ID’ ”=” ’[0-9]+”

All of the above strings in the ruleGrammar are combined once

a syntax check has been initiated into a singular string, then

used with the generate function in order to create a functional

parser using the Peggy API.

The ’ ’ chunks must be added in the string translation

in order to read spaces in input. Each character, including

spaces read as character literals in the grammar must be

encapsulated with single quotation marks, or the character will

be interpreted as an expression name. In the previous example,

ID is a token, while the character = must be written as it is

a terminal. If the = character were not surrounded by single

Authorized licensed use limited to: UNIVERSITY OF IDAHO. Downloaded on August 29,2025 at 18:56:53 UTC from IEEE Xplore.  Restrictions apply. 



quotes, it would be read as a non-terminal token, halting the

flow of the parser.

With all of this done, the above expression can read the

string as a correct input:

”x = 20”

This string will return ”Correct Syntax!” to the user if varDecl

is specified as a starting expression as it passes the right-hand

side rules of the expression. x is the ID token, = is the ’=’

component, and 20 is the [0-9]+ regular expression.

V. CODEBLOCK WEBAPI

In addition to the features of CodeBlock mentioned in the

previous sections, the CodeBlock system also contains a Web

API to hold all of the rules created by a user. These rules are

added automatically when submitting a rule from the grammar

construction area, each with their own unique identification

number. This section will describe the back-end activities of

the API, as well as the uses of this API within CodeBlock.

A. ASP.NET Core Integration

The CodeBlock Web API is developed using the ASP.NET

Core framework for creating and update a database of grammar

rules. ASP.NET Core uses a Model-View-Controller pattern

in order to create an easily testable separation between a

program’s API code and client-side code. With this framework,

development of the API was expedited and made much easier

to update and add features to. The CodeBlock website hosts

a CodeBlockRules model for API rules, as well as a Code-

BlockController controller holding the code for accessing and

manipulating this model through different aspects of the site

itself.

B. Client-Side API Database Manipulation

With the integration of this API within the CodeBlock

system, users are able to add, remove and update the API

database in a variety of different ways. By doing this, they

are able to keep these rules held in the database to view even

when the page itself is refreshed.

When users create rules for their grammar in the gram-

mar construction area, an HttpPost method defined in the

CodeBlockController is called, placing a string following the

structure defined in the ”Rules” portion of Sec III into the

database with a unique identification number to be referenced

in later methods.

Next, when there are rules within the database, a button on

the top-right side of the website can be pressed, bringing up a

box featuring both a syntax checker for the grammar, as well

as each rule found in the grammar. This screen can be seen

in Fig 2.

These rules show the ID for the rule on the left with a ”ID).”

format, followed by the expression string, and a ”Delete”

button on the right of the rule. To show these rules to the

user, an HttpGet method is called when the button to show

the rules is initially pressed. This method iterates through the

database item by item until no more items are found. When

Fig. 4. The rules of a grammar pulled from the webAPI database

a rule is found, an html row object is created and placed in a

table object with columns for the id number, expression string

and delete button. This allows for deletion of rules from the

database with the delete button to remove the object visually

from the table without removing the entirety of the rules from

the user’s view.

The delete button itself calls an HttpDelete method within

the API as well. This method finds the rule by the ID number

within the database, then removes it from the database. This

allows for dynamic updating and removal of rules, without

having to worry about duplicate rules or errors when building

the expression. Since the rules are in individual rows of the

table, each row is assigned a number corresponding to the id

of the rule in the database that will be used as input for the

delete method.

Additionally, to create the string that the PeggyJS parser

is generated from, the HttpGet method is called in a similar

way to displaying each expression in the rules visualization

portion of the website. To construct the grammar string as in

Sec II-B, the API database is traversed and each rule found

within is placed into an array of strings. After this, the rule

strings are manipulated into Peggy format and appended to

the starting expression string separated by ’+’ characters. This

string is then fed into the Peggy parser generator and a parser

is generated from it to then check for syntax errors.

VI. DOWNLOADING AND UPLOADING CODEBLOCK

GRAMMARS

To ensure ease of use across sessions using the CodeBlock

system, users are both able to download grammars directly

from the website as well as upload them to website. Both of

these processes function based on simple .txt files read by the

system. This section will delve further into the processes for

both of these systems in individual subsections.

A. Grammar Downloading

Once a user has populated their CodeBlock system with

Keywords, Initial Keywords and Rules for their grammar in a

session, they may want to save their progress for later while

needing to shut down their system. While the CodeBlock

API shown in Sec V works across page refreshes, it is

unfortunately impossible to store data across sessions. To

Authorized licensed use limited to: UNIVERSITY OF IDAHO. Downloaded on August 29,2025 at 18:56:53 UTC from IEEE Xplore.  Restrictions apply. 



circumvent this issue, code was developed allowing users to be

able to download their grammar in a text file to be uploaded

when their system is running the CodeBlock website once

more.

When users add items to any of the three key sections

of the system, they are stored in individual Javascript string

arrays. There exists a keywords array, an initial keywords

array and a rules array in the code. To create the file that

will be downloaded by the user, once the button is pressed to

download the grammar these arrays are read and placed into

the body of a New Grammar.txt file. An example of this text

file is shown in Fig 3.

Fig. 5. A simple downloaded grammar file

The file is structured exactly as in the full grammar example

in Sec III, with ”Keywords:” being written first and the

keywords array’s strings following on the next line separated

by spaces. Next, ”Initial Keywords:” is written on a new

line with the initial keywords array’s strings following on

another newline separated by spaces as well. Finally, ”Rules:”

is written on yet another new line, followed by the strings

found in the rules array separated by new lines rather than

spaces.

When downloading the grammar, another file named ”cb-

Grammar.js” is downloaded as well featuring only the expres-

sions of this text file without the ”Rules:” heading for use in

a Node JS application described in Sec VII.

B. Grammar Uploading

When a new session of the CodeBlock website is initiated

the user may wish to continue updating a grammar or testing

one without wanting to create the expressions from the ground

up once more. To allow the user to do this, an upload function

was added to the CodeBlock website. With this function, the

downloaded grammar text file mentioned previously is taken

and separated into portions readable and usable by the system

for additional use of the grammar on the site.

Fig. 6. The Uploading section of the CodeBlock website

This section is found under the ”Input Keywords” input box

and can accept any .txt file, but will cancel the file search if

”Keywords:” is not the initial line, to stop non downloaded

grammar files from being read.

Once a grammar file has been uploaded it is read section by

section. When the system reads the line ”Keywords:” it then

takes every string separated by a space and places it into the

global keywords string array. With this array, the separated

strings are then made into draggable blocks that can start an

expression in the grammar construction area. Each of these

blocks is a separate HTML paragraph tag appended to the

”All Keywords” section of the site.

Once all of the keywords in the text file have been read

into blocks, the program reads the next line of the text file.

This should be just the words ”Initial Keywords:”. Once these

words are read, the program moves along to the next line

which holds all of the individual initial keywords used as

starting expressions for the grammar to parse. These keywords

are placed into the array holding initial keywords, and then

read into the ”Initial Keywords” section of the site for viewing

by the user.

Finally, once no additional initial keywords are read in the

text file the program moves to the next line holding the string

”Rules:”. Once read, the system will move to the final set

of lines, each holding individual expressions as well as their

terminal and non-terminal rules. These expressions are read

line by line and both placed into the expression rules array as

well as uploaded to the API’s database.

VII. NODEJS DEVELOPMENT FOR CODEBLOCK

When a user has fully defined a parsing expression grammar

on the CodeBlock website, they may want to check the syntax

of their grammar without wanting to initiate a session of

the website. Rather, they may want to check the syntax of

their programming language from within their chosen coding

environment. To allow users to do this, a NodeJS application

has been developed for users to download and use to check

the syntax on their system. This section will outline the uses

of the application for syntax checking natively as well as the

inner workings of the application when run.

Fig. 7. Grammar File for Node JS Use

When downloading their grammar from the CodeBlock

website, the user will receive an additional file to their

”New Grammar.txt” file called ”cbGrammar.js”. This file holds

simply the expressions from the .txt file, without the ”Rules:”

line at the top, in the format of a Peggy JS grammar string.

The user can then download the codeBlockGrammar.js node

Authorized licensed use limited to: UNIVERSITY OF IDAHO. Downloaded on August 29,2025 at 18:56:53 UTC from IEEE Xplore.  Restrictions apply. 



application and use it to parse their grammar at any point,

even if the website is not up and running on their system. If

the user has already downloaded node on their system, they

can simply run the application and start checking the syntax

of input lines or files written in the language the grammar

corresponds to.

When running the application, it will initially ask the user

to input the name of the .js file containing their grammar. With

this input, the application will run a search on the system for

a file with a name matching the one input. If one is found, it

will move on to the next portions of the application, if not, it

will ask for input again.

Once a file has been found containing the user’s grammar,

the application will read the file line by line. This will

construct the grammar string in full by concatenating each

line together separated by ’+’ characters. This string will then

be passed into the API for PeggyJS once more to generate a

parser in the same way as in Sec II-B. The application will

then ask the user if they would like to check the syntax of a

file, input, or to exit. If they select to check the syntax of input,

they will be asked to enter a string. Once entered, the string

will be passed into the generated parser and its syntax will

be checked. If syntax is correct it will simply return ”Correct

Syntax!” to the user. If it is not correct, a custom error message

will be returned to the user showing them where the parser

ran into an error and what it was expecting. The user can then

check additional lines, quit, or check the syntax of files.

Fig. 8. Input Syntax Check Feature of the CodeBlock Node JS Application

To check the syntax of written files, the user can either

select to check a file initially when running the application

and supplying a proficient grammar file, or select to check a

file after checking the syntax of an input string. When a file

name is given and a file matching that name is found on the

user’s system, it will begin to check the syntax of the code

file. To accomplish this, the file will be converted to a single

string, removing the line breaks in order to create a parseable

line to be fed into the generated parser. The application will

then return ”Current Syntax!” if there are no errors found,

and an error message if an error is thrown by the parser. An

example of this feature is shown in Fig 9.

In this example, two files are used, the first having the same

code as in Fig 8 having the syntax error named ”grammarTest-

SyntaxError.txt”. The second file, having the same code as

in Fig 8 which does not feature any syntax errors named

”grammarTestFile.txt” is then checked for syntax errors. As we

Fig. 9. Written File Syntax Check Feature of the CodeBlock Node JS
Application

can observe from the figure, when the syntax error is found in

the first file it returns the text of the portion that threw an error

as well as what the parser was expecting after checking every

available expression. With these two features a user is able

to comfortably check syntax of code following their defined

grammar without the need to open the CodeBlock site every

time.

VIII. DISCUSSION

CodeBlock is the syntax checker backbone of a compiler de-

sign tutoring system, CompiTS (stands for Compiler Tutoring

System), we are currently developing. In contrast to compiler

tutoring systems such as ITT [8], our goal is to help students

design new languages, experiment with the new language

and observe how the semantic interpretation of the newly

designed language aligns with the students’ design goals. In

other words, CompiTS focuses on helping students experience

the features of novel language they design.

CompiTS support this vision by allowing the students also

design a translation function τ that will correctly map the new

language to an existing language for which we have a robust

execution engine and has a known semantics. A graphical

user interface for τ supports writing translation rules visually,

and testing their execution in target languages. The translation

function is based on semantic equivalence preservation [2, 13],

and allowing rapid prototyping of novel languages. Language

translation [14, 18] is a convenient method to prototype a new

language, and has been used [17] for both imperative [12] and

declarative [5, 6, 19, 22] language implementations.

IX. CONCLUSION

Though we defer a discussion on CompiTS and its support

for translational approach to novel language prototyping as a

learning exercise to a future article, we believe we have ade-

quately discussed CodeBlock in this paper and demonstrated

how it can be used to check syntactic correctness of new

languages in very flexible and intuitive ways. As a tool, it

allows multiple useful functions and features to make it an

effective syntax checking and grammar management toolkit.

Our future plan is to incorporate CodeBlock in CompiTS

language design pipeline. We aim to support a GUI for

the design of translation rules, and what it means for two

languages to be equivalent. Then support a testing platform to

Authorized licensed use limited to: UNIVERSITY OF IDAHO. Downloaded on August 29,2025 at 18:56:53 UTC from IEEE Xplore.  Restrictions apply. 



verify semantic equivalence by comparing execution equality

with expected reference outcomes over identical datasets, in

the spirit of query equivalence. We also seek to investigate if an

abstract equivalence testing process could be developed from

user supplied equivalence descriptions. Such a tool could help

students learn and practice the theories of program equivalence

and machine translation of languages.

ACKNOWLEDGEMENT

This Research was supported in part by a National In-

stitutes of Health Institutional Development Award (IDeA)

#P20GM103408, a National Science Foundation CSSI grant

OAC 2410668, and a US Department of Energy grant DE-

0011014.

REFERENCES

[1] R. Aarssen, J. J. Vinju, and T. van der Storm. Concrete syntax
with black box parsers. Art Sci. Eng. Program., 3(3):15, 2019.

[2] A. Ahmed and M. Blume. An equivalence-preserving CPS
translation via multi-language semantics. In M. M. T.
Chakravarty, Z. Hu, and O. Danvy, editors, ACM SIGPLAN
ICFP 2011, Tokyo, Japan, September 19-21, 2011, pages 431–
444. ACM, 2011.

[3] S. Ali and S. W. Smith. A survey of parser differential anti-
patterns. In 2023 IEEE Security and Privacy Workshops (SPW),
San Francisco, CA, USA, May 25, 2023, pages 105–116. IEEE,
2023.

[4] M. Alrammal and G. Hains. Syntax analyzer & selectivity
estimation technique applied on wikipedia XML data set. In
DeSE 2013, Abu Dhabi, United Arab Emirates, December 16-
18, 2013, pages 3–8. IEEE, 2013.

[5] X. D. Carlos, G. Sagardui, and S. Trujillo. Mqt, an approach
for run-time query translation: From EOL to SQL. In A. D.
Brucker, C. Dania, G. Georg, and M. Gogolla, editors, Workshop
on OCL and Textual Modelling (@MODELS 2014), Valencia,
Spain, September 30, 2014, volume 1285 of CEUR Workshop
Proceedings, pages 13–22. CEUR-WS.org, 2014.

[6] H. C. Chan. Translational semantics for a conceptual level query
language. J. Comput. Sci. Technol., 10(2):175–187, 1995.

[7] R. del Vado Vı́rseda. An interactive tutoring system for learning
language processing and compiler design. In M. N. Giannakos,
G. Sindre, A. Luxton-Reilly, and M. Divitini, editors, ITiCSE
2020, Trondheim, Norway, June 15-19, 2020, page 552. ACM,
2020.

[8] R. del Vado Vı́rseda. ITT: an interactive tutoring tool to improve
the learning and visualization of compiler design theory from
implementation. In L. Merkle, M. Doyle, J. Sheard, L. Soh, and
B. Dorn, editors, SIGCSE 2022, Providence, RI, USA, March
3-5, 2022, Volume 2, page 1074. ACM, 2022.

[9] L. Diekmann and L. Tratt. Don’t panic! better, fewer, syntax
errors for LR parsers. In R. Hirschfeld and T. Pape, editors,
ECOOP 2020, November 15-17, 2020, Berlin, Germany (Virtual
Conference), volume 166 of LIPIcs, pages 6:1–6:32. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[10] M. S. Farooq, A. Abid, and R. K. Fox. A formal design for the
lexical and syntax analyzer of a pedagogically effective subset
of C++. In ICMLA 2016, Anaheim, CA, USA, December 18-20,
2016, pages 420–425. IEEE Computer Society, 2016.

[11] C. Fox and R. L. Lancaster. Use of a syntax checker to improve
student access to computing. In R. H. Austing, L. N. Cassel,
and J. C. Little, editors, SIGCSE 1984, Philadelphia, PA, USA,
February 16-17, 1984, pages 65–68. ACM, 1984.

[12] L. Fredlund, B. Jonsson, and J. Parrow. An implementation
of a translational semantics for an imperative language. In

J. C. M. Baeten and J. W. Klop, editors, CONCUR ’90, Theories
of Concurrency: Unification and Extension, Amsterdam, The
Netherlands, August 27-30, 1990, Proceedings, volume 458 of
LNCS, pages 246–262. Springer, 1990.

[13] E. Gansner, J. R. Horgan, C. M. R. Kintala, D. J. Moore,
and P. Surko. Semantics and correctness of a query language
translation. In R. A. DeMillo, editor, ACM POPL, Albuquerque,
New Mexico, USA, January 1982, pages 289–298. ACM Press,
1982.

[14] M. Héon, J. Aubut, and S. Gaudreau. UMLS-OWL: an OWL
2 translation of the unified medical language system (umls®)
semantic-network and metathesarus for publishing in the se-
mantic web. In N. Nikitina, D. Song, A. Fokoue, and P. Haase,
editors, ISWC 2017, Vienna, Austria, October 23rd - to - 25th,
2017, volume 1963 of CEUR Workshop Proceedings. CEUR-
WS.org, 2017.

[15] B. Hui, R. Geng, L. Wang, B. Qin, Y. Li, B. Li, J. Sun, and
Y. Li. S2sql: Injecting syntax to question-schema interaction
graph encoder for text-to-sql parsers. In S. Muresan, P. Nakov,
and A. Villavicencio, editors, Findings of the Association for
Computational Linguistics: ACL 2022, Dublin, Ireland, May 22-
27, 2022, pages 1254–1262, 2022.

[16] D. Majda. Peggy: Parser generator for javascript.
https://peggyjs.org/, 2024. Accessed: 5/29/2024, at
https://github.com/peggyjs.

[17] I. A. Mason and C. L. Talcott. Actor languages their syntax,
semantics, translation, and equivalence. Theor. Comput. Sci.,
220(2):409–467, 1999.

[18] Y. Qiu, K. Zhang, H. Zhang, S. Wang, S. Xu, Y. Xiao, B. Long,
and W. Yang. Query rewriting via cycle-consistent translation
for e-commerce search. In 37th IEEE International Conference
on Data Engineering, ICDE 2021, Chania, Greece, April 19-22,
2021, pages 2435–2446. IEEE, 2021.

[19] C. Sharma. FLUX: from SQL to GQL query translation tool. In
35th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2020, Melbourne, Australia, September
21-25, 2020, pages 1379–1381. IEEE, 2020.

[20] M. Shin, J. Kim, A. Mohaisen, J. Park, and K. Lee. Neural net-
work syntax analyzer for embedded standardized deep learning.
In EMDL@MobiSys 2018, Munich, Germany, June 15, 2018,
pages 37–41. ACM, 2018.

[21] D. Tiselice. A thoughtful introduction to the pest parser.
https://pest.rs/book/, 2018. Accessed: 5/29/2024.

[22] S. D. Urban and T. B. Abdellatif. Object-oriented query
language access to relational databases: A semantic framework
for query translation. J. Syst. Integr., 5(2):123–156, 1995.

[23] J. P. Yoo, D. Smith, S. Yoo, and T. Cheatham. C-language
syntax tutoring using machine learning techniques. In T. J.
Cheatham, C. C. Pettey, L. W. Dowdy, and J. P. Yoo, editors,
Proceedings of the 35th Annual Southeast Regional Conference,
Murfreesboro, Tennessee, USA, April 2-4, 1997, pages 36–40.
ACM, 1997.

[24] Y. Zaki, H. Hajjar, M. Hajjar, and G. Bernard. A survey
of syntactic parsers of arabic language. In D. E. Boubiche,
H. Hamdan, and A. Bounceur, editors, BDAW 2016, Blago-
evgrad, Bulgaria, November 10-11, 2016, pages 31:1–31:10.
ACM, 2016.

Authorized licensed use limited to: UNIVERSITY OF IDAHO. Downloaded on August 29,2025 at 18:56:53 UTC from IEEE Xplore.  Restrictions apply. 


