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Abstract—In a programmer’s pursuit of using or creating
new programming languages, finding errors in the syntax of
code can present many issues. Languages with little to no
documentation and incomprehensible exception handling and
reports are frustrating to work with and can create confusion
when trying to locate where in the code the program has faulted.
In this paper we present CodeBlock, a parser generator and
syntax checker for arbitrary programming languages. CodeBlock
is a block based grammar builder for any programming language
that constructs a parsing expression grammar for the language
based on user built expressions. This grammar can then be used
within the CodeBlock website or in the CodeBlock Node.JS
application to test the syntax of either written code, or files
containing code in the language, reporting comprehensible error
messages if errors in syntax are found. Our eventual goal is to
incorporate CodeBlock into a compiler design tutoring system,
called CompiT$S, in which it will play a central role in teaching
students how to design new programming languages and test the
effectiveness of the new language using rapid prototyping and a
translational approach to implementation. This is an emerging
research, and in this paper, we only focus on the syntax checking
component of the CompiTS system.

Index Terms—Syntax Checker, Compiler Design, Tutoring
System, Language Design.

I. INTRODUCTION

Syntax checking or parsing is fundamental to all language
based computer applications [24], during system design or
when instructions are supplied for machine interpretation and
execution. Students build special purpose syntax checkers and
analyzers at a considerable cost and effort. Computer science
students also practice new language designs in courses such
as compiler construction and programming languages design.
The main concept they must master in these exercises is the
grammar and syntax rules. Currently, they learn and practice
these concepts by designing parsers and implementing them
in a case by case basis. They must redesign the parsers in the
event of errors or needed modifications at a considerable time
cost, the time they could use to learn more useful things.

A. Background

Error handling in programming languages is the undertaking
of giving feedback to programmers when errors in their code
have been identified. Programming languages such as Python
and Java feature built in error handling and reporting functions
that check a programmer’s code for any exceptions raised that
would prevent the program from executing. For instance, when
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a syntax error is found in Python code, its parser reports to
the programmer the line where the error was found and the
token in this line that created the exception.

While a handful of popular programming languages contain
exception handling features such as these, more often than
not it is up to the programmer to locate where exactly their
code has thrown the error. This is often tedious, requiring the
programmer to work through their program line by line until
they find where the issue has occurred.

To alleviate programmers from painstakingly searching
through their code, many sites have been created to check
the syntax of various programming languages. For example,
various syntax checkers can be found online for challeng-
ing languages such as PHP and SQL. The downsides of
these syntax checkers are that they only analyze one specific
language, and they do not exist for every language. New
programming languages or languages with less recognition
may not have one of these tools built for them. To address
these issues we present in this paper CodeBlock, a parsing
expression grammar generator and syntax checker for arbitrary
programming languages. Our CodeBlock system explores an
alternative method of checking the syntax of any programming
language by first allowing the user constructing a parsing
expression grammar (PEG) for the language they would like
to check the syntax of. Our system contrasts other syntax
checkers found online by allowing users to build their language
dynamically using a simplified, block-based format to assign
the grammar rules. This allows programmers of any skill level
to easily create their grammar from the ground up.

B. Related Works

Compiler design is a foundational course in all computer
science curricula [11]. Yet, only a handful tutoring systems
could be found [7, 8, 23]. One of the major ingredients
of compiler design is syntax parser and analyzer. As Ali
and Smith [3] suggests, implementation of parsers makes a
difference in how the machines interpret them. Therefore,
learning to implement the right grammar and parsing them
accurately matters [9].

Not only novice computer scientists learn how to implement
language parsers [1, 10], advanced students also implement
parsers and syntax checkers for their research [4, 15, 20] as
well. New languages for advanced applications are also devel-
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oped routinely, yet tools to conceive new languages through
syntax modeling and testing is difficult to find. In this paper,
we develop a new online syntax design and checking system,
called CodeBlock, with a goal to integrate it with a compiler
tutoring system along the line of ITT [7, 8]. CodeBlock
is able to help design arbitrary language syntax grammar
and learn the rules, and check the syntax for admissibility
under the stored rules of an input program. CodeBlock allows
online submission of syntax grammars, memorizing them and
downloading developed grammar to be integrated with user
codes, all through an API as well as from the cloud applicatio.

C. Presentation Plan

The rest of this paper is organized as follows. In Sec II, we
present an analysis of parsing expression grammars and how
they are structured within CodeBlock. In Sec III, we outline
the method of generating these grammars using a block-based
format. Sec IV gives a more in depth analysis of how this
grammar is translated from simple blocks to parser generation
strings. In Sec V, we present the ASP.NET Core web API
developed for database use in the system. In Sec VI, the
methods of receiving and uploading grammars constructed
using CodeBlock is presented for use in subsequent grammar
construction and syntax checking sections. Sec VII presents an
overview of a Node.JS application developed in order to check
the syntax of code aligned to defined CodeBlock grammars
without the need of accessing the CodeBlock site every time.
Finally, we briefly outline the design of the language design
tutoring system in which CodeBlock is a component in Sec
VIII before we conclude in Sec IX.

II. PARSING EXPRESSION GRAMMARS FOR USE IN
CODEBLOCK

Parsing expression grammars, or PEGs, are formal grammar
descriptions of the rules used for recognizing strings in some
programming language. These descriptions contain parsing
expressions, or patterns that a given string can either match, or
not match, with no in-between [21]. PEGs contain designated
starting expressions as well, where expressions that reference
each other can start from. The grammar will accept any strings
that start with these expressions and match the rules following
it. PEGS are similar to widely used context-free grammars
(CFGs), however PEGs do not allow for any ambiguity in the
strings passed to it.

An example of a parsing expression grammar is found in
the following example:

e €Xp — sum ;

e sum — addop (("+” | ”-”) addop)* ;

e addop — mulop ("*” | ”/”) mulop)* ;

o mulop — value I mulop)? ;

o value — [0-9]+ | (" exp )" ;

The string 4 + 5/ 3 is valid in this grammar. The parse tree
for this string would be as shown in Fig 1.

These grammars do not allow for more than one parse tree to
be created for them, and as such parsing expression grammar
do not allow for ambiguity in design. PEGs also function

exp
I
sum
m
addop K addop
| |
mulop mulop
| /"'"r\
value value / mulop
I | I
4 5 value
|
3

Fig. 1. Parse tree for "4 + 5/ 3” in a parsing expression grammar

based on “ordered choice” parsing. This means that the parser
will check the first expression in a grammar rule first, and if
the string it is parsing does not pass it moves onto the next,
accepting the first expression found that works for the string
given. This allows for a great deal of control when structuring
a grammar, with the programmer easily able to change what
will be checked first when parsing.

In this section, we present the structure of the parsing
expression grammar constructed by the CodeBlock system.
To follow up, we discuss how this grammar is passed into
and parsed using PeggylJS, a Javascript API tool used to parse
PEGs on runtime.

A. CodeBlock Grammar

A CodeBlock grammar is constructed in three separate
chunks.

1) Keywords
2) Initial Keywords
3) Grammar Rules

The keywords section of a CodeBlock grammar contains the
expression tokens used in the grammar rules. These tokens
each define a rule in the grammar, and are able to reference
each other within their rules in the file created when down-
loading a grammar from CodeBlock as follows.

Keywords:
start tokenl token2 token3

The initial keywords section of a CodeBlock grammar contains
the tokens for the starting expressions of the grammar. These
tokens define the expressions that the grammar can start with
when parsing a string.

Initial Keywords:
start

The start keyword in the above example would be the name of
the expression used to start the parsing process of the grammar.

Lastly, the grammar rules section of a CodeBlock grammar
contains all of the names and definitions for each expression

Authorized licensed use limited to: UNIVERSITY OF IDAHO. Downloaded on August 29,2025 at 18:56:53 UTC from IEEE Xplore. Restrictions apply.



within the grammar, and what each expression allows accord-
ing to the grammar. These rules are constructed in a similar
manner to Backus-Naur Form, using #= to separate the left and
right hand sides rather than ::=. The rules section is structured
as in the following example:

Rules:

start #= tokenl / token2
tokenl #= [a-zA-Z]+ token2
token2 #= token3 ’b’ token3
token3 #= [0-9]

In this grammar, a string could either start with the expression
defined by tokenl or the expression defined by token! through
start’s definition. The token fokenl can be 1 or more letters
followed by the token foken2, which can be any number as
defined in the token foken3, the letter b, then any number
again. The user must construct this grammar by defining
its keywords and rules themselves initially in the manner
described in Sec III.

These three sections are separated by the CodeBlock system
when the user defines them, or when a grammar file is fed into
the system. A full grammar file in this format would combine
the previous sections and be structured as in the example
below.

Keywords:

start tokenl token2 token3
Initial Keywords:

start

Rules:

start #= tokenl / token2
tokenl #= [a-zA-Z]+ token2
token2 #= token3 ’b’ token3
token3 #= [0-9]

This file is then traversed when the user desires to check the
syntax of code, reading each section and storing their values
into different arrays to be used further. The way this is done
is described in further detail in Sec VI.

B. Peggy Utilization

When a grammar in the format defined in Sec II-A is read
into the CodeBlock website, the Rules section is manipulated
into a string readable by the Peggy]S API [16]. This API
allows for generating PEGs while a program is running by
feeding it a string containing the tokens and rules of a
language. It then allows a user to parse strings in the grammar,
returning error messages when a syntax error is found. Strings
used to generate PEGs in this manner must start with the initial
keywords contained in parentheses, followed by a newline,
and followed further by definitions for each token. Each
definition must also be separated by a newline character. Ana
string creating a grammar using this API can be found in the
following example, with newline characters added in for better
visibility of the string.

“start = (programStart)

programStart = type’ *funcStart’ *funcBody’ "}’
type = ’int’ / ’void’

varDecl = ID’ =" "[0-9]+

ID = [a-zA-Z]+

funcStart = [a-zA-Z]+ (){’

funcBody = “varDecl’;’”

This example showcases a string capable of generating a PEG
for a small language using the PeggyJS API able to define an
initial function with a type of int or void followed by an id for
the function as well as the interior of the function, allowing
for a variable definition. The string “void updateVar() var =
91; ” is a valid string in this grammar, with the syntax tree in
Fig 2.

start
|
programstart
e ——

type funcStart funcBody }
| N
void updateVar () { wvarDecl

var = 91

Fig. 2. Parse Tree for void updateVar() var = 91;

In the CodeBlock system, the Rules section of the grammar
file is traversed and each expression found is added to a
string in this format. This string is then fed into the API’s
.generate() function, creating a parser for the grammar. Strings
in the language are then able to be used with this parser. The
CodeBlock system then returns ”Correct Syntax!” to the user
if no errors are found, or customized error messages to the user
displaying the location of a syntax error if one is discovered
by the parser.

III. BLOCK-BASED GRAMMAR GENERATION

To create a program for building functional grammars usable
by programmers of any level, a method to construct the
grammars in an easily digestible manner had to be considered.
This section describes the method of generating PEGs within
CodeBlock. To create the grammars, a block-based drag and
drop method has been developed for use in the CodeBlock
website. This has been done in order for ease of use, regardless
of skill in coding languages.

Block-based programming works by dragging predefined
"blocks’ within a designated coding area, as opposed to typing
code directly. An example of this coding method is the Scratch
language. Scratch works by dragging jigsaw style blocks with
code baked into them in its coding area. These blocks slot in
place within and next to each other, building code simply by
reading these blocks in order.

CodeBlock employs a similar method to Scratch for the
purpose of generating its grammar to use within the system.
The CodeBlock website features a coding area used to define
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individual expression rules. Users of the website are able to
drag keyword blocks, defined initially by the user, into this
area. To create these blocks, the user writes each keyword
they would like to use in the grammar within an input box
labeled “Input Keywords”, separated by spaces or commas.
This generates unique draggable token blocks on the left-hand
side of the website UI for each keyword input using the HTML
Drag and Drop API script.

Once these keywords have been input, the corresponding
blocks can be drug into the grammar construction area on
the site. A definition block such as “is defined by” can then
be dragged to this area as well. Continuing from this set-up,
additional blocks can be added to this area, outlining the right-
hand side of the expression rules. The blocks “any letter”,
”an integer value” and “the character _” can be found within
the list of blocks and once drug into the rule definition, the
regular expressions corresponding to them used in the system
are added to the parsing expression.

An example of this block-based rule building can be found
in the Fig 3, showing the definition of “varDecl” from the
grammar in Sec II-B.

is defined by

[» =]

any integer value one or more times

Fig. 3. Expression definition for a "varDecl” rule

To define more than one rule that a single expression
can move through, there exists an or defined by” block in
the CodeBlock grammar construction area that adds a ’/
character to the expression string. This character allows for
“or” statements in Peggy’s grammar generator, producing a
separate path for an expression to follow when parsing a string.

After an expression has been fully defined, it is submitted
and added to the site’s memory. It is also pushed into the
CodeBlock web API’s database memory separately, defined
in Sec V. A button on the site labeled ’Clear Blocks” can be
pressed to erase the blocks in the construction area, allowing
for new expressions to be built and added to memory.

To ensure that the PEG reads strings starting with the correct
expression, a separate input bar was added to the UI labeled
“Initial Keywords”. Listing keywords here in the same way
as the other keyword input bar and submitting the keywords
places the initial expression names into a separate Javascript
string array, read when creating the grammar string for passing
to the generate function.

IV. BLOCK TO STRING LITERAL TRANSLATION

To build the grammar string of words and regular expres-
sions passed into the Peggy API to generate a parser, the
arrays of strings mentioned are built and updated dynamically
whenever users add keywords, initial keywords or rules using

the blocks on the site. When initiating a syntax check for the
grammar, the Initial Keywords and Rules arrays are read into
different parts of the overall grammar string.

A. Starting Expression Strings

The starting expression is created first by reading the Initial
Keywords array. In the expression generated based on the
example shown in Sec II-A, the starting expression string
generated would be as follows.

“start = (programStart)”

In this string, the Peggy parser knows to start with the
expression named “’programStart”

Another example of a starting expression generated when
multiple initial keywords are found instead of a singular
starting expression would be structured as follows.

”start = (programStart / startExp)”

This string teaches the parser that strings can either start
following the “programStart” or “startExp” expressions and
their rules.

As mentioned previously, starting keywords can be updated
at any time, which will update the string as well allowing
for more starting expressions dynamically. Regardless of how
many expression names are held in the array, this initial ex-
pression will follow the same format, with more ’/* characters
separating additional expression names.

B. Expression Rules

When constructing expressions as in Fig 1, each block is
read separately into a temporary string array when the rule is
submit. For the example in the Fig 1, the array would have
the following contents:

1) tempRuleArray[0] = “varDecl ”

2) tempRuleArray[l] = "="

3) tempRuleArray[2] = ”ID ”

4) tempRuleArray[3] =" =" "

5) tempRuleArray[4] = ”[0-9]”

6) tempRuleArray[5] = "+”
These are then combined into the ruleGrammar array in one
index location with space characters being defined simply as
’ 7 for readability in the parser generator. The final outcome
for this singular expression is what is shown in Sec II-B:

ruleGrammar[3] = “varDecl = ID’ =" ’[0-9]+”

All of the above strings in the ruleGrammar are combined once
a syntax check has been initiated into a singular string, then
used with the generate function in order to create a functional
parser using the Peggy APIL

The ° ° chunks must be added in the string translation
in order to read spaces in input. Each character, including
spaces read as character literals in the grammar must be
encapsulated with single quotation marks, or the character will
be interpreted as an expression name. In the previous example,
ID is a token, while the character = must be written as it is
a terminal. If the = character were not surrounded by single
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quotes, it would be read as a non-terminal token, halting the
flow of the parser.

With all of this done, the above expression can read the
string as a correct input:

”X — 20”

This string will return ”Correct Syntax!” to the user if varDecl
is specified as a starting expression as it passes the right-hand
side rules of the expression. x is the ID token, = is the '=’
component, and 20 is the [0-9]+ regular expression.

V. CoDEBLOCK WEBAPI

In addition to the features of CodeBlock mentioned in the
previous sections, the CodeBlock system also contains a Web
API to hold all of the rules created by a user. These rules are
added automatically when submitting a rule from the grammar
construction area, each with their own unique identification
number. This section will describe the back-end activities of
the API, as well as the uses of this API within CodeBlock.

A. ASP.NET Core Integration

The CodeBlock Web API is developed using the ASP.NET
Core framework for creating and update a database of grammar
rules. ASPNET Core uses a Model-View-Controller pattern
in order to create an easily testable separation between a
program’s API code and client-side code. With this framework,
development of the API was expedited and made much easier
to update and add features to. The CodeBlock website hosts
a CodeBlockRules model for API rules, as well as a Code-
BlockController controller holding the code for accessing and
manipulating this model through different aspects of the site
itself.

B. Client-Side API Database Manipulation

With the integration of this API within the CodeBlock
system, users are able to add, remove and update the API
database in a variety of different ways. By doing this, they
are able to keep these rules held in the database to view even
when the page itself is refreshed.

When users create rules for their grammar in the gram-
mar construction area, an HttpPost method defined in the
CodeBlockController is called, placing a string following the
structure defined in the “Rules” portion of Sec III into the
database with a unique identification number to be referenced
in later methods.

Next, when there are rules within the database, a button on
the top-right side of the website can be pressed, bringing up a
box featuring both a syntax checker for the grammar, as well
as each rule found in the grammar. This screen can be seen
in Fig 2.

These rules show the ID for the rule on the left with a ”’ID).”
format, followed by the expression string, and a “Delete”
button on the right of the rule. To show these rules to the
user, an HttpGet method is called when the button to show
the rules is initially pressed. This method iterates through the
database item by item until no more items are found. When

4). funcBody #= varDecl;

6). programStart #= type funcStart funcBody }

1). funcStart #= [a-zA-Z]+(){
2). varDecl #=ID = [0-9]+
3). type #=int / void

5). ID #= [a-zA-Z]+

Fig. 4. The rules of a grammar pulled from the webAPI database

a rule is found, an html row object is created and placed in a
table object with columns for the id number, expression string
and delete button. This allows for deletion of rules from the
database with the delete button to remove the object visually
from the table without removing the entirety of the rules from
the user’s view.

The delete button itself calls an HttpDelete method within
the API as well. This method finds the rule by the ID number
within the database, then removes it from the database. This
allows for dynamic updating and removal of rules, without
having to worry about duplicate rules or errors when building
the expression. Since the rules are in individual rows of the
table, each row is assigned a number corresponding to the id
of the rule in the database that will be used as input for the
delete method.

Additionally, to create the string that the PeggyJS parser
is generated from, the HttpGet method is called in a similar
way to displaying each expression in the rules visualization
portion of the website. To construct the grammar string as in
Sec II-B, the API database is traversed and each rule found
within is placed into an array of strings. After this, the rule
strings are manipulated into Peggy format and appended to
the starting expression string separated by ’+’ characters. This
string is then fed into the Peggy parser generator and a parser
is generated from it to then check for syntax errors.

VI. DOWNLOADING AND UPLOADING CODEBLOCK
GRAMMARS

To ensure ease of use across sessions using the CodeBlock
system, users are both able to download grammars directly
from the website as well as upload them to website. Both of
these processes function based on simple .txt files read by the
system. This section will delve further into the processes for
both of these systems in individual subsections.

A. Grammar Downloading

Once a user has populated their CodeBlock system with
Keywords, Initial Keywords and Rules for their grammar in a
session, they may want to save their progress for later while
needing to shut down their system. While the CodeBlock
API shown in Sec V works across page refreshes, it is
unfortunately impossible to store data across sessions. To
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circumvent this issue, code was developed allowing users to be
able to download their grammar in a text file to be uploaded
when their system is running the CodeBlock website once
more.

When users add items to any of the three key sections
of the system, they are stored in individual Javascript string
arrays. There exists a keywords array, an initial keywords
array and a rules array in the code. To create the file that
will be downloaded by the user, once the button is pressed to
download the grammar these arrays are read and placed into
the body of a New Grammar.txt file. An example of this text
file is shown in Fig 3.

Keywords:

programStart funcStart funcBody ID type varDecl
Initial:

programStart

Rules:

type #= int / void

funcStart #= [a-zA-Z]1+(){

funcBody #= varDecl;

varDecl #= ID = [0-9]+

ID #= [a-zA-Z]+

programStart #= type funcStart funcBody }

Fig. 5. A simple downloaded grammar file

The file is structured exactly as in the full grammar example
in Sec III, with "Keywords:” being written first and the
keywords array’s strings following on the next line separated
by spaces. Next, “Initial Keywords:” is written on a new
line with the initial keywords array’s strings following on
another newline separated by spaces as well. Finally, “Rules:”
is written on yet another new line, followed by the strings
found in the rules array separated by new lines rather than
spaces.

When downloading the grammar, another file named “cb-
Grammar.js” is downloaded as well featuring only the expres-
sions of this text file without the “Rules:” heading for use in
a Node JS application described in Sec VIIL.

B. Grammar Uploading

When a new session of the CodeBlock website is initiated
the user may wish to continue updating a grammar or testing
one without wanting to create the expressions from the ground
up once more. To allow the user to do this, an upload function
was added to the CodeBlock website. With this function, the
downloaded grammar text file mentioned previously is taken
and separated into portions readable and usable by the system
for additional use of the grammar on the site.

Choose File | No file chosen Submit File

Fig. 6. The Uploading section of the CodeBlock website

This section is found under the “Input Keywords” input box
and can accept any .txt file, but will cancel the file search if
“Keywords:” is not the initial line, to stop non downloaded
grammar files from being read.

Once a grammar file has been uploaded it is read section by
section. When the system reads the line ”Keywords:” it then
takes every string separated by a space and places it into the
global keywords string array. With this array, the separated
strings are then made into draggable blocks that can start an
expression in the grammar construction area. Each of these
blocks is a separate HTML paragraph tag appended to the
”All Keywords” section of the site.

Once all of the keywords in the text file have been read
into blocks, the program reads the next line of the text file.
This should be just the words “Initial Keywords:”. Once these
words are read, the program moves along to the next line
which holds all of the individual initial keywords used as
starting expressions for the grammar to parse. These keywords
are placed into the array holding initial keywords, and then
read into the “Initial Keywords” section of the site for viewing
by the user.

Finally, once no additional initial keywords are read in the
text file the program moves to the next line holding the string
“Rules:”. Once read, the system will move to the final set
of lines, each holding individual expressions as well as their
terminal and non-terminal rules. These expressions are read
line by line and both placed into the expression rules array as
well as uploaded to the API’s database.

VII. NODEJS DEVELOPMENT FOR CODEBLOCK

When a user has fully defined a parsing expression grammar
on the CodeBlock website, they may want to check the syntax
of their grammar without wanting to initiate a session of
the website. Rather, they may want to check the syntax of
their programming language from within their chosen coding
environment. To allow users to do this, a NodeJS application
has been developed for users to download and use to check
the syntax on their system. This section will outline the uses
of the application for syntax checking natively as well as the
inner workings of the application when run.

start = (programStart)

varDecl = ID' ''='" '[@-9]+
type = 'int' / 'void'
'funcStart'

II}I

programStart = type'

'funcBody'
ID = [a-zA-Z]+

funcStart = [a-zA-Z]1+'(){'

funcBody = '‘'varDecl';’

Fig. 7. Grammar File for Node JS Use

When downloading their grammar from the CodeBlock
website, the user will receive an additional file to their
”New Grammar.txt” file called ”cbGrammar.js”. This file holds
simply the expressions from the .txt file, without the “Rules:”
line at the top, in the format of a Peggy JS grammar string.
The user can then download the codeBlockGrammar.js node
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application and use it to parse their grammar at any point,
even if the website is not up and running on their system. If
the user has already downloaded node on their system, they
can simply run the application and start checking the syntax
of input lines or files written in the language the grammar
corresponds to.

When running the application, it will initially ask the user
to input the name of the .js file containing their grammar. With
this input, the application will run a search on the system for
a file with a name matching the one input. If one is found, it
will move on to the next portions of the application, if not, it
will ask for input again.

Once a file has been found containing the user’s grammar,
the application will read the file line by line. This will
construct the grammar string in full by concatenating each
line together separated by ’+’ characters. This string will then
be passed into the API for PeggyJS once more to generate a
parser in the same way as in Sec II-B. The application will
then ask the user if they would like to check the syntax of a
file, input, or to exit. If they select to check the syntax of input,
they will be asked to enter a string. Once entered, the string
will be passed into the generated parser and its syntax will
be checked. If syntax is correct it will simply return “Correct
Syntax!” to the user. If it is not correct, a custom error message
will be returned to the user showing them where the parser
ran into an error and what it was expecting. The user can then
check additional lines, quit, or check the syntax of files.

Please enter the .js file containing your parser grammar

[> cbGrammar.js

Searching for cbGrammar.js...

File found!

Would you like to test the syntax of command line input (1) or a file (2)?
[>1

Input line to check it's syntax:

[> int main(){ a = 20 }

Error at: (){ a = 20 }

Expected ";" or [0-9] but " " found.

Press 1 to continue, 2 to check file syntax or @ to quit:
[>1

Input line to check it's syntax:

[> int main(){ a = 20; }

Correct Syntax!

Fig. 8. Input Syntax Check Feature of the CodeBlock Node JS Application

To check the syntax of written files, the user can either
select to check a file initially when running the application
and supplying a proficient grammar file, or select to check a
file after checking the syntax of an input string. When a file
name is given and a file matching that name is found on the
user’s system, it will begin to check the syntax of the code
file. To accomplish this, the file will be converted to a single
string, removing the line breaks in order to create a parseable
line to be fed into the generated parser. The application will
then return “Current Syntax!” if there are no errors found,
and an error message if an error is thrown by the parser. An
example of this feature is shown in Fig 9.

In this example, two files are used, the first having the same
code as in Fig 8 having the syntax error named ”grammarTest-
SyntaxError.txt”. The second file, having the same code as
in Fig 8 which does not feature any syntax errors named
”erammarTestFile.txt” is then checked for syntax errors. As we

Press 1 to continue,
[> 2

what file would you like the check the syntax of?
[> grammarTestSyntaxError.txt

Testing syntax of file

Error at: { var = 20 }

2 to check file syntax or @ to quit:

Expected ";" or [@-9] but " " found.

Press 1 to continue,
[

wWhat file would you like the check the syntax of?
[> grammarTestFile.txt

Testing syntax of file

Correct Syntax!

2 to check input syntax or @ to quit:

Fig. 9. Written File Syntax Check Feature of the CodeBlock Node JS
Application

can observe from the figure, when the syntax error is found in
the first file it returns the text of the portion that threw an error
as well as what the parser was expecting after checking every
available expression. With these two features a user is able
to comfortably check syntax of code following their defined
grammar without the need to open the CodeBlock site every
time.

VIII. DISCUSSION

CodeBlock is the syntax checker backbone of a compiler de-
sign tutoring system, CompiT$ (stands for Compiler Tutoring
System), we are currently developing. In contrast to compiler
tutoring systems such as ITT [8], our goal is to help students
design new languages, experiment with the new language
and observe how the semantic interpretation of the newly
designed language aligns with the students’ design goals. In
other words, CompiTS focuses on helping students experience
the features of novel language they design.

CompiTS support this vision by allowing the students also
design a translation function 7 that will correctly map the new
language to an existing language for which we have a robust
execution engine and has a known semantics. A graphical
user interface for 7 supports writing translation rules visually,
and testing their execution in target languages. The translation
function is based on semantic equivalence preservation [2, 13],
and allowing rapid prototyping of novel languages. Language
translation [14, 18] is a convenient method to prototype a new
language, and has been used [17] for both imperative [12] and
declarative [5, 6, 19, 22] language implementations.

IX. CONCLUSION

Though we defer a discussion on CompiTS and its support
for translational approach to novel language prototyping as a
learning exercise to a future article, we believe we have ade-
quately discussed CodeBlock in this paper and demonstrated
how it can be used to check syntactic correctness of new
languages in very flexible and intuitive ways. As a tool, it
allows multiple useful functions and features to make it an
effective syntax checking and grammar management toolkit.

Our future plan is to incorporate CodeBlock in CompiTS
language design pipeline. We aim to support a GUI for
the design of translation rules, and what it means for two
languages to be equivalent. Then support a testing platform to
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verify semantic equivalence by comparing execution equality
with expected reference outcomes over identical datasets, in
the spirit of query equivalence. We also seek to investigate if an
abstract equivalence testing process could be developed from
user supplied equivalence descriptions. Such a tool could help
students learn and practice the theories of program equivalence
and machine translation of languages.
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