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Abstract—Computational workflows need to retain data from
both intermediate stages and final results to ensure the repro-
ducibility and trustworthiness of scientific discoveries. While
cloud infrastructure offers advantages like elasticity and au-
tomation, it compromises the persistence of intermediate data
to ensure performance and reduce costs. Utilizing node-local
storage can enhance performance but requires manual data
transfers to persistent storage, making the technique impractical.
To address these challenges, we propose a software architecture
called Persistent, Shared, and Scalable Data (PerSSD) that
integrates cloud operators and a Network File System (NFS) to
make node-local data persistent and shareable across cloud nodes
while ensuring performance. PerSSD outperforms traditional
cloud object storage, achieving 35% reduction in the overall
execution time of an earth science workflow, all while ensuring
data persistence and shareability.

I. INTRODUCTION

Scientific workflows play a crucial role in scientific dis-
covery, enabling the transformation and analysis of large
datasets across multiple stages. These workflows generate
significant amounts of intermediate data vital for subsequent
tasks and final outputs. However, ensuring the reproducibility
and trustworthiness of these workflows is a challenge, particu-
larly in cloud environments. While cloud infrastructure offers
benefits such as elasticity, scalability, and automation, it often
lacks mechanisms to guarantee data persistence and efficient
data sharing across distributed tasks. Cloud object storage
was originally designed for services and accessibility and
not optimized for complex data transformations in scientific
workflows that require high throughput and low latency when
handling large data [1]. Additionally, the high throughput
and low latency performance benefits of cloud-based node-
local storage (e.g., SSDs) are offset by data persistence and
shareability challenges across nodes.

Our paper introduces PerSSD, a novel Persistent, Shared,
and Scalable Data architecture designed to address these
challenges in cloud environments. The key contribution of
PerSSD is its unique ability to combine the high-performance
capabilities of node-local SSDs with persistent storage so-
lutions. PerSSD ensures that data is both rapidly accessible
and durably stored across the cloud infrastructure. Unlike
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traditional cloud storage models that treat node-local storage as
ephemeral and isolated, PerSSD integrates node-local storage
with persistent cloud object storage to provide a unified,
scalable, and reliable data management solution.

The novelty of this paper is fourfold. First, we provide data
persistence and shareability with node-local storage in the
cloud. Cloud’s node-local storage, such as NVMe SSDs, offers
high performance. However, it is also ephemeral and lacks data
persistence and cross-node sharing mechanisms. It presents
significant challenges in multi-node workflows, where data
loss or lack of access can disrupt tasks, as demonstrated in the
MuMMI cancer modeling workflow [2]. PerSSD overcomes
this challenge by combining Kubernetes operators with an
integrated NFS, ensuring data persistence and shareability
across nodes without sacrificing performance or requiring
manual intervention.

Second, we deliver cloud-native orchestration without code
instrumentation. Existing orchestration systems require code
modifications or are tied to specific vendors, introducing high
development overhead and limiting flexibility. Systems like
Pegasus [3], [4] and Nextflow [5], [6] are not fully portable
across cloud platforms. PerSSD offers a seamless cloud-
native solution by integrating the Kubeflow operator, allowing
workflows to be deployed across different cloud platforms
without modifying the original code or facing vendor lock-
in.

Third, we design a burst buffer adaptation for cloud envi-
ronments. In HPC systems, burst buffers buffer data between
computation and persistent storage, typically absent in cloud
environments, leading to I/O bottlenecks when relying on
object storage [7], [8]. PerSSD adapts the burst buffer concept
to cloud infrastructure, asynchronously transferring data from
node-local SSDs to persistent cloud storage, ensuring high
performance and data persistence during workflow execution
without significant latency.

Finally, we demonstrate performance and scalability in real-
world scientific workflows. Traditional cloud object storage
often becomes a bottleneck, especially in I[/O-bound workflows
like those in earth science. For example, workflows that gen-
erate and analyze high-resolution topographic data experience
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significant slowdowns due to I/O limitations [9]. PerSSD
addresses these challenges, reducing execution time by 35% in
an earth science workflow with 425 GB of data, demonstrating
its scalability and performance for data-intensive workflows
such as those in earth sciences and machine learning.

Our contributions include designing and implementing
PerSSD, evaluating its performance in cloud-based scientific
workflows, and exploring how our solution scales as the data
and workflow complexity increase. By addressing the applica-
tion needs of scientific workflows and the system challenges
of the cloud, PerSSD advances cloud-based data management
for scientific discovery.

II. DATA TRANSFORMATIONS ON THE CLOUD

Data management and orchestration problems arise as sci-
entists study new infrastructure and algorithmic techniques to
optimize computational workflows. We define the data com-
plexity of scientific workflows and stress the importance of the
underlying infrastructure to enable the required performance
while ensuring the workflows’ trustworthiness on the cloud.

A. Scientific Workflows and Data Transformations

Data is fundamental in scientific discovery. As data scales,
scientists can expand the boundaries of the discovery. Scien-
tists design computational workflows that transform the data
to obtain insights that lead to scientific breakthroughs. These
computational workflows transform the data using tasks such
as processing, modeling, analyzing, and visualizing tasks. The
structure of a workflow can be modeled as direct acyclic
graphs (DAGs) where the tasks (nodes) are interconnected
by data (edges) with a specific scientific objective [10], [11].
The tasks in the workflow transform data in four different
modalities [10]: i) from small input to large output (augmenta-
tion), ii) from large input to small output (reduction), iii) from
large input to large output (reuse), and iv) from large input to
small output with large intermediate data (reduction with large
intermediate data artifacts). Multiple data transformations can
occur within the same workflow.

As data volumes increase, workflows become more com-
plex, yet the demands for scalability and performance persist.
Alongside ensuring performance, there is a growing need
within the community to maintain the trustworthiness of
scientific discoveries, as noted in recent studies [12], [13].
Scientists employing these workflows to explore scientific
phenomena must have trust in every component involved (i.e.,
data, methods, software, and hardware). To this end, we argue
that it is crucial for scientists to have access to intermediate
data and to trace its transformations throughout the workflow,
enabling a deeper understanding of the scientific results.

B. Cloud Storage Infrastructure

The infrastructure where these workflows and data transfor-
mations are deployed plays a critical role in their execution
performance and the trustworthiness of the results. Depending
on the workflow (i.e., computation-heavy, memory-heavy, or
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I/0 bound), some infrastructures are more suitable for address-
ing workflow requirements. For instance, a computation-heavy
workflow can leverage running on multiple larger CPU or
GPU nodes. In contrast, a memory-heavy workflow is best
deployed on nodes with larger RAM and disks. In addition,
the underlying infrastructure can also introduce variability in
the accuracy of the scientific workflows [14], [15].

Cloud infrastructure provides on-demand, elastic, and scal-
able computing and storage resources for executing scientific
workflows. Fig. 1 presents a diagram of cloud infrastructure,
highlighting the two-tiered storage design. This storage design
comprises Tier 0 with direct compute-to-storage access and
Tier 1 with across-cluster data accessibility. In this paper, we
expand SSD’s capabilities at Tier O to ensure persistency and
shareability, and at Tier 1, we select Cloud Object Storage
(COS) to ensure scalability and distributed access to data.
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Fig. 1: Two-tiered storage architecture in cloud infrastructure

where Tier O comprises node-local SSDs and Tier 1 consists of
cloud object storage because of its distributed characteristics.

C. Cloud Orchestration

Cloud infrastructure gives scientists control over their re-
sources and customizes them based on workflow demands. For
example, an academic laboratory with a small dedicated cluster
could host their sensitive data while computing more heavy
workflow stages in the public cloud. Moreover, the public
cloud grants on-demand creation of clusters with customized
resources, such as a scalable number of virtual instances
with different instance types (i.e., number of cores or with
specialized hardware) and storage technology. The elasticity
of cloud infrastructure is a consequence of the virtualization of
the computational layers. Furthermore, container orchestration
has become the standard for portable and flexible computation
of scientific workflows in clouds.

Container management systems like Kubernetes and Open-
Shift enable users to run any workflow consistently across any
footprint. In Fig. 2, we present the general architecture for a
Kubernetes or OpenShift cluster. The control plane manages
the cluster with the API server as its core. The API server
exposes an HTTP API that lets end users, different parts of
a cluster, and external components communicate with one
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another. The cluster consists of a set of virtual machine (VM)
instances running on top of computational nodes. Since we
assume a node can host a single VM instance, we use both
words interchangeably across the paper. Each VM instance
hosts one or more pods that are the foundational unit of these
container management systems. Each pod hosts a workflow
task in a container. On-disk files in a container are ephemeral;
therefore, volumes can connect storage to the computational
resources. Ephemeral volume types have a pod’s lifetime,
but persistent volumes (PV) exist beyond the pod’s lifetime,
enabling the traceability and trustworthiness of results. Users
can use persistent volume claims (PVCs) to request persistent
volumes (PVs) based on the storage type in the cluster, such
as cloud object storage (COS). Another PV is a hostpath that
allows mounting a file or directory from the host node’s file
system into the Pod.

We identify that when working in cloud infrastructure,
scientists need tools that facilitate mapping the infrastructure
(e.g., pods, volumes, etc.) to the workflow components (tasks
and data) so it can be executed and tuned for performance.

III. NODE-LOCAL CHALLENGES IN THE CLOUD

Node-local storage eases Tier 1’s bandwidth as an SSD
buffer between compute and storage systems, reducing I/O
demands. However, these performance gains come with data
persistence, durability, and shareability trade-offs. The direct
connection to computational resources provides low latency
and high bandwidth but introduces challenges in ensuring
data persistence and shareability in cloud-based scientific
workflows.

A. Challenge 1: Data Persistence

When using node-local SSD storage, data is ephemeral
with a node life cycle and is limited by the capacity of
the node-local SSD. The persistence of data is essential to
explain and trust scientific workflows. When data is persistent
and scientists can access and trace it, they can understand the

data transformations within the workflow and, therefore, earn
trustworthiness in the process and the results.

When a workflow deploys node-local storage, the data is
ephemeral, meaning that the data has a node life cycle. In
cloud infrastructure, this is even more challenging because
resources are shared by many users, and the system can have
failures. Therefore, when other users are allocated to the same
physical node, when the node is rebooted, or when there is
a node failure, all data is lost. Most public clouds warn the
user about their responsibility to move the data from node-
local storage to persistent storage. Additionally, even when
assuming that the workflow is executed on non-shared and
dedicated resources, the accessibility of the data by other users
and scientists to replicate or expand on the work can limit the
reach of the discovery. Another aspect of Tier O storage is
the capacity of the devices. Most systems offer node-local
SSDs ranging from 100 GB to a maximum and not very
common 10 TB. However, for some scientific workflows [16]—
[18] when the input, intermediate, and output data are hosted
in the node-local storage, the node runs out of space, stopping
the execution. We observe the need for software tools that
asynchronously make data persistent by moving it from Tier
0 to 1 during the workflow’s execution while cleaning the
available space in Tier 0.

B. Challenge 2: Data Shareability

When using node-local SSD storage, data is not shareable
across VM instances but local to the VM instance where
the pod is executed. Scientific workflows deploy advanced
algorithmic techniques to transform the data and produce
scientific discovery. These techniques leverage parallelism
to improve performance. For example, scientific workflows
require parallel techniques for distributing data and models due
to the rapid growth of artificial intelligence (AI) and machine
learning (ML) and the significant amounts of data required to
train a model and apply inference to new datasets.
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In Fig. 3, we present a common workflow when training
ML models leveraging data parallelism. In this case, the
data is split into batches, and the same Neural Network
(NN) model runs the forward and backward pass on a single
batch, computing the gradients. Once completed, all the NN
models send the gradients to the next stage, aggregating and
averages to update the weights. When deploying node-local
storage, the training data can be fully loaded and cached in
a single node (our example) or loaded per batch on each
node where it trains. If it is the first case, the NN models
executed on different nodes do not find the data and run into
an error. Additionally, if all models write the gradients to
node-local SSD, the update weights stage only has access
to the gradients and data present in the node where this
task is being executed. Consequently, the training stage runs
into several errors, stopping the execution of the workflow.
Data and model parallelism techniques are present in different
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Fig. 3: Demonstration of a failure when deploying a common
ML training workflow pipeline using node-local storage due
to the lack of shareability across nodes.

ML Training

workflows, such as MPI-based, MapReduce, and simulation-
based. Enabling shareability across pods hosted in different
nodes when orchestrating data on top of node-local storage
is essential for executing workflows that deploy parallelism
techniques and require high I/0O performance.

IV. PERSISTENT AND SHAREABLE DATA

We design a novel software architecture that efficiently
manages data with node-local storage, addressing application
and system requirements. At the application level, we automate
workflow orchestration without modifying the original code,
while at the system level, we ensure data persistence and share-
ability. We outline the architecture, component interactions,
and cloud-based implementation.

A. Orchestrating Scientific Workflows

We enable iterative development and automatic orchestra-
tion of end-to-end scientific workflows in cloud infrastructure.
We leverage the cloud’s customization to add functionalities
through operators. These operators are application-specific
controllers that extend the functionality of cloud clusters
(Kubernetes and OpenShift) to create, configure, and manage
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services and their components running in the cluster. Specif-
ically, we integrate pipeline operators to provide continuous
integration and continuous deployment (CI/CD) to automate
application building, testing, and deployment of scientific
workflows in the cloud.

Part of our effort is to require no instrumentation to the
scientific workflow. We do not change the existing workflow
code but rather build on top of it by (i) modeling the workflow
as a DAG and (ii) constructing the tasks (nodes) and data
(edges) as part of the pipeline operator. We load the data
and tasks in the pipeline operator’s domain-specific language
(DSL) and specify the order in which the tasks are called
in the pipeline flow. We add the data connections (input and
output), compute and memory requirements, the container
image with all the required software stack, and the type of
storage (Tier O or 1 or a combination of both) for each task. We
use the pipeline operator’s SDK (software development kit),
which enables Infrastructure as Code (IaC). This dynamically
translates the pipeline from the domain-specific language into
the cloud cluster resources (e.g., pods, PVCs, PVs). For
example, each task is translated as a pod. Finally, we obtain a
cloud-defined workflow that the pipeline operator deploys in
the cluster depending on the available resources.

B. Persisting Data

We adopt the concept of burst buffers (e.g., DataWarps,
Data Rabbits) widely used in HPC and design an operator
called PerSSD (Persistent, Shared, and Scalable Data) that
provides similar functionalities for cloud environments. Burst
buffers combine software and hardware to use node-local
SSDs (Tier 0) as a buffer between compute resources and Tier
1 persistent storage (parallel file systems), thereby improving
bandwidth. We adapt this concept for the cloud to leverage
the high throughput and low latency of writing and reading to
node-local storage. Our operator asynchronously tracks and
transfers data from node-local storage to persistent storage
(such as cloud object storage). This enables efficient handling
of VM migration without requiring special user coding and
configuration. The operator is compatible with and cooperates
with the pipeline operator. PerSSD watches and tracks all the
pods initiated by the pipeline operator. When the pods are
completed and satisfy the controlling logic, they are transferred
from node-local storage to persistent storage.

We present the general logic of PerSSD in Algorithm 1.
PerSSD initiates and runs while a pipeline workflow is exe-
cuted. During initialization, our operator launches an empty
database filled out during the workflow execution to keep
track of the pods and identify when to transfer the data. The
database stores metadata from the pod and workflow DAG,
including the pod’s unique ID, name, task, execution node, list
of dependent child pods, output data, a flag indicating if the
data was transferred to persistent storage, and the timestamp
of data transfer.

After initialization, PerSSD runs in a control loop receiving
updates of the pods’ statuses (Initializing, Pending, Running,
Completed). When a pod completes without errors, PerSSD
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Algorithm 1 PerSSD Controller’s Logic

1. if pipelinework flow starts then

2: Initialize database
db + [ID, podname, taskname, node, outputs,
children, pushed, time]

3: while pipelinework flow runs do

4 status < watch(pods)

5 if status(pod;p) =" Completed’ then

6: db + metadata(podrp)

7 Verify data transfer

8 for pod in db with pushed = False do
9 if all children(pod) in db or

10: no children(pod) then
11: Create transfer job
12: dblpod;p|[pushed] < True

extracts metadata information (pod name, task name, node,
children, outputs), adds an entry to the database with this
information, and verifies if the data can be transferred. The
verification process consists of going through all the entries
in the database (all the pods completed with no failure) and
selecting those whose pushed flag is set to False. It iterates
over that selected list of pods whose data is still in node-local
storage; for each pod, it corroborates if its children are in the
database. If all pods are in the database, that means that those
pods have also been completed, triggering a green flag for
transferring the data to persistent storage. If the pod does not
have children, it triggers the green flag for transferring data.

When PerSSD identifies the pods whose outputs are ready
for transfer to persistent storage, it launches a job in the
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node where the pod was executed and moves the data from
the node-local to the object storage. After the data transfer
job is completed, the pushed flag in the database is updated
to T'rue. This logic repeats until the pipeline workflow is
completed. PerSSD tracks and transfers the data from node-
local to persistent storage, it automatically frees space in the
node-local SSD, controlling the storage device space available
for the workflow and any other tenants on the physical node.

C. Sharing Data

To address the lack of shareability of node-local storage
across nodes in the cluster, we set up a file system with
sharing protocols to connect the pods depending on the data
requirements. We set up a Network File System (NFS) on
top of the node-local SSDs and connect all pods required
to share data across the network. We select NFS because
(i) it is a standard part of the Linux kernel, making it
widely compatible without special software configuration, (ii)
it provides centralized management of data across nodes with
easy integration and transparent access to data, and (iii) it
enables data-locality awareness, accessing the data across the
network of multiple nodes without user intervention. These
properties make NFS a widely used file system in the cloud.
Other file systems such as BeeGFS [19] and GekkoFS [20]
provide cloud operators for distributed access but are currently
built on convoluted configurations and unstable releases.

D. Our Software Architecture

The architecture of PerSSD consists of three components:
the workflow pods, the Kubernetes operator, and the NFS
server on top of the node-local SSD. The workflow tasks
are orchestrated using Open Data Hub (ODH), Kubeflow, and
Tekton Pipelines. The operator watches the workflow pods;
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after they are completed, it triggers transfer data pods to move
the data from node-local storage to persistent storage (i.e.,
object storage). On top of node-local storage, the NFS is the
shared file system across all workflow pods. Fig. 4 presents the
implementation of our approach on Kubernetes and Openshift
clusters. A key aspect of our architecture is using a node in the
cluster as the control plane (i.e., it manages the components
of our architecture). This node hosts the operator and the NFS
server; thus, we allocate more resources to this node than the
other worker nodes, so the architecture performs as expected.

We use the Open Data Hub Pipeline Operator [21] to
generate the workflow pods as part of the pipeline. We select
ODH because is intended for cloud infrastructure to bridge the
gap between application developers and scientists by blending
the leading open-source Al tools with a unifying and intuitive
user experience. ODH provides a Data Science Pipelines Op-
erator (DSPO) that brings Kubeflow Pipelines [22] and Tekton
pipelines [23] together to design, manage, track, execute, and
view data-driven pipelines. Kubeflow Pipelines SDK provides
a set of Python packages to build the pipeline based on your
existing workflow. It offers different packages to translate the
pipeline Python DSL into a workflow YAML spec for cloud
resources. We select Tekton as the translation package.

We build our operator using the Kubernetes Operator
Pythonic Framework (Kopf) [24]. Kopf is a framework and
a library that facilitates the design of Kubernetes operators
using Python. We use state-changing handlers in Kopf to watch
and detect when the workflow pods change their status. As
the status changes, we take the pod metadata and extract
all the necessary information to build the DAG and identify
the children. To keep track of the workflow information, we
use a SQLite3 database. Regarding the data transfer, we use
the Python Kubernetes API to create a job according to the
controller’s logic and identify the node-local and cloud object
storage PVCs to attach to the job. We deploy the NFS server
using a Kubernetes deployment and configure it to store data
in the node-local SSD. In addition to deployment, we create a
Kubernetes service exposing the network to the cluster. Once
the NFS server is a cluster object, we can access it through
PV and PVC. In the PV, we specify the NFS server’s IP and
then connect it from the PVC so the workflow pods that need
to share data can use the claim to access the server.

We design our architecture with resilience by considering
workflow and infrastructure failures. Resilience at the work-
flow level is delegated to the application and the scientist.
When a task is incomplete because of workflow failures,
our architecture provides detailed logs so scientists can make
informed decisions regarding their workflow for the next
execution. Our architecture is equipped to automatically ad-
dress infrastructure failure that can occur during or after
the workflow execution. Examples of infrastructure failures
during execution include node failure or maintenance, NFS
server failure, and out-of-space node-local storage. To address
these failures, our orchestration has a retry flag where the
impacted tasks are relaunched until successful completion. The
user defines the retry flag recurrence by default. Infrastruc-
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ture failures after the workflow’s execution include a node
being de-allocated while transferring the data from node-local
to persistent storage. The operator creates a new transfer job to
recover data by collecting metadata, such as the node identity.
If the node is active, the job completes the transfer; otherwise,
the task is relaunched on a different node, regenerating and
transferring the data to persistent storage.

V. WORKFLOW SCALABILITY

We evaluate the I/O performance and execution time of
workflows using our PerSSD architecture compared to a Tier
1 setup, focusing on data persistence and shareability. The
evaluation includes two scenarios: (i) an FIO benchmark and
(ii) a real scientific workflow. We assess PerSSD’s scalability
and its impact on workflow makespan with effective node-
local data management. Tests were conducted on an OpenShift
public cloud cluster with 17 nodes, where the control plane
node has 32 cores, 128 GB RAM, and a 600 GB NVMe SSD,
while the other nodes have eight cores, 32 GB RAM, and 300
GB NVMe SSDs. Each test was repeated five times at different
times, with performance variability displayed using boxplots.

A. FIO Benchmark

We demonstrate the generality of our approach by testing
on a simulated workflow using FIO [25]. Fig. 6 shows the
workflow structure where we define a pipeline of a read task
followed by a write task. We measure the I/O performance
as we increase the number of parallel tasks. We choose this
workflow because it provides two arenas for adaptation: the
tasks and the data. The task functions like a black box,
allowing it to be replaced by any real workflow task. The data
size can be adapted to mimic any real input and output data
scenario of a workflow. We show the tasks and data adaptation
for two use cases to mimic real scientific workflows. A
first use case is streaming data, where the task is replaced
by an I/O library such as ADIOS [26] that builds an in-
memory buffer and streams the data to the server. The input
and output data sizes are set to 10% of node RAM size to
represent the generally largest data footprint for traditional
HPC applications. A second use case is training an ML model
where the tasks are replaced by multiple NN models that read
and train on batches of data and write the weights of each
trained model. The input data depends on how the scientists
define the batches, and the model size depends on the number
of parameters. For example, for ImageNET [27], the total data
is 150 GB, and models trained on this dataset vary from 1.03
M to 2440 M parameters (4.12 GB to 9.8 GB in float32).

We measure the I/O bandwidth of the data streaming
scenario with a file size of 3.2 GB, as it represents 10% of
the RAM. We increase the number of pods from 4 to 64 and
execute the read and write three times for each N-pod using
two storage configurations: (i) cloud object storage (COS)
and (ii) in our PerSSD architecture (using the NFS server)
(see Fig. 5). We observe that the write bandwidth, shown in
Fig. 5b, outperforms the read bandwidth in Fig. 5a for both
storage configurations. The NFS server utilizing top node-local
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storage achieves the highest write bandwidth. We also observe
in Fig. 5a that the PerSSD solution offers a small advantage
over COS for smaller numbers of pods. As we increase the
number of pods, the read bandwidth running on top of our
solution becomes comparable to COS.

The PerSSD solution offers more tangible gains for the write
bandwidth in Fig. 5b. As we increase the number of pods, we
notice more variability as we make more requests to the server,
which affects performance. Exploring the NFS server’s sweet
spot of performance based on parallel requests is outside the
scope of this paper. With the NFS server ingress bandwidth
exceeding the combined data sizes, the node local PerSSD
approach offers superior performance without sacrificing the
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data safety from persistent media. NFS makes moving a VM to
another node and accessing data on the previous node invisible.
The NFS software knows where the data is stored and can
access it across the network without user intervention.

We quantify the time from when the workflow ends to
the complete data transfer to COS. Fig. 7 shows how as
we increase the number of pods, meaning more data going
from the node-local SSD to COS, the data transfer time
slightly increases. This can be explained by the fact that
even though we submit all N tasks in parallel, the Kubernetes
scheduler allocates them in serial, so full synchronization of
start time is not guaranteed. This means that as the pods
complete execution, our PerSSD operator transfers the data
asynchronously; thus, at the end of the workflow, we are not
transferring all N x 3.2G B of data.

B. Earth Science Workflow

We apply our approach to an earth science workflow [16]
that generates, predicts, and analyzes high-resolution topo-
graphic data, such as terrain parameters (e.g., slope, as-
pect, hillshade) and soil moisture. These topographic data
are necessary for practical use in earth sciences, including
precision forestry and agriculture, hydrology for landscape
ecology, and regeneration dynamics [28], [29]. This workflow
is data-driven and has four components: data generation, data
transformation, ML modeling, and analysis. We focus on the
data generation stage [30] where the workflow leverages data
partitioning to accelerate the computation of high-resolution
terrain parameters (aspect, slope, and hillshade) from digital
elevation models (DEMs), as shown in Fig. 8. This workflow
falls into the data transformation category 3, which goes from
large input to large output data with large intermediary data.
The workflow becomes more complex as the data scales. The
data can scale in two ways: (i) scale out as we cover a larger
region and (ii) scale up as we increase the resolution at which
we generate the data. As the data scales, the workflow crops
the data into more tiles to compute the terrain parameters (TP)
for each tile, a computationally expensive task. Once the tiles
are calculated, the workflow merges and reprojects the high-
resolution TPs.
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Fig. 8: Earth science workflow that leverages data parallelism for the generation of high-resolution terrain parameters (aspect,

slope, hillshade) from Digital Elevation Models.

TABLE I: Total data (input, intermediate, and output) and
number of tiles for each data scenario.

Region Description Total data [GB] Number of Tiles

TN 30m Tennessee (TN) 17.1 2
Tennessee (TN),

SE-3 30m  North Carolina (NC) 49.3 2
South Carolina (SC)

SE 30m Southeast USA 132.5 3

EAST 30m Eastern USA 425.5 4

Data Scenarios

= TN 30m

=== TN,NC,SC 30m
SouthEast 30m

= Eastern US 30m

Fig. 9: Data scenarios for scalability: (i) Tennessee (purple),
(ii) three southeastern states: TN, NC, SC (red), (iii) all
southeastern states (yellow), and (iv) the eastern USA (blue).

We measure the overall makespan of the workflow in Fig. 8
as we scale out from a state to the eastern USA (Fig. 9).
We generate TPs for four regions at a 30 m resolution and
Table I presents the total size, including input, intermediate,
and output data. We execute the workflow with two storage
configurations: (i) reading from and writing to COS and
(ii) reading from and writing to node-local storage with our
PerSSD architecture. In Fig. 10, we visualize the total time
each configuration takes to execute the workflow three times.
The total time is the time the workflow takes from loading the
DEMs to the generation of the TPs and allocation in persistent
storage. This means that the measurements for PerSSD include
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the time the operator takes to track the data allocated in
node-local storage and move it to COS. We observe that
the total time is faster when we execute the workflow using
PerSSD than when deploying COS (only Tier 1). Specifically,
we reduce the time by 17% for TN (17.1 GB), 26% for
the three states of TN, NC, and SC (49.3 GB), 31% for
all southeast states (132.5 GB), and 35% for eastern USA
(425.5 GB). We note that as the data grows and the workflow
becomes complex, the reduction percentage of total time by
our architecture increases compared to COS, demonstrating
the scalability benefits of PerSSD.

We quantify the overhead time the operator takes to transfer
all the data to COS after the workflow finishes. Fig. 11
presents the data transfer time for the four data scenarios. As
expected, the time increases as the data increases, however,
even for the largest data scenario (EAST) the data transfer
time is negligible (0.33%) compared to the total time. The
observations in Figures 10 and 11 confirm that our architecture
enables node-local storage management that improves the /O
performance and the overall makespan of a scientific workflow
while ensuring data persistence and shareability.

VI. RELATED WORK

Our PerSSD architecture is an integrated solution between
the application and the system where the scientific workflow
orchestration directs the data management and storage. We
present state-of-the-art practices and tools for orchestrating
scientific workflow and show purely storage software plat-
forms that facilitate the usage of node-local storage.

Scientific Workflow Orchestration Traditional workflow
management systems (WMs) orchestrate workflows on het-
erogeneous resources but are often complex and lack porta-
bility [3], [31], [32]. Container orchestration addresses this
by isolating components as standalone units [10], [33], [34],
with systems like Pegasus, Nextflow, and Galaxy integrating
these features [4], [5], [35]. However, HPC-based WMs are
costly [36]—[38], and cloud solutions face vendor lock-in [39]-
[41]. Our cloud-native solution expands Kubernetes orches-
tration via a pipeline operator, offering open-source, vendor-
independent deployment without code modification.
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Node-local Management: Node-local storage has been
explored in HPC for two-tiered architectures and burst
buffers [42], [43], but cloud environments rely on external
object stores [1], [44], [45]. Solutions like OpenEBS focus
on resilience [46], but our work emphasizes reproducibility
by integrating data annotation and workflow orchestration
with storage management. PerSSD ensures persistence and
shareability in cloud environments, offering a cloud-native al-
ternative to HPC burst buffers with improved I/O performance
using Kubernetes and OpenShift.

VII. CONCLUSIONS

This paper presents PerSSD, a novel software architecture
that orchestrates scientific workflows using node-local storage
while ensuring data persistence and shareability in cloud
environments. Our system integrates (i) a pipeline operator for
workflow automation, (ii) an operator for ensuring data per-
sistence, and (iii) a file system for sharing data across nodes.
We demonstrate improved performance in two scenarios: (i) an
FIO benchmark, showing a 50% increase in write bandwidth
compared to COS, and (ii) an earth science workflow, reducing
the makespan by 35%. As data scales, PerSSD shows greater
performance gains over COS. The time to transfer data to COS
asynchronously is minimal (0.33%), making total execution
time faster than COS alone. Future work will explore parallel
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systems for node-local storage and testing across different
cloud vendors.

VIII. CODE AVAILABILITY

We provide the code for our PerSSD architecture, includ-
ing the PerSSD operator, NFS server, and the orchestration
implementation for FIO and the earth science workflow at
https://github.com/TauferLab/perssd-nvme/tree/main.
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