Optimal Admission Policy In a Cloud Data
Center With Priority and Non-Priority Tasks

Wenlong Ni, Yuhong Zhang, and Wei Li

Texas Southern University, 3100 Cleburne St, Houston, USA TX 77004,
wenlong.ni@tsu.edu, yuhong.zhang@tsu.edu, wei.li@tsu.edu

Abstract. This paper studies a cloud datacenter (DC) consisting of two
types of tasks with different priority levels. While non-priority tasks gen-
erally request the use of a single virtual machine (VM), priority tasks
may utilize multiple available VMs to accelerate processing. We focus
on determining whether to accept or reject non-priority tasks to maxi-
mize overall system benefits. By formulating the problem as a stochastic
dynamic program, t is verified that the best approach for handling non-
priority tasks adheres to a control-limit framework. Both experimental
outcomes and numerical evaluations highlight the efficacy of the proposed
method, leading to the identification of the optimal threshold. The key
contribution of this paper is the development of a stochastic dynamic
program for DC resource management and the explicit derivation of an
optimal control-limit policy. Both value iteration and linear program-
ming methods are utilized to solve optimization problems. These results
offer essential understanding for assessing the performance of various DC
models, optimizing both rewards and resources efficiently.

Keywords: Cloud Data Center, Resource Utilization, Optimal Policy,
Cost and Reward, Stochastic Dynamic Program

1 Introduction

Authors in papers [1-4] studied various cloud computing paradigms that delivers
dynamically elastic and virtualized resources over the Internet. It functions as a
core framework for data services, integrating networks, computational resources,
storage systems, and software elements. The term ”cloud” symbolizes the focus
on resource utilization rather than the underlying implementation mechanisms.
In CC, the cost for computation and energy consumption is less at current cloud
DCs [5] because it exploits virtualization technology, which segregates the ele-
mentary functions of computers from the hardware resources and the physical
infrastructure.

CC leverages virtualization technology [6-9] to create virtual machines (VMs)
which uses hypervisors to abstract physical hardware, allowing multiple VMs

* This work has been funded in part by the National Science Foundation through
awards numbered 2302469 and 2318662, alongside support from NASA under Grant
8ONSSC22KMO0052.

Optimal Admission Policy 3

to running independently on a single server. This technology supports cloud
environments by optimizing hardware usage, reducing operational costs, and
enabling rapid deployment of services, making it a cornerstone of modern IT
infrastructure.

The primary goal of a cloud service provider (CSP) is to maximize profitabil-
ity while ensuring adherence to key performance indicators and service level
agreements [10]. By efficiently managing infrastructure, leveraging automation,
and implementing dynamic pricing models, operators aim to balance customer
satisfaction with revenue growth. Additionally, they focus on reducing energy
consumption and improving resource utilization to enhance sustainability and
cost-effectiveness. Ultimately, the operator’s success lies in achieving a competi-
tive edge by delivering high-quality services at optimal costs, ensuring long-term
profitability and customer retention.

Cloud computing (CC) has revolutionized large-scale big data processing and
intricate computational analysis [11, 12]. Due to the underutilization of data cen-
ter (DC) power [13] and the growing demand for scientific computations [11, 14],
this study introduces an innovative resource allocation strategy for DCs to en-
hance the efficiency of virtual machine (VM) resource usage. The standard oper-
ations of a DC are categorized as priority tasks, while computationally intensive
tasks are classified as non-priority. The system exhibits several unique features
[10, 15], including task categorization, urgency levels, resource optimization, a
preemption mechanism, and task queuing.

In one of our previous work [16], we investigated a general scenario with-
out cognitive characteristics. We studied both an average-reward model and
a discounted-expected-reward model. The key difference between the model in
that paper and the one in the current study is the absence of task prioritiza-
tion. Furthermore, in the model presented in [17], a task T5 will utilize as many
VMs as possible, whereas in the proposed model, each T, task occupies only one
VM. The primary objective of this paper is to optimize the processing of non-
priority tasks and identify an optimal policy that maximizes the total expected
discounted reward for every initial state. Some more related ideas and notation
discussed in the paper can be found in our unpublished work [18], which includes
more theoretic details. Below, we outline the major contributions of this study:

1. Separate buffers are allocated for two types of tasks with different priority
in this model. When a priority requested a number of VMs task arrives, it
may preempt a non-priority task that is currently being processed by using
one VM. We demonstrate that the optimal strategy for determining whether
to accept or decline a non-priority task follows a state-dependent threshold
policy, also known as a control-limit policy.

2. Both the value iteration (VI) and linear programming (LP) methods are
utilized to solve Bellman optimization problems. Our approach ensures that
resource allocation is maximized while adhering to predefined constraints.
The use of LP not only streamlines the optimization process, but also guar-
antees precise and actionable insights.

4 Wenlong Ni et al.

The paper is structured as follows. Section II presents the system model of
the DC. Section III discusses the optimal policy framework aimed at maximiz-
ing the reward, including the verification process that confirms it as a control
limit policy. Section IV provides a numerical analysis supported by tables and
diagrams to validate the theoretical findings. The paper concludes with final
remarks in Section V.

2 Model Description and Analysis

A CC environment offers users and various application systems the ability to ob-
tain computing power, storage capacity, or virtual machine services on demand
from a dynamically virtualized resource pool. It is a continuously operating and
changing system, and thus a continuous-time Markov decision process (CTMDP)
framework is well-suited for modeling dynamic stochastic processes. We begin
by presenting a system model for a DC, incorporating the necessary assump-
tions for all relevant parameters. Subsequently, we outline the construction of
key components within the constructed CTMDP model. We will consider the
following assumptions in the proposed model:

1. The system handles two types of tasks: priority tasks, referred to as type-
1 (T1) tasks, and non-priority tasks, referred to as type-2 (T») tasks. The
number of VMs (denoted by C') will serve both tasks fluctuates dynamically
in response to the workload within the system.

2. Tasks of type T; are time-critical and require a predetermined number (say
b, a positive integer) of VMs for their execution, while tasks of type T5, which
involve additional payment, can be processed using a regular VM.

3. The arrival of tasks 71 and T5 follows Poisson processes [19] with arrival rates
A1 and Ao, respectively. The processing time for these tasks on a single VM
follows a negative exponential distribution with rates p; and us, respectively.

Based on these assumptions, we are now ready to construct a CTMDP model
as follows:

1. Our emphasis is on decision-making states, which include both standard
system states and events occurring at decision points. The conventional state,
the first component of a decision-making state, is defined by the number of
ongoing tasks of each type in the DC. This is denoted as S = {s : s =
(n1,n2), n1 > 0, ng > 0}, where ny and ny are the number of 77 and Tp
tasks. The event space is defined by e € E = {D,, 4;,i = 1,2}, where D;
indicates the departure of a T; task from the system after service completion,
and A; signifies the arrival of a T; task. Thus, a decision-making state can
be expressed as § = (s,e) = ((n1,n2),e). The state space is the collection
of all possible decision-making states, represented as S = S x E = {3]5 =
<(Tl1, ’flg), 6>}

2. Once a service in progress completes, the controller remains inactive and
makes no decision. We introduce the notation ap to represent a hypotheti-
cal action corresponding to the completion (departure) of a service. Let a4

Optimal Admission Policy 5

denote the action to admit and ar denote the action to reject the request.
The action space A is defined as the set of three actions: A = {ap,aa,ar}.

3. Per our assumption, the time duration between two epochs is exponen-
tially distributed. Let V;i(n1) be the number of VMs occupied by T tasks,
Va(n1,n9) be the number of VMs occupied by T5 tasks.

Vi(ny) = bny,ny < Ny,

Vi(ni) = C,ny > Ny,
Va(ni,ne) = min(C — Vi(n1),n2),n1 < Ny,
Va(ny,ng) = 0,n7 > Nj.

Denote by s = (n1,n2) and Bo(s) = A\ + Aa + Vipr + Vapua, we know that
the average duration for the system to transition from state s to any other
state is, is 1/8p(s).

4. Let q(j|8,a) denote the probability that the system occupies state j in the
next epoch if taking action a from state §. For a event Dy under the condition
of (n1 > 0), (8,a) = ({(n1,n2), D1),ap), if denote by sq, = (n1 —1,n2), then
q(jl{(n1,n2), D1),ap) can be derived as

A1/Bo(say), J={((n1 —1,n2), A1),
)‘2/60(&11)7 Jj= <(n1 - 1’n2)’A2>>
Vi(ni = Dpa/Bo(sq,), = ((n1—1,n2), D),
Va(n1 — 1,n2)p2/Bo(s4,), 3 = ((m1 — 1,n2), D).

The transition probabilities for other states can also be derived similarly.
5. The reward function is involved with the income award k($, a) and the system
cost at rate ¢(§,a), and can be derived by:

c(8,a)

r(é,a) = k(§,a) + m,

where

k(3,a) = R,e=As,a=ayu,
10, otherwise.

After accepting a Ty task, the reward is received after the service completion,
which is equal to putting it with the accept action. Let f(s),s = (n1,n2) be
the cost rate of state s, then ¢(8, a) fulfills the following conditions:

_f(nl - 17”2)3 €= D17n1 > 07
—f(’l’Ll,TlQ - 1), e = Dy, ng >0,
_f(nl + 17”2)7 €= A17
7f(nlan2 + 1)7 €= A27a = a4,
_f(nlvnQ)a GZAQ,GZQR.

c(§,a) =

A policy specifies the decision rule to be used at every decision epoch. Our
objective is to determine the optimal policy 7 that maximizes v7 (§) for all initial
states 3.

6 Wenlong Ni et al.

3 Optimal Stationary State-Related Control Limit Policy

Furthermore, a policy is called a control limit policy (or a threshold policy) if
there exists a threshold in the policy for accepting task arrivals. In this research,
since we only focus on admitting 75 task, when there are n; tasks of 77 in the
system, there is a threshold T'(n;) > 0 such that the system will only accept
the arriving 75 whenever the number of T5 tasks currently in the system is less
than T'(nq1), and reject the Ty arrivals otherwise. This means the decision rule
for Ty tasks is:

aA, N2 S T(nl)a
agr, na > T(ny).

d(ny,ng, Ag) = { (1)

It is easy to see that a threshold policy makes the choices for decision makers
(CSP) very simple.

3.1 Optimal State Value Function

Let V*(s) denote the optimal state value function, which represents the maxi-
mum expected cumulative reward starting from state s and following the optimal
policy 7* thereafter. The Bellman optimality equation for the state value func-
tion is given by:

V*(s) = max (R(s, a)+~y Z P(5’|s7a)V*(s')> ,

s'esS
where:

— R(s,a) is the immediate reward for taking action a in state s.
— v €[0,1) is the discount factor, which weighs future rewards.
— P(s'|s,a) is the transition probability from state s to state s’ given action a.

The optimal policy 7* can be derived by choosing the action that maximizes the
right-hand side of the equation for each state s:

7*(s) = arg max | R(s,a) + P(s|s,a)V*(s') | .
(5 gaeA(s)<<)73 Pl <>>
3.2 Optimal Result By Value Iteration

By using above equation, for a departure event of D;, we have

g mma) Ao ma). 40)

+A20({(n1,n2), A2)) + nipv({(n1,n2), D1))
+napov({(n1,n2), Da))]. (2)

v({(n1 + 1,n2), D1)) =

Optimal Admission Policy 7

From above equations, it is seen that the values of v(8) is mainly dependent on
the number of n; and ng, so we can define a new function B(s),s = (n1,ns),
which is

B(ny,n2) = v({(n1 + 1,n2), D1)) = v({(n1,ne + 1), Da)).

From these analysis, since there is only accept/reject actions for the Th arrivals,
it is not too hard to verify that

v({(n1,n2), A2)) = max [B(nl,ng), R+ B(ny,ns + 1)].
For the T; tasks, we have

v({(n1,n2), A1)) = B(n1 + 1,ns).

For any two-dimensional integer function X (n1,ns), n1 > 0,ne > 0, we introduce
the following definitions:

Ap,X(nq,ng) = X(ng,ne + 1) — X(n1,n2).
Agz)X(TLl,TLQ) = An2X(Tl1,Tl2 +].) — An2X(Tl1,n2).

Theorem 1: If the cost function f(ni,ns) is convex and increasing function on
ng for any given ny, which means A, f(ni,n2) > 0 and A%)f(nl,nz) > 0, the
optimal policy for admitting 75 arrivals is then a control limit policy.

Proof: For any ne > 0, we can easily get

A Ao Fbngpn + Va(ng, ng)pg, ny < Ny,
Polnz,ma) = { A1+ Ag + Cpa, n = Ny,)

Furthermore, by using the notation of B(ni,n3), we can rewrite the equation
(2) as below:

1. If ny < Nl,
1
B(ni,ng) = m — f(n1,n2)
+Av(((n1,n2), A1) + A2v(((n1,n2), A2))
—|—bn1ulB((n1 — 1,712)) + ‘/2(711,712)#23((71,1,72,2 — 1))] (4)
2. If ni1 Z Nl,
Bln1,ns) — m [= Fusm2) + Mo({(1,m2), Ar))
+A20({(n1,n2), A2)) + Cua B((n1 — 1,n2))|. (5)

From the observation in equation (3), (4) and the equation (5), we will have

8 Wenlong Ni et al.

1. If ny < Ny,

(a + Bo(ni,ne + 1))AnzB(n1 +1,n9)
= —Apn, f(n1,n2) + AMAn,v(((n1,12), A1) + A2 An,v({(n1,n2), A2))
—|—bn1,u1An2B(n1,n2) + Vg(nl,ng),ugAnzB(nl,ng - 1) (6)
2. If nqy Z N17

(o + Bo(n1,ng 4+ 1)) Ay, B(ny, n2)
= —Ap, f(n1,n2) + A1, v(((n1,n2), A1)
+A2Ap,v(((n1,n2), A2)) + Cur Ay, B(na, na). (7)

By a similar implementation with above equations (6) and (7), we have

1. If ;g < Ny,

(a+ Bo(ni,n2 + 2))A£Z)B(n1, n2)
= — AR f(n1,ns)
+/\1A£32)U(<(n15 n2)7 A1>) + /\QA'SLZZ)U(«nla n2)a A2>)

—|—bn1u1A$L22)B(n1 — 1,712) + Vg(nl,ng)ugAgi)B(nl, Nog — 1). (8)
2. If ny 2 Nl,

(a + Bo(n1,ne + 2))A£?2)B(n1, n3)
= —AR) f(n1,n2) + M A v(((n1,n2), A1)
A2 AP v({(n1,m2), A2)) + Crn AP B(ny — 1,n5). (9)

With the preparations on all equations from equation (8) to (9), we can now
adopt Value Iteration Method with three steps to prove that for any given nq,
the values of B(n1,ns) is concave and nonincreasing on ng as below:

Define B(Y)(ny,n,) = 0 as the value of B((n1,n2) in the initial (0th) itera-
tion and v(®) being the corresponding v, we know v (((n1,ns), A2)) = R and
v (((n1,n2), A1)) = 0. Next, define BM) (ny,ny) as the value of B((n1,ns) in
the (1st) iteration, we will have

—f(ni,m2) + Ao R

B(l)(nl,nQ) = a+c

Therefore, for any nq, B(l)(nl, ng) is concave and nonincreasing on no.

By using above concavity and non-increasing property of BM (n1,ny), let v(Y)
be the corresponding v in the (1st) iteration, we know that v")((ny,ng, A;)) is
concave and non-increasing functions for any no. By further applying the result
in Lemma 1 of [16], we know that v(Y)({ny,ns, As)) is also concave and non-
increasing functions for any ne. With these results in mind, and using the results
in equations (6), (7) and (8), (9) we will know that

A, BP(n1,n2) <0, and APB®(ng,ny) <0

Optimal Admission Policy 9

These two inequalities justify that for any n;, B (ny,ns) is nonincreasing and
concave on ny. Here, B (ny,ny) is the value of B((n1,ny) in the (2nd) iteration.

Finally, by noticing the Theorem 11.3.2 of [20] that the optimality equation
has the unique solution, we know the value iteration B (ny,ns), (i =0,1,...,)
will uniquely converges. Therefore, as the iteration continues, with n goes to oo,
for any ny, B(n1,ns) is always concave nonincreasing for any ns.

Remark: Through the verification process for Theorem 1, it is observed that
the threshold for accepting T, tasks exists regardless the number of VMs C.
This observation fits the fact that the available VMs in a DC may be constantly
changing due to dynamic loads. Generally speaking, if the number of VMs C
is larger, the processing speeds are higher, so the DC can accept more T5 tasks
waiting in the buffer.

3.3 Optimal Result By Linear Programming

In addition to the Value Iteration method, the Bellman optimality equations
can also be formulated as a linear programming problem to find the optimal
value function V*(s). Using the linear programming method, it systematically
tackles the optimization problem, aiming to identify the most efficient strategy
for resource allocation or decision making. The integration of the threshold policy
with linear programming provides a robust analytical approach, enhancing the
understanding and practical application of the model in various contexts.
A linear programming problem consists of three main components:

— Objective Function: A linear function to be maximized or minimized.

— Constraints: A set of linear inequalities or equalities that define the feasible
region.

— Decision Variables: Variables that represent the choices available to the
decision maker.

In matrix notation, the LP problem can be written as follows:
Objective Function:
Maximize or Minimize ~ Z = ¢”x where c is the vector of coefficients, and
x is the vector of decision variables.
Subject to Constraints:
Ax<b

where A is the matrix of constraint coefficients, and b is the vector of bounds.
Non-negativity:
x>0

For the Bellman equation of the MDP model proposed in this paper, the
linear programming formulation is given by:

Minimize Z V(s),
ses

10 Wenlong Ni et al.

subject to the constraints:

V(s) > R(s,a) + Z P(s'|s,a)V(s') Vs€S, ae A(s).
s'eS

In this formulation:

— V/(s) denotes the approximate value assigned to state s.

— The objective function) ¢ V'(s) is to minimize the aggregate of state val-
ues, thereby aligning closely with the optimal value function V*(s) within
the given constraints.

This linear programming technique offers an alternative strategy for tackling
Bellman optimality equations, particularly advantageous for large or intricate
MDPs where finding exact solutions is computationally demanding.

4 Numerical Analysis

In this section, we show the threshold policy numerically considering specific
parameters as indicated in Table 1:

Table 1. Parameters Selection

Number of VMs C 20
Discount Factor « 0.1
)\1 //Ll 0.5 / 3
A2/ pe 1/4
b 2
Reward R 3
Cost Function f(n1,n2)[n3 4+ n3

4.1 Value Iteration Method

Using this parameter configuration, we can determine both the B(ny,ns) values
and the corresponding optimal policy using the value iteration method. The
results are presented in the tables below.

Table 2 illustrates that the values of the function B(ni,ns) exhibit a concave
decreasing pattern as ns increases, which aligns with our theoretical expecta-
tions. To show how the threshold values depend on the value of ni, by choosing
b =2, we plot two different cases when n; = 4, and n; = 8, respectively, in the
Fig. 1.

In this Figure, the green color is for the value of R 4+ B(ni,ns + 1) and the
red color is for the value of B(ni,nz). Since B(ny,ng) is concave on ny for any
given ny, and thus R+ B(ny,ne + 1), it is easy to identify the optimal threshold

Optimal Admission Policy

Table 2. B(ni,n2) Values with Optimal Policy

TL2=O

1

2

3

4

5

6

7

8

9

10

11

26.07

25.77

25.22

24.42

23.37

22.08

20.54

18.76

16.72

14.45

11.92

9.15

25.89

25.59

25.04

24.24

23.20

21.90

20.37

18.58

16.55

14.27

11.74

8.97

25.55

25.25

24.70

23.90

22.85

21.56

20.02

18.24

16.20

13.92

11.40

8.63

25.04

24.74

24.19

23.39

22.34

21.05

19.51

17.73

15.70

13.42

10.89

8.12

24.37

24.07

23.51

22,72

21.67

20.38

18.84

17.06

15.02

12.74

10.22

7.44

23.53

23.23

22.68

21.88

20.83

19.54

18.00

16.22

14.18

11.90

9.37

6.44

22.53

22.22

21.67

20.87

19.83

18.54

17.00

15.21

13.18

10.76

8.00

4.84

21.36

21.05

20.50

19.70

18.66

17.37

15.83

13.93

11.71

9.10

6.12

2.71

QO | O O | W[N[—

20.02

19.72

19.17

18.37

17.32

15.95

14.27

12.22

9.81

6.98

3.74

0.05

Expected Reward “ 100

3000

2500

2000

1500

-500

~1000 [un

-1500
o

- = =n,=4.B(nn,)
n,=4,R+B{n,n +1)
wennne 11 =8, B0)

1
1
n,=8,R¥Bln, n_+1)

5

n

9101

11

2

Fig. 1. Optimal Threshold Values.

by comparing the red line (B(n1,n2)) and the green line (R + B(ny,na + 1)),
as shown in Fig. 1 if the green line is over the red line which means the system
would take the accept action, so the threshold is 11 for n; = 4, to be 9 for
ny = 8, respectively. Next, it is also a straightforward observation that the
optimal threshold is therefore a decreasing function of n;.

4.2 Linear Programming

Similar to the Value Iteration method, to confirm the effectiveness of the pro-
posed Linear Programming (LP) model, we performed a series of numerical ex-
periments to assess its performance with various parameters of the system. This
linear programming approach provides an alternative method for solving Bell-
man optimality equations, especially useful for large or complex MDPs where
exact solutions are challenging to compute.

As illustrated in Table 3, the numeral ”1” denotes acceptance of a task,
whereas 70" indicates rejection by the system. Given the significant disparity
between the reward R and the associated holding and rejection costs, the table
reveals that the system tends to accept Tb tasks into the buffer, regardless of
whether there are already waiting 75 tasks or even Tj tasks present. It can be

12 Wenlong Ni et al.

Table 3. Actions for T> task of Linear Programming Solution

0 11

—
o

n2

3
[
=)

O[O U x| W[DN =

ol e el e e M Bl e
== =] = =] =] =] =] =] =
=== ==~ ==~
e e e e e R R e K
e e R e e R R e
e e R Ml M e et R e KA
== =] = =] =] =] = =] o
RN
===~~~ =]|=|[~]|0o
e e R R e e e e)
(eI N N e e e e
O OO | =] = = =] =

easily found that the actions in Table 3 are the same as those derived from the
values in Table 2.

These experiments and data analysis have clearly demonstrated the effective-
ness of the proposed method. Through rigorous analysis, we have identified the
optimal threshold, which significantly enhances performance. Furthermore, we
have observed a discernible pattern in how this threshold varies with different
parameters. This discovery not only validates our methods but also provides
valuable insights into the dynamic behavior of the system. Our findings pave
the way for further refinement and optimization of the method, ensuring its
robustness and applicability in various contexts.

5 Conclusion and Discussion

To optimize VM usage in resource-limited DCs, this paper proposes a scheme
for handling both priority and non-priority tasks. Priority tasks preempt non-
priority scientific computing tasks, which utilize available VM resources. Serving
non-priority tasks generates rewards, while holding or interrupting them incurs
costs. We formulated this as a CTMDP model and identified the optimal pol-
icy for admitting non-priority tasks to be a state-dependent threshold policy.
Furthermore, the use of LP enables the efficient formulation and solution of
complex optimization problems. LP provides a powerful framework for solving
task scheduling problems in CC, and the results of this study suggest that LP
can be a valuable tool for improving efficiency and effectiveness. By continuing to
explore and refine LP models, we can develop more robust optimization strate-
gies that can be applied to real-world cloud data center, ultimately leading to
better outcomes for both users and service providers. Through the integration
of reward for task acceptance and holding cost for task processing, the MDP
model provides a flexible framework for optimizing task scheduling in cloud
environments. Using a Markov Decision Process with linear programming for
optimization, this model balances load distribution, minimizes delay costs, and
ensures efficient VM utilization. By balancing these factors, we achieve a net in-
crease in system efficiency, which enables a more dynamic approach to resource

Optimal Admission Policy 13

allocation under varying load conditions. The findings of this paper can serve
as an economically optimal strategy in diverse cloud data centers (DCs). Our
future research aims to derive optimal system policies for maximizing rewards,
even with incomplete or partial system information, by incorporating advanced
machine learning techniques and other methodologies.

References

1.

10.

11.

12.

13.

C. Kotas, T. Naughton, and N. Imam. A comparison of amazon web services and
microsoft azure cloud platforms for high performance computing. In 2018 IEEE
International Conference on Consumer Electronics (ICCE), pages 1-4, Jan 2018.
P. Prukkantragorn and K. Tientanopajai. Price efficiency in high performance com-
puting on amazon elastic compute cloud provider in compute optimize packages.
In 2016 International Computer Science and Engineering Conference (ICSEC),
pages 1-6, Dec 2016.

H. Artail, M. A. R. Saghir, M. Sharafeddin, H. Hajj, A. Kaitoua, R. Morcel, and
H. Akkary. Speedy cloud: Cloud computing with support for hardware acceleration
services. IEEE Transactions on Cloud Computing, 7(3):850-865, 2019.

X. Hu, L. Wang, K. Wong, M. Tao, Y. Zhang, and Z. Zheng. Edge and central
cloud computing: A perfect pairing for high energy efficiency and low-latency. IEEE
Transactions on Wireless Communications, 19(2):1070-1083, 2020.

Z. Cao, X. Zhou, X. Wu, Z. Zhu, T. Liu, J. Neng, and Y. Wen. Data center sus-
tainability: Revisits and outlooks. IEEE Transactions on Sustainable Computing,
9(3):236-248, 2024.

H. Jin, D. Pan, J. Xu, and N. Pissinou. Efficient vim placement with multiple
deterministic and stochastic resources in data centers. In GLOBECOM - IEEE
Global Telecommunications Conference, pages 2505-2510, Dec 2012.

Z. Xiao, W. Song, and Q. Chen. Dynamic resource allocation using virtual ma-
chines for cloud computing environment. IEEE Transactions on Parallel and Dis-
tributed Systems, 24(6):1107-1117, 2013.

Y. Yamato, Y. Nishizawa, S. Nagao, and K. Sato. Fast and reliable restoration
method of virtual resources on openstack. IEEE Transactions on Cloud Computing,
6(2):572-583, 2018.

N. Kamiyama. Trading virtual machines to stabilize revenue in public clouds. In
NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium,
pages 1-8, Apr 2018.

J. Mei, K. Li, and K. Li. Customer-satisfaction-aware optimal multiserver con-
figuration for profit maximization in cloud computing. IEFEE Transactions on
Sustainable Computing, 2(1):17-29, 2017.

A. Tosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema.
Performance analysis of cloud computing services for many-tasks scientific com-
puting. IEEE Transactions on Parallel and Distributed Systems, 22(6):931-945,
2011.

B. Liang and J. Bai. Low-energy resource classification algorithm for cross-regional
cloud data centers based on k-means clustering algorithm. IEEE Transactions on
Industrial Informatics, 20(8):10084-10091, 2024.

L. A. Barroso, J. Clidaras, and U. Hoelzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan & Claypool,
2013.

14

14

15.

16.

17.

18.

19.
20.

Wenlong Ni et al.

Y. Chen, Z. Zhang, Y. Deng, G. Min, and L. Cui. A combined trend virtual machine
consolidation strategy for cloud data centers. IEEE Transactions on Computers,
73(9):2150-2164, 2024.

S. Sharif, P. Watson, J. Taheri, S. Nepal, and A. Y. Zomaya. Privacy-aware schedul-
ing saas in high performance computing environments. IEEE Transactions on
Parallel and Distributed Systems, 28(4):1176-1188, 2017.

W. Ni, Y. Zhang, and W. W. Li. An optimal strategy for resource utilization in
cloud data centers. IEEE Access, 7:158095-158112, Oct 2019.

W. Ni, Y. Zhang, and W. W. Li. Optimal task admission control of private cloud
data centers with limited resources. In 2024 IEEE 1jth Annual Computing and
Communication Workshop and Conference (CCWC), pages 0167-0172, 2024.

W. Ni, Y. Zhang, and W. W. Li. Task admission control and boundary analysis
of cognitive cloud data centers, 2020, https://arxiv.org/abs/2010.02457.

S. Ross. Stochastic Processes. Jan 1995.

M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Mar 2005.

