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Abstract

In this paper we study a class of constrained minimax problems. In particular, we
propose a first-order augmented Lagrangian method for solving them, whose subproblems
turn out to be a much simpler structured minimax problem and are suitably solved by a
first-order method developed in this paper. Under some suitable assumptions, an operation
complexity of O(¢~*loge™!), measured by its fundamental operations, is established for the
first-order augmented Lagrangian method for finding an e-KKT solution of the constrained
minimax problems.
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ation complexity
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1 Introduction

In this paper, we consider a constrained minimax problem

F* = min max (Fle.y) = f(@.9) + () = o) (1)

For notational convenience, throughout this paper we let X := domp and ) := dom g, where
dom p and dom ¢ are the domain of p and g, respectively. Assume that problem (1) has at least
one optimal solution and the following additional assumptions hold.

Assumption 1. (i) f is Lyg-smooth on X x Y and f(z,-) is concave for any given x € X.!

(ii) p: R" - RU{+o0} and ¢ : R™ — RU {400} are proper closed convex functions, and the
proximal operator of p and q can be exactly evaluated.

(iii) ¢ : R® — R™ is Ly.-smooth and L.-Lipschitz continuous on X, d : R x R™ — R™ s
Ly q-smooth and Lg-Lipschitz continuous on X x Y, and each component d;(x,-) of d is
convex for allt=1,...,m and x € X.

(iv) The sets X and Y (namely, domp and domq) are compact.
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!The definitions of Lg-Lipschitz continuity and Lvg-smoothness of a function or mapping ¢ are given in
Subsection 1.1.



Problem (1) has found applications in machine learning such as perceptual adversarial ro-
bustness [28] and robust adversarial classification [21]. Besides, it has potential application to
constrained bilevel optimization

min f(z,y) + p(z) st y€argmin{f(z,2) + p(2)|g(z, 2) < 0}, (2)

where p and p are proper closed convex functions, §, Vf, V f and Vg are Lipschitz continuous
on domp x dom p, and g;(x, ) is convex for each x € dom p. Specifically, (2) can be tackled by
solving a sequence of subproblems in the form of (1). Indeed, observe that (2) is equivalent to

min f(z,9) +p(z) st gle,y) <0, flz,y)+p(y) —min{f(z,2) +p(2)|g(z, 2) < 0} < 0. (3)

0} > 0. As a result, one natural approach to tackling (3) is by solving a sequence of penalty
subproblems in the form of

Notice that any feasible point (z,y) of (3) satisfies f(z,y)+p(y) —min.{f(x, z) +p(2)|j(z, 2) <

s {F(ey) + @) +p(F(2y) + ) —min{f(z,2) + 5(2)|3(z,2) < O})},

which turns out to be a special case of (1) given by

g(glyi)ngo e {f(z,9) + p(f(z,y) — f(z,2)) +b(z) — pp(2)}.

In the recent years, the minimax problem of a simpler form

min max f(z; ), (4)
where X and Y are closed sets, has received tremendous amount of attention. Indeed, it has
found broad applications in many areas, such as adversarial training [18, 35, 47, 53], generative
adversarial networks [15, 17, 44|, reinforcement learning [9, 13, 37, 40, 48|, computational game
[1, 42, 49], distributed computing [36, 46], prediction and regression [4, 50, 57, 58|, and distri-
butionally robust optimization [14, 45]. Numerous methods have been developed for solving (4)
with X and Y being simple closed conver sets (e.g., see [7, 20, 22, 29, 30, 32, 34, 39, 55, 59, 60,
63)).

There have also been several studies on some other special cases of problem (1). In particular,
two first-order methods, called max-oracle gradient-descent and nested gradient descent/ascent
methods, were proposed in [16] for solving (1) with ¢(z) = 0 and p and ¢ being respectively
the indicator function of simple compact convex sets X and Y, under the assumption that
V(z) = maxyey {f(z,y) : d(z,y) < 0} is convex and moreover an optimal Lagrangian multiplier
associated with the constraint d(x,y) < 0 can be computed for each x € X. An augmented
Lagrangian (AL) method was recently proposed in [12] for solving (1) with only equality con-
straints, p(x) = 0, q(y) = 0 and ¢(x) = 0, under the assumption that a local min-maz point of
the AL subproblem can be found at each iteration. In addition, a multiplier gradient descent
method was proposed in [52] for solving (1) with ¢(z) = 0, d(z,y) being an affine mapping, and
p and ¢ being the indicator function of simple compact convex sets. Also, a proximal gradient
multi-step ascent decent method was developed in [10] for (1) with ¢(x) = 0, d(z,y) being an
affine mapping and f(z,y) = g(x) + 7 Ay — h(y), under the assumption that f(x,y) — q(y) is
strongly concave in y. Besides, primal dual alternating proximal gradient methods were pro-
posed in [62] for (1) with ¢(x) =0, d(z,y) being an affine mapping, and { f(z,y) being strongly
concave in y or [¢(y) =0 and f(x,y) being a linear function in y]}. An iteration complexity of
the method for finding an approximate stationary point of the aforementioned special minimax
problem was established in [10, 16, 62], respectively. Yet, their operation complexity, measured
by the number of fundamental operations such as evaluations of gradient of f and proximal
operator of p and ¢, was not studied in these works.



There was no algorithmic development for (1) prior to our work, though optimality condi-
tions of (1) were recently studied in [11]. In this paper, we propose a first-order AL method for
solving (1). Specifically, given an iterate (z*,y*) and a Lagrangian multiplier estimate (A%, )\’;,)
at the kth iteration, the next iterate (zFT1!,4#+1) is obtained by finding an approximate sta-
tionary point of the AL subproblem

min maxﬁ(x, Y, )‘iv )‘];/7 Pk)
r Y

for some p; > 0 through the use of a first-order method proposed in this paper, where L is the
AL function of (1) defined as

£y A Ay p) = F(x,y>+21p (1P + pea)] 12 - ||Ax|r2)21p (1A + (e )] 1? — Ay ]2) -
(5)

which is a generalization of the AL function introduced in [12] for an equality constrained
minimax problem. The Lagrangian multiplier estimate is then updated by A\t = HBK (\E 4

pec(@®)) and AETE = [XE 4 prd(2F T yF )] for some A > 0, where HBX(-) and []; are
defined in Section 1.1.

The main contributions of this paper are summarized below.

e We propose a first-order AL method for solving problem (1). To the best of our knowledge,
this is the first yet implementable method for solving (1).

e We show that under some suitable assumptions, our first-order AL method enjoys an iter-
ation complexity of O(loge™!) and an operation complexity of O(e~*loge™!), measured
by the number of evaluations of Vf, Ve, Vd and proximal operator of p and ¢, for finding
an e-KKT solution of (1).

The rest of this paper is organized as follows. In Subsection 1.1, we introduce some notation
and terminology. In Section 2, we propose a first-order method for solving a nonconvex-concave
minimax problem and study its complexity. In Section 3, we propose a first-order AL method
for solving problem (1) and present complexity results for it. Finally, we provide the proof of
the main results in Section 4.

1.1 Notation and terminology

The following notation will be used throughout this paper. Let R™ denote the Euclidean space
of dimension n and R’} denote the nonnegative orthant in R™. The standard inner product,
l1-norm and Euclidean norm are denoted by (-,-), || - |1 and || - ||, respectively. For any A > 0,
let B = {z >0: ||z| < A}, whose dimension is clear from the context. For any v € R", let v
denote the nonnegative part of v, that is, (v4); = max{v;,0} for all i. Given a point z and a
closed set S in R™, let dist(z,S) = mingcg |2’ — z||, IIg(x) denote the Euclidean projection of
x onto S, and dg denote the indicator function associated with S.

A function or mapping ¢ is said to be Lg-Lipschitz continuous on a set S if ||¢(x) — ¢p(2')| <
Ly||lz—2'| for all z,2’ € S. In addition, it is said to be Lyg-smooth on S if ||V (x) —V(a')|| <
Lyg||lz — 2’| for all z,2" € S. For a closed convex function p : R” — R U {+oo}, the prozimal
operator associated with p is denoted by prox,, that is,

1
prox,(r) = arg min {Hx’ — x| —i—p(:v')} Vo € R". (6)
' cRn | 2

Given that evaluation of prox.,(z) is often as cheap as prox,(z), we count the evaluation of
prox,yp(x) as one evaluation of proximal operator of p for any v > 0 and z € R™.



For a lower semicontinuous function ¢ : R" — R U {+00}, its domain is the set dom ¢ :=
{z|p(x) < +00}. The upper subderivative of ¢ at x € dom ¢ in a direction d € R" is defined by

¢'(x;d) = limsup inf ¢(a’ +td) — $(a’)

d'—d t

’
:r’f)z, tl0

where ¢ | 0 means both ¢ > 0 and ¢ — 0, and 2 % 2 means both 2’ — z and o(z') — o).
The subdifferential of ¢ at x € dom ¢ is the set

d¢(z) = {s e R"|s"d < ¢/ (z;d) Vd € R"}.

We use 0;,¢(z) to denote the subdifferential with respect to x;. In addition, for an upper
semicontinuous function ¢, its subdifferential is defined as ¢ = —9(—¢). If ¢ is locally Lipschitz
continuous, the above definition of subdifferential coincides with the Clarke subdifferential.
Besides, if ¢ is convex, it coincides with the ordinary subdifferential for convex functions. Also,
if ¢ is continuously differentiable at = , we simply have d¢(x) = {V¢(x)}, where V(z) is the
gradient of ¢ at z. In addition, it is not hard to verify that 9(¢1 + ¢2)(x) = V1 (x) + O¢pa(z) if
¢1 is continuously differentiable at = and ¢ is lower or upper semicontinuous at . See [8, 54]
for more details.

Finally, we introduce an (approximate) primal-dual stationary point (e.g., see [10, 11, 26])
for a general minimax problem

min max ¥(z,y), (7)
oy

where ¥ (-, y) : R" — RU{+00} is a lower semicontinuous function, and ¥(z, -) : R™ — RU{—o0}

is an upper semicontinuous function.

Definition 1. A point (z,y) is said to be a primal-dual stationary point of the minimax problem

(7) if
0€0,¥(z,y), 0€dy¥(z,y).

In addition, for any € > 0, a point (z¢,y.) is said to be an e-primal-dual stationary point of the
minimax problem (7) if

dist (0, 0, ¥ (ze,ye)) <€, dist(0,0,¥(xe,ye)) <e.

One can see that (z, ye) is an e-primal-dual stationary point of (7) if and only if z. and y.
are an e-stationary point of min, ¥(z,y.) and max, ¥(z.,y), respectively.

2 A first-order method for nonconvex-concave minimax prob-
lem

In this section, we propose a first-order method for finding an e-primal-dual stationary point
of a nonconvex-concave minimax problem introduced in Definition 1, which will be used as
a subproblem solver for the first-order AL method proposed in Section 3. In particular, we
consider the minimax problem

H” = min max {H(z,y) = h(z,y) +p(x) —q(y)}. (8)

Assume that problem (8) has at least one optimal solution and p, ¢ satisfy Assumption 1. In
addition, h satisfies the following assumption.

Assumption 2. The function h is Lyp-smooth on domp x domgq, and moreover, h(x,-) is
concave for any x € dom p.



Numerous algorithms have been developed for finding an approximate stationary point of
the special case of (8) with p,q being the indicator function of a closed convex set (e.g., see
[23, 30, 39, 41, 51, 61]). They are however not applicable to (8) in general. Recently, an ac-
celerated inexact proximal point smoothing (AIPP-S) scheme was proposed in [26] for finding
an approximate stationary point of a class of minimax composite nonconvex optimization prob-
lems, which includes (8) as a special case. When applied to (8), AIPP-S requires the availability
of the oracle including exact evaluation of V h(z,y) and

. 1 1
argmin < p(z) + —|lz —a'|* ¢,  argmaxqh(2,y) — q(y) — =y — ¥'II? (9)
T 2\ Yy 2\

for any A > 0, 2/ € R"® and vy € R™. Notice that h is typically sophisticated and the exact
solution of the second problem in (9) usually cannot be found. As a result, AIPP-S is generally
not implementable for (8), though an operation complexity of O(e~5/2), measured by the number
of evaluations of the aforementioned oracle, was established in [26] for it to find an e-primal-
dual stationary point of (8). In addition, a first-order method was proposed in [64] enjoying
an operation complexity of O(¢~3loge™!), measured by the number of evaluations of Vh and
proximal operator of p and ¢, for finding an e-primal stationary point 2’ of (8) satisfying

1
H)\_l(a:’ — argmin { max H (z,y) + o+ |lz — lez}H =S¢
1 Y 2\

for some 0 < A < L%k. One can see that such 2’ is an approximate stationary point of (8) by
viewing it as a minimization problem. Consequently, this method does not suit our need since
we aim to find an e-primal-dual stationary point of (8) introduced in Definition 1.

In what follows, we first propose a modified optimal first-order method for solving a strongly-
convex-strongly-concave minimax problem in Subsection 2.1. Using this method as a subprob-
lem solver for an inexact proximal point scheme, we then propose a first-order method for (8)
in Subsection 2.2, which enjoys an operation complexity of O(e=5/2loge!), measured by the
number of evaluations of Vi and proximal operator of p and ¢, for finding an e-primal-dual
stationary point of (8).

2.1 A modified optimal first-order method for strongly-convex-strongly-concave
minimax problem

In this subsection, we consider the strongly-convex-strongly-concave minimax problem

H* = minmax {f(z,y) = h(z,y) + p(z) —aly)} , (10)

where p, ¢ satisfy Assumption 1 and h satisfies the following assumption.

Assumption 3. h(z,y) is 0 -strongly-convex-oy-strongly-concave and Lyj,-smooth on domp x
domgq for some o,,0y > 0.

Recently, a novel optimal first-order method [27, Algorithm 4] was proposed for solving
(10). Though the solution sequence of this method converges to the optimal solution with an
optimal rate, it lacks a verifiable termination criterion and also the approximate solution found
by it may never be an é-primal-dual stationary point of (10) (see Definition 1) for a prescribed
tolerance € > 0. To tackle these issues, we next propose an optimal first-order method by
modifying [27, Algorithm 4] for finding an approximate primal-dual stationary point of (10).
Before proceeding, we introduce some notation below, most of which is adopted from [27].

Recall that X = domp and Y = domg. Let (z*,y*) denote the optimal solution of (10),



z* = —o,x*, and

Dy := max{|lu — v|||u,v € X}, Dy :=max{|u—||
HIOW = min {ﬁ(%y)’(%?/) € X X y},

(
(
hiz,y) = h(w,y) — oullz]?/2 + oy llyl*/2. (
h (
(
(

u,v € Y},

G(z,y) = Sl;p{@, z) —p(x) — h(z,y) + q(v)},

P(z.y) = o7 12?/2 + aylly?/2 + G(2,y),
Op = 128 = 212 + 0, lg* = o117 + 281 (P(=F,05) — P25 99),
ay(z,y) = Vih(z,y) +ou(x - 0,'2)/2,  ay(z,y) = =Vyh(z,y) + oyy + ou(y — v;)/8,

where & = min {1, /80, /0, }, . = 04/2, 5, = min{1/(20,),4/(a0,)}, and y*, ylf“, y];, 2", z];
and z;f are generated at iteration k of Algorithm 1 below. By Assumptions 1 and 3, one can
observe that Dy, Dy and H,, are finite.

We are now ready to present a modified optimal first-order method for solving (10) in
Algorithm 1. It is a slight modification of the novel optimal first-order method [27, Algorithm 4]
by incorporating a forward-backward splitting scheme and also a verifiable termination criterion
(see steps 23-25 in Algorithm 1) in order to find an é-primal-dual stationary point of (10) (see
Definition 1) for any prescribed tolerance € > 0.



Algorithm 1 A modified optimal first-order method for (10)

Input: ¢ > 0, 20 = z?c € —oydomp,? ° = y?c € domgq, (2,99 = (2, 9°), a =
min {1, /80y fou}, 1. = 0p/2, n, = min{1/(20,),4/ (@)}, B = 2/(t +3), ¢ =
(2v/5(1 + 8Lv,;/ax))71, Yz =y = 80, L, and ¢ = min{oy, Uy}/LQV}}

1: for k=0,1,2,... do

2 (z.y5) = a(zhy") + (1 - a)(=f, v))

3 (@B = (—og 2 v,

4 k0= proxc%p(a:k’_ — Cygak(zh L R ).

5 yM0 = proxe,  (¥° T = Cyyay (@B Y T).

6 B0 = L(ah ol — (ppab(ah Rl - ok0).

7 bk 0 _ C'lyy (yk,—l _ vaa§($k’_1,yk’_1) _ yk,O)‘

8 t=0.

9:  while

Yallaf (2, ) 0 |2y lla (2, ) 0y |12 >t — a2y g =y 2
do

10: Zhtt1/2 — Lkt + Bt(l‘k’o _ :L.k,t) _ C%(ag(xk,t’yk,t) + bff«’t).

11 yk,t+1/2 — yk,t + Bt(?/k’o _ yk,t) _ ny(alg(:ck7t,ykvt) + bl;,t)'

12: pht+l — pl“OX@zp(fEk’t + ﬁt(iﬁk’o xkz,t) _ C%ag’ﬁ(xk’t“ﬂ,yk’t“/z)).

13: yk,t+1 = prox¢,, q(yk,t + ﬁt(yk,o _ yk,t) _ C,yyalyc(:nk,t—&-l/Z’ yk,t+1/2)).

14: g,t+1 Ci (z kit 4 Be(x k0 _ xk,t) _ C"yxa];(iﬁk’t+1/2,yk’t+l/2) _ xk,t+1)'

15: bk t+1 Ci (ykzt + 5 ( k0 _ yk t) C’yyalyc(a:k’t+1/2, yk,t+1/2) _ yk,t-i-l).

16: t+—t+1.

17:  end while

18: ( l}+1’y1;+1) ( k.t ykt)

19: (5 w’;“) (Vah(x k+1,y’;+1) + byt =V Rk k) + b)),

200 =P o (T = 28 = (2T o A,

21yt =gk 4 Wyay(yljﬁl y*) =y (w I;H + Uy?/?“)-

22 ghtl = —go 1kl

23 kTl :p1r0}<§p(ajk‘*'1 CV h(2F L gk ),
24 gk+1 = proxg,(y ( k+1 _|_<-V h( k—i—l’yk—i-l))
25:  Terminate the algorithm and output (ZF+1, gF+1) if

H<*71<xk+1 _ jk+17gk+l . ykJrl) (V]’L( k+1 yk+1) Vh( k+1?gk+1))” <E& (17)

26: end for

The following theorem presents iteration and operation complexity of Algorithm 1 for finding
an é-primal-dual stationary point of problem (10), whose proof is deferred to Subsection 4.1.

Theorem 1 (_Complexity of Algorithm 1). Suppose that Assumptions 1 and 3 hold. Let
H*, Dx, Dy, Hy, and 9o be defined in (10), (11), (12) and (16), 04, 0y and Ly, be given in
Assumption 3, &, 1y, 12, €, ¢ be given in Algorithm 1, and

6= (2+a Yo, D2+ max{Zay,o?ax/él}Df,, (18)

_ 2 ao, 4 0,2, 1y}

K= [max {2,502} 1og bt b (19)
a doy (€' +Lgp) %€ |,

|Vmax {2, Oz } log 4max{1/(20,),min{1/(20y),4/(qo,)}} (5—{— 2a~1 (}_I* — Hlow))

Y (LQW-L/min{UgC, oy}t + Lyj) %€

2For convenience, —odom p stands for the set {—o,ulu € dom p}.



x (|96v2 (1+8Lgzoz") | +2). (20)

Then Algorithm 1 outputs an é-primal-dual stationary point of (10) in at most K iterations.
Moreover, the total number of evaluations of Vh and proximal operator of p and q performed
in Algorithm 1 is no more than N, respectively.

Remark 1. It can be observed from Theorem 1 that Algorithm 1 enjoys an operation complexity
of O(log(1/€)), measured by the number of evaluations of Vh and proxzimal operator of p and q,
for finding an é-primal-dual stationary point of the strongly-convez-strongly-concave minimax
problem (10).

2.2 A first-order method for problem (8)

In this subsection, we propose a first-order method for finding an e-primal-dual stationary point
of problem (8) (see Definition 1) for any prescribed tolerance € > 0. In particular, we first add
a perturbation to the max part of (8) for obtaining an approximation of (8), which is given as
follows:

minme {h(a.1) +5() — ay) = 751w =1 @

for some §° € dom g, where Dy is given in (11). We then apply an inexact proximal point
method [25] to (21), which consists of approximately solving a sequence of subproblems

min max { Hy,(z,y) := h(z,y) + p() — q(y)} (22)

xT

where
hi(x,y) = h(z,y) — €y — §°|I°/(4Dy) + Lynllz — z*|*. (23)

By Assumption 2, one can observe that (i) hy is Lyp-strongly convex in z and €/(2Dy )-strongly
concave in y on domp x domg; (ii) hy is (3Lyy + €/(2Dy))-smooth on domp x domg. Conse-
quently, problem (22) is a special case of (10) and can be suitably solved by Algorithm 1. The
resulting first-order method for (8) is presented in Algorithm 2.

Algorithm 2 A first-order method for problem (8)

Input: € > 0, & € (0,¢/2], (2°,9°) € domp x domgq, (z°,9°) = (2°,9°), and & = & /(k + 1).
I for k=0,1,2,...do

2. Call Algorithm 1 with h < hy, € <= &, 0 < Ly, 0y < €/(2Dy), Ly, < 3Lynr+€/(2Dy),

70 = z? — —ogak, g0 = yjoc — y* and denote its output by (z**1,y**1), where hy, is
given in (23).
3. Terminate the algorithm and output (z,y.) = (1, y*+1) if
l2*+* — 2¥|| < €/(4Lvn). (24)

4: end for

Remark 2. It is seen from step 2 of Algorithm 2 that (z*+1,y**1) results from applying Algo-
rithm 1 to the subproblem (22). As will be shown in Lemma 2, (x*+1, y**1) is an é,-primal-dual
stationary point of (22).

We next study complexity of Algorithm 2 for finding an e-primal-dual stationary point of
problem (8). Before proceeding, we define

Higw = min {H(x,)|(z,) € domp x dom g} . (25)

By Assumption 1, one can observe that H)yy is finite.
The following theorem presents iteration and operation complexity of Algorithm 2 for finding
an e-primal-dual stationary point of problem (8), whose proof is deferred to Subsection 4.2.



Theorem 2 (Complexity of Algorithm 2). Suppose that Assumption 2 holds. Let H*, H
Dy, Dy, and Hyoy be defined in (8), (11) and (25), Ly be given in Assumption 2, €, €y and
20 be given in Algorithm 2, and

win {1, e/ Dy ). 26)

a =

0 = (2+ & )Ly, D2 + max {e/Dy, &Ly /4} D2, (27)

T = {16(maxH(a%0, y) — H* + €Dy /4) Lype > + 32¢5(1 + 4D3 Lgye *)e > — 1} : (28)
4 +

N= ({96\/5 (1+ (24Lgp + 4¢/Dy) Lg}ﬂ n 2) max {2, W}

(T+1)( 1 e {ﬁ’ min {%’ AL }} (5 + 2471 (H" = Higw + €Dy /4 + Lwﬂ?))
" ( ' ( 8 T [(3Lyn + ¢/ (2Dy))?/ min{ Lyn, ¢/(2Dy)} + 3Lwn + ¢/ (2Dy)] 222 >+

+T +1+2Tlog(T + 1)). (29)

Then Algorithm 2 terminates and outputs an e-primal-dual stationary point (z¢,ye) of (8) in
at most T + 1 outer iterations that satisfies

max H (z¢,y) < max H (2%, y) + €Dy /4 + 26§ (Lg), + 4D3,LVhe_2) . (30)
y y
Moreover, the total number of evaluations of Vh and prozimal operator of p and q performed
in Algorithm 2 is no more than N, respectively.

Remark 3. Since ¢y € (0,¢/2], one can observe from Theorem 2 that & = O(e'/?), 6 =
O(eV2), T = O(e7?), and N = O(e75?log(éy e™)). Consequently, Algorithm 2 enjoys an
operation complezity of O (e 5/2 log(éale_l)), measured by the number of evaluations of Vh and
prozimal operator of p and q, for finding an e-primal-dual stationary point of the nonconvez-
concave minimax problem (8).

3 A first-order augmented Lagrangian method for problem (1)

In this section, we propose a first-order augmented Lagrangian (FAL) method for problem (1),
and study its complexity for finding an approximate KKT point of (1).

One standard approach for solving constrained nonlinear program is to solve a sequence
of unconstrained nonlinear program problems, which are typically penalty or augmented La-
grangian subproblems (e.g., see [38]). In a similar spirit, we next propose an FAL method in
Algorithm 3 for solving (1). In particular, at each iteration, the FAL method finds an approxi-
mate primal-dual stationary point of an AL subproblem in the form of

minmax £(x,y, Ax, Ay; p), (31)

Ty
where £ is the AL function associated with problem (1) defined in (5), Ax € R” and Ay € R
are a Lagrangian multiplier estimate, and p > 0 is a penalty parameter, which are updated by

a standard scheme. In view of Assumption 1, one can observe that £ enjoys the following nice
structure.

e For any given p > 0, A\x € R7? and \y € R7, £ is the sum of smooth function f(z,y) +
(1 + pe(@)] 1 12 = IAI12) /@)~ (1A + pd(w, )]+ |2 — [ Ay[12) /(2p) with Lipschitz con-
tinuous gradient and possibly nonsmooth function p(z) — ¢(y) with exactly computable
proximal operator.



e [ is nonconvex in x but concave in y.

Thanks to the above nice structure of £, we will use Algorithm 2 as a solver to find an approx-
imate primal-dual stationary point of the AL subproblem (31).
Recall that X = domp and ) = dom q. Before presenting an FAL method for (1), we let

Lx(z,y, Ax; p) = Flz,y) + le (I + pe(@))4 117 = [IA]1?) . (32)
chi := max{|[c(z)|||z € X}, dni := max{||d(z,y)|||(z,y) € X x Y}, (33)

where Lx(+,y, Ax; p) can be viewed as the AL function for the minimization part of (1), namely,
the problem min,{F(z,y)|c(x) < 0} for any y € V. Besides, we make one additional assumption
below regarding the availability of a nearly feasible point for the minimization part of (1). Due
to the possible nonconvexity of ¢;’s, it will be used to specify an initial point for solving the
AL subproblems (see step 2 of Algorithm 3) so that the resulting FAL method outputs an
approximate KKT point of (1) nearly satisfying the constraint ¢(z) < 0.

Assumption 4. For any given € € (0,1), a \/e-nearly feasible point xns of problem (1), namely
Tt € X satisfying ||[c(znf)]+] < VE, can be found.

Remark 4. A very similar assumption as Assumption 4 was considered in [6, 19, 33, 56].
In addition, when the error bound condition ||[c(x)]+] = O(dist(0,d(||[e(z)]+]]? + dx(z))))")
holds on a level set of ||[c(x)]+|| for some v > 0, Assumption 4 holds for problem (1) (e.g., see
[81, 48]). In this case, one can find the above xns by applying a projected gradient method to
the problem mingcy ||[c(x)]+]|?.

We are now ready to present an FAL method for solving problem (1).

Algorithm 3 A first-order augmented Lagrangian method for problem (1)

Input: ¢,7 € (0,1), ¢, = 7%, pp = e,;l, A >0, )\ € B}, )\g, € R?, (2°,94°) € domp x domg,
and zns € dom p with ||[e(xnf)]+]] < /€ (see Assumption 4).

1: for k=0,1,... do

2: Set

(34)

ill'k — xk7 if Ex(‘rkuyk7)\§c7pk) S [’x(xnﬁyka)\ﬁ;pk)u
init Tnf, otherwise.

3 Call Algorithm 2 with € < €, & < ex/(2/pk), (2°,9°) + (2F,v*) and Lyp, « Ly to
find an eg-primal-dual stationary point (zF1, y*+1) of

min max £(z, y, \¥, )\';,; Pk) (35)
Ty
where
Li = Ly + peL2 + prenilve + [Nl Lve + prLd + prduiLva + | Ayl Lva- (36)

4 Set AEH! = HBX()\fQ + pre(zFth)) and AL = [AF 4 ppd(ah T M)

5. If ¢, < ¢, terminate the algorithm and output (z*+!, y#+1).

6: end for

Remark 5. (i) \et1 results from projecting onto a nonnegative Euclidean ball the stan-
dard Lagrangian multiplier estimate :\f(“ obtained by the classical scheme Xffl =k +
pre(x®t)] . It is called a safequarded Lagrangian multiplier in the relevant literature
[2, 3, 24], which has been shown to enjoy many practical and theoretical advantages (see
[2] for discussions).
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(ii) In view of Theorem 2, one can see that an ep-primal-dual stationary point of (35) can
be successfully found in step 3 of Algorithm 3 by applying Algorithm 2 to problem (35).
Consequently, Algorithm 3 is well-defined.

3.1 Complexity results for Algorithm 3

In this subsection we study iteration and operation complexity for Algorithm 3. Recall that
X = domp and Y = dom q. Before proceeding, we make one additional assumption below that a
generalized Mangasarian-Fromowitz constraint qualification (GMFCQ) holds for the minimiza-
tion part of (1), a uniform Slater’s condition holds for the maximization part of (1), and F(-,y)
is Lipschitz continuous on X for any y € ). Specifically, GMFCQ and the Lipschitz continuity
of F(-,y) will be used to bound the amount of violation on feasibility and complementary slack-
ness by (¥t N+1) for the minimization part of (1) with A5T1 = [AE 4 pre(zF+1)], (see Lemma
10). Likewise, the uniform Slater’s condition will be used to bound the amount of violation on
feasibility and complementary slackness by (2#+1 yF+1, A’;,H) for the maximization part of (1)
(see Lemmas 6 and 7).

Assumption 5. (i) There exist some constants 6., @ > 0 such that for each x € F(0) there
exists some v, € Tx(x) satisfying ||ve|| = 1 and vIVe;(x) < —0, for alli € A(z;0), where
Tx(x) is the tangent cone of X at x, and

F(0) = {z € X[|[[e(@)]+ 0 < 0}, A(z:0) = {ilei(x) > —0, 1 <i<a}.  (37)

(ii) For each x € X, there exists some U, € Y such that d;(z,9,) < 0 for alli=1,2,...,m,
and moreover, 6q := inf{—d;(x,y,)|x € X, i =1,2,...,m} > 0.

(iii) F(-,y) is Lp-Lipschitz continuous on X for any y € ).

Remark 6. (i) Assumption 5(i) can be viewed as a robust counterpart of MFCQ. It implies
that MFCQ holds for all the minimization problems, resulting from the minimization part
of (1) by fizing y € Y and perturbing c;(x) at most by 0.

(ii) The latter part of Assumption 5(ii) can be weakened to the one that the pointwise Slater’s
condition holds for the constraint on y in (1), that is, there exists g, € Y such that
d(z,9z) < 0 for each x € X. Indeed, if 55 > 0, Assumption 5(ii) holds. Otherwise, one
can solve the perturbed counterpart of (1) with d(x,y) being replaced by d(x,y) — € for
some suitable € > 0 instead, which satisfies Assumption 5(ii).

(11i) In view of Assumption 1, one can observe that if p is Lipschitz continuous on X, F(-,y)
is Lipschitz continuous on X for any y € Y. Thus, Assumption 5(iii) is mild.

In order to characterize the approximate solution found by Algorithm 3, we next introduce
a notion called an e-KKT solution of problem (1).
One can observe from Lemma 4(iii) in Subsection 4.3 that problem (1) is equivalent to

min { max F(z,y) — (Ay, d(z,y)) + 5RT()‘y)’C($) < 0}.

T,y Y

By this, one can further see that problem (1) is equivalent to

g{l;lyl max { max{F(z,y) = (Ay, d(z,)) + opm (Ay) } + (x, () = 5R7}_()‘x)}>

which is a nonconvex-concave minimax problem

minmax { F(,9) + (A, o(2)) — Ay, d(z,)) =y o) + 0 O) |- (38)

11



It follows from [11, Theorem 3.1] that if (z,y, Ax, \y) € R" x R™ x R? x R is a local minimax
point of problem (38), then it must also be a primal-dual stationary point of (38). This,
combined with Definition 1, implies that (z,y, A, Ay) is a KKT point of (38) satisfying the
conditions:

0 € 0, F(z,y) + Ve(z)A\x — Vad(z, y) Ay, (39)
0 € 0yF(z,y) — Vyd(z,y)\y, (40)
co(x) <0,  (Ax,e(x)) =0, (41)
d(z,y) <0, Ay, d(z,y)) =0 (42)
Based on this observation and the equivalence of (1) and (38), we introduce an (approximate)

KKT solution for problem (1) below.

Definition 2. The pair (x,y) is said to be a KKT solution of problem (1) if there exists
(Axs Ay) € RT x R™ such that the conditions (39)-(42) hold. In addition, for any e > 0, (z,y)
is said to be an e-KKT point of problem (1) if there exists (Ax, Ay) € ]Ri‘_ x R™ such that

dlSt(07 &EF(x, y) + vc(m)/\x - vzd(xa y>)\y) S 67

dist(0, 0y F(z,y) — Vyd(z,y)Ay) <€,

lle(@)]4ll <& [ clx))] <,

lld(z, 9]l <& [y, d(z,y))| <e.

Recall that X = domp and ) = dom q. To study complexity of Algorithm 3, we define

[7 (@) = max{F(z,y)|d(z,y) < 0}, (43)
Fpi := max{F(z,y)|(z,y) € X XV}, Flow:=min{F(z,y)|(z,y) € X x Y}, (44)
A= Fy — Fow, 7:=20;"'A, (45)
K :=[loge/log7], , K:={0,1,...,K +1}, (46)

where 04 is given in Assumption 5, and € and 7 are some input parameters of Algorithm 3. For
convenience, we define K — 1 = {k — 1|k € K}. One can observe from Assumption 1 that Fj;
and Fi,, are finite. Besides, one can easily observe that

(@) > Fow, F(z,y) = f*(z) <A VzeX,ye). (47)

We are now ready to present an iteration and operation complexity of Algorithm 3 for finding
an O(e)-KKT solution of problem (1), whose proof is deferred to Section 4.

Theorem 3. Suppose that Assumptions 1, 4 and 5 hold. Let {(x*,y* \E, )\f,)}keK be generated
by Algorithm 3, Dy, Dy, cni, dni, A and K be defined in (11), (33), (45) and (46), Lr, Lyvy,
Lvy, Lve, Le, Lgg, Ly, 0c, 64 and 6 be given in Assumptions 1 and 5, €, 7, A and )\g, be given

in Algorithm 3, and

2(A+ Dy)
1_

L=Lys+L] +ChiLVc+ALVC+L?l+dhiLVd+LVd\/”>‘gH2 + ) (48)

o = min {1, 4/(DyL)} , 0=02+a ")LD: + max{1/Dy, L/4}D}, (49)

M = 16max {1/(2L2),4/(aL?)} [(3L + 1/(2Dy))?/ min{L2,1/(2Dy)} + 3L + 1/(2Dy)]”
3(A + Dy)
AL
A+Dy, A2

Dy 2712
T +2+4>+8(1+4DyL)—‘+, (51)

MO = D KoK (52)

A2 3
x <5+2a—1(A+ 5 T 5INIP+

D
5 + prdiy + =5 + LD,%)) : (50)

1,
T = {16[/ (2A+A+2(T ISP +

12



Suppose that

2(A+D D
e~ > max {G_IA, 9_2{4A +oA+ 7 H)\2||2 + M }’

Yy -2 2 2
Tt AL DL+ A

NI | 8(A+Dy) } -

537’ 537'(1 —7)
Then the following statements hold.

(i) Algorithm 3 terminates after K+1 outer iterations and outputs an approzimate stationary
point (81 4By of (1) satisfying

dist(0, 0, F (2" 1,y 1) + Ve(aX THAEH — v,d(aB T+ y KA <, (54)
dist (0, 9y F(«" 11, g5 ) — Vyd(a™F yF TN < ¢ (55)
(@™ )] < &6, (Lr +2Lad; (A + Dy) + 1), (56)
(S (B )| < e, M(Lp + 2La0 7 (A + Dy) + 1)

x max{0, ' (Lr + 2Lq0; " (A + Dy) + 1), A}, (57)
(@™, g4 ]| < 266, 1(A + Dy), (58)
[y T d(@™ Ty 5| < 26671 (A + Dy) max{25, (A + Dy), Ay 11} (59)

(ii) The total number of evaluations of V f, Ve, Vd and proximal operator of p and q performed
in Algorithm 3 is at most N, respectively, where

N = ([96\@ (14 (24L +4/Dy) /Lg)] + 2) max {2, DyL} T(1— r4)!
x (re) ™ (28K log(1/7) + 2(log M) + 2 + 21og(2T)) . (60)

Remark 7. (i) The condition (53) on € is to ensure that the final penalty parameter pg in

Algorithm 3 is large enough so that feasibility and complementarity slackness are nearly
satisfied at (xfF1 B+ \E+L Af“).

(ii) One can observe from Theorem 3 that Algorithm 3 enjoys an iteration complexity of
O(loge™) and an operation complexity of O(e~*loge™"), measured by the number of
evaluations of Vf, Ve, Vd and proximal operator of p and q, for finding an O(e)-KKT
solution (x5+1 yK+1) of (1) such that

dist (@CF(xKH, yEHY) 4 Ve(aB A — Vad (2B, yKH))\erl) <eg,
dist (9, F(z" T,y ) — v, d(a yKH))\;{H) <eg,

lle@® )]l = Oe), [T, e@™ 1) = Oe),
ld@ g™ D] = 0e), [ @™ y" ) = O(e),

where \NE+1 ¢ R" s defined in (52) and )\5“ € R is given in Algorithm 3.

4 Proof of the main result

In this section we provide a proof of our main results presented in Sections 2 and 3, which are
particularly Theorems 1, 2 and 3.
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4.1 Proof of the main results in Subsection 2.1

In this subsection we prove Theorem 1. Before proceeding, we establish an upper bound on g
in terms of the function value gap of (10), where 9 is given in (16).

Lemma 1. Suppose that Assumptions 2 and 3 hold. Let H*, Hyyy, Yo and 6 be defined in (10),
(12), (16) and (18), and & be given in Algorithm 1. Then we have

Vo <5+2a " (H* — Hioy) - (61)

Proof. By (10), (12), (13) and (14), one has

—0 -0y (14) _ S ~
G(",5°) = sup { (2,2) = p(x) = (. 5°) + (") |
x
(13) _ = . o Oy, _ B
2 max {(2,2°) - p(x) - bz, 1) + Z )2 - 2502 + o°) )
re€domp 2 2
(10)(12) s _— _
< max (82 + ZalP} - 252 - Hiow
r€dom p 2 2
—1
0. 1 ag _ (oF _ =
= max Tl op 2P = T2~ PN — Hiow
oeDx ozl o2 Typog2  #
< -z - — Hiy, 62
< Z T2 - 2|2 - A (62)

where the last inequality follows from (11), X = dom p, and the fact that 2 € —o,dom p.
Recall that (z*,y*) is the optimal solution of (10) and z* = —ogzz*. It follows from (10),
(13) and (14) that

vy (14) * 7 * * * % * Tk % *
G(z"y") = sup {(@,2%) = pl@) = hlw,y) +aly) | = (2% 2) — p(a) = Ba",y") + aly")
T
(13) * % g * g * * L% o % *
= (2", 2" + Sl = Lyl = p") = A", y7) + a(y)
U; * (|2 Ty %2 7%
= - -2 -H
<22 - | - A
where the last equality follows from (10), the definition of (z*,y*), and z* = —o,a*. This

together with (15) and (62) implies that
0 — ot Oy _ 0 — ol o
P, 5%~ P("y) = 2|20 + L) + G0, 5°) — Z 1P - Pyl - 6" w)
< UJ;D}QC/Q - Hlow + H*.

Notice from Algorithm 1 that 20 = z?[ =2 ¢ —o,domp and y° = y?c = 7" € domgq. By these,
2 = —o,x*, X =domp, Y = domyg, (11), (16), and the above inequality, one has

(16) 1= * —1~ * —— =0 = * ok
Do = n |20 = 2Py HIg° - yIP + 2a7H (P, 50) - P(% )

< n'olDi+n, ' DY+ 207" (02,D%/2 — Higw + H*)
= n,'olDi +a ‘o, Di 41, D + 207" (H* — Hiow) -
Hence, the conclusion follows from this, (18), 7, = 0,/2 and 1, = min{1/(20y),4/(q0o,)}. O

We are now ready to prove Theorem 1, using Lemma 1, [27, Theorem 3|, [27, Lemma 4],
and [5, Corollary 2.5].
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Proof of Theorem 1. Suppose for contradiction that Algorithm 1 runs for more than K outer
iterations, where K is given in (19). By this and Algorithm 1, one can assert that (17) does not
hold for k = K — 1. On the other hand, by (19) and [27, Theorem 3], one has

(25, 5%) — %,y < (7 + Lop) " te/2, (63)

where (z*,y*) is the optimal solution of problem (10) and ¢ is an input of Algorithm 1. Notice
from Algorithm 1 that (2%, §%) results from the forward-backward splitting (FBS) step applied
to the strongly monotone inclusion problem 0 € (Vih(z,y), —Vyh(z,y)) + (Op(z),dq(y)) at
the point (z%,y%). Tt then follows from this, ¢ = min{o,, oy}/L%; (see Algorithm 1), and the
contraction property of FBS [5, Corollary 2.5] that ||(5, 7%) — (z*, y*)|| < |2, y®) = (2*, y*)||.
Using this and (63), we have

< CHES ) = G+ IVAGEE g% = VR, 55

< @ LepllE® ) - @I

< (@ Lo, ™) = @y 1@ 55) = @yl
~ - (63)

< A+ Lep)l e ) — @yl S

where the second inequality uses the fact that h is Lgp-smooth on domp x domg. It follows
that (17) holds for k = K — 1, which contradicts the above assertion. Hence, Algorithm 1 must
terminate in at most K outer iterations.

We next show that the output of Algorithm 1 is an éprimal-dual stationary point of (10).
To this end, suppose that Algorithm 1 terminates at some iteration k at which (17) is satisfied.
Then by (6) and the definition of #**! and §**! (see steps 23 and 24 of Algorithm 1), one has

= C_ap(:i"k“) + jk—‘rl _ $k+1 + C_-v FL( k+1 k—l—l)’
0 € Coq(gh*t!) + gt =y = (VA A,

which yield
G ) © VLR ) € 0p(t ), S - ) 4 WA ) € a5 ).
These together with the definition of H in (10) imply that

V., h( k+1 ~l~c+1) QT ( k+1 ~k:+1) \V4 h( k+1 k-i-l) Ea H( k+1 ?]]H_l),
\V4 h( ~k+1 ~k+1) QT ( k+1 ngrl) \V4 h( k+1 k+1) co H( ~k+1 ~k‘+1)

Using these and (17), we obtain

dist (0, 8, H(ZFH, §*1))2 + dist (0, 9, H (1, g#+1))?
< HC ( k+1 k+1)+v h( k+1 ykﬂ)—vmh(:ck“,yk“)HQ
H @ = M)+ VRETL G = VR (M )P
= kel - _ e (17)
_ HC_l(xk—H . xk—‘rl’yk—i-l . yk—i-l) . (Vh($k+1,yk+1) . Vh($k+1,yk+1))||2 < 62,

which implies that dist(0, 9, H ("1, §%1)) < € and dist(0, 9, H ("1, §*1)) < & It then
follows from these and Definition 1 that the output (Z**! ka) of Algorithm 1 is an éprimal-
dual stationary point of (10).

Finally, we show that the total number of evaluations of VA and proximal operator of p and
q performed in Algorithm 1 is no more than NN, respectively. Indeed, notice from Algorithm 1
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that & = min {1, /80, /0, }, which implies that 2/a = max{2, \/0,/(20y)} and & < /80 /0,.

By these, one has

2 8
max ik < max Tz A — %% 92 | _ ax 2, KL (64)
4 20y Oy 40y 20y
In addition, by [27, Lemma 4], the number of inner iterations performed in each outer iteration
of Algorithm 1 is at most
Ti= [48V2 (1+8Lgzo7") | - 1.

Then one can observe that the number of evaluations of VA and proximal operator of p and g
performed in Algorithm 1 is at most

_ _ _ 2 ao, 4max{n,o, 2, ny o
(2T +3)K < (|96V2 (1 +8Lgzo, ') | +2 ’Vmax{ }log = z 1 91
U ( Vh )W ) " 4o, (' + Lyp) 2@ |,

64) /r o 4max{n.o; 2,y
< (196v2 (14 8Lgro;t 2 2, ] —= 11 e 0 WY
s < f( —+ Vho-it )—‘ + > ’VmaX{ 3 QO'y} og (C71+Lvﬁ)72€2 -‘+

< ([96v2 (1 + 8Lg07") | +2)

I i o) (20)(61) _
e 2, 7 s 41051/ i (1/2,) 4/ (0o} 00| g
20, (LY;/ minfog, oy} + Lgy) %€ N

where the second last inequality follows from the definition of 7,, 7. and ¢ in Algorithm 1.
Hence, the conclusion holds as desired. O

X

4.2 Proof of the main results in Subsection 2.2

In this subsection we prove Theorem 2. Before proceeding, let {(z*,4*)}rer denote all the
iterates generated by Algorithm 2, where T is a subset of consecutive nonnegative integers
starting from 0. Also, we define T —1 = {k—1:k € T}. We first establish two lemmas and
then use them to prove Theorem 2 subsequently.

The following lemma shows that an approximate primal-dual stationary point of (22) is
found at each iteration of Algorithm 2, and also provides an estimate of operation complexity
for finding it.

Lemma 2. Suppose that Assumption 2 holds. Let {(xz*,y*)}rer be generated by Algorithm 2,
H*, Dy, Dy, Hiow, &, 9 be defined in (8), (11), (25), (26) and (27), Ly, be given in Assumption
2, €, € be given in Algorithm 2, and

N = ([96v2 (1 + (24Lwn + 4¢/Dy) L3}) | +2) x {max {2’ \/@}

4max{ﬁ,min{& _4 }}(5+2d‘1(H*—H10W+eD /4—|—LVhD2))"‘
+

€ ’ &Lyp

[(38Lwn + €/(2Dy))2/ min{ Ly, €/(2Dy)} + 3Lyy + ¢/ (2Dy)] > &

x log

(65)

Then for all0 < k € T—1, (x*+1 y**1) is an é,-primal-dual stationary point of (22). Moreover,
the total number of evaluations of Vh and proximal operator ofp and q performed at iteration
k of Algorithm 2 for generating (z*+1, y**1) is no more than N, respectively.

Proof. Let (x*,y*) be an optimal solution of (8). Recall that H, Hy and hj are respectively
given in (8), (22) and (23), X = domp and J) = dom q. Notice that z*,z¥ € X. Then we have

. . € N
Hy = minma Hio,0) = minme { He.0) = 1l = 3717 + Lol — 17
x y x y 4Dy

(8)(11)
< max{H(z*,y) + Lynllz* — 2"|*} < H"+ LenD;.  (66)
Yy
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Moreover, by X = domp, Y = domg, (11) and (25), one has

€
H = i Hy(z,y) = i H(z,y) — — |y —¢°|> + L _ k2
v = i )= i {HG) = g5l =3P + Lol -
(25) oz W
> Hlow—maX—Hy | > Hiow — €Dy /4. (67)

In addition, by Assumption 2 and the definition of Ay in (23), it is not hard to verify that hg(x,y)
is Lyp-strongly-convex in z, €/(2Dy)-strongly-concave in y, and (3Lyy, + €/(2Dy))-smooth on
its domain. Also, recall from Remark 2 that (z**! y*+1) results from applying Algorithm 1 to
problem (22). The conclusion of this lemma then follows by using (66) and (67) and applying
Theorem 1 to (22) with & = &, 0, = Lyn, 0, = €/(2Dy), Loi = 3Lyn +¢/(2Dy), @ = é&, § = 0,
Hlow = Hk low and H* = Hk,* O

The following lemma provides an upper bound on the least progress of the solution sequence
of Algorithm 2 and also on the last-iterate objective value of (8).

Lemma 3. Suppose that Assumption 2 holds. Let {x*}rcT be generated by Algorithm 2, H, H*
and Dy be defined in (8) and (11), Lyy, be given in Assumption 2, and €, éy and 2° be given in
Algorithm 2. Then for all0 < K € T — 1, we have

H H* +eDy /4 1+ 4D L e
min [+ — oF| < max, H(#0,y) — H* + eDy /4  2¢5( i Vh )’ (68)
0<k<K Lyn(K +1) LVh(K +1)
max H (2571, y) < max H (2%, y) + eDy /4 + 22 (Lo, + 4D)2,LVhe_2) . (69)
y y
Proof. For convenience of the proof, let
HE () = max {H(a,y) —lly — 3°1/(4Dy)} (10)
Hi(x) = max Hy(z,y), y*t! = argmax Hy(zF 1, y). (71)
y y
One can observe from these, (22) and (23) that
Hi(z) = H () + Lvn|e — "% (72)

By this and Assumption 2, one can also see that Hj is Lyj-strongly convex on domp. In
addition, recall from Lemma 2 that (z**1,4**1) is an é,-primal-dual stationary point of problem
(22) for all 0 < k € T — 1. It then follows from Definition 1 that there exist some u €
Oy Hi (zF 1, y*+1) and v € 9, Hy (xF+1, y**1) with ||ul| < & and ||v]| < é. Also, by (71), one has
0 € Oy Hy(xF+1 y*+1), which together with v € 9, Hg (21, y*1) and €/(2Dy)-strong concavity
of Hy(z*+1 .), implies that (—v,y*+1 — ¢F 1) > ¢|jyf+1 — ¢#*1)|2/(2Dy). This and |jv]| < &
yield

g+t — 1) < 26Dy fe. (73)

In addition, by u € 9, Hg(xz**1,y*+1), (22) and (23), one has
u € Voh(zF yF ) £ op(af ) + 2Lgp (2T — 2). (74)
Also, observe from (22), (23) and (71) that
OH (zF1) = Vo h(zF T, 5 1) + Op(a*+L) + 2Lwp(aF ! — 2*),
which together with (74) yields

u+ Voh(z" ) — Voh(a T M) € oHG (o).
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By this and Ly,-strong convexity of H;, one has

Hi (%) > Hi (2" + (ut Vo h(@®H i) = Voh(a" T g, 2 — o) 4 Lop |2* — 2% /2.
(75)
Using this, (72), (73), (75), ||u|| < é, and the Lipschitz continuity of Vh, we obtain

HE (a*) — H (o) B B (a%) — Hp () + Dol — 25012
(75)
> <u+v h( k+1 k+1) v h( k+1 k+1) :L,k_:L,k+1>+3LVthk_xk+1H2/2
> (= [lu+ Vih(z k+1 Yot = Voh(z k“ IOz = 2 + Lonll2® — 22 /2) + Losla” — 2
> —(2Lvp) Hlu + th(ﬂle’ny) V:ch(mkﬂ,ykﬂ)\\z + Lyn||z* — "1
> —Lgpllull® = Loy I Veh(2* T, g1 — Voh(aF, o* ) |2 + Lop||2* — 2512
> —Lgpér — Lunlly® ™ — i + Lop|l2® — 212
(73)
> —(L%}L + 4D)2,Lv}l€_2>éz + LVhHQIk — .%'k—HHg,

where the second and fourth inequalities follow from Cauchy-Schwartz inequality, and the third
inequality is due to Young’s inequality, and the fifth inequality follows from Lv-Lipschitz
continuity of VhA. Summing up the above inequality for £ = 0,1, ..., K yields

K K
Lyp Y lla* = 2" Y? < HE (2°) — HE @4 + (Lgy, + 4D5Lune ) Y & (76)
k=0

In addition, it follows from (8), (11) and (70) that

H (z" 1) = max {H(z" ', y) — e|ly — 1°[|1/(4Dy) } > rr;inmng(:r,y) —eDy /4 = H* — eDy /4,

H; (2) = max {H (2, ) — elly = §°*/(4Dy) } < max H(a", ). (1)

These together with (76) yield

Lon(K + 1 . k1 _ k)2 < E k412
wn( 1) min 757 2b? < Loy Dk 2t

K
< max H(z°,y) — H* + €Dy 4+ (Lg}, + 4DiLyne ) Y &,
Yy
k=0

which together with 20 = 20, &, = éy(k +1)~! and Zszo(k +1)72 < 2 implies that (68) holds.
Finally, we show that (69) holds. Indeed, it follows from (11), (70), (76), (77), € = éo(k +
1)~!, and Efzo(k +1)72 < 2 that

(1) .
max H(@,y) < max {(H(@",y) = elly = 5°12/(4Dy)} + eDy /4 © H: (@) + eDy /4

(76) %/ 0 —1 2 -2 = 22
< H(2") +eDy/4+ (Lg), + 4Dy Lyne ) Y &

(77)
< max H (2% y) + eDy /4 + 285(Lg;, + 4D3 Lyne ).
Yy

It then follows from this and 2° = £° that (69) holds. O]

We are now ready to prove Theorem 2 using Lemmas 2 and 3.
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Proof of Theorem 2. Suppose for contradiction that Algorithm 2 runs for more than T+1
outer iterations, where T is given in (28). By this and Algorithm 2, one can then assert that
(24) does not hold for all 0 < k < T. On the other hand, by (28) and (68), one has

* 2712 2
min_||zF+ — 2k |2 (6<8) max, H(2°,y) — H* 4 €Dy /4 2¢2(1 +4D 212,672 (2<8) 2 |
OSka o LVh<T + 1) L2Vh< 1) — 16L2Vh

which implies that there exists some 0 < k < T such that |2+ —2¥|| < €/(4Lwvp), and thus (24)
holds for such k, which contradicts the above assertion. Hence, Algorithm 2 must terminate in
at most T + 1 outer iterations. R

Suppose that Algorithm 2 terminates at some iteration 0 < k < T', namely, (24) holds for
such k. We next show that its output (z¢,y.) = (zF*1, y**1) is an e-primal-dual stationary
point of (8) and moreover it satisfies (107). Indeed, recall from Lemma 2 that (z¥1, ¢y*+1) is
an é-primal-dual stationary point of (22), namely, it satisfies dist(0, 9, Hy(xzF 1, y*+1)) < &
and dist(0, 9, Hy (z* 1, yk*1)) < é. By these, (8), (22) and (23), there exists (u,v) such that

u € Op H (x4 2Ly (aF T — 2F),  ||ul| < &,
v € QyH(zFH yF ) — (™ — 99)/(2Dy), |Jv| < é.

It then follows that u — 2Ly, (z** — 2*) € 9, H(2*+1, %) and v + e(yF*! — 3°)/(2Dy) €
Oy H (xF*1, y*+1). These together with (11), (24) and & < & < ¢/2 (see Algorithm 2) imply
that

(24)
dist (o, 0, H (z* 1, y’“l)) < Jlu = 2Lon(@* — 2¥)|| < Jull + 2Lonla* T —2¥| < G +e/2 <,

) R R (11) R
dist (0,0, H (@, y*1)) < o+ e(y**! = §°)/@Dy)|| < lloll + elly** = %/ 2Dy) < e +e/2 <€

Hence, the output (z*+1 y**1) of Algorithm 2 is an e-primal-dual stationary point of (8). In

addition, (30) holds due to Lemma 3.

Recall from Lemma 2 that the number of evaluations of VA and proximal operator of p and
g performed at iteration k of Algorithm 2 is at most N, respectively, where Ny, is defined in
(65). Also, one can observe from the above proof and the definition of T that |T| < T+2. Tt
then follows that the total number of evaluatlons of Vh and proximal operator of p and ¢ in

Algorithm 2 is respectively no more than Zm N Consequently, to complete the rest of the
proof of Theorem 2, it suffices to show that Zm >N, < N, where N is given in (29). Indeed,
by (29), (65) and |T| < T + 2, one has

|T|—2

3 N Q@ i([%\f (1+ (24Lvp +4¢/Dy) Lg}) | +2) x {max{g\/@}

k=0 k=0
4max{m,min {%, dfw }} (8 + 261 (H* — Hiow + €Dy /4 + LVhDi))"
+

X log

(3L + ¢/(2Dy))?/ min{Lyn, ¢/(2Dy)} + 8Lyn + ¢/ 2Dy )] ° &

g({%\@( + (24Lyy + 4¢/Dy) Lg )—‘+2)max{2, DYLW}

€

4max{ﬁ,min{& _4 }}(5+2a_1(H*—h1ow+eD /4+LVhD2)>

€ ? &Lvy

x| | los . -
e [(3Lvn + €/(2Dy))?/ min{ Ly, €/(2Dy)} + 3Ly, + €/(2Dy, )2 &
< ({96\@ (1+ (24Lyh +4¢/Dy) Ly, )W + 2) max {2, \/W}
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. (D & oAl r
y (f+ (108 4 max {ﬁ,mm {?y, dL4vh }} <5 + 26 Y (H* — Hypy + eDy /4 + LVhD,Qc))
(8Lwn + ¢/(2Dy))2/ min{Lvn,¢/(2Dy)} + 3Lwn + ¢/ 2Dy 2@ ),

. T (29)
+T+1+2) log(k+1)| < N,
k=0

where the last inequality is due to (29) and Zkf:() log(k + 1) < Tlog(T + 1). This completes
the proof of Theorem 2. O
4.3 Proof of the main results in Subsection 3.1

In this subsection, we provide a proof of our main result presented in Section 3, which is
particularly Theorem 3. Before proceeding, let

Ly(z,y, Ay p) = F(z,y) (IAy + pd(z, y)]+ 1 = Ay 1%) - (78)

1
2p
In view of (5), (43) and (78), one can observe that

(@) < m?jixz'y(x’y, )\ySP) Ve e X, Ay € Rin’ p>0, (79)

which will be frequently used later.

We next establish several lemmas that will be used to prove Theorem 3 subsequently. The
following lemma establishes an upper bound on the optimal Lagrangian multipliers of problem
(43) and also provides a reformulation of f*(x).

Lemma 4. Suppose that Assumptions 1 and 5 hold. Let f*, A, r and 64 be given in (43), (45)
and Assumption 5, respectively. Then the following statements hold.

(i) A1 < 6, 'A and Ay € B for all X, € A*(x) and x € X, where A*(x) denotes the set of
optimal Lagrangian multipliers of problem (43) for any x € X.

(ii) It holds that

f(x) = n;in max F(z,y) — (A\y,d(z,y)) + 6RT (Ay) Ve e X, (80)

where (5RT(-) is the indicator function associated with R™".

Proof. (i) Let x € X, Aj € A*(z) be arbitrarily chosen, and §, € Y and 4 > 0 be given
in Assumption 5(ii). It then follows from Assumption 5(ii) that d;(z,9,) < —dq4 for all i. In
addition, let y* € ) be such that (y*, A\}) is a pair of primal-dual optimal solutions of (43).
Then we have

y" € Argmax F(z,y) — (Ay, d(z,y)), Ay d(z,y")) =0, d(z,y") <0, Ay >0.
)

The first relation above yields
F(z,y") — (), d(z,y7) = F(z, §a) — (A, d(2, §a))-
By this and (A}, d(z,y")) = 0, one has
(Ay, —d(@,3)) < F(2,y") = F(2,§a),
which together with Ay > 0, d;(w,§.) < —d4 for all 4, (44) and (45) implies that

dall Ayl < (Ay, —d(z,9e)) < F(z,y") — F(z,8z) < A,
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Hence, we have || A5 < [|As]l1 < 6;'A. This and (45) imply that A} € B}
(ii) Recall from Assumption 1 that F'(z,-) and d;(z,-), i = 1,...,l, are convex for any given
x € X. Using this, (43), (45) and the first statement of this lemma, we observe that

f*(x) = max min F(z,y) — (\, d(z,y)) Ve e X.
Y XeBi

Also, notice from Assumption 1 that the domain of F'(x,-) is compact for all x € X. By this,
the above equality, and the strong duality, one has

f*(z) = min max F(z,y) — (A, d(z,y)) Ve € X. (81)
\eB; Y

In addition, one can observe from (43) that for all z € X,

f*(ﬂj‘) = m&xr&inF(m, y) - <)‘y7 d(ZL‘, y)) + 5RT (Ay) < H/ilin IHanF(ZE, y) - <>\ya d(l'a y)> + 5RT ()‘y)a
Y Y

where the inequality follows from the weak duality. This together with (81) implies that (80)

holds. O

The next lemma provides an upper bound for {)\’;,}keK.

Lemma 5. Suppose that Assumptions 1 and 5 hold. Let {)\I;’,}keK be generated by Algorithm 3,
Dy and A be defined in (11) and (45), and 7 and py, be given in Algorithm 3. Then we have

2(A+ Dy)

— k
P IAGIP < IGIP + =5

VO<keK-—1. (82)
Proof. One can observe from (45) and Algorithm 3 thatA > 0 and py > 1 > 7 > 0, which imply
that (82) holds for £ = 0. It remains to show that (82) holds for all 1 <k € K — 1.

Since (z!1,y**1) is an -primal-dual stationary point of (35) for all 0 < ¢t € K — 1, it
follows from Definition 1 that there exists some u € 9, L(z'*!, y'*1 AL, AL: py) with [Jul] < €.
Notice from (5) and (78) that 0, L(z' T,y X XL py) = 9, Ly (a1, "+ XL py). Hence, u €
Oy Ly (xtT1 L, ALs pt). Also, observe from (1), (78) and Assumption 1 that Ly(zt1 AYys ot)
is concave. Using this, (11), u € 9, Ly («', 4" AL; py) and [|ul| < €, we obtain

ﬁy(xt+17 Y, >‘§/7 Pt) S Ey($t+17 yt+17 )‘;7 Pt) + <'LL7 Yy — yt+1>
< Ly(@™ g N p) + Dye Yy €Y,
which implies that
max Ly (2 y, As py) < Ly (@, 4" AL py) + Dyer. (83)
Yy

By this, (78) and (79), one has
ety (D) t+1 t
[ < m;mxfly(w 2 Ys Ay Pt)

(78)(83) 41 4l 1 ¢ tH1 41 2 2
< F(fL‘ , Y )—TM(H[)\y‘FPtd(x Y )]+|| - H)‘yH ) +Dy€t

1

— Pzt gt —
( y ) 5o

(D2 = DG I?) + Dyer,

where the equality follows from the relation A5 = [AL + ppd(z'1, "t 1)), (see Algorithm 3).
Using the above inequality,(47) and ¢, < 1 (see Algorithm 3), we have

INGTHZ = A1 < 200 (F (21,5 1) — (@) + Dyer) < 2p1(A + Dy).

21



Summing up this inequality for t =0,...,k —1 with 1 < k € K — 1 yields
k—1
IMSIZ < XS +2(A + Dy) Y~ e (84)
t=0

Recall from Algorithm 3 that p; = ¢; ' = 7~%. Then we have Ef:_ol pt < pg—1/(1 — 7). Using
this, (84) and pr > pr—1 > 1 (see Algorithm 3), we obtain that for all 1 <k e K —1,

) . (A + Dy)pr_r 2(A + Dy)
pISIR < gt (a1 + 2ET D) < gy ZEE DY),

Hence, the conclusion holds as desired. O
The following lemma establishes an upper bound on ||[d(zF 1, y*+ )], || for 0 < k € K — 1.

Lemma 6. Suppose that Assumptions 1 and 5 hold. Let Dy and A be defined in (11) and
(45), and 04 be given in Assumption 5, and T and py be given in Algorithm 3. Suppose that
(xhtL gkt )\];,H) is generated by Algorithm 8 for some 0 < k € K — 1 with

4 )\0 2
s UNIE 86+ Dy)
o5 05(1—7)

(85)
Then we have
A y* )] < oINS < 2051671 (A + Dy). (86)

Proof. Suppose that (zF+1 y*+1, )\’;,“) is generated by Algorithm 3 for some 0 < k € K—1 with

k+1’ yk+1)

pi satisfying (85). Since (x is an e-primal-dual stationary point of (35), it follows

from (5) and Definition 1 that
mw@8F<“1“ﬂ—%ﬂﬁ“w“w&+mmﬂ“w“wgs%.

Besides, notice from Algorithm 3 that AS*! = [AF + ppd(25+!, /1)), . Hence, there exists some
u € Oy F (x*1, yk+1) such that

HU . Vyd(l,k+1’ yk+1)>\l;’+l|| < €. (87)

By Assumption 5(ii), there exists some §**! € ) such that —d;(x**1, §¥1) > 4 for all i. Notice
that (ASTLNE 4+ prd (b1 1)) = [[[NE + ppd (2P, 1)) 4 |12 > 0, which implies that

=G IAg) < O d(@ L ), (88)
Using these and (87), we have

F(a g ) — FE g ) + 0alag ™ = o 09T 9)
< F(xk+1a Qk+1) - F(xk+17 yk+1) - <)\l}€]+l’ P;;l)\l;z + d($k+1v gk—i—l»

(88) A .

< F(H ) — B ) 4 (L d( g - dt )

< < gk—H yk+1> + <Vyd(l’k+1 ))\k—‘rl k+1 gk+1>

= (u— Vyd(a" 1y AT — g < Dy, (89)

where the first inequality is due to /\ig,+1 > 0 and —d;(z¥*!, g*+1) > 64 for all i, the third
inequality follows from u € O, F(z*+!, y**1), )\’;,H > 0, the concavity of F(z**! ) and the
convexity of d;(z**1,), and the last inequality is due to (11) and (87).
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In view of (44) and (89), one has

(44)
Dyek +A > Dyﬁk - F(xk+1v gk—&-l) + F(xk+17 yk+1)

(89) .
> 0allAy I = o TS AS) = (00 = o IS IDIAG T (90)
where the last inequality is due to A+ > AR, In addition, it follows from (82) and (85)
that
N (82) _ 2(Fn — fit, + D (85) 1
b= IS a— [t (g + 2 e £ DY) L
1—7 2
which together with (90) yields
1 _ (90)
§5d||)\§+1|! < (62— p IASDINGTH < Dyer, + A.
The conclusion then follows from this, ¢, < 1, and the relations
(@ g™ D]l < o HIAY + prd (M g D]l = o IS

O]

The next lemma provides an upper bound on the amount of violation of the conditions in
(39), (40) and (42) at (z,y, Ax, Ay) = (2P yF L AL NEHD) for 0 < k € K — 1, where AJT is
given below.

Lemma 7. Suppose that Assumptions 1 and 5 hold. Let Dy and A be defined in (11) and (45),
and dq be given in Assumption 5, and T, €k, pr and )\g, be given in Algorithm 3. Suppose that
(C AR Tia i Vany A’;,H) is generated by Algorithm 3 for some 0 < k € K — 1 with

42 | 8(A + Dy)

e T (i) o1
Let
R = XS+ pre(a® )] (92)
Then we have
dist(0, 8, F (a1, yF+1) 4 Ve(aF 1A+ — vzd(xk—&-l’yk—i—l))\l;-&-l) < e, (93)
dist (0 0, F(z"+ 1) _vyd(:ckJrl’ykJrl))\f’Jrl) < e, (94)
Id@@ ]l < 2037057 (A + Dy), (95)
[T d(@™ g ) < 2071871 (A + Dy) max{|[AY]l, 2077 (A + Dy)}. (96)

Proof. Suppose that (zF1 yF+1 \k+1 )\];,H) is generated by Algorithm 3 for some 0 < k € K—1

with py satisfying (91). Since (zF+1, y#+1)

follows from Definition 1 that

is an €-primal-dual stationary point of (35), it then

dist (0, 0 L(a* T, y* 1N AE; pi)) < ey dist (0,0, LMLy TN M r)) < e (97)

Observe from Algorithm 3 that )\k“ [)\k + prd(z*+, yF D] . In view of this, (5) and (92),
one has
8w£(xk+1 k+1 )\kz )\y;pk) ) F( k+1 k+1)+VC($k+1)[)\i+ka(xk+l)]+
_ Vzd(karl, yk+l)[/\l; + pkd($k+l, yk+1)]+
= O, F (" yF ) 4 V(PN — v d(2h yk+1))\’;,+1,
ayﬁ(l‘k—H yk—i-l )\k )\y’pk) o F( k:+1 k+1) —Vyd(:ck“,yk“)/\f,“.
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These relations together with (97) imply that (93) and (94) hold.
Notice from Algorithm 3 that 0 < 7 < 1, which together with (91) implies that (85) holds
for pg. It then follows that (86) holds, which immediately yields (95) and

I < 2051 (A + Dy). (98)

Claim that
XS]] < max{[[AY]], 20, (A + Dy)}. (99)

Indeed, (99) clearly holds if k¥ = 0. We now assume that k£ > 0. Notice from Algorithm 3 that
Pk—1 = TPk, which together with (91) implies that (85) holds with k replaced by k — 1. By this
and Lemma 6 with £ replaced by k£ — 1, one can conclude that ||)\I;,H < 25(1_1(A + Dy ) and hence
(99) holds.

We next show that (96) holds. Indeed, by A5tt >0, (88), (95), (98) and (99), one has

G @™y ) < G [ P < IS g4l
5)

(95)(98)
< 4p'07%(A + Dy)?,
)

(88
Ay d( Ty ) > <>\k+1 =0 Ay = =i AT
> —2p. 167 (A+Dy)max{||)\g,\|, 26,1 (A + Dy)}.
These relations imply that (96) holds. O

The following lemma provides an upper bound on max, £(zf .. y, Ak, )\’;,; pr) for 0 < k €
K —1, which will subsequently be used to derive an upper bound for max, L(xF y, )\X, /\y7 Pk)-

Lemma 8. Suppose that Assumptions 1, 4 and 5 hold. Let {(Aﬁ,)\’;,)}keK be genemted by

Algorithm 3, L, Dy, Fy; and A be defined in (5), (11), (44) and (45), and 7, px, A and z£ . be
given in Algorithm 8. Then for oll 0 < k € K — 1, we have
A+ D
max £(z Thits Uy Aoy Ay k) < A+ P+ A+ = (1 + NP + 5 (100)

Proof. In view of (32), (34), (44) and ||\E|| < A (see Algorithm 3), one has

(34) 32

( 1
Lo UF N pr) < Lac(at, v, NS5 p1) — (IIX% + prc(ane) 1+ I — ML)

2pk,
1
< F(2n, y") + 27%((”)@” + pellfe(@ne)]+ 1) = 1AL

) Fang, y*) +

1
= Flanr,y") + Xl e@ne)l+ | + S ok lle(znr)] |
(44) 1 9
< Fhi + Allle(@n)]+ ]| + 5 pxllle(@ae)]+ [ (101)
In addition, one can observe from Algorithm 3 that ¢, > 7¢ for all 0 < k € K — 1. By this

and the choice of pg in Algorithm 3, we obtain that p = e,;l <7t lelforall0<keK-—1.
It then follows from this, (5), (32), (45), (82), (101), ||[c(xnf)]+]] < V€ < 1, and the Lipschitz

24



continuity of F' that

5)(32

(5)(32) 1
e £y M, AS: 1) mgx{cx@fmt,y,xﬁ;pk)—m(\[A§+pkd<xfmt,y>1+||2—w\?)}

1
k k k
< m;ux {Lx(xinit’ya )‘x;pk) + QPk |)‘y||2}
(32)

1
2t { Flahie ) = Flahie o) + Extarbie o i) + 5 ISP

(45) 1
< A —|[\F12
+ Lx ( 1n1t7y )\x7pk) + 2,0k||)\y||

A+ D,
1—

1 1
< A+ Fi + Aflle(@an)l+ ]| + Sonllle@@ne)] e + S IA 117 +

2
A+ Dy
1—7 "7

1
<A+ F;+A+ 5(7*1 + A7) +

where the third inequality follows from (82) and (101), and the last inequality follows from
pr < 71! and [|[c(zae)] 4 || < VE < 1 0

The next lemma shows that an approximate primal-dual stationary point of (35) is found at
each iteration of Algorithm 3, and also provides an estimate of operation complexity for finding
it.

Lemma 9. Suppose that Assumptions 1, 4 and 5 hold. Let Dy, Dy, Ly, Fy; and A be defined
n (11), (36), (44) and (45), T, €, pr, A and )\g be given in Algorithm 8, and

ap = min{l, 4ek/(DyLk)}, (102)
6k = (24 o ") Lp Dy + max {e/ Dy, ay Ly /4} D3, (103)
M, = 16 max {1/(2L), min {Dy /ex, 4/(oxL1) } } pi
(3L + ex/(2Dy))?/ min{ Ly, 1./ (2Dy)} + 3Ly, + €1,/ (2Dy)] > €2
A? 3 3(A + Dy) exD
S+ 20 [ A4+ — + SN2+ S 4 pedy Y + LyD? 104
X<k+ %( +2pk+2HyH+ T teed+ —— + LeDy (104)
]. —1 0112 A+Dy A2 Ek-Dy —9
Tk— 6(2A+A+2(T +H)‘yH )+ 11—+ 2pk+ 4 Lkek
+8(1+4D;Lie”)p kl—% : (105)
+
N = ([96v2 (1 + @414+ 46/ Dy) 1) | +2) max{2, \/DyLkelzl}
x (T + 1)(log M)+ + Tj + 1 + 2T} log(T), + 1)) . (106)

Then for all 0 < k € K — 1, Algorithm 3 finds an ej-primal-dual stationary point (xF+1 y*+1)
of problem (35) satisfying

1 A+D
max £y M Mt pr) < At Fig 4 A+ 5(7*1 gl + S
ex Dy 1 _ 9
— (L 4D L) . 1
o Ty, k+4D3Ly) (107)

Moreover, the total number of evaluations of Vf, Ve, Vd and prorimal operator of p and g
performed in iteration k of Algorithm 3 is no more than Ny, respectively.
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Proof. Observe from (1) and (5) that problem (35) can be viewed as
min max{h(z,y) +p(z) — q(y)},
where

h(l’,y) = f(l'ay) + 5

o (1D + el 2 = I12) = 5 (10 + e )] = 1051

Notice that

Vah(w,y) = Vo f(,y) + V(@) A + pre(@))s + Vad(a, y) A} + prd(z, )]+,
Vyh(,y) = Vyf(@,y) + Vyd(z,y) Ay + ped(z, y))+-
It follows from Assumption 1(iii) that
IVe(@)| < Le,  [IVd(z,y)ll < La Y(z,y) € X x V.

In view of the above relations, (33) and Assumption 1, one can observe that Ve(z)[ AL+ pre()] ¢
is (pxL? + prenilve + |N2|| Lye)-Lipschitz continuous on X, and Vd($,y)[)\];, + prd(z,y)]+ is
(pk L% + prdniLya + H/\f,HLVd)—Lipschitz continuous on X x ). Using these and the fact that
V f(x,y) is Ly ¢-Lipschitz continuous on X' x ), we can see that h(z,y) is Li-smooth on X' x )
for all 0 < k € K — 1, where Ly is given in (36). Consequently, it follows from Theorem 2 that
Algorithm 2 can be suitably applied to problem (35) for finding an €g-primal-dual stationary
point (21, yF+1) of it.
In addition, by (5),(47), (78), (79) and ||A\E|| < A (see Algorithm 3), one has

. 5)(78) . 1
minmg £\ i ) 8 minmae { 2o M) + 5 (H[Aii + (ol = IAGIP) |
(79) 1 5 5 ez | @7 B2 - A?
N s 1 _ S > Flow — —.
2 win{ £20) + 5 (1D + pue@lel? = EIP) } 2 Fi = 517 2 Fi = 5

(108)

Let (z*,y*) be an optimal solution of (1). It then follows that c(x*) < 0. Using this, (5), (44)
and (82), we obtain that

min max £(z, y, A5, A¥; pr) < max L£(2*,y, Ay, AL; pr)
T Yy Yy

®) * 1 k a2 k) L k * 2 vk 2
—max{F<:c )+ g (I e P = I = 5 (10§ + et )l I = IDGIP?)

Y

. 1 k x 2 k2
< - — -
< ij{F(fE 'Y) n (H[Ay+pkd(f€ YT = A )

(44)

1 (82) 1 A+ D
< Fhi‘i'Tpk”)\];rHQ < Fhi‘i‘iH)\gHQ"‘ Y

1—7 "

(109)

where the second inequality is due to c¢(z*) < 0. Moreover, it follows from this, (5), (33), (44),
(82), Ak € R and || A%]| < A that

. ’yng;;wax i 2 &%{m 1) = 5y WEIP — 5oI + puda )l 12}
> i PG - I - o (181l deald)

> m;;y{ muﬁu?—pklrw?—pkm (@l

> Fiw = e I - 2552 g, (10)
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where the second inequality is due to /\f, € R™ and the last inequality is due to (33), (44), (82)
and |\E| < A.
To complete the rest of the proof, let

H(z,y) = L(z,y, \e, \os pr),  H* = minmax L(x,y, X, \; pr), (111)
Ty

Hyw = in L AENE. 5. 112

low (m,yr)rg./rley (xayu ) yvpk) ( )

In view of these, (100), (108), (109), (110), we obtain that

(100) 1 A+D
m;}XH(xfmmy) < A+Fhi+A+§(T*1+H)\gH2)+ 1_Ty’
A2 (108) (109) 1 A+D
Fow — ~— < H* < Fyi+-|N)P+=—=
low 2,0k > > h +2|| y” + =
(110) A2 2(A+D )
Hiw 2 Flow = 50 = I I* = =577 — pudi

Using these, (45), and Theorem 2 with 20 = xfnit, € = €, €0 = €/(2y/pr), Lvn = Ly, and
H, H*, Hy given in (111) and (112), we can conclude that Algorithm 2 performs at most
Ny, evaluations of V f, Ve, Vd and proximal operator of p and ¢ for finding an eg-primal-dual
stationary point of problem (35) satisfying (107). O

The following lemma provides an upper bound on the violation of the conditions in (41) at
(2, Mx) = (2P XD for 0 < k € K — 1, where A\i*1 is given below.

Lemma 10. Suppose that Assumptions 1, 4 and 5 hold. Let Dy, A and L be defined in (11),
(45) and (48), Lp, L., 6. and 0 be given in Assumption 5, and T, pr, A and )\g be given in
Algorithm 3. Suppose that (1, \E+1) is generated by Algorithm 3 for some 0 < k € K — 1
with

2(A+Dy) D }

Pk > max {H‘IA,9—2{4A 20+ 77+ AP+ - + 7y + L2+ 4D, L+ A?

4[|\2]2 A+ D
[ 2yH 82 + Dy) _ (113)
05T 5d7'(1 —7)
Let 3
Nt = 2E 4 pre(a™)] 4 (114)
Then we have
(@) ] < pr 0t (Lr + 2La67H(A + Dy) + 1), (115)
(S e(@™) | < pr 0. (Lr + 2Lad; (A + Dy) + 1) max{d; (L + 2L40; (A + Dy) + 1), A}.
(116)

Proof. One can observe from (5),(47), (78) and (79) that

1
max £(a 1,y X X5 ) = ma Ly (@905 1) + 5 (I + prel DL~ IN4IP?)
(T 1
> @) 4 o (I + pre D112 = X))
Pk
(47)
2

1
Fiow + 5= (I + pre(e Dl = [1A411)
Pk
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By this inequality, (107) and ||AX|| < A, one has
1D+ pre(@ D14 |* < 20 max L™, y, A Ays o) = 20 Flow + I
< 2pg maX£($k+17 Y, Aia )‘l;n sz) = 2ppFlow + A?
y

(107)
< 208+ 2p1 Fri + 20 A + Pk(Til + H/\ngQ) +

20k.(A+ Dy)  prepDy
+
1—71 2
-12 27 2
+ Ly, €, + 4Dy Ly, — 2p Flow + A

This together with (45) and pZ||[c(z*)]4+|1> < ||[AE + pre(2*T1)]1]|? implies that

2(A+ Dy) N exDy
1—71 2
+ 07 (Ly e +4D3 Ly + A?) . (117)

el D4 12 < o7 (4A oA 0P

In addition, we observe from (36), (48), (82), px > 1 and ||AE|| < A that for all 0 < k < K,

prL? < Ly = Ly + prL2 + prenilve + | \el Lye + pr LG + prdniLva + [ Ay | Lya
< Lys + prL? + prenilve + ALye + ppL3 + prdniLva

2(A+ D
+ LVd\/Pk (IIAW + (1_Ty)> < piL. (118)

Using this relation, (113), (117), pr > 1 and ¢, < 1, we have

- - 2(A+D D
el 1 < 5 (18280477 4 gy G T Do) )

+ p,;g ((pkLg)*lei + 4ka§,L + A2)
_ _ 2(A+D D

< pk1<4A+2A—|—T 1+|A§||2+(1_TY)+ZY>
—1 —2 2 2 (113) 2

+ o, (L2 +4D;L+A%) < 67,

which together with (37) implies that 2%+ € F().

It follows from z¥*! € F(#) and Assumption 5(i) that there exists some v € Tx(z**!) such
that ||v]| = 1 and v7Ve;(z¥+1) < =6, for all i € A(z¥+1;0), where A(z*+1;0) is defined in
(37). Let A(z*+1;0) = {1,2,...,a}\A(z**';0). Notice from (37) that ¢;(x k“) < —6 for all
i € A(zF*1;0). In addition, observe from (113) that p > 0~'A. Using these and || \E|| < A, we
obtain that (AE + pre(z¥1); < A — prf < 0 for all i € A(z¥+1;0). By this and the fact that
vIVe(xF1) < —4, for all i € A(z**1;60), one has

UTvc(xk-i-l);\i—I—l (1é4) vTvc(xk-i-l)[)\f;( +Pk0($k+1)]+ _ ZUTvCi(xk-i-l)([)\i +Pkc(xk+1)]+)i

=1
= Y IVaETHE + ke i+ D T VaET) (L + pre(@® ]
i€ A(zk+1:0) i€ A(zk+1:0)

114)

<=5 3 (4 el L) = =6 SO+ prele L) ) < AL (119)

icA(zk+1,9) i=1

Since (z*+1, y*+1) is an €,-primal-dual stationary point of (35), it follows from (5) and (97)
that there exists some s € 9, F(2**1,3**1) such that

s + V@A + pre(@ )]s — Vod(@ )N + ppd (@ | < 6,
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which along with (114) and AET = [AF + p,d(2*, y*t1)], implies that
s + Ve(@" AT — vad(a" A < 6. (120)

In addition, since v € Ty (x¥*1), there exist {z'} C X and {a;} | 0 such that z¢ = 2**! + ayv +
o(ay) for all t. Also, since s € 9, F(xF1 y*+1) one has s = V,f(z"*!, y*1) + s, for some
sp € Op(xF+1). Using these and Assumptions 1 and 5(iii), we have

(8,0) = (Vo f(a®T ) v) + tlirn o sy, 28 — )
—00

— lim o 1(f(zt,yk+1) . f(karl,ykJrl)) +tli)rgoat_1<spvzt . xk+1>

t—ro0

< Jim o (M) = ML YP) 4 lim o (p(=") - p(a*H)
—00 t—r00

= lim a; '(F (2%, ¢ — F(aFT ")) < Lp lim o Y28 — 2" = Lp, (121)
t—o00 t—o00

where the second equality is due to the differentiability of f, the first inequality follows from the
convexity of p and s, € Op(z¥+1), the second inequality is due to the Lp-Lipschitz continuity
of F(-,y**1), and the last equality follows from lim; o, o |28 — 25| = ||v|| = 1.

By (119), (120), (121), and ||v|| = 1, one has

ek > |ls + Ve(@ AL = Vad(@™ g - o]
Z <S + vc(xk+1)5\i€(+l - de(xk+1’ ykJrl))\’;’Jrl’ _U>
—<8 _ vzd(xk:—i-l’ yk—i—l))\l;-i-l, ’U> _ ,UTvc(xk:-i-l);\i—i-l

(119) -
> —(s,0) = [|Vad(@ L "N ol + el N 1

> —Lp — LAy |+ 0 A

where the last inequality is due to (121), ||v|| = 1 and Assumption 1(iii). Notice from (113)
that (85) holds. It then follows from (86) that [|AFT]| < 26, (A + Dy), which together with
the above inequality and ¢; < 1 yields

INEH <IN < 80 (Lr + Lal Ay + ) < 6. (Lp +2Lady (A + Dy) +1). (122)
By this and (114), one can observe that

e D]l < o IS + pre(@™ D1l = oINS < i toc

[

(Lp+2La0; (A + Dy) +1).

Hence, (115) holds as desired. )
We next show that (116) holds. Indeed, by A¥*! >0, (115) and (122), one has

A e@™ ) < T [e@®™]h) < ISP )]l
(1522 . )
< p 6 A (Lp + 2La0; (A + Dy) +1)2 (123)
Using a similar argument as for the proof of (88), we have
(O o T < (S e ),
which along with |A%|| < A and (122) yields
N e(@®™ ) = —p NI = =, 160 (L + 2Lady (A + Dy) + 1)A.
The relation (116) then follows from this and (123). O

We are now ready to prove Theorem 3 using Lemmas 7, 9 and 10.
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Proof of Theorem 3. (i) Observe from the definition of K in (46) and ¢;, = 7% that K is the
smallest nonnegative integer such that ex < e. Hence, Algorithm 3 terminates and outputs
(x5 yE+1) after K + 1 outer iterations. It follows from these and pj, = egl that ex < e and
pr > e L. By this and (53), one can see that (91) and (113) holds for k = K. It then follows
from Lemmas 7 and 10 that (54)-(59) hold.

(ii) Let K and N be given in (46) and (60). Recall from Lemma 9 that the number of
evaluations of V f, Ve, Vd, proximal operator of p and ¢ performed by Algorithm 2 at iteration
k of Algorithm 3 is at most Ny, where Nj is given in (106). By this and statement (i) of
this theorem, one can observe that the total number of evaluations of Vf, Ve, Vd, proximal
operator of p and ¢ performed in Algorithm 3 is no more than Z/If:o N, respectively. As a
result, to prove statement (ii) of this theorem, it suffices to show that Zszo N < N. Recall
from (118) and Algorithm 3 that ppL? < Ly < pxL and pp > 1 > €. Using these, (49), (50),
(51), (102), (103), (104) and (105), we obtain that

1> o > min {1, 4ek/(kayL)} > 6,16/2,0];1/20(, (124)
6 < (2+ ¢, *py*a™ ) pr LD2 + max{1/ Dy, pe L4} D2 < &, '/ p}/?5, (125)
< 16max {1/(2pL2). 4/ (e 0y, PapiL?) | pi i a2,

< _ - & P
((8pxL +1/(2Dy))?/ min{px L2, e/ (2Dy)} + 3p5L +1/(2Dy) 22 =\ * "F
2
—-1/2 1/2 1 A* 302, 3(A+Dy) > Dy 2
+2¢, 2 (A+ SIS+ S5 4 pedl + =Y+ D) | (126)
166, % p /? max {1/(2L2),4/(aL2)} pi (V2
i 3L + 1/(2Dy) min{L2,1/2Dy)} + 3L + /@Dy 7 & 7k
A% 3 (A+D ) D _
-1 o e 0 2 S 24 -y 2 < 5 6
X <5—|—2a (A—l— 5 —|-2H)\y|| - +di + 1 —|—LDX) < €. ppM,

5+

A+ Dy A* Dy\ _,
L

1
Ty < {16 (ZA +A+ 5(7—1 +IAY]?) +
+8(1+4DypiL2e %) py " — 1} < .2 meT,
+

where (126) follows from (49), (50), (51), (124), (125), ppL? < Lj, < pxL, and py > 1 > €. By
the above inequalities, (106), (118), T'> 1 and p > 1 > €, one has

K K
EDY ({96\/5 (1+ (24p4L + 4/Dy) /(pkLg))-‘ + 2) max {2, \/DyTLe,;l}
k=0 k=0

x (e kT + 1) (log(e, *p M) 4 + €, 2 pr T + 1 + 26 ° T log (e, * i T + 1))

<

Mw

([96\/5 (14 (24L + 4/Dy) /Lz)-‘ + 2) max {2, DyL} e V2 pl/?
=0
e 21 (T + 1) (log(e;.°pp M) 4 + T + 1 + 2T log (e * pr T + 1))

><?r

<

Mx

([96\/5 (14 (24L +4/Dy) /Lz)] + 2) max {2, DyL}

ol

[e=]

—5/2 3/2 _ _
e 22T (2(log (e M)) 4 + 2 + 21og(2¢;. %o T))

X

M=

<> ([96v2 (1+ (4L +4/Dy) /12)] +2) max {2, DL} T

il
o
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» 6’;5/2p2/2 (141og pr — 141log €, + 2(log M), + 2 + 21og(2T)) , (127)

By the definition of K in (46), one has 7% > 7e. Also, notice from Algorithm 3 that py = 77%.
It then follows from these, (60) and (127) that

M=

Ny, < i ([96\@ (1+ (24L + 4/D,) /Lz)] + 2) max {2, DyL} T
k=0

B
Il

0
x €, (281log(1/ex) + 2(log M)+ + 2 + 21log(2T))

({96\/5 (14 (24L +4/D,) /LE)} + 2) max {2, DyL} T

K
x 77 (28K log(1/7) + 2(log M) 1 + 2 + 2log(2T))
k=0

< ( 96v/2 (1+ (24L+4/Dy)/L§)} +2) max{2, \/DT,L}T

K
X ZT74]€ (28K log(1/7) + 2(log M)+ + 2 + 21log(2T))

©0) 5

where the second last inequality is due to ZkK:() 74 < 774K /(1 — 1), and the last inequality

is due to 75 > 7. Hence, statement (ii) of this theorem holds as desired. O
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