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Abstract

In this paper we study a class of constrained minimax problems. In particular, we
propose a first-order augmented Lagrangian method for solving them, whose subproblems
turn out to be a much simpler structured minimax problem and are suitably solved by a
first-order method developed in this paper. Under some suitable assumptions, an operation
complexity of O(ε−4 log ε−1), measured by its fundamental operations, is established for the
first-order augmented Lagrangian method for finding an ε-KKT solution of the constrained
minimax problems.
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1 Introduction

In this paper, we consider a constrained minimax problem

F ∗ = min
c(x)≤0

max
d(x,y)≤0

{F (x, y) := f(x, y) + p(x)− q(y)}. (1)

For notational convenience, throughout this paper we let X := dom p and Y := dom q, where
dom p and dom q are the domain of p and q, respectively. Assume that problem (1) has at least
one optimal solution and the following additional assumptions hold.

Assumption 1. (i) f is L∇f -smooth on X ×Y and f(x, ·) is concave for any given x ∈ X .1

(ii) p : Rn → R∪ {+∞} and q : Rm → R∪ {+∞} are proper closed convex functions, and the
proximal operator of p and q can be exactly evaluated.

(iii) c : Rn → Rñ is L∇c-smooth and Lc-Lipschitz continuous on X , d : Rn × Rm → Rm̃ is
L∇d-smooth and Ld-Lipschitz continuous on X × Y, and each component di(x, ·) of d is
convex for all i = 1, . . . , m̃ and x ∈ X .

(iv) The sets X and Y (namely, dom p and dom q) are compact.
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zhaosong@umn.edu, mei00035@umn.edu). This work was partially supported by NSF Award IIS-2211491,
ONR Award N00014-24-1-2702, and AFOSR Award FA9550-24-1-0343.

1The definitions of Lϕ-Lipschitz continuity and L∇ϕ-smoothness of a function or mapping ϕ are given in
Subsection 1.1.
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Problem (1) has found applications in machine learning such as perceptual adversarial ro-
bustness [28] and robust adversarial classification [21]. Besides, it has potential application to
constrained bilevel optimization

min
x,y

f̄(x, y) + p̄(x) s.t. y ∈ arg min
z
{f̃(x, z) + p̃(z)|g̃(x, z) ≤ 0}, (2)

where p̄ and p̃ are proper closed convex functions, g̃, ∇f̄ , ∇f̃ and ∇g̃ are Lipschitz continuous
on dom p̄× dom p̃, and g̃i(x, ·) is convex for each x ∈ dom p̄. Specifically, (2) can be tackled by
solving a sequence of subproblems in the form of (1). Indeed, observe that (2) is equivalent to

min
x,y

f̄(x, y) + p̄(x) s.t. g̃(x, y) ≤ 0, f̃(x, y) + p̃(y)−min
z
{f̃(x, z) + p̃(z)|g̃(x, z) ≤ 0} ≤ 0. (3)

Notice that any feasible point (x, y) of (3) satisfies f̃(x, y)+ p̃(y)−minz{f̃(x, z)+ p̃(z)|g̃(x, z) ≤
0} ≥ 0. As a result, one natural approach to tackling (3) is by solving a sequence of penalty
subproblems in the form of

min
g̃(x,y)≤0

{
f̄(x, y) + p̄(x) + ρ

(
f̃(x, y) + p̃(y)−min

z
{f̃(x, z) + p̃(z)|g̃(x, z) ≤ 0}

)}
,

which turns out to be a special case of (1) given by

min
g̃(x,y)≤0

max
g̃(x,z)≤0

{
f̄(x, y) + ρ

(
f̃(x, y)− f̃(x, z)

)
+ p̄(x)− ρp̃(z)

}
.

In the recent years, the minimax problem of a simpler form

min
x∈X

max
y∈Y

f(x; y), (4)

where X and Y are closed sets, has received tremendous amount of attention. Indeed, it has
found broad applications in many areas, such as adversarial training [18, 35, 47, 53], generative
adversarial networks [15, 17, 44], reinforcement learning [9, 13, 37, 40, 48], computational game
[1, 42, 49], distributed computing [36, 46], prediction and regression [4, 50, 57, 58], and distri-
butionally robust optimization [14, 45]. Numerous methods have been developed for solving (4)
with X and Y being simple closed convex sets (e.g., see [7, 20, 22, 29, 30, 32, 34, 39, 55, 59, 60,
63]).

There have also been several studies on some other special cases of problem (1). In particular,
two first-order methods, called max-oracle gradient-descent and nested gradient descent/ascent
methods, were proposed in [16] for solving (1) with c(x) ≡ 0 and p and q being respectively
the indicator function of simple compact convex sets X and Y , under the assumption that
V (x) = maxy∈Y {f(x, y) : d(x, y) ≤ 0} is convex and moreover an optimal Lagrangian multiplier
associated with the constraint d(x, y) ≤ 0 can be computed for each x ∈ X. An augmented
Lagrangian (AL) method was recently proposed in [12] for solving (1) with only equality con-
straints, p(x) ≡ 0, q(y) ≡ 0 and c(x) ≡ 0, under the assumption that a local min-max point of
the AL subproblem can be found at each iteration. In addition, a multiplier gradient descent
method was proposed in [52] for solving (1) with c(x) ≡ 0, d(x, y) being an affine mapping, and
p and q being the indicator function of simple compact convex sets. Also, a proximal gradient
multi-step ascent decent method was developed in [10] for (1) with c(x) ≡ 0, d(x, y) being an
affine mapping and f(x, y) = g(x) + xTAy − h(y), under the assumption that f(x, y)− q(y) is
strongly concave in y. Besides, primal dual alternating proximal gradient methods were pro-
posed in [62] for (1) with c(x) ≡ 0, d(x, y) being an affine mapping, and {f(x, y) being strongly
concave in y or [q(y) ≡ 0 and f(x, y) being a linear function in y]}. An iteration complexity of
the method for finding an approximate stationary point of the aforementioned special minimax
problem was established in [10, 16, 62], respectively. Yet, their operation complexity, measured
by the number of fundamental operations such as evaluations of gradient of f and proximal
operator of p and q, was not studied in these works.

2



There was no algorithmic development for (1) prior to our work, though optimality condi-
tions of (1) were recently studied in [11]. In this paper, we propose a first-order AL method for
solving (1). Specifically, given an iterate (xk, yk) and a Lagrangian multiplier estimate (λk

x, λ
k
y)

at the kth iteration, the next iterate (xk+1, yk+1) is obtained by finding an approximate sta-
tionary point of the AL subproblem

min
x

max
y
L(x, y, λk

x, λ
k
y; ρk)

for some ρk > 0 through the use of a first-order method proposed in this paper, where L is the
AL function of (1) defined as

L(x, y, λx, λy; ρ) = F (x, y)+
1

2ρ

(
∥[λx + ρc(x)]+∥2 − ∥λx∥2

)
− 1

2ρ

(
∥[λy + ρd(x, y)]+∥2 − ∥λy∥2

)
,

(5)
which is a generalization of the AL function introduced in [12] for an equality constrained
minimax problem. The Lagrangian multiplier estimate is then updated by λk+1

x = ΠB+
Λ

(λk
x +

ρkc(x
k+1)) and λk+1

y = [λk
y + ρkd(xk+1, yk+1)]+ for some Λ > 0, where ΠB+

Λ
(·) and [·]+ are

defined in Section 1.1.

The main contributions of this paper are summarized below.

• We propose a first-order AL method for solving problem (1). To the best of our knowledge,
this is the first yet implementable method for solving (1).

• We show that under some suitable assumptions, our first-order AL method enjoys an iter-
ation complexity of O(log ε−1) and an operation complexity of O(ε−4 log ε−1), measured
by the number of evaluations of ∇f , ∇c, ∇d and proximal operator of p and q, for finding
an ε-KKT solution of (1).

The rest of this paper is organized as follows. In Subsection 1.1, we introduce some notation
and terminology. In Section 2, we propose a first-order method for solving a nonconvex-concave
minimax problem and study its complexity. In Section 3, we propose a first-order AL method
for solving problem (1) and present complexity results for it. Finally, we provide the proof of
the main results in Section 4.

1.1 Notation and terminology

The following notation will be used throughout this paper. Let Rn denote the Euclidean space
of dimension n and Rn

+ denote the nonnegative orthant in Rn. The standard inner product,
l1-norm and Euclidean norm are denoted by ⟨·, ·⟩, ∥ · ∥1 and ∥ · ∥, respectively. For any Λ > 0,
let B+

Λ = {x ≥ 0 : ∥x∥ ≤ Λ}, whose dimension is clear from the context. For any v ∈ Rn, let v+
denote the nonnegative part of v, that is, (v+)i = max{vi, 0} for all i. Given a point x and a
closed set S in Rn, let dist(x, S) = minx′∈S ∥x′ − x∥, ΠS(x) denote the Euclidean projection of
x onto S, and δS denote the indicator function associated with S.

A function or mapping ϕ is said to be Lϕ-Lipschitz continuous on a set S if ∥ϕ(x)−ϕ(x′)∥ ≤
Lϕ∥x−x′∥ for all x, x′ ∈ S. In addition, it is said to be L∇ϕ-smooth on S if ∥∇ϕ(x)−∇ϕ(x′)∥ ≤
L∇ϕ∥x − x′∥ for all x, x′ ∈ S. For a closed convex function p : Rn → R ∪ {+∞}, the proximal
operator associated with p is denoted by proxp, that is,

proxp(x) = arg min
x′∈Rn

{
1

2
∥x′ − x∥2 + p(x′)

}
∀x ∈ Rn. (6)

Given that evaluation of proxγp(x) is often as cheap as proxp(x), we count the evaluation of
proxγp(x) as one evaluation of proximal operator of p for any γ > 0 and x ∈ Rn.
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For a lower semicontinuous function ϕ : Rn → R ∪ {+∞}, its domain is the set domϕ :=
{x|ϕ(x) < +∞}. The upper subderivative of ϕ at x ∈ domϕ in a direction d ∈ Rn is defined by

ϕ′(x; d) = lim sup

x′ ϕ→x, t↓0

inf
d′→d

ϕ(x′ + td′)− ϕ(x′)

t
,

where t ↓ 0 means both t > 0 and t → 0, and x′
ϕ→ x means both x′ → x and ϕ(x′) → ϕ(x).

The subdifferential of ϕ at x ∈ domϕ is the set

∂ϕ(x) = {s ∈ Rn
∣∣sTd ≤ ϕ′(x; d) ∀d ∈ Rn}.

We use ∂xiϕ(x) to denote the subdifferential with respect to xi. In addition, for an upper
semicontinuous function ϕ, its subdifferential is defined as ∂ϕ = −∂(−ϕ). If ϕ is locally Lipschitz
continuous, the above definition of subdifferential coincides with the Clarke subdifferential.
Besides, if ϕ is convex, it coincides with the ordinary subdifferential for convex functions. Also,
if ϕ is continuously differentiable at x , we simply have ∂ϕ(x) = {∇ϕ(x)}, where ∇ϕ(x) is the
gradient of ϕ at x. In addition, it is not hard to verify that ∂(ϕ1 +ϕ2)(x) = ∇ϕ1(x) + ∂ϕ2(x) if
ϕ1 is continuously differentiable at x and ϕ2 is lower or upper semicontinuous at x. See [8, 54]
for more details.

Finally, we introduce an (approximate) primal-dual stationary point (e.g., see [10, 11, 26])
for a general minimax problem

min
x

max
y

Ψ(x, y), (7)

where Ψ(·, y) : Rn → R∪{+∞} is a lower semicontinuous function, and Ψ(x, ·) : Rm → R∪{−∞}
is an upper semicontinuous function.

Definition 1. A point (x, y) is said to be a primal-dual stationary point of the minimax problem
(7) if

0 ∈ ∂xΨ(x, y), 0 ∈ ∂yΨ(x, y).

In addition, for any ϵ > 0, a point (xϵ, yϵ) is said to be an ϵ-primal-dual stationary point of the
minimax problem (7) if

dist (0, ∂xΨ(xϵ, yϵ)) ≤ ϵ, dist (0, ∂yΨ(xϵ, yϵ)) ≤ ϵ.

One can see that (xϵ, yϵ) is an ϵ-primal-dual stationary point of (7) if and only if xϵ and yϵ
are an ϵ-stationary point of minx Ψ(x, yϵ) and maxy Ψ(xϵ, y), respectively.

2 A first-order method for nonconvex-concave minimax prob-
lem

In this section, we propose a first-order method for finding an ϵ-primal-dual stationary point
of a nonconvex-concave minimax problem introduced in Definition 1, which will be used as
a subproblem solver for the first-order AL method proposed in Section 3. In particular, we
consider the minimax problem

H∗ = min
x

max
y
{H(x, y) := h(x, y) + p(x)− q(y)} . (8)

Assume that problem (8) has at least one optimal solution and p, q satisfy Assumption 1. In
addition, h satisfies the following assumption.

Assumption 2. The function h is L∇h-smooth on dom p × dom q, and moreover, h(x, ·) is
concave for any x ∈ dom p.
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Numerous algorithms have been developed for finding an approximate stationary point of
the special case of (8) with p, q being the indicator function of a closed convex set (e.g., see
[23, 30, 39, 41, 51, 61]). They are however not applicable to (8) in general. Recently, an ac-
celerated inexact proximal point smoothing (AIPP-S) scheme was proposed in [26] for finding
an approximate stationary point of a class of minimax composite nonconvex optimization prob-
lems, which includes (8) as a special case. When applied to (8), AIPP-S requires the availability
of the oracle including exact evaluation of ∇xh(x, y) and

arg min
x

{
p(x) +

1

2λ
∥x− x′∥2

}
, arg max

y

{
h(x′, y)− q(y)− 1

2λ
∥y − y′∥2

}
(9)

for any λ > 0, x′ ∈ Rn and y′ ∈ Rm. Notice that h is typically sophisticated and the exact
solution of the second problem in (9) usually cannot be found. As a result, AIPP-S is generally
not implementable for (8), though an operation complexity of O(ϵ−5/2), measured by the number
of evaluations of the aforementioned oracle, was established in [26] for it to find an ϵ-primal-
dual stationary point of (8). In addition, a first-order method was proposed in [64] enjoying
an operation complexity of O(ε−3 log ε−1), measured by the number of evaluations of ∇h and
proximal operator of p and q, for finding an ϵ-primal stationary point x′ of (8) satisfying∥∥∥λ−1(x′ − arg min

x

{
max
y

H(x, y) +
1

2λ
∥x− x′∥2

}∥∥∥ ≤ ϵ

for some 0 < λ < L−1
∇h. One can see that such x′ is an approximate stationary point of (8) by

viewing it as a minimization problem. Consequently, this method does not suit our need since
we aim to find an ϵ-primal-dual stationary point of (8) introduced in Definition 1.

In what follows, we first propose a modified optimal first-order method for solving a strongly-
convex-strongly-concave minimax problem in Subsection 2.1. Using this method as a subprob-
lem solver for an inexact proximal point scheme, we then propose a first-order method for (8)
in Subsection 2.2, which enjoys an operation complexity of O(ϵ−5/2 log ϵ−1), measured by the
number of evaluations of ∇h and proximal operator of p and q, for finding an ϵ-primal-dual
stationary point of (8).

2.1 A modified optimal first-order method for strongly-convex-strongly-concave
minimax problem

In this subsection, we consider the strongly-convex-strongly-concave minimax problem

H̄∗ = min
x

max
y

{
H̄(x, y) := h̄(x, y) + p(x)− q(y)

}
, (10)

where p, q satisfy Assumption 1 and h̄ satisfies the following assumption.

Assumption 3. h̄(x, y) is σx-strongly-convex-σy-strongly-concave and L∇h̄-smooth on dom p×
dom q for some σx, σy > 0.

Recently, a novel optimal first-order method [27, Algorithm 4] was proposed for solving
(10). Though the solution sequence of this method converges to the optimal solution with an
optimal rate, it lacks a verifiable termination criterion and also the approximate solution found
by it may never be an ϵ̄-primal-dual stationary point of (10) (see Definition 1) for a prescribed
tolerance ϵ̄ > 0. To tackle these issues, we next propose an optimal first-order method by
modifying [27, Algorithm 4] for finding an approximate primal-dual stationary point of (10).
Before proceeding, we introduce some notation below, most of which is adopted from [27].

Recall that X = dom p and Y = dom q. Let (x∗, y∗) denote the optimal solution of (10),
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z∗ = −σxx∗, and

Dx := max{∥u− v∥
∣∣u, v ∈ X}, Dy := max{∥u− v∥

∣∣u, v ∈ Y}, (11)

H̄low = min
{
H̄(x, y)|

(
x, y) ∈ X × Y}, (12)

ĥ(x, y) = h̄(x, y)− σx∥x∥2/2 + σy∥y∥2/2, (13)

G(z, y) = sup
x
{⟨x, z⟩ − p(x)− ĥ(x, y) + q(y)}, (14)

P(z, y) = σ−1
x ∥z∥2/2 + σy∥y∥2/2 + G(z, y), (15)

ϑk = η−1
z ∥zk − z∗∥2 + η−1

y ∥yk − y∗∥2 + 2ᾱ−1(P(zkf , y
k
f )− P(z∗, y∗)), (16)

akx(x, y) = ∇xĥ(x, y) + σx(x− σ−1
x zkg )/2, aky(x, y) = −∇yĥ(x, y) + σyy + σx(y − ykg )/8,

where ᾱ = min
{

1,
√

8σy/σx
}

, ηz = σx/2, ηy = min {1/(2σy), 4/(ᾱσx)}, and yk, ykf , ykg , zk, zkf
and zkg are generated at iteration k of Algorithm 1 below. By Assumptions 1 and 3, one can
observe that Dx, Dy and H̄low are finite.

We are now ready to present a modified optimal first-order method for solving (10) in
Algorithm 1. It is a slight modification of the novel optimal first-order method [27, Algorithm 4]
by incorporating a forward-backward splitting scheme and also a verifiable termination criterion
(see steps 23-25 in Algorithm 1) in order to find an ϵ̄-primal-dual stationary point of (10) (see
Definition 1) for any prescribed tolerance ϵ̄ > 0.
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Algorithm 1 A modified optimal first-order method for (10)

Input: ϵ̄ > 0, z̄0 = z0f ∈ −σxdom p,2 ȳ0 = y0f ∈ dom q, (z0, y0) = (z̄0, ȳ0), ᾱ =

min
{

1,
√

8σy/σx
}

, ηz = σx/2, ηy = min {1/(2σy), 4/(ᾱσx)}, βt = 2/(t + 3), ζ =(
2
√

5(1 + 8L∇h̄/σx)
)−1

, γx = γy = 8σ−1
x , and ζ̄ = min{σx, σy}/L2

∇h̄
.

1: for k = 0, 1, 2, . . . do
2: (zkg , y

k
g ) = ᾱ(zk, yk) + (1− ᾱ)(zkf , y

k
f ).

3: (xk,−1, yk,−1) = (−σ−1
x zkg , y

k
g ).

4: xk,0 = proxζγxp(x
k,−1 − ζγxa

k
x(xk,−1, yk,−1)).

5: yk,0 = proxζγyq(y
k,−1 − ζγya

k
y(xk,−1, yk,−1)).

6: bk,0x = 1
ζγx

(xk,−1 − ζγxa
k
x(xk,−1, yk,−1)− xk,0).

7: bk,0y = 1
ζγy

(yk,−1 − ζγya
k
y(xk,−1, yk,−1)− yk,0).

8: t = 0.
9: while

γx∥akx(xk,t, yk,t)+bk,tx ∥2+γy∥aky(xk,t, yk,t)+bk,ty ∥2 > γ−1
x ∥xk,t−xk,−1∥2+γ−1

y ∥yk,t−yk,−1∥2
do

10: xk,t+1/2 = xk,t + βt(x
k,0 − xk,t)− ζγx(akx(xk,t, yk,t) + bk,tx ).

11: yk,t+1/2 = yk,t + βt(y
k,0 − yk,t)− ζγy(aky(xk,t, yk,t) + bk,ty ).

12: xk,t+1 = proxζγxp(x
k,t + βt(x

k,0 − xk,t)− ζγxa
k
x(xk,t+1/2, yk,t+1/2)).

13: yk,t+1 = proxζγyq(y
k,t + βt(y

k,0 − yk,t)− ζγya
k
y(xk,t+1/2, yk,t+1/2)).

14: bk,t+1
x = 1

ζγx
(xk,t + βt(x

k,0 − xk,t)− ζγxa
k
x(xk,t+1/2, yk,t+1/2)− xk,t+1).

15: bk,t+1
y = 1

ζγy
(yk,t + βt(y

k,0 − yk,t)− ζγya
k
y(xk,t+1/2, yk,t+1/2)− yk,t+1).

16: t← t + 1.
17: end while
18: (xk+1

f , yk+1
f ) = (xk,t, yk,t).

19: (zk+1
f , wk+1

f ) = (∇xĥ(xk+1
f , yk+1

f ) + bk,tx ,−∇yĥ(xk+1
f , yk+1

f ) + bk,ty ).

20: zk+1 = zk + ηzσ
−1
x (zk+1

f − zk)− ηz(xk+1
f + σ−1

x zk+1
f ).

21: yk+1 = yk + ηyσy(yk+1
f − yk)− ηy(wk+1

f + σyy
k+1
f ).

22: xk+1 = −σ−1
x zk+1.

23: x̃k+1 = proxζ̄p(x
k+1 − ζ̄∇xh̄(xk+1, yk+1)).

24: ỹk+1 = proxζ̄q(y
k+1 + ζ̄∇yh̄(xk+1, yk+1)).

25: Terminate the algorithm and output (x̃k+1, ỹk+1) if

∥ζ̄−1(xk+1 − x̃k+1, ỹk+1 − yk+1)− (∇h̄(xk+1, yk+1)−∇h̄(x̃k+1, ỹk+1))∥ ≤ ϵ̄. (17)

26: end for

The following theorem presents iteration and operation complexity of Algorithm 1 for finding
an ϵ̄-primal-dual stationary point of problem (10), whose proof is deferred to Subsection 4.1.

Theorem 1 (Complexity of Algorithm 1). Suppose that Assumptions 1 and 3 hold. Let
H̄∗, Dx, Dy, H̄low, and ϑ0 be defined in (10), (11), (12) and (16), σx, σy and L∇h̄ be given in
Assumption 3, ᾱ, ηy, ηz, ϵ̄, ζ̄ be given in Algorithm 1, and

δ̄ = (2 + ᾱ−1)σxD
2
x + max{2σy, ᾱσx/4}D2

y, (18)

K̄ =

⌈
max

{
2

ᾱ
,
ᾱσx
4σy

}
log

4 max{ηzσ−2
x , ηy}ϑ0

(ζ̄−1 + L∇h̄)−2ϵ̄2

⌉
+

, (19)

N̄ =

⌈
max

{
2,

√
σx
2σy

}
log

4 max {1/(2σx),min {1/(2σy), 4/(ᾱσx)}}
(
δ̄ + 2ᾱ−1

(
H̄∗ − H̄low

))
(L2

∇h̄
/min{σx, σy}+ L∇h̄)−2ϵ̄2

⌉
+

2For convenience, −σxdom p stands for the set {−σxu|u ∈ dom p}.
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×
(⌈

96
√

2
(
1 + 8L∇h̄σ

−1
x

)⌉
+ 2
)
. (20)

Then Algorithm 1 outputs an ϵ̄-primal-dual stationary point of (10) in at most K̄ iterations.
Moreover, the total number of evaluations of ∇h̄ and proximal operator of p and q performed
in Algorithm 1 is no more than N̄ , respectively.

Remark 1. It can be observed from Theorem 1 that Algorithm 1 enjoys an operation complexity
of O(log(1/ϵ̄)), measured by the number of evaluations of ∇h̄ and proximal operator of p and q,
for finding an ϵ̄-primal-dual stationary point of the strongly-convex-strongly-concave minimax
problem (10).

2.2 A first-order method for problem (8)

In this subsection, we propose a first-order method for finding an ϵ-primal-dual stationary point
of problem (8) (see Definition 1) for any prescribed tolerance ϵ > 0. In particular, we first add
a perturbation to the max part of (8) for obtaining an approximation of (8), which is given as
follows:

min
x

max
y

{
h(x, y) + p(x)− q(y)− ϵ

4Dy
∥y − ŷ0∥2

}
(21)

for some ŷ0 ∈ dom q, where Dy is given in (11). We then apply an inexact proximal point
method [25] to (21), which consists of approximately solving a sequence of subproblems

min
x

max
y
{Hk(x, y) := hk(x, y) + p(x)− q(y)} , (22)

where
hk(x, y) = h(x, y)− ϵ∥y − ŷ0∥2/(4Dy) + L∇h∥x− xk∥2. (23)

By Assumption 2, one can observe that (i) hk is L∇h-strongly convex in x and ϵ/(2Dy)-strongly
concave in y on dom p× dom q; (ii) hk is (3L∇h + ϵ/(2Dy))-smooth on dom p× dom q. Conse-
quently, problem (22) is a special case of (10) and can be suitably solved by Algorithm 1. The
resulting first-order method for (8) is presented in Algorithm 2.

Algorithm 2 A first-order method for problem (8)

Input: ϵ > 0, ϵ̂0 ∈ (0, ϵ/2], (x̂0, ŷ0) ∈ dom p× dom q, (x0, y0) = (x̂0, ŷ0), and ϵ̂k = ϵ̂0/(k + 1).
1: for k = 0, 1, 2, . . . do
2: Call Algorithm 1 with h̄← hk, ϵ̄← ϵ̂k, σx ← L∇h, σy ← ϵ/(2Dy), L∇h̄ ← 3L∇h+ϵ/(2Dy),

z̄0 = z0f ← −σxxk, ȳ0 = y0f ← yk, and denote its output by (xk+1, yk+1), where hk is
given in (23).

3: Terminate the algorithm and output (xϵ, yϵ) = (xk+1, yk+1) if

∥xk+1 − xk∥ ≤ ϵ/(4L∇h). (24)

4: end for

Remark 2. It is seen from step 2 of Algorithm 2 that (xk+1, yk+1) results from applying Algo-
rithm 1 to the subproblem (22). As will be shown in Lemma 2, (xk+1, yk+1) is an ϵ̂k-primal-dual
stationary point of (22).

We next study complexity of Algorithm 2 for finding an ϵ-primal-dual stationary point of
problem (8). Before proceeding, we define

Hlow := min {H(x, y)|(x, y) ∈ dom p× dom q} . (25)

By Assumption 1, one can observe that Hlow is finite.
The following theorem presents iteration and operation complexity of Algorithm 2 for finding

an ϵ-primal-dual stationary point of problem (8), whose proof is deferred to Subsection 4.2.
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Theorem 2 (Complexity of Algorithm 2). Suppose that Assumption 2 holds. Let H∗, H
Dx, Dy, and Hlow be defined in (8), (11) and (25), L∇h be given in Assumption 2, ϵ, ϵ̂0 and
x̂0 be given in Algorithm 2, and

α̂ = min

{
1,
√

4ϵ/(DyL∇h)

}
, (26)

δ̂ = (2 + α̂−1)L∇hD
2
x + max {ϵ/Dy, α̂L∇h/4}D2

y, (27)

T̂ =

⌈
16(max

y
H(x̂0, y)−H∗ + ϵDy/4)L∇hϵ

−2 + 32ϵ̂20(1 + 4D2
yL

2
∇hϵ

−2)ϵ−2 − 1

⌉
+

, (28)

N̂ =
(⌈

96
√

2
(
1 + (24L∇h + 4ϵ/Dy)L−1

∇h

)⌉
+ 2
)

max

{
2,
√
DyL∇hϵ−1

}

×

(
(T̂ + 1)

(
log

4 max
{

1
2L∇h

,min
{

Dy

ϵ , 4
α̂L∇h

}}(
δ̂ + 2α̂−1(H∗ −Hlow + ϵDy/4 + L∇hD

2
x)
)

[(3L∇h + ϵ/(2Dy))2/min{L∇h, ϵ/(2Dy)}+ 3L∇h + ϵ/(2Dy)]−2 ϵ̂20

)
+

+ T̂ + 1 + 2T̂ log(T̂ + 1)

)
. (29)

Then Algorithm 2 terminates and outputs an ϵ-primal-dual stationary point (xϵ, yϵ) of (8) in
at most T̂ + 1 outer iterations that satisfies

max
y

H(xϵ, y) ≤ max
y

H(x̂0, y) + ϵDy/4 + 2ϵ̂20
(
L−1
∇h + 4D2

yL∇hϵ
−2
)
. (30)

Moreover, the total number of evaluations of ∇h and proximal operator of p and q performed
in Algorithm 2 is no more than N̂ , respectively.

Remark 3. Since ϵ̂0 ∈ (0, ϵ/2], one can observe from Theorem 2 that α̂ = O(ϵ1/2), δ̂ =
O(ϵ−1/2), T̂ = O(ϵ−2), and N̂ = O(ϵ−5/2 log(ϵ̂−1

0 ϵ−1)). Consequently, Algorithm 2 enjoys an
operation complexity of O(ϵ−5/2 log(ϵ̂−1

0 ϵ−1)), measured by the number of evaluations of ∇h and
proximal operator of p and q, for finding an ϵ-primal-dual stationary point of the nonconvex-
concave minimax problem (8).

3 A first-order augmented Lagrangian method for problem (1)

In this section, we propose a first-order augmented Lagrangian (FAL) method for problem (1),
and study its complexity for finding an approximate KKT point of (1).

One standard approach for solving constrained nonlinear program is to solve a sequence
of unconstrained nonlinear program problems, which are typically penalty or augmented La-
grangian subproblems (e.g., see [38]). In a similar spirit, we next propose an FAL method in
Algorithm 3 for solving (1). In particular, at each iteration, the FAL method finds an approxi-
mate primal-dual stationary point of an AL subproblem in the form of

min
x

max
y
L(x, y, λx, λy; ρ), (31)

where L is the AL function associated with problem (1) defined in (5), λx ∈ Rñ
+ and λy ∈ Rm̃

+

are a Lagrangian multiplier estimate, and ρ > 0 is a penalty parameter, which are updated by
a standard scheme. In view of Assumption 1, one can observe that L enjoys the following nice
structure.

• For any given ρ > 0, λx ∈ Rñ
+ and λy ∈ Rm̃

+ , L is the sum of smooth function f(x, y) +(
∥[λx + ρc(x)]+∥2 − ∥λx∥2

)
/(2ρ)−

(
∥[λy + ρd(x, y)]+∥2 − ∥λy∥2

)
/(2ρ) with Lipschitz con-

tinuous gradient and possibly nonsmooth function p(x) − q(y) with exactly computable
proximal operator.

9



• L is nonconvex in x but concave in y.

Thanks to the above nice structure of L, we will use Algorithm 2 as a solver to find an approx-
imate primal-dual stationary point of the AL subproblem (31).

Recall that X = dom p and Y = dom q. Before presenting an FAL method for (1), we let

Lx(x, y, λx; ρ) := F (x, y) +
1

2ρ

(
∥[λx + ρc(x)]+∥2 − ∥λx∥2

)
, (32)

chi := max{∥c(x)∥
∣∣x ∈ X}, dhi := max{∥d(x, y)∥

∣∣(x, y) ∈ X × Y}, (33)

where Lx(·, y, λx; ρ) can be viewed as the AL function for the minimization part of (1), namely,
the problem minx{F (x, y)|c(x) ≤ 0} for any y ∈ Y. Besides, we make one additional assumption
below regarding the availability of a nearly feasible point for the minimization part of (1). Due
to the possible nonconvexity of ci’s, it will be used to specify an initial point for solving the
AL subproblems (see step 2 of Algorithm 3) so that the resulting FAL method outputs an
approximate KKT point of (1) nearly satisfying the constraint c(x) ≤ 0.

Assumption 4. For any given ε ∈ (0, 1), a
√
ε-nearly feasible point xnf of problem (1), namely

xnf ∈ X satisfying ∥[c(xnf )]+∥ ≤
√
ε, can be found.

Remark 4. A very similar assumption as Assumption 4 was considered in [6, 19, 33, 56].
In addition, when the error bound condition ∥[c(x)]+∥ = O(dist(0, ∂(∥[c(x)]+∥2 + δX (x))))ν)
holds on a level set of ∥[c(x)]+∥ for some ν > 0, Assumption 4 holds for problem (1) (e.g., see
[31, 43]). In this case, one can find the above xnf by applying a projected gradient method to
the problem minx∈X ∥[c(x)]+∥2.

We are now ready to present an FAL method for solving problem (1).

Algorithm 3 A first-order augmented Lagrangian method for problem (1)

Input: ε, τ ∈ (0, 1), ϵk = τk, ρk = ϵ−1
k , Λ > 0, λ0

x ∈ B+
Λ , λ0

y ∈ Rm̃
+ , (x0, y0) ∈ dom p × dom q,

and xnf ∈ dom p with ∥[c(xnf )]+∥ ≤
√
ε (see Assumption 4).

1: for k = 0, 1, . . . do
2: Set

xkinit =

{
xk, if Lx(xk, yk, λk

x; ρk) ≤ Lx(xnf , y
k, λk

x; ρk),
xnf , otherwise.

(34)

3: Call Algorithm 2 with ϵ ← ϵk, ϵ̂0 ← ϵk/(2
√
ρk), (x0, y0) ← (xkinit, y

k) and L∇h ← Lk to
find an ϵk-primal-dual stationary point (xk+1, yk+1) of

min
x

max
y
L(x, y, λk

x, λ
k
y; ρk) (35)

where

Lk = L∇f + ρkL
2
c + ρkchiL∇c + ∥λk

x∥L∇c + ρkL
2
d + ρkdhiL∇d + ∥λk

y∥L∇d. (36)

4: Set λk+1
x = ΠB+

Λ
(λk

x + ρkc(x
k+1)) and λk+1

y = [λk
y + ρkd(xk+1, yk+1)]+.

5: If ϵk ≤ ε, terminate the algorithm and output (xk+1, yk+1).
6: end for

Remark 5. (i) λk+1
x results from projecting onto a nonnegative Euclidean ball the stan-

dard Lagrangian multiplier estimate λ̃k+1
x obtained by the classical scheme λ̃k+1

x = [λk
x +

ρkc(x
k+1)]+. It is called a safeguarded Lagrangian multiplier in the relevant literature

[2, 3, 24], which has been shown to enjoy many practical and theoretical advantages (see
[2] for discussions).
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(ii) In view of Theorem 2, one can see that an ϵk-primal-dual stationary point of (35) can
be successfully found in step 3 of Algorithm 3 by applying Algorithm 2 to problem (35).
Consequently, Algorithm 3 is well-defined.

3.1 Complexity results for Algorithm 3

In this subsection we study iteration and operation complexity for Algorithm 3. Recall that
X = dom p and Y = dom q. Before proceeding, we make one additional assumption below that a
generalized Mangasarian-Fromowitz constraint qualification (GMFCQ) holds for the minimiza-
tion part of (1), a uniform Slater’s condition holds for the maximization part of (1), and F (·, y)
is Lipschitz continuous on X for any y ∈ Y. Specifically, GMFCQ and the Lipschitz continuity
of F (·, y) will be used to bound the amount of violation on feasibility and complementary slack-
ness by (xk+1, λ̃k+1

x ) for the minimization part of (1) with λ̃k+1
x = [λk

x+ρkc(x
k+1)]+ (see Lemma

10). Likewise, the uniform Slater’s condition will be used to bound the amount of violation on
feasibility and complementary slackness by (xk+1, yk+1, λk+1

y ) for the maximization part of (1)
(see Lemmas 6 and 7).

Assumption 5. (i) There exist some constants δc, θ > 0 such that for each x ∈ F(θ) there
exists some vx ∈ TX (x) satisfying ∥vx∥ = 1 and vTx∇ci(x) ≤ −δc for all i ∈ A(x; θ), where
TX (x) is the tangent cone of X at x, and

F(θ) = {x ∈ X
∣∣∥[c(x)]+∥∞ ≤ θ}, A(x; θ) = {i|ci(x) ≥ −θ, 1 ≤ i ≤ ñ}. (37)

(ii) For each x ∈ X , there exists some ŷx ∈ Y such that di(x, ŷx) < 0 for all i = 1, 2, . . . , m̃,
and moreover, δd := inf{−di(x, ŷx)|x ∈ X , i = 1, 2, . . . , m̃} > 0.

(iii) F (·, y) is LF -Lipschitz continuous on X for any y ∈ Y.

Remark 6. (i) Assumption 5(i) can be viewed as a robust counterpart of MFCQ. It implies
that MFCQ holds for all the minimization problems, resulting from the minimization part
of (1) by fixing y ∈ Y and perturbing ci(x) at most by θ.

(ii) The latter part of Assumption 5(ii) can be weakened to the one that the pointwise Slater’s
condition holds for the constraint on y in (1), that is, there exists ŷx ∈ Y such that
d(x, ŷx) < 0 for each x ∈ X . Indeed, if δd > 0, Assumption 5(ii) holds. Otherwise, one
can solve the perturbed counterpart of (1) with d(x, y) being replaced by d(x, y) − ϵ for
some suitable ϵ > 0 instead, which satisfies Assumption 5(ii).

(iii) In view of Assumption 1, one can observe that if p is Lipschitz continuous on X , F (·, y)
is Lipschitz continuous on X for any y ∈ Y. Thus, Assumption 5(iii) is mild.

In order to characterize the approximate solution found by Algorithm 3, we next introduce
a notion called an ε-KKT solution of problem (1).

One can observe from Lemma 4(iii) in Subsection 4.3 that problem (1) is equivalent to

min
x,λy

{
max
y

F (x, y)− ⟨λy, d(x, y)⟩+ δRm̃
+

(λy)
∣∣c(x) ≤ 0

}
.

By this, one can further see that problem (1) is equivalent to

min
x,λy

max
λx

{
max
y
{F (x, y)− ⟨λy, d(x, y)⟩+ δRm̃

+
(λy)}+ ⟨λx, c(x)⟩ − δRñ

+
(λx)

}
,

which is a nonconvex-concave minimax problem

min
x,λy

max
y,λx

{
F (x, y) + ⟨λx, c(x)⟩ − ⟨λy, d(x, y)⟩ − δRñ

+
(λx) + δRm̃

+
(λy)

}
. (38)
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It follows from [11, Theorem 3.1] that if (x, y, λx, λy) ∈ Rn×Rm×Rñ
+×Rm̃

+ is a local minimax
point of problem (38), then it must also be a primal-dual stationary point of (38). This,
combined with Definition 1, implies that (x, y, λx, λy) is a KKT point of (38) satisfying the
conditions:

0 ∈ ∂xF (x, y) +∇c(x)λx −∇xd(x, y)λy, (39)

0 ∈ ∂yF (x, y)−∇yd(x, y)λy, (40)

c(x) ≤ 0, ⟨λx, c(x)⟩ = 0, (41)

d(x, y) ≤ 0, ⟨λy, d(x, y)⟩ = 0. (42)

Based on this observation and the equivalence of (1) and (38), we introduce an (approximate)
KKT solution for problem (1) below.

Definition 2. The pair (x, y) is said to be a KKT solution of problem (1) if there exists
(λx, λy) ∈ Rñ

+ × Rm̃
+ such that the conditions (39)-(42) hold. In addition, for any ε > 0, (x, y)

is said to be an ε-KKT point of problem (1) if there exists (λx, λy) ∈ Rñ
+ × Rm̃

+ such that

dist(0, ∂xF (x, y) +∇c(x)λx −∇xd(x, y)λy) ≤ ε,

dist(0, ∂yF (x, y)−∇yd(x, y)λy) ≤ ε,

∥[c(x)]+∥ ≤ ε, |⟨λx, c(x)⟩| ≤ ε,

∥[d(x, y)]+∥ ≤ ε, |⟨λy, d(x, y)⟩| ≤ ε.

Recall that X = dom p and Y = dom q. To study complexity of Algorithm 3, we define

f∗(x) := max{F (x, y)|d(x, y) ≤ 0}, (43)

Fhi := max{F (x, y)|(x, y) ∈ X × Y}, Flow := min{F (x, y)|(x, y) ∈ X × Y}, (44)

∆ := Fhi − Flow, r := 2δ−1
d ∆, (45)

K := ⌈log ε/ log τ⌉+ , K := {0, 1, . . . ,K + 1}, (46)

where δd is given in Assumption 5, and ε and τ are some input parameters of Algorithm 3. For
convenience, we define K − 1 = {k − 1|k ∈ K}. One can observe from Assumption 1 that Fhi

and Flow are finite. Besides, one can easily observe that

f∗(x) ≥ Flow, F (x, y)− f∗(x) ≤ ∆ ∀x ∈ X , y ∈ Y. (47)

We are now ready to present an iteration and operation complexity of Algorithm 3 for finding
an O(ε)-KKT solution of problem (1), whose proof is deferred to Section 4.

Theorem 3. Suppose that Assumptions 1, 4 and 5 hold. Let {(xk, yk, λk
x, λ

k
y)}k∈K be generated

by Algorithm 3, Dx, Dy, chi, dhi, ∆ and K be defined in (11), (33), (45) and (46), LF , L∇f ,
L∇d, L∇c, Lc, L∇d, Ld, δc, δd and θ be given in Assumptions 1 and 5, ε, τ , Λ and λ0

y be given
in Algorithm 3, and

L = L∇f + L2
c + chiL∇c + ΛL∇c + L2

d + dhiL∇d + L∇d

√
∥λ0

y∥2 +
2(∆ + Dy)

1− τ
, (48)

α = min

{
1,
√

4/(DyL)

}
, δ = (2 + α−1)LD2

x + max{1/Dy, L/4}D2
y, (49)

M = 16 max
{

1/(2L2
c), 4/(αL2

c)
} [

(3L + 1/(2Dy))2/min{L2
c , 1/(2Dy)}+ 3L + 1/(2Dy)

]2
×
(
δ + 2α−1

(
∆ +

Λ2

2
+

3

2
∥λ0

y∥2 +
3(∆ + Dy)

1− τ
+ ρkd

2
hi +

Dy

4
+ LD2

x

))
, (50)

T =

⌈
16L

(
2∆ + Λ +

1

2
(τ−1 + ∥λ0

y∥2) +
∆ + Dy

1− τ
+

Λ2

2
+

Dy

4

)
+ 8(1 + 4D2

yL
2)

⌉
+

, (51)

λ̃K+1
x = [λK

x + τ−Kc(xK+1)]+. (52)
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Suppose that

ε−1 ≥ max

{
θ−1Λ, θ−2

{
4∆ + 2Λ + τ−1 + ∥λ0

y∥2 +
2(∆ + Dy)

1− τ
+

Dy

2
+ L−2

c + 4D2
yL + Λ2

}
,

4∥λ0
y∥2

δ2dτ
+

8(∆ + Dy)

δ2dτ(1− τ)

}
. (53)

Then the following statements hold.

(i) Algorithm 3 terminates after K+1 outer iterations and outputs an approximate stationary
point (xK+1, yK+1) of (1) satisfying

dist(0, ∂xF (xK+1, yK+1) +∇c(xK+1)λ̃K+1
x −∇xd(xK+1, yK+1)λK+1

y ) ≤ ε, (54)

dist
(
0, ∂yF (xK+1, yK+1)−∇yd(xK+1, yK+1)λK+1

y

)
≤ ε, (55)

∥[c(xK+1)]+∥ ≤ εδ−1
c

(
LF + 2Ldδ

−1
d (∆ + Dy) + 1

)
, (56)

|⟨λ̃K+1
x , c(xK+1)⟩| ≤ εδ−1

c (LF + 2Ldδ
−1
d (∆ + Dy) + 1)

×max{δ−1
c (LF + 2Ldδ

−1
d (∆ + Dy) + 1),Λ}, (57)

∥[d(xK+1, yK+1)]+∥ ≤ 2εδ−1
d (∆ + Dy), (58)

|⟨λK+1
y , d(xK+1, yK+1)⟩| ≤ 2εδ−1

d (∆ + Dy) max{2δ−1
d (∆ + Dy), ∥λ0

y∥}. (59)

(ii) The total number of evaluations of ∇f , ∇c, ∇d and proximal operator of p and q performed
in Algorithm 3 is at most N , respectively, where

N =
(⌈

96
√

2
(
1 + (24L + 4/Dy) /L2

c

)⌉
+ 2
)

max
{

2,
√
DyL

}
T (1− τ4)−1

× (τε)−4 (28K log(1/τ) + 2(logM)+ + 2 + 2 log(2T )) . (60)

Remark 7. (i) The condition (53) on ε is to ensure that the final penalty parameter ρK in
Algorithm 3 is large enough so that feasibility and complementarity slackness are nearly
satisfied at (xK+1, yK+1, λ̃K+1

x , λK+1
y ).

(ii) One can observe from Theorem 3 that Algorithm 3 enjoys an iteration complexity of
O(log ε−1) and an operation complexity of O(ε−4 log ε−1), measured by the number of
evaluations of ∇f , ∇c, ∇d and proximal operator of p and q, for finding an O(ε)-KKT
solution (xK+1, yK+1) of (1) such that

dist
(
∂xF (xK+1, yK+1) +∇c(xK+1)λ̃x −∇xd(xK+1, yK+1)λK+1

y

)
≤ ε,

dist
(
∂yF (xK+1, yK+1)−∇yd(xK+1, yK+1)λK+1

y

)
≤ ε,

∥[c(xK+1)]+∥ = O(ε), |⟨λ̃K+1
x , c(xK+1)⟩| = O(ε),

∥[d(xK+1, yK+1)]+∥ = O(ε), |⟨λK+1
y , d(xK+1, yK+1)⟩| = O(ε),

where λ̃K+1
x ∈ Rñ

+ is defined in (52) and λK+1
y ∈ Rm̃

+ is given in Algorithm 3.

4 Proof of the main result

In this section we provide a proof of our main results presented in Sections 2 and 3, which are
particularly Theorems 1, 2 and 3.
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4.1 Proof of the main results in Subsection 2.1

In this subsection we prove Theorem 1. Before proceeding, we establish an upper bound on ϑ0

in terms of the function value gap of (10), where ϑ0 is given in (16).

Lemma 1. Suppose that Assumptions 2 and 3 hold. Let H̄∗, H̄low, ϑ0 and δ̄ be defined in (10),
(12), (16) and (18), and ᾱ be given in Algorithm 1. Then we have

ϑ0 ≤ δ̄ + 2ᾱ−1
(
H̄∗ − H̄low

)
. (61)

Proof. By (10), (12), (13) and (14), one has

G(z̄0, ȳ0)
(14)
= sup

x

{
⟨x, z̄0⟩ − p(x)− ĥ(x, ȳ0) + q(ȳ0)

}
(13)
= max

x∈dom p

{
⟨x, z̄0⟩ − p(x)− h̄(x, ȳ0) +

σx
2
∥x∥2 − σy

2
∥ȳ0∥2 + q(ȳ0)

}
(10)(12)

≤ max
x∈dom p

{
⟨x, z̄0⟩+

σx
2
∥x∥2

}
− σy

2
∥ȳ0∥2 − H̄low

= max
x∈dom p

σx
2
∥x + σ−1

x z̄0∥2 − σ−1
x

2
∥z̄0∥2 − σy

2
∥ȳ0∥2 − H̄low

≤ σxD
2
x

2
− σ−1

x

2
∥z̄0∥2 − σy

2
∥ȳ0∥2 − H̄low, (62)

where the last inequality follows from (11), X = dom p, and the fact that z0 ∈ −σxdom p.
Recall that (x∗, y∗) is the optimal solution of (10) and z∗ = −σxx∗. It follows from (10),

(13) and (14) that

G(z∗, y∗)
(14)
= sup

x

{
⟨x, z∗⟩ − p(x)− ĥ(x, y∗) + q(y∗)

}
≥ ⟨x∗, z∗⟩ − p(x∗)− ĥ(x∗, y∗) + q(y∗)

(13)
= ⟨x∗, z∗⟩+

σx
2
∥x∗∥2 − σy

2
∥y∗∥2 − p(x∗)− h̄(x∗, y∗) + q(y∗)

= − σ−1
x

2
∥z∗∥2 − σy

2
∥y∗∥2 − H̄∗,

where the last equality follows from (10), the definition of (x∗, y∗), and z∗ = −σxx∗. This
together with (15) and (62) implies that

P(z̄0, ȳ0)− P(z∗, y∗) =
σ−1
x

2
∥z̄0∥2 +

σy
2
∥ȳ0∥2 + G(z̄0, ȳ0)− σ−1

x

2
∥z∗∥2 − σy

2
∥y∗∥2 − G(z∗, y∗)

≤ σxD
2
x/2− H̄low + H̄∗.

Notice from Algorithm 1 that z0 = z0f = z̄0 ∈ −σxdom p and y0 = y0f = ȳ0 ∈ dom q. By these,
z∗ = −σxx∗, X = dom p, Y = dom q, (11), (16), and the above inequality, one has

ϑ0
(16)
= η−1

z ∥z̄0 − z∗∥2 + η−1
y ∥ȳ0 − y∗∥2 + 2ᾱ−1(P(z̄0, ȳ0)− P(z∗, y∗))

≤ η−1
z σ2

xD
2
x + η−1

y D2
y + 2ᾱ−1

(
σxD

2
x/2− H̄low + H̄∗)

= η−1
z σ2

xD
2
x + ᾱ−1σxD

2
x + η−1

y D2
y + 2ᾱ−1

(
H̄∗ − H̄low

)
.

Hence, the conclusion follows from this, (18), ηz = σx/2 and ηy = min {1/(2σy), 4/(ᾱσx)}.

We are now ready to prove Theorem 1, using Lemma 1, [27, Theorem 3], [27, Lemma 4],
and [5, Corollary 2.5].
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Proof of Theorem 1. Suppose for contradiction that Algorithm 1 runs for more than K̄ outer
iterations, where K̄ is given in (19). By this and Algorithm 1, one can assert that (17) does not
hold for k = K̄ − 1. On the other hand, by (19) and [27, Theorem 3], one has

∥(xK̄ , yK̄)− (x∗, y∗)∥ ≤ (ζ̄−1 + L∇h̄)−1ϵ̄/2, (63)

where (x∗, y∗) is the optimal solution of problem (10) and ζ̄ is an input of Algorithm 1. Notice
from Algorithm 1 that (x̃K̄ , ỹK̄) results from the forward-backward splitting (FBS) step applied
to the strongly monotone inclusion problem 0 ∈ (∇xh̄(x, y),−∇yh̄(x, y)) + (∂p(x), ∂q(y)) at

the point (xK̄ , yK̄). It then follows from this, ζ̄ = min{σx, σy}/L2
∇h̄

(see Algorithm 1), and the

contraction property of FBS [5, Corollary 2.5] that ∥(x̃K̄ , ỹK̄)−(x∗, y∗)∥ ≤ ∥(xK̄ , yK̄)−(x∗, y∗)∥.
Using this and (63), we have

∥ζ̄−1(xK̄ − x̃K̄ , ỹK̄ − yK̄)− (∇h̄(xK̄ , yK̄)−∇h̄(x̃K̄ , ỹK̄))∥

≤ ζ̄−1∥(xK̄ , yK̄)− (x̃K̄ , ỹK̄)∥+ ∥∇h̄(xK̄ , yK̄)−∇h̄(x̃K̄ , ỹK̄)∥

≤ (ζ̄−1 + L∇h̄)∥(xK̄ , yK̄)− (x̃K̄ , ỹK̄)∥

≤ (ζ̄−1 + L∇h̄)(∥(xK̄ , yK̄)− (x∗, y∗)∥+ ∥(x̃K̄ , ỹK̄)− (x∗, y∗)∥)

≤ 2(ζ̄−1 + L∇h̄)∥(xK̄ , yK̄)− (x∗, y∗)∥
(63)

≤ ϵ̄,

where the second inequality uses the fact that h̄ is L∇h̄-smooth on dom p × dom q. It follows
that (17) holds for k = K̄ − 1, which contradicts the above assertion. Hence, Algorithm 1 must
terminate in at most K̄ outer iterations.

We next show that the output of Algorithm 1 is an ϵ̄-primal-dual stationary point of (10).
To this end, suppose that Algorithm 1 terminates at some iteration k at which (17) is satisfied.
Then by (6) and the definition of x̃k+1 and ỹk+1 (see steps 23 and 24 of Algorithm 1), one has

0 ∈ ζ̄∂p(x̃k+1) + x̃k+1 − xk+1 + ζ̄∇xh̄(xk+1, yk+1),

0 ∈ ζ̄∂q(ỹk+1) + ỹk+1 − yk+1 − ζ̄∇yh̄(xk+1, yk+1),

which yield

ζ̄−1(xk+1 − x̃k+1)−∇xh̄(xk+1, yk+1) ∈ ∂p(x̃k+1), ζ̄−1(yk+1 − ỹk+1) +∇yh̄(xk+1, yk+1) ∈ ∂q(ỹk+1).

These together with the definition of H̄ in (10) imply that

∇xh̄(x̃k+1, ỹk+1) + ζ̄−1(xk+1 − x̃k+1)−∇xh̄(xk+1, yk+1) ∈ ∂xH̄(x̃k+1, ỹk+1),

∇yh̄(x̃k+1, ỹk+1)− ζ̄−1(yk+1 − ỹk+1)−∇yh̄(xk+1, yk+1) ∈ ∂yH̄(x̃k+1, ỹk+1).

Using these and (17), we obtain

dist(0, ∂xH̄(x̃k+1, ỹk+1))2 + dist(0, ∂yH̄(x̃k+1, ỹk+1))2

≤ ∥ζ̄−1(xk+1 − x̃k+1) +∇xh̄(x̃k+1, ỹk+1)−∇xh̄(xk+1, yk+1)∥2

+ ∥ζ̄−1(ỹk+1 − yk+1) +∇yh̄(x̃k+1, ỹk+1)−∇yh̄(xk+1, yk+1)∥2

= ∥ζ̄−1(xk+1 − x̃k+1, ỹk+1 − yk+1)− (∇h̄(xk+1, yk+1)−∇h̄(x̃k+1, ỹk+1))∥2
(17)

≤ ϵ̄2,

which implies that dist(0, ∂xH̄(x̃k+1, ỹk+1)) ≤ ϵ̄ and dist(0, ∂yH̄(x̃k+1, ỹk+1)) ≤ ϵ̄. It then
follows from these and Definition 1 that the output (x̃k+1, ỹk+1) of Algorithm 1 is an ϵ̄-primal-
dual stationary point of (10).

Finally, we show that the total number of evaluations of ∇h̄ and proximal operator of p and
q performed in Algorithm 1 is no more than N̄ , respectively. Indeed, notice from Algorithm 1
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that ᾱ = min
{

1,
√

8σy/σx
}

, which implies that 2/ᾱ = max{2,
√

σx/(2σy)} and ᾱ ≤
√

8σy/σx.
By these, one has

max

{
2

ᾱ
,
ᾱσx
4σy

}
≤ max

{
2,

√
σx
2σy

,

√
8σy
σx

σx
4σy

}
= max

{
2,

√
σx
2σy

}
. (64)

In addition, by [27, Lemma 4], the number of inner iterations performed in each outer iteration
of Algorithm 1 is at most

T̄ :=
⌈
48
√

2
(
1 + 8L∇h̄σ

−1
x

)⌉
− 1.

Then one can observe that the number of evaluations of ∇h̄ and proximal operator of p and q
performed in Algorithm 1 is at most

(2T̄ + 3)K̄ ≤
(⌈

96
√

2
(
1 + 8L∇h̄σ

−1
x

)⌉
+ 2
)⌈

max

{
2

ᾱ
,
ᾱσx
4σy

}
log

4 max{ηzσ−2
x , ηy}ϑ0

(ζ̄−1 + L∇h̄)−2ϵ̄2

⌉
+

(64)

≤
(⌈

96
√

2
(
1 + 8L∇h̄σ

−1
x

)⌉
+ 2
)⌈

max

{
2,

√
σx
2σy

}
log

4 max{ηzσ−2
x , ηy}ϑ0

(ζ̄−1 + L∇h̄)−2ϵ̄2

⌉
+

≤
(⌈

96
√

2
(
1 + 8L∇h̄σ

−1
x

)⌉
+ 2
)

×

⌈
max

{
2,

√
σx
2σy

}
log

4 max{1/(2σx),min {1/(2σy), 4/(ᾱσx)}}ϑ0

(L2
∇h̄

/min{σx, σy}+ L∇h̄)−2ϵ̄2

⌉
+

(20)(61)

≤ N̄ ,

where the second last inequality follows from the definition of ηy, ηz and ζ̄ in Algorithm 1.
Hence, the conclusion holds as desired.

4.2 Proof of the main results in Subsection 2.2

In this subsection we prove Theorem 2. Before proceeding, let {(xk, yk)}k∈T denote all the
iterates generated by Algorithm 2, where T is a subset of consecutive nonnegative integers
starting from 0. Also, we define T − 1 = {k − 1 : k ∈ T}. We first establish two lemmas and
then use them to prove Theorem 2 subsequently.

The following lemma shows that an approximate primal-dual stationary point of (22) is
found at each iteration of Algorithm 2, and also provides an estimate of operation complexity
for finding it.

Lemma 2. Suppose that Assumption 2 holds. Let {(xk, yk)}k∈T be generated by Algorithm 2,
H∗, Dx, Dy, Hlow, α̂, δ̂ be defined in (8), (11), (25), (26) and (27), L∇h be given in Assumption
2, ϵ, ϵ̂k be given in Algorithm 2, and

N̂k :=
(⌈

96
√

2
(
1 + (24L∇h + 4ϵ/Dy)L−1

∇h

)⌉
+ 2
)
×

⌈
max

{
2,

√
DyL∇h

ϵ

}

× log
4 max

{
1

2L∇h
,min

{
Dy

ϵ , 4
α̂L∇h

}}(
δ̂ + 2α̂−1(H∗ −Hlow + ϵDy/4 + L∇hD

2
x)
)

[(3L∇h + ϵ/(2Dy))2/min{L∇h, ϵ/(2Dy)}+ 3L∇h + ϵ/(2Dy)]−2 ϵ̂2k

⌉
+

.

(65)

Then for all 0 ≤ k ∈ T−1, (xk+1, yk+1) is an ϵ̂k-primal-dual stationary point of (22). Moreover,
the total number of evaluations of ∇h and proximal operator of p and q performed at iteration
k of Algorithm 2 for generating (xk+1, yk+1) is no more than N̂k, respectively.

Proof. Let (x∗, y∗) be an optimal solution of (8). Recall that H, Hk and hk are respectively
given in (8), (22) and (23), X = dom p and Y = dom q. Notice that x∗, xk ∈ X . Then we have

Hk,∗ := min
x

max
y

Hk(x, y) = min
x

max
y

{
H(x, y)− ϵ

4Dy
∥y − ŷ0∥2 + L∇h∥x− xk∥2

}
≤ max

y
{H(x∗, y) + L∇h∥x∗ − xk∥2}

(8)(11)

≤ H∗ + L∇hD
2
x. (66)
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Moreover, by X = dom p, Y = dom q, (11) and (25), one has

Hk,low := min
(x,y)∈dom p×dom q

Hk(x, y) = min
(x,y)∈X×Y

{
H(x, y)− ϵ

4Dy
∥y − ŷ0∥2 + L∇h∥x− xk∥2

}
(25)

≥ Hlow −max
y∈Y

ϵ

4Dy
∥y − ŷ0∥2

(11)

≥ Hlow − ϵDy/4. (67)

In addition, by Assumption 2 and the definition of hk in (23), it is not hard to verify that hk(x, y)
is L∇h-strongly-convex in x, ϵ/(2Dy)-strongly-concave in y, and (3L∇h + ϵ/(2Dy))-smooth on
its domain. Also, recall from Remark 2 that (xk+1, yk+1) results from applying Algorithm 1 to
problem (22). The conclusion of this lemma then follows by using (66) and (67) and applying
Theorem 1 to (22) with ϵ̄ = ϵ̂k, σx = L∇h, σy = ϵ/(2Dy), L∇h̄ = 3L∇h + ϵ/(2Dy), ᾱ = α̂, δ̄ = δ̂,
H̄low = Hk,low, and H̄∗ = Hk,∗.

The following lemma provides an upper bound on the least progress of the solution sequence
of Algorithm 2 and also on the last-iterate objective value of (8).

Lemma 3. Suppose that Assumption 2 holds. Let {xk}k∈T be generated by Algorithm 2, H, H∗

and Dy be defined in (8) and (11), L∇h be given in Assumption 2, and ϵ, ϵ̂0 and x̂0 be given in
Algorithm 2. Then for all 0 ≤ K ∈ T− 1, we have

min
0≤k≤K

∥xk+1 − xk∥ ≤ maxy H(x̂0, y)−H∗ + ϵDy/4

L∇h(K + 1)
+

2ϵ̂20(1 + 4D2
yL

2
∇hϵ

−2)

L2
∇h(K + 1)

, (68)

max
y

H(xK+1, y) ≤ max
y

H(x̂0, y) + ϵDy/4 + 2ϵ̂20
(
L−1
∇h + 4D2

yL∇hϵ
−2
)
. (69)

Proof. For convenience of the proof, let

H∗
ϵ (x) = max

y

{
H(x, y)− ϵ∥y − ŷ0∥2/(4Dy)

}
, (70)

H∗
k(x) = max

y
Hk(x, y), yk+1

∗ = arg max
y

Hk(xk+1, y). (71)

One can observe from these, (22) and (23) that

H∗
k(x) = H∗

ϵ (x) + L∇h∥x− xk∥2. (72)

By this and Assumption 2, one can also see that H∗
k is L∇h-strongly convex on dom p. In

addition, recall from Lemma 2 that (xk+1, yk+1) is an ϵ̂k-primal-dual stationary point of problem
(22) for all 0 ≤ k ∈ T − 1. It then follows from Definition 1 that there exist some u ∈
∂xHk(xk+1, yk+1) and v ∈ ∂yHk(xk+1, yk+1) with ∥u∥ ≤ ϵ̂k and ∥v∥ ≤ ϵ̂k. Also, by (71), one has
0 ∈ ∂yHk(xk+1, yk+1

∗ ), which together with v ∈ ∂yHk(xk+1, yk+1) and ϵ/(2Dy)-strong concavity
of Hk(xk+1, ·), implies that ⟨−v, yk+1 − yk+1

∗ ⟩ ≥ ϵ∥yk+1 − yk+1
∗ ∥2/(2Dy). This and ∥v∥ ≤ ϵ̂k

yield
∥yk+1 − yk+1

∗ ∥ ≤ 2ϵ̂kDy/ϵ. (73)

In addition, by u ∈ ∂xHk(xk+1, yk+1), (22) and (23), one has

u ∈ ∇xh(xk+1, yk+1) + ∂p(xk+1) + 2L∇h(xk+1 − xk). (74)

Also, observe from (22), (23) and (71) that

∂H∗
k(xk+1) = ∇xh(xk+1, yk+1

∗ ) + ∂p(xk+1) + 2L∇h(xk+1 − xk),

which together with (74) yields

u +∇xh(xk+1, yk+1
∗ )−∇xh(xk+1, yk+1) ∈ ∂H∗

k(xk+1).
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By this and L∇h-strong convexity of H∗
k , one has

H∗
k(xk) ≥ H∗

k(xk+1)+⟨u+∇xh(xk+1, yk+1
∗ )−∇xh(xk+1, yk+1), xk−xk+1⟩+L∇h∥xk−xk+1∥2/2.

(75)
Using this, (72), (73), (75), ∥u∥ ≤ ϵ̂k, and the Lipschitz continuity of ∇h, we obtain

H∗
ϵ (xk)−H∗

ϵ (xk+1)
(72)
= H∗

k(xk)−H∗
k(xk+1) + L∇h∥xk − xk+1∥2

(75)

≥ ⟨u +∇xh(xk+1, yk+1
∗ )−∇xh(xk+1, yk+1), xk − xk+1⟩+ 3L∇h∥xk − xk+1∥2/2

≥
(
− ∥u +∇xh(xk+1, yk+1

∗ )−∇xh(xk+1, yk+1)∥∥xk − xk+1∥+ L∇h∥xk − xk+1∥2/2
)

+ L∇h∥xk − xk+1∥2

≥ −(2L∇h)−1∥u +∇xh(xk+1, yk+1
∗ )−∇xh(xk+1, yk+1)∥2 + L∇h∥xk − xk+1∥2

≥ −L−1
∇h∥u∥

2 − L−1
∇h∥∇xh(xk+1, yk+1

∗ )−∇xh(xk+1, yk+1)∥2 + L∇h∥xk − xk+1∥2

≥ −L−1
∇hϵ̂

2
k − L∇h∥yk+1 − yk+1

∗ ∥2 + L∇h∥xk − xk+1∥2

(73)

≥ −(L−1
∇h + 4D2

yL∇hϵ
−2)ϵ̂2k + L∇h∥xk − xk+1∥2,

where the second and fourth inequalities follow from Cauchy-Schwartz inequality, and the third
inequality is due to Young’s inequality, and the fifth inequality follows from L∇h-Lipschitz
continuity of ∇h. Summing up the above inequality for k = 0, 1, . . . ,K yields

L∇h

K∑
k=0

∥xk − xk+1∥2 ≤ H∗
ϵ (x0)−H∗

ϵ (xK+1) + (L−1
∇h + 4D2

yL∇hϵ
−2)

K∑
k=0

ϵ̂2k. (76)

In addition, it follows from (8), (11) and (70) that

H∗
ϵ (xK+1) = max

y

{
H(xK+1, y)− ϵ∥y − ŷ0∥2/(4Dy)

}
≥ min

x
max
y

H(x, y)− ϵDy/4 = H∗ − ϵDy/4,

H∗
ϵ (x0) = max

y

{
H(x0, y)− ϵ∥y − ŷ0∥2/(4Dy)

}
≤ max

y
H(x0, y). (77)

These together with (76) yield

L∇h(K + 1) min
0≤k≤K

∥xk+1 − xk∥2 ≤ L∇h

K∑
k=0

∥xk − xk+1∥2

≤ max
y

H(x0, y)−H∗ + ϵDy/4 + (L−1
∇h + 4D2

yL∇hϵ
−2)

K∑
k=0

ϵ̂2k,

which together with x0 = x̂0, ϵ̂k = ϵ̂0(k + 1)−1 and
∑K

k=0(k + 1)−2 < 2 implies that (68) holds.
Finally, we show that (69) holds. Indeed, it follows from (11), (70), (76), (77), ϵ̂k = ϵ̂0(k +

1)−1, and
∑K

k=0(k + 1)−2 < 2 that

max
y

H(xK+1, y)
(11)

≤ max
y

{
H(xK+1, y)− ϵ∥y − ŷ0∥2/(4Dy)

}
+ ϵDy/4

(70)
= H∗

ϵ (xK+1) + ϵDy/4

(76)

≤ H∗
ϵ (x0) + ϵDy/4 + (L−1

∇h + 4D2
yL∇hϵ

−2)

K∑
k=0

ϵ̂2k

(77)

≤ max
y

H(x0, y) + ϵDy/4 + 2ϵ̂20(L
−1
∇h + 4D2

yL∇hϵ
−2).

It then follows from this and x0 = x̂0 that (69) holds.

We are now ready to prove Theorem 2 using Lemmas 2 and 3.
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Proof of Theorem 2. Suppose for contradiction that Algorithm 2 runs for more than T̂ + 1
outer iterations, where T̂ is given in (28). By this and Algorithm 2, one can then assert that
(24) does not hold for all 0 ≤ k ≤ T . On the other hand, by (28) and (68), one has

min
0≤k≤T̂

∥xk+1 − xk∥2
(68)

≤ maxy H(x̂0, y)−H∗ + ϵDy/4

L∇h(T̂ + 1)
+

2ϵ̂20(1 + 4D2
yL

2
∇hϵ

−2)

L2
∇h(T̂ + 1)

(28)

≤ ϵ2

16L2
∇h

,

which implies that there exists some 0 ≤ k ≤ T̂ such that ∥xk+1−xk∥ ≤ ϵ/(4L∇h), and thus (24)
holds for such k, which contradicts the above assertion. Hence, Algorithm 2 must terminate in
at most T̂ + 1 outer iterations.

Suppose that Algorithm 2 terminates at some iteration 0 ≤ k ≤ T̂ , namely, (24) holds for
such k. We next show that its output (xϵ, yϵ) = (xk+1, yk+1) is an ϵ-primal-dual stationary
point of (8) and moreover it satisfies (107). Indeed, recall from Lemma 2 that (xk+1, yk+1) is
an ϵ̂k-primal-dual stationary point of (22), namely, it satisfies dist(0, ∂xHk(xk+1, yk+1)) ≤ ϵ̂k
and dist(0, ∂yHk(xk+1, yk+1)) ≤ ϵ̂k. By these, (8), (22) and (23), there exists (u, v) such that

u ∈ ∂xH(xk+1, yk+1) + 2L∇h(xk+1 − xk), ∥u∥ ≤ ϵ̂k,

v ∈ ∂yH(xk+1, yk+1)− ϵ(yk+1 − ŷ0)/(2Dy), ∥v∥ ≤ ϵ̂k.

It then follows that u − 2L∇h(xk+1 − xk) ∈ ∂xH(xk+1, yk+1) and v + ϵ(yk+1 − ŷ0)/(2Dy) ∈
∂yH(xk+1, yk+1). These together with (11), (24) and ϵ̂k ≤ ϵ̂0 ≤ ϵ/2 (see Algorithm 2) imply
that

dist
(

0, ∂xH(xk+1, yk+1)
)
≤ ∥u− 2L∇h(xk+1 − xk)∥ ≤ ∥u∥+ 2L∇h∥xk+1 − xk∥

(24)

≤ ϵ̂k + ϵ/2 ≤ ϵ,

dist
(

0, ∂yH(xk+1, yk+1)
)
≤ ∥v + ϵ(yk+1 − ŷ0)/(2Dy)∥ ≤ ∥v∥+ ϵ∥yk+1 − ŷ0∥/(2Dy)

(11)

≤ ϵ̂k + ϵ/2 ≤ ϵ.

Hence, the output (xk+1, yk+1) of Algorithm 2 is an ϵ-primal-dual stationary point of (8). In
addition, (30) holds due to Lemma 3.

Recall from Lemma 2 that the number of evaluations of ∇h and proximal operator of p and
q performed at iteration k of Algorithm 2 is at most N̂k, respectively, where N̂k is defined in
(65). Also, one can observe from the above proof and the definition of T that |T| ≤ T̂ + 2. It
then follows that the total number of evaluations of ∇h and proximal operator of p and q in

Algorithm 2 is respectively no more than
∑|T|−2

k=0 N̂k. Consequently, to complete the rest of the

proof of Theorem 2, it suffices to show that
∑|T|−2

k=0 N̂k ≤ N̂ , where N̂ is given in (29). Indeed,

by (29), (65) and |T| ≤ T̂ + 2, one has

|T|−2∑
k=0

N̂k

(65)

≤
T̂∑

k=0

(⌈
96
√

2
(
1 + (24L∇h + 4ϵ/Dy)L−1

∇h

)⌉
+ 2
)
×

⌈
max

{
2,

√
DyL∇h

ϵ

}

× log
4 max

{
1

2L∇h
,min

{
Dy

ϵ , 4
α̂L∇h

}}(
δ̂ + 2α̂−1(H∗ −Hlow + ϵDy/4 + L∇hD

2
x)
)

[(3L∇h + ϵ/(2Dy))2/min{L∇h, ϵ/(2Dy)}+ 3L∇h + ϵ/(2Dy)]−2 ϵ̂2k

⌉
+

≤
(⌈

96
√

2
(
1 + (24L∇h + 4ϵ/Dy)L−1

∇h

)⌉
+ 2
)

max

{
2,

√
DyL∇h

ϵ

}

×
T̂∑

k=0

log
4 max

{
1

2L∇h
,min

{
Dy

ϵ , 4
α̂L∇h

}}(
δ̂ + 2α̂−1(H∗ − hlow + ϵDy/4 + L∇hD

2
x)
)

[(3L∇h + ϵ/(2Dy))2/min{L∇h, ϵ/(2Dy)}+ 3L∇h + ϵ/(2Dy)]−2 ϵ̂2k


+

+ 1


≤
(⌈

96
√

2
(
1 + (24L∇h + 4ϵ/Dy)L−1

∇h

)⌉
+ 2
)

max

{
2,

√
DyL∇h

ϵ

}
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×

(
(T̂ + 1)

(
log

4 max
{

1
2L∇h

,min
{

Dy

ϵ , 4
α̂L∇h

}}(
δ̂ + 2α̂−1(H∗ −Hlow + ϵDy/4 + L∇hD

2
x)
)

[(3L∇h + ϵ/(2Dy))2/min{L∇h, ϵ/(2Dy)}+ 3L∇h + ϵ/(2Dy)]−2 ϵ̂20

)
+

+ T̂ + 1 + 2

T̂∑
k=0

log(k + 1)

)
(29)

≤ N̂ ,

where the last inequality is due to (29) and
∑T̂

k=0 log(k + 1) ≤ T̂ log(T̂ + 1). This completes
the proof of Theorem 2.

4.3 Proof of the main results in Subsection 3.1

In this subsection, we provide a proof of our main result presented in Section 3, which is
particularly Theorem 3. Before proceeding, let

Ly(x, y, λy; ρ) = F (x, y)− 1

2ρ

(
∥[λy + ρd(x, y)]+∥2 − ∥λy∥2

)
. (78)

In view of (5), (43) and (78), one can observe that

f∗(x) ≤ max
y
Ly(x, y, λy; ρ) ∀x ∈ X , λy ∈ Rm̃

+ , ρ > 0, (79)

which will be frequently used later.
We next establish several lemmas that will be used to prove Theorem 3 subsequently. The

following lemma establishes an upper bound on the optimal Lagrangian multipliers of problem
(43) and also provides a reformulation of f∗(x).

Lemma 4. Suppose that Assumptions 1 and 5 hold. Let f∗, ∆, r and δd be given in (43), (45)
and Assumption 5, respectively. Then the following statements hold.

(i) ∥λ∗
y∥ ≤ δ−1

d ∆ and λ∗
y ∈ B+

r for all λ∗
y ∈ Λ∗(x) and x ∈ X , where Λ∗(x) denotes the set of

optimal Lagrangian multipliers of problem (43) for any x ∈ X .

(ii) It holds that

f∗(x) = min
λy

max
y

F (x, y)− ⟨λy, d(x, y)⟩+ δRm̃
+

(λy) ∀x ∈ X , (80)

where δRm̃
+

(·) is the indicator function associated with Rm̃
+ .

Proof. (i) Let x ∈ X , λ∗
y ∈ Λ∗(x) be arbitrarily chosen, and ŷx ∈ Y and δd > 0 be given

in Assumption 5(ii). It then follows from Assumption 5(ii) that di(x, ŷx) ≤ −δd for all i. In
addition, let y∗ ∈ Y be such that (y∗, λ∗

y) is a pair of primal-dual optimal solutions of (43).
Then we have

y∗ ∈ Argmax
y

F (x, y)− ⟨λ∗
y, d(x, y)⟩, ⟨λ∗

y, d(x, y∗)⟩ = 0, d(x, y∗) ≤ 0, λ∗
y ≥ 0.

The first relation above yields

F (x, y∗)− ⟨λ∗
y, d(x, y∗)⟩ ≥ F (x, ŷx)− ⟨λ∗

y, d(x, ŷx)⟩.

By this and ⟨λ∗
y, d(x, y∗)⟩ = 0, one has

⟨λ∗
y,−d(x, ŷx)⟩ ≤ F (x, y∗)− F (x, ŷx),

which together with λ∗
y ≥ 0, di(x, ŷx) ≤ −δd for all i, (44) and (45) implies that

δd∥λ∗
y∥1 ≤ ⟨λ∗

y,−d(x, ŷx)⟩ ≤ F (x, y∗)− F (x, ŷx) ≤ ∆,
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Hence, we have ∥λ∗
y∥ ≤ ∥λ∗

y∥1 ≤ δ−1
d ∆. This and (45) imply that λ∗

y ∈ B+
r .

(ii) Recall from Assumption 1 that F (x, ·) and di(x, ·), i = 1, . . . , l, are convex for any given
x ∈ X . Using this, (43), (45) and the first statement of this lemma, we observe that

f∗(x) = max
y

min
λ∈B+

r

F (x, y)− ⟨λ, d(x, y)⟩ ∀x ∈ X .

Also, notice from Assumption 1 that the domain of F (x, ·) is compact for all x ∈ X . By this,
the above equality, and the strong duality, one has

f∗(x) = min
λ∈B+

r

max
y

F (x, y)− ⟨λ, d(x, y)⟩ ∀x ∈ X . (81)

In addition, one can observe from (43) that for all x ∈ X ,

f∗(x) = max
y

min
λy

F (x, y)− ⟨λy, d(x, y)⟩+ δRm̃
+

(λy) ≤ min
λy

max
y

F (x, y)− ⟨λy, d(x, y)⟩+ δRm̃
+

(λy),

where the inequality follows from the weak duality. This together with (81) implies that (80)
holds.

The next lemma provides an upper bound for {λk
y}k∈K.

Lemma 5. Suppose that Assumptions 1 and 5 hold. Let {λk
y}k∈K be generated by Algorithm 3,

Dy and ∆ be defined in (11) and (45), and τ and ρk be given in Algorithm 3. Then we have

ρ−1
k ∥λ

k
y∥2 ≤ ∥λ0

y∥2 +
2(∆ + Dy)

1− τ
∀0 ≤ k ∈ K− 1. (82)

Proof. One can observe from (45) and Algorithm 3 that∆ ≥ 0 and ρ0 ≥ 1 > τ > 0, which imply
that (82) holds for k = 0. It remains to show that (82) holds for all 1 ≤ k ∈ K− 1.

Since (xt+1, yt+1) is an ϵt-primal-dual stationary point of (35) for all 0 ≤ t ∈ K − 1, it
follows from Definition 1 that there exists some u ∈ ∂yL(xt+1, yt+1, λt

x, λ
t
y; ρt) with ∥u∥ ≤ ϵt.

Notice from (5) and (78) that ∂yL(xt+1, yt+1, λt
x, λ

t
y; ρt) = ∂yLy(xt+1, yt+1, λt

y; ρt). Hence, u ∈
∂yLy(xt+1, yt+1, λt

y; ρt). Also, observe from (1), (78) and Assumption 1 that Ly(xt+1, ·, λt
y; ρt)

is concave. Using this, (11), u ∈ ∂yLy(xt+1, yt+1, λt
y; ρt) and ∥u∥ ≤ ϵt, we obtain

Ly(xt+1, y, λt
y; ρt) ≤ Ly(xt+1, yt+1, λt

y; ρt) + ⟨u, y − yt+1⟩
≤ Ly(xt+1, yt+1, λt

y; ρt) + Dyϵt ∀y ∈ Y,

which implies that

max
y
Ly(xt+1, y, λt

y; ρt) ≤ Ly(xt+1, yt+1, λt
y; ρt) + Dyϵt. (83)

By this, (78) and (79), one has

f∗(xt+1)
(79)

≤ max
y
Ly(xt+1, y, λt

y; ρt)

(78)(83)

≤ F (xt+1, yt+1)− 1

2ρt

(
∥[λt

y + ρtd(xt+1, yt+1)]+∥2 − ∥λt
y∥2
)

+ Dyϵt

= F (xt+1, yt+1)− 1

2ρt

(
∥λt+1

y ∥2 − ∥λt
y∥2
)

+ Dyϵt,

where the equality follows from the relation λt+1
y = [λt

y + ρtd(xt+1, yt+1)]+ (see Algorithm 3).
Using the above inequality,(47) and ϵt ≤ 1 (see Algorithm 3), we have

∥λt+1
y ∥2 − ∥λt

y∥2 ≤ 2ρk
(
F (xt+1, yt+1)− f∗(xt+1) + Dyϵt

)
≤ 2ρt(∆ + Dy).
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Summing up this inequality for t = 0, . . . , k − 1 with 1 ≤ k ∈ K− 1 yields

∥λk
y∥2 ≤ ∥λ0

y∥2 + 2(∆ + Dy)
k−1∑
t=0

ρt. (84)

Recall from Algorithm 3 that ρt = ϵ−1
t = τ−t. Then we have

∑k−1
t=0 ρt ≤ ρk−1/(1 − τ). Using

this, (84) and ρk > ρk−1 ≥ 1 (see Algorithm 3), we obtain that for all 1 ≤ k ∈ K− 1,

ρ−1
k ∥λ

k
y∥2 ≤ ρ−1

k

(
∥λ0

y∥2 +
2(∆ + Dy)ρk−1

1− τ

)
≤ ∥λ0

y∥2 +
2(∆ + Dy)

1− τ
.

Hence, the conclusion holds as desired.

The following lemma establishes an upper bound on ∥[d(xk+1, yk+1)]+∥ for 0 ≤ k ∈ K− 1.

Lemma 6. Suppose that Assumptions 1 and 5 hold. Let Dy and ∆ be defined in (11) and
(45), and δd be given in Assumption 5, and τ and ρk be given in Algorithm 3. Suppose that
(xk+1, yk+1, λk+1

y ) is generated by Algorithm 3 for some 0 ≤ k ∈ K− 1 with

ρk ≥
4∥λ0

y∥2

δ2d
+

8(∆ + Dy)

δ2d(1− τ)
. (85)

Then we have
∥[d(xk+1, yk+1)]+∥ ≤ ρ−1

k ∥λ
k+1
y ∥ ≤ 2ρ−1

k δ−1
d (∆ + Dy). (86)

Proof. Suppose that (xk+1, yk+1, λk+1
y ) is generated by Algorithm 3 for some 0 ≤ k ∈ K−1 with

ρk satisfying (85). Since (xk+1, yk+1) is an ϵk-primal-dual stationary point of (35), it follows
from (5) and Definition 1 that

dist
(

0, ∂yF (xk+1, yk+1)−∇yd(xk+1, yk+1)[λk
y + ρkd(xk+1, yk+1)]+

)
≤ ϵk.

Besides, notice from Algorithm 3 that λk+1
y = [λk

y +ρkd(xk+1, yk+1)]+. Hence, there exists some

u ∈ ∂yF (xk+1, yk+1) such that

∥u−∇yd(xk+1, yk+1)λk+1
y ∥ ≤ ϵk. (87)

By Assumption 5(ii), there exists some ŷk+1 ∈ Y such that −di(xk+1, ŷk+1) ≥ δd for all i. Notice
that ⟨λk+1

y , λk
y + ρkd(xk+1, yk+1)⟩ = ∥[λk

y + ρkd(xk+1, yk+1)]+∥2 ≥ 0, which implies that

−⟨λk+1
y , ρ−1

k λk
y⟩ ≤ ⟨λk+1

y , d(xk+1, yk+1)⟩. (88)

Using these and (87), we have

F (xk+1, ŷk+1)− F (xk+1, yk+1) + δd∥λk+1
y ∥1 − ρ−1

k ⟨λ
k+1
y , λk

y⟩
≤ F (xk+1, ŷk+1)− F (xk+1, yk+1)− ⟨λk+1

y , ρ−1
k λk

y + d(xk+1, ŷk+1)⟩
(88)

≤ F (xk+1, ŷk+1)− F (xk+1, yk+1) + ⟨λk+1
y , d(xk+1, yk+1)− d(xk+1, ŷk+1))⟩

≤ ⟨u, ŷk+1 − yk+1⟩+ ⟨∇yd(xk+1, yk+1)λk+1
y , yk+1 − ŷk+1⟩

= ⟨u−∇yd(xk+1, yk+1)λk+1
y , yk+1 − ŷk+1⟩ ≤ Dyϵk, (89)

where the first inequality is due to λk+1
y ≥ 0 and −di(xk+1, ŷk+1) ≥ δd for all i, the third

inequality follows from u ∈ ∂yF (xk+1, yk+1), λk+1
y ≥ 0, the concavity of F (xk+1, ·) and the

convexity of di(x
k+1, ·), and the last inequality is due to (11) and (87).
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In view of (44) and (89), one has

Dyϵk + ∆
(44)

≥ Dyϵk − F (xk+1, ŷk+1) + F (xk+1, yk+1)

(89)

≥ δd∥λk+1
y ∥1 − ρ−1

k ⟨λ
k+1
y , λk

y⟩ ≥ (δd − ρ−1
k ∥λ

k
y∥)∥λk+1

y ∥, (90)

where the last inequality is due to ∥λk+1
y ∥1 ≥ ∥λk+1

y ∥. In addition, it follows from (82) and (85)
that

δd − ρ−1
k ∥λ

k
y∥

(82)

≥ δd −

√
ρ−1
k

(
∥λ0

y∥2 +
2(Fhi − f∗

low + Dy)

1− τ

)
(85)

≥ 1

2
δd,

which together with (90) yields

1

2
δd∥λk+1

y ∥ ≤ (δd − ρ−1
k ∥λ

k
y∥)∥λk+1

y ∥
(90)

≤ Dyϵk + ∆.

The conclusion then follows from this, ϵk ≤ 1, and the relations

∥[d(xk+1, yk+1)]+∥ ≤ ρ−1
k ∥[λ

k
y + ρkd(xk+1, yk+1)]+∥ = ρ−1

k ∥λ
k+1
y ∥.

The next lemma provides an upper bound on the amount of violation of the conditions in
(39), (40) and (42) at (x, y, λx, λy) = (xk+1, yk+1, λ̃k+1

x , λk+1
y ) for 0 ≤ k ∈ K− 1, where λ̃k+1

x is
given below.

Lemma 7. Suppose that Assumptions 1 and 5 hold. Let Dy and ∆ be defined in (11) and (45),
and δd be given in Assumption 5, and τ , ϵk, ρk and λ0

y be given in Algorithm 3. Suppose that

(xk+1, yk+1, λk+1
x , λk+1

y ) is generated by Algorithm 3 for some 0 ≤ k ∈ K− 1 with

ρk ≥
4∥λ0

y∥2

δ2dτ
+

8(∆ + Dy)

δ2dτ(1− τ)
. (91)

Let
λ̃k+1
x = [λk

x + ρkc(x
k+1)]+. (92)

Then we have

dist(0, ∂xF (xk+1, yk+1) +∇c(xk+1)λ̃k+1
x −∇xd(xk+1, yk+1)λk+1

y ) ≤ ϵk, (93)

dist
(

0, ∂yF (xk+1, yk+1)−∇yd(xk+1, yk+1)λk+1
y

)
≤ ϵk, (94)

∥[d(xk+1, yk+1)]+∥ ≤ 2ρ−1
k δ−1

d (∆ + Dy), (95)

|⟨λk+1
y , d(xk+1, yk+1)⟩| ≤ 2ρ−1

k δ−1
d (∆ + Dy) max{∥λ0

y∥, 2δ−1
d (∆ + Dy)}. (96)

Proof. Suppose that (xk+1, yk+1, λk+1
x , λk+1

y ) is generated by Algorithm 3 for some 0 ≤ k ∈ K−1

with ρk satisfying (91). Since (xk+1, yk+1) is an ϵk-primal-dual stationary point of (35), it then
follows from Definition 1 that

dist
(
0, ∂xL(xk+1, yk+1, λk

x, λ
k
y; ρk)

)
≤ ϵk, dist

(
0, ∂yL(xk+1, yk+1, λk

x, λ
k
y; ρk)

)
≤ ϵk. (97)

Observe from Algorithm 3 that λk+1
y = [λk

y + ρkd(xk+1, yk+1)]+. In view of this, (5) and (92),
one has

∂xL(xk+1, yk+1, λk
x, λ

k
y; ρk) = ∂xF (xk+1, yk+1) +∇c(xk+1)[λk

x + ρkc(x
k+1)]+

−∇xd(xk+1, yk+1)[λk
y + ρkd(xk+1, yk+1)]+

= ∂xF (xk+1, yk+1) +∇c(xk+1)λ̃k+1
x −∇xd(xk+1, yk+1)λk+1

y ,

∂yL(xk+1, yk+1, λk
x, λ

k
y; ρk) = ∂yF (xk+1, yk+1)−∇yd(xk+1, yk+1)λk+1

y .
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These relations together with (97) imply that (93) and (94) hold.
Notice from Algorithm 3 that 0 < τ < 1, which together with (91) implies that (85) holds

for ρk. It then follows that (86) holds, which immediately yields (95) and

∥λk+1
y ∥ ≤ 2δ−1

d (∆ + Dy). (98)

Claim that
∥λk

y∥ ≤ max{∥λ0
y∥, 2δ−1

d (∆ + Dy)}. (99)

Indeed, (99) clearly holds if k = 0. We now assume that k > 0. Notice from Algorithm 3 that
ρk−1 = τρk, which together with (91) implies that (85) holds with k replaced by k− 1. By this
and Lemma 6 with k replaced by k− 1, one can conclude that ∥λk

y∥ ≤ 2δ−1
d (∆ +Dy) and hence

(99) holds.
We next show that (96) holds. Indeed, by λk+1

y ≥ 0, (88), (95), (98) and (99), one has

⟨λk+1
y , d(xk+1, yk+1)⟩ ≤ ⟨λk+1

y , [d(xk+1, yk+1)]+⟩ ≤ ∥λk+1
y ∥∥[d(xk+1, yk+1)]+∥

(95)(98)

≤ 4ρ−1
k δ−2

d (∆ + Dy)2,

⟨λk+1
y , d(xk+1, yk+1)⟩

(88)

≥ ⟨λk+1
y ,−ρ−1

k λk
y⟩ ≥ −ρ−1

k ∥λ
k+1
y ∥∥λk

y∥
≥ −2ρ−1

k δ−1
d (∆ + Dy) max{∥λ0

y∥, 2δ−1
d (∆ + Dy)}.

These relations imply that (96) holds.

The following lemma provides an upper bound on maxy L(xkinit, y, λ
k
x, λ

k
y; ρk) for 0 ≤ k ∈

K−1, which will subsequently be used to derive an upper bound for maxy L(xk+1, y, λk
x, λ

k
y; ρk).

Lemma 8. Suppose that Assumptions 1, 4 and 5 hold. Let {(λk
x, λ

k
y)}k∈K be generated by

Algorithm 3, L, Dy, Fhi and ∆ be defined in (5), (11), (44) and (45), and τ , ρk, Λ and xkinit be
given in Algorithm 3. Then for all 0 ≤ k ∈ K− 1, we have

max
y
L(xkinit, y, λ

k
x, λ

k
y; ρk) ≤ ∆ + Fhi + Λ +

1

2
(1 + ∥λ0

y∥2) +
∆ + Dy

1− τ
. (100)

Proof. In view of (32), (34), (44) and ∥λk
x∥ ≤ Λ (see Algorithm 3), one has

Lx(xkinit, y
k, λk

x; ρk)
(34)

≤ Lx(xnf , y
k, λk

x; ρk)
(32)
= F (xnf , y

k) +
1

2ρk

(
∥[λk

x + ρkc(xnf )]+∥2 − ∥λk
x∥2
)

≤ F (xnf , y
k) +

1

2ρk

(
(∥λk

x∥+ ρk∥[c(xnf )]+∥)2 − ∥λk
x∥2
)

= F (xnf , y
k) + ∥λk

x∥∥[c(xnf )]+∥+
1

2
ρk∥[c(xnf )]+∥2

(44)

≤ Fhi + Λ∥[c(xnf )]+∥+
1

2
ρk∥[c(xnf )]+∥2. (101)

In addition, one can observe from Algorithm 3 that ϵk > τε for all 0 ≤ k ∈ K − 1. By this
and the choice of ρk in Algorithm 3, we obtain that ρk = ϵ−1

k < τ−1ε−1 for all 0 ≤ k ∈ K − 1.
It then follows from this, (5), (32), (45), (82), (101), ∥[c(xnf )]+∥ ≤

√
ε ≤ 1, and the Lipschitz
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continuity of F that

max
y
L(xkinit, y, λ

k
x, λ

k
y; ρk)

(5)(32)
= max

y

{
Lx(xkinit, y, λ

k
x; ρk)− 1

2ρk

(
∥[λk

y + ρkd(xkinit, y)]+∥2 − ∥λk
y∥2
)}

≤ max
y

{
Lx(xkinit, y, λ

k
x; ρk) +

1

2ρk
∥λk

y∥2
}

(32)
= max

y

{
F (xkinit, y)− F (xkinit, y

k) + Lx(xkinit, y
k, λk

x; ρk) +
1

2ρk
∥λk

y∥2
}

(45)

≤ ∆ + Lx(xkinit, y
k, λk

x; ρk) +
1

2ρk
∥λk

y∥2

≤ ∆ + Fhi + Λ∥[c(xnf )]+∥+
1

2
ρk∥[c(xnf )]+∥2 +

1

2
∥λ0

y∥2 +
∆ + Dy

1− τ

≤ ∆ + Fhi + Λ +
1

2
(τ−1 + ∥λ0

y∥2) +
∆ + Dy

1− τ
,

where the third inequality follows from (82) and (101), and the last inequality follows from
ρk < τ−1ε−1 and ∥[c(xnf )]+∥ ≤

√
ε ≤ 1.

The next lemma shows that an approximate primal-dual stationary point of (35) is found at
each iteration of Algorithm 3, and also provides an estimate of operation complexity for finding
it.

Lemma 9. Suppose that Assumptions 1, 4 and 5 hold. Let Dx, Dy, Lk, Fhi and ∆ be defined
in (11), (36), (44) and (45), τ , ϵk, ρk, Λ and λ0

y be given in Algorithm 3, and

αk = min

{
1,
√

4ϵk/(DyLk)

}
, (102)

δk = (2 + α−1
k )LkD

2
x + max {ϵk/Dy, αkLk/4}D2

y, (103)

Mk =
16 max {1/(2Lk),min {Dy/ϵk, 4/(αkLk)}} ρk

[(3Lk + ϵk/(2Dy))2/min{Lk, ϵk/(2Dy)}+ 3Lk + ϵk/(2Dy)]−2 ϵ2k

×

(
δk + 2α−1

k

(
∆ +

Λ2

2ρk
+

3

2
∥λ0

y∥2 +
3(∆ + Dy)

1− τ
+ ρkd

2
hi +

ϵkDy

4
+ LkD

2
x

))
(104)

Tk =

⌈
16

(
2∆ + Λ +

1

2
(τ−1 + ∥λ0

y∥2) +
∆ + Dy

1− τ
+

Λ2

2ρk
+

ϵkDy

4

)
Lkϵ

−2
k

+ 8(1 + 4D2
yL

2
kϵ

−2
k )ρ−1

k − 1

⌉
+

, (105)

Nk =
(⌈

96
√

2
(
1 + (24Lk + 4ϵk/Dy)L−1

k

)⌉
+ 2
)

max

{
2,
√
DyLkϵ

−1
k

}
× ((Tk + 1)(logMk)+ + Tk + 1 + 2Tk log(Tk + 1)) . (106)

Then for all 0 ≤ k ∈ K − 1, Algorithm 3 finds an ϵk-primal-dual stationary point (xk+1, yk+1)
of problem (35) satisfying

max
y
L(xk+1, y, λk

x, λ
k
y; ρk) ≤ ∆ + Fhi + Λ +

1

2
(τ−1 + ∥λ0

y∥2) +
∆ + Dy

1− τ

+
ϵkDy

4
+

1

2ρk

(
L−1
k ϵ2k + 4D2

yLk

)
. (107)

Moreover, the total number of evaluations of ∇f , ∇c, ∇d and proximal operator of p and q
performed in iteration k of Algorithm 3 is no more than Nk, respectively.
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Proof. Observe from (1) and (5) that problem (35) can be viewed as

min
x

max
y
{h(x, y) + p(x)− q(y)},

where

h(x, y) = f(x, y) +
1

2ρk

(
∥[λk

x + ρkc(x)]+∥2 − ∥λk
x∥2
)
− 1

2ρk

(
∥[λk

y + ρkd(x, y)]+∥2 − ∥λk
y∥2
)
.

Notice that

∇xh(x, y) = ∇xf(x, y) +∇c(x)[λk
x + ρkc(x)]+ +∇xd(x, y)[λk

y + ρkd(x, y)]+,

∇yh(x, y) = ∇yf(x, y) +∇yd(x, y)[λk
y + ρkd(x, y)]+.

It follows from Assumption 1(iii) that

∥∇c(x)∥ ≤ Lc, ∥∇d(x, y)∥ ≤ Ld ∀(x, y) ∈ X × Y .

In view of the above relations, (33) and Assumption 1, one can observe that ∇c(x)[λk
x+ρkc(x)]+

is (ρkL
2
c + ρkchiL∇c + ∥λk

x∥L∇c)-Lipschitz continuous on X , and ∇d(x, y)[λk
y + ρkd(x, y)]+ is

(ρkL
2
d + ρkdhiL∇d + ∥λk

y∥L∇d)-Lipschitz continuous on X × Y . Using these and the fact that
∇f(x, y) is L∇f -Lipschitz continuous on X ×Y , we can see that h(x, y) is Lk-smooth on X ×Y
for all 0 ≤ k ∈ K− 1, where Lk is given in (36). Consequently, it follows from Theorem 2 that
Algorithm 2 can be suitably applied to problem (35) for finding an ϵk-primal-dual stationary
point (xk+1, yk+1) of it.

In addition, by (5),(47), (78), (79) and ∥λk
x∥ ≤ Λ (see Algorithm 3), one has

min
x

max
y
L(x, y, λk

x, λ
k
y; ρk)

(5)(78)
= min

x
max
y

{
Ly(x, y, λk

y; ρk) +
1

2ρk

(
∥[λk

x + ρkc(x)]+∥2 − ∥λk
x∥2
)}

(79)

≥ min
x

{
f∗(x) +

1

2ρk

(
∥[λk

x + ρkc(x)]+∥2 − ∥λk
x∥2
)} (47)

≥ Flow −
1

2ρk
∥λk

x∥2 ≥ Flow −
Λ2

2ρk
.

(108)

Let (x∗, y∗) be an optimal solution of (1). It then follows that c(x∗) ≤ 0. Using this, (5), (44)
and (82), we obtain that

min
x

max
y
L(x, y, λk

x, λ
k
y; ρk) ≤ max

y
L(x∗, y, λk

x, λ
k
y; ρk)

(5)
= max

y

{
F (x∗, y) +

1

2ρk

(
∥[λk

x + ρkc(x
∗)]+∥2 − ∥λk

x∥2
)
− 1

2ρk

(
∥[λk

y + ρkd(x∗, y)]+∥2 − ∥λk
y∥2
)}

≤ max
y

{
F (x∗, y)− 1

2ρk

(
∥[λk

y + ρkd(x∗, y)]+∥2 − ∥λk
y∥2
)}

(44)

≤ Fhi +
1

2ρk
∥λk

y∥2
(82)

≤ Fhi +
1

2
∥λ0

y∥2 +
∆ + Dy

1− τ
, (109)

where the second inequality is due to c(x∗) ≤ 0. Moreover, it follows from this, (5), (33), (44),
(82), λk

y ∈ Rm̃
+ and ∥λk

x∥ ≤ Λ that

min
(x,y)∈X×Y

L(x, y, λk
x, λ

k
y; ρk)

(5)

≥ min
(x,y)∈X×Y

{
F (x, y)− 1

2ρk
∥λk

x∥2 −
1

2ρk
∥[λk

y + ρkd(x, y)]+∥2
}

≥ min
(x,y)∈X×Y

{
F (x, y)− 1

2ρk
∥λk

x∥2 −
1

2ρk

(
∥λk

y∥+ ρk∥[d(x, y)]+∥
)2}

≥ min
(x,y)∈X×Y

{
F (x, y)− 1

2ρk
∥λk

x∥2 − ρ−1
k ∥λ

k
y∥2 − ρk∥[d(x, y)]+∥2

}
≥ Flow −

Λ2

2ρk
− ∥λ0

y∥2 −
2(∆ + Dy)

1− τ
− ρkd

2
hi, (110)
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where the second inequality is due to λk
y ∈ Rm̃

+ and the last inequality is due to (33), (44), (82)

and ∥λk
x∥ ≤ Λ.

To complete the rest of the proof, let

H(x, y) = L(x, y, λk
x, λ

k
y; ρk), H∗ = min

x
max
y
L(x, y, λk

x, λ
k
y; ρk), (111)

Hlow = min
(x,y)∈X×Y

L(x, y, λk
x, λ

k
y; ρk). (112)

In view of these, (100), (108), (109), (110), we obtain that

max
y

H(xkinit, y)
(100)

≤ ∆ + Fhi + Λ +
1

2
(τ−1 + ∥λ0

y∥2) +
∆ + Dy

1− τ
,

Flow −
Λ2

2ρk

(108)

≤ H∗
(109)

≤ Fhi +
1

2
∥λ0

y∥2 +
∆ + Dy

1− τ
,

Hlow

(110)

≥ Flow −
Λ2

2ρk
− ∥λ0

y∥2 −
2(∆ + Dy)

1− τ
− ρkd

2
hi.

Using these, (45), and Theorem 2 with x̂0 = xkinit, ϵ = ϵk, ϵ̂0 = ϵk/(2
√
ρk), L∇h = Lk, and

H, H∗, Hlow given in (111) and (112), we can conclude that Algorithm 2 performs at most
Nk evaluations of ∇f , ∇c, ∇d and proximal operator of p and q for finding an ϵk-primal-dual
stationary point of problem (35) satisfying (107).

The following lemma provides an upper bound on the violation of the conditions in (41) at
(x, λx) = (xk+1, λ̃k+1

x ) for 0 ≤ k ∈ K− 1, where λ̃k+1
x is given below.

Lemma 10. Suppose that Assumptions 1, 4 and 5 hold. Let Dy, ∆ and L be defined in (11),
(45) and (48), LF , Lc, δc and θ be given in Assumption 5, and τ , ρk, Λ and λ0

y be given in

Algorithm 3. Suppose that (xk+1, λk+1
x ) is generated by Algorithm 3 for some 0 ≤ k ∈ K − 1

with

ρk ≥ max

{
θ−1Λ, θ−2

{
4∆ + 2Λ + τ−1 + ∥λ0

y∥2 +
2(∆ + Dy)

1− τ
+

Dy

2
+ L−2

c + 4D2
yL + Λ2

}
,

4∥λ0
y∥2

δ2dτ
+

8(∆ + Dy)

δ2dτ(1− τ)

}
. (113)

Let
λ̃k+1
x = [λk

x + ρkc(x
k+1)]+. (114)

Then we have

∥[c(xk+1)]+∥ ≤ ρ−1
k δ−1

c

(
LF + 2Ldδ

−1
d (∆ + Dy) + 1

)
, (115)

|⟨λ̃k+1
x , c(xk+1)⟩| ≤ ρ−1

k δ−1
c (LF + 2Ldδ

−1
d (∆ + Dy) + 1) max{δ−1

c (LF + 2Ldδ
−1
d (∆ + Dy) + 1),Λ}.

(116)

Proof. One can observe from (5),(47), (78) and (79) that

max
y
L(xk+1, y, λk

x, λ
k
y; ρk) = max

y
Ly(xk+1, y, λk

y; ρk) +
1

2ρk

(
∥[λk

x + ρkc(x
k+1)]+∥2 − ∥λk

x∥2
)

(79)

≥ f∗(xk+1) +
1

2ρk

(
∥[λk

x + ρkc(x
k+1)]+∥2 − ∥λk

x∥2
)

(47)

≥ Flow +
1

2ρk

(
∥[λk

x + ρkc(x
k+1)]+∥2 − ∥λk

x∥2
)
.
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By this inequality, (107) and ∥λk
x∥ ≤ Λ, one has

∥[λk
x + ρkc(x

k+1)]+∥2 ≤ 2ρk max
y
L(xk+1, y, λk

x, λ
k
y; ρk)− 2ρkFlow + ∥λk

x∥2

≤ 2ρk max
y
L(xk+1, y, λk

x, λ
k
y; ρk)− 2ρkFlow + Λ2

(107)

≤ 2ρk∆ + 2ρkFhi + 2ρkΛ + ρk(τ−1 + ∥λ0
y∥2) +

2ρk(∆ + Dy)

1− τ
+

ρkϵkDy

2

+ L−1
k ϵ2k + 4D2

yLk − 2ρkFlow + Λ2.

This together with (45) and ρ2k∥[c(xk+1)]+∥2 ≤ ∥[λk
x + ρkc(x

k+1)]+∥2 implies that

∥[c(xk+1)]+∥2 ≤ ρ−1
k

(
4∆ + 2Λ + τ−1 + ∥λ0

y∥2 +
2(∆ + Dy)

1− τ
+

ϵkDy

2

)
+ ρ−2

k

(
L−1
k ϵ2k + 4D2

yLk + Λ2
)
. (117)

In addition, we observe from (36), (48), (82), ρk ≥ 1 and ∥λk
x∥ ≤ Λ that for all 0 ≤ k ≤ K,

ρkL
2
c ≤ Lk = L∇f + ρkL

2
c + ρkchiL∇c + ∥λk

x∥L∇c + ρkL
2
d + ρkdhiL∇d + ∥λk

y∥L∇d

≤ L∇f + ρkL
2
c + ρkchiL∇c + ΛL∇c + ρkL

2
d + ρkdhiL∇d

+ L∇d

√
ρk

(
∥λ0

y∥2 +
2(∆ + Dy)

1− τ

)
≤ ρkL. (118)

Using this relation, (113), (117), ρk ≥ 1 and ϵk ≤ 1, we have

∥[c(xk+1)]+∥2 ≤ ρ−1
k

(
4∆ + 2Λ + τ−1 + ∥λ0

y∥2 +
2(∆ + Dy)

1− τ
+

ϵkDy

2

)
+ ρ−2

k

(
(ρkL

2
c)

−1ϵ2k + 4ρkD
2
yL + Λ2

)
≤ ρ−1

k

(
4∆ + 2Λ + τ−1 + ∥λ0

y∥2 +
2(∆ + Dy)

1− τ
+

Dy

2

)
+ ρ−1

k

(
L−2
c + 4D2

yL + Λ2
) (113)

≤ θ2,

which together with (37) implies that xk+1 ∈ F(θ).
It follows from xk+1 ∈ F(θ) and Assumption 5(i) that there exists some v ∈ TX (xk+1) such

that ∥v∥ = 1 and vT∇ci(xk+1) ≤ −δc for all i ∈ A(xk+1; θ), where A(xk+1; θ) is defined in
(37). Let Ā(xk+1; θ) = {1, 2, . . . , ñ}\A(xk+1; θ). Notice from (37) that ci(x

k+1) < −θ for all
i ∈ Ā(xk+1; θ). In addition, observe from (113) that ρk ≥ θ−1Λ. Using these and ∥λk

x∥ ≤ Λ, we
obtain that (λk

x + ρkc(x
k+1))i ≤ Λ − ρkθ ≤ 0 for all i ∈ Ā(xk+1; θ). By this and the fact that

vT∇ci(xk+1) ≤ −δc for all i ∈ A(xk+1; θ), one has

vT∇c(xk+1)λ̃k+1
x

(114)
= vT∇c(xk+1)[λk

x + ρkc(x
k+1)]+ =

ñ∑
i=1

vT∇ci(xk+1)([λk
x + ρkc(x

k+1)]+)i

=
∑

i∈A(xk+1;θ)

vT∇ci(xk+1)([λk
x + ρkc(x

k+1)]+)i +
∑

i∈Ā(xk+1;θ)

vT∇ci(xk+1)([λk
x + ρkc(x

k+1)]+)i

≤ −δc
∑

i∈A(xk+1;θ)

([λk
x + ρkc(x

k+1)]+)i = −δc
ñ∑

i=1

([λk
x + ρkc(x

k+1)]+)i
(114)
= −δc∥λ̃k+1

x ∥1. (119)

Since (xk+1, yk+1) is an ϵk-primal-dual stationary point of (35), it follows from (5) and (97)
that there exists some s ∈ ∂xF (xk+1, yk+1) such that

∥s +∇c(xk+1)[λk
x + ρkc(x

k+1)]+ −∇xd(xk+1, yk+1)[λk
y + ρkd(xk+1, yk+1)]+∥ ≤ ϵk,
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which along with (114) and λk+1
y = [λk

y + ρxd(xk+1, yk+1)]+ implies that

∥s +∇c(xk+1)λ̃k+1
x −∇xd(xk+1, yk+1)λk+1

y ∥ ≤ ϵk. (120)

In addition, since v ∈ TX (xk+1), there exist {zt} ⊂ X and {αt} ↓ 0 such that zt = xk+1 +αtv +
o(αt) for all t. Also, since s ∈ ∂xF (xk+1, yk+1), one has s = ∇xf(xk+1, yk+1) + sp for some
sp ∈ ∂p(xk+1). Using these and Assumptions 1 and 5(iii), we have

⟨s, v⟩ = ⟨∇xf(xk+1, yk+1), v⟩+ lim
t→∞

α−1
t ⟨sp, zt − xk+1⟩

= lim
t→∞

α−1
t (f(zt, yk+1)− f(xk+1, yk+1)) + lim

t→∞
α−1
t ⟨sp, zt − xk+1⟩

≤ lim
t→∞

α−1
t (f(zt, yk+1)− f(xk+1, yk+1)) + lim

t→∞
α−1
t (p(zt)− p(xk+1))

= lim
t→∞

α−1
t (F (zt, yk+1)− F (xk+1, yk+1)) ≤ LF lim

t→∞
α−1
t ∥zt − xk+1∥ = LF , (121)

where the second equality is due to the differentiability of f , the first inequality follows from the
convexity of p and sp ∈ ∂p(xk+1), the second inequality is due to the LF -Lipschitz continuity
of F (·, yk+1), and the last equality follows from limt→∞ α−1

t ∥zt − xk+1∥ = ∥v∥ = 1.
By (119), (120), (121), and ∥v∥ = 1, one has

ϵk ≥ ∥s +∇c(xk+1)λ̃k+1
x −∇xd(xk+1, yk+1)λk+1

y ∥ · ∥v∥
≥ ⟨s +∇c(xk+1)λ̃k+1

x −∇xd(xk+1, yk+1)λk+1
y ,−v⟩

= −⟨s−∇xd(xk+1, yk+1)λk+1
y , v⟩ − vT∇c(xk+1)λ̃k+1

x

(119)

≥ −⟨s, v⟩ − ∥∇xd(xk+1, yk+1)∥∥λk+1
y ∥∥v∥+ δc∥λ̃k+1

x ∥1
≥ −LF − Ld∥λk+1

y ∥+ δc∥λ̃k+1
x ∥1,

where the last inequality is due to (121), ∥v∥ = 1 and Assumption 1(iii). Notice from (113)
that (85) holds. It then follows from (86) that ∥λk+1

y ∥ ≤ 2δ−1
d (∆ + Dy), which together with

the above inequality and ϵk ≤ 1 yields

∥λ̃k+1
x ∥ ≤ ∥λ̃k+1

x ∥1 ≤ δ−1
c (LF + Ld∥λk+1

y ∥+ ϵk) ≤ δ−1
c (LF + 2Ldδ

−1
d (∆ + Dy) + 1). (122)

By this and (114), one can observe that

∥[c(xk+1)]+∥ ≤ ρ−1
k ∥[λ

k
x + ρkc(x

k+1)]+∥ = ρ−1
k ∥λ̃

k+1
x ∥ ≤ ρ−1

k δ−1
c (LF + 2Ldδ

−1
d (∆ + Dy) + 1).

Hence, (115) holds as desired.
We next show that (116) holds. Indeed, by λ̃k+1

x ≥ 0, (115) and (122), one has

⟨λ̃k+1
x , c(xk+1)⟩ ≤ ⟨λ̃k+1

x , [c(xk+1)]+⟩ ≤ ∥λ̃k+1
x ∥∥[c(xk+1)]+∥

(115)(122)

≤ ρ−1
k δ−2

c (LF + 2Ldδ
−1
d (∆ + Dy) + 1)2. (123)

Using a similar argument as for the proof of (88), we have

−⟨λ̃k+1
x , ρ−1

k λk
x⟩ ≤ ⟨λ̃k+1

x , c(xk+1)⟩,

which along with ∥λk
x∥ ≤ Λ and (122) yields

⟨λ̃k+1
x , c(xk+1)⟩ ≥ −ρ−1

k ∥λ̃
k+1
x ∥∥λk

x∥ ≥ −ρ−1
k δ−1

c (LF + 2Ldδ
−1
d (∆ + Dy) + 1)Λ.

The relation (116) then follows from this and (123).

We are now ready to prove Theorem 3 using Lemmas 7, 9 and 10.
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Proof of Theorem 3. (i) Observe from the definition of K in (46) and ϵk = τk that K is the
smallest nonnegative integer such that ϵK ≤ ε. Hence, Algorithm 3 terminates and outputs
(xK+1, yK+1) after K + 1 outer iterations. It follows from these and ρk = ϵ−1

k that ϵK ≤ ε and
ρK ≥ ε−1. By this and (53), one can see that (91) and (113) holds for k = K. It then follows
from Lemmas 7 and 10 that (54)-(59) hold.

(ii) Let K and N be given in (46) and (60). Recall from Lemma 9 that the number of
evaluations of ∇f , ∇c, ∇d, proximal operator of p and q performed by Algorithm 2 at iteration
k of Algorithm 3 is at most Nk, where Nk is given in (106). By this and statement (i) of
this theorem, one can observe that the total number of evaluations of ∇f , ∇c, ∇d, proximal
operator of p and q performed in Algorithm 3 is no more than

∑K
k=0Nk, respectively. As a

result, to prove statement (ii) of this theorem, it suffices to show that
∑K

k=0Nk ≤ N . Recall
from (118) and Algorithm 3 that ρkL

2
c ≤ Lk ≤ ρkL and ρk ≥ 1 ≥ ϵk. Using these, (49), (50),

(51), (102), (103), (104) and (105), we obtain that

1 ≥ αk ≥ min

{
1,
√

4ϵk/(ρkDyL)

}
≥ ϵ

1/2
k ρ

−1/2
k α, (124)

δk ≤ (2 + ϵ
−1/2
k ρ

1/2
k α−1)ρkLD

2
x + max{1/Dy, ρkL/4}D2

y ≤ ϵ
−1/2
k ρ

3/2
k δ, (125)

Mk ≤
16 max

{
1/(2ρkL

2
c), 4/(ϵ

1/2
k ρ

−1/2
k αρkL

2
c)
}
ρk

[(3ρkL + 1/(2Dy))2/min{ρkL2
c , ϵk/(2Dy)}+ 3ρkL + 1/(2Dy)]−2 ϵ2k

×

(
ϵ
−1/2
k ρ

3/2
k δ

+ 2ϵ
−1/2
k ρ

1/2
k α−1

(
∆ +

Λ2

2
+

3

2
∥λ0

y∥2 +
3(∆ + Dy)

1− τ
+ ρkd

2
hi +

Dy

4
+ ρkLD

2
x

))
(126)

≤
16ϵ

−1/2
k ρ

−1/2
k max

{
1/(2L2

c), 4/(αL2
c)
}
ρk

ϵ2kρ
−4
k [(3L + 1/(2Dy))2/min{L2

c , 1/(2Dy)}+ 3L + 1/(2Dy)]−2 ϵ2k
× (ϵ

−1/2
k ρ

3/2
k )

×

(
δ + 2α−1

(
∆ +

Λ2

2
+

3

2
∥λ0

y∥2 +
3(∆ + Dy)

1− τ
+ d2hi +

Dy

4
+ LD2

x

))
≤ ϵ−5

k ρ6kM,

Tk ≤

⌈
16

(
2∆ + Λ +

1

2
(τ−1 + ∥λ0

y∥2) +
∆ + Dy

1− τ
+

Λ2

2
+

Dy

4

)
ϵ−2
k ρkL

+ 8(1 + 4D2
yρ

2
kL

2ϵ−2
k )ρ−1

k − 1

⌉
+

≤ ϵ−2
k ρkT,

where (126) follows from (49), (50), (51), (124), (125), ρkL
2
c ≤ Lk ≤ ρkL, and ρk ≥ 1 ≥ ϵk. By

the above inequalities, (106), (118), T ≥ 1 and ρk ≥ 1 ≥ ϵk, one has

K∑
k=0

Nk ≤
K∑
k=0

(⌈
96
√

2
(
1 + (24ρkL + 4/Dy) /(ρkL

2
c)
)⌉

+ 2
)
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{
2,
√
DyρkLϵ

−1
k

}
×
(
(ϵ−2

k ρkT + 1)(log(ϵ−5
k ρ6kM))+ + ϵ−2

k ρkT + 1 + 2ϵ−2
k ρkT log(ϵ−2

k ρkT + 1)
)

≤
K∑
k=0

(⌈
96
√

2
(
1 + (24L + 4/Dy) /L2

c

)⌉
+ 2
)
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{

2,
√

DyL
}
ϵ
−1/2
k ρ

1/2
k

× ϵ−2
k ρk

(
(T + 1)(log(ϵ−5

k ρ6kM))+ + T + 1 + 2T log(ϵ−2
k ρkT + 1)

)
≤

K∑
k=0

(⌈
96
√

2
(
1 + (24L + 4/Dy) /L2

c

)⌉
+ 2
)

max
{

2,
√

DyL
}

× ϵ
−5/2
k ρ

3/2
k T

(
2(log(ϵ−5

k ρ6kM))+ + 2 + 2 log(2ϵ−2
k ρkT )

)
≤

K∑
k=0

(⌈
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√

2
(
1 + (24L + 4/Dy) /L2
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+ 2
)
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{

2,
√
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}
T
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× ϵ
−5/2
k ρ

3/2
k (14 log ρk − 14 log ϵk + 2(logM)+ + 2 + 2 log(2T )) , (127)

By the definition of K in (46), one has τK ≥ τε. Also, notice from Algorithm 3 that ρk = τ−k.
It then follows from these, (60) and (127) that

K∑
k=0
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K∑
k=0

(⌈
96
√

2
(
1 + (24L + 4/Dy) /L2

c

)⌉
+ 2
)

max
{

2,
√
DyL

}
T
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k (28 log(1/ϵk) + 2(logM)+ + 2 + 2 log(2T ))

=
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96
√

2
(
1 + (24L + 4/Dy) /L2

c

)⌉
+ 2
)

max
{

2,
√

DyL
}
T

×
K∑
k=0

τ−4k (28k log(1/τ) + 2(logM)+ + 2 + 2 log(2T ))

≤
(⌈

96
√

2
(
1 + (24L + 4/Dy) /L2

c

)⌉
+ 2
)
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{

2,
√

DyL
}
T

×
K∑
k=0

τ−4k (28K log(1/τ) + 2(logM)+ + 2 + 2 log(2T ))

≤
(⌈

96
√

2
(
1 + (24L + 4/Dy) /L2

c

)⌉
+ 2
)

max
{

2,
√

DyL
}
T

× τ−4K(1− τ4)−1 (28K log(1/τ) + 2(logM)+ + 2 + 2 log(2T ))

≤
(⌈

96
√

2
(
1 + (24L + 4/Dy) /L2

c
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+ 2
)

max
{

2,
√

DyL
}
T (1− τ4)−1

× τ−4ε−4 (28K log(1/τ) + 2(logM)+ + 2 + 2 log(2T ))
(60)
= N,

where the second last inequality is due to
∑K

k=0 τ
−4k ≤ τ−4K/(1− τ4), and the last inequality

is due to τK ≥ τε. Hence, statement (ii) of this theorem holds as desired.

References

[1] K. Antonakopoulos, E. V. Belmega, and P. Mertikopoulos. Adaptive extra-gradient meth-
ods for min-max optimization and games. In The International Conference on Learning
Representations, 2021.

[2] E. G. Birgin and J. M. Mart́ınez. Practical Augmented Lagrangian Methods for Constrained
Optimization. SIAM, 2014.

[3] E. G. Birgin and J. M. Mart́ınez. Complexity and performance of an augmented Lagrangian
algorithm. Optim. Methods and Softw., 35(5):885–920, 2020.

[4] N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University
Press, 2006.

[5] G. H. Chen and R. T. Rockafellar. Convergence rates in forward–backward splitting. SIAM
Journal on Optimization, 7(2):421–444, 1997.

[6] X. Chen, L. Guo, Z. Lu, and J. J. Ye. An augmented Lagrangian method for non-Lipschitz
nonconvex programming. SIAM J. Numer. Anal., 55(1):168–193, 2017.

[7] Z. Chen, Y. Zhou, T. Xu, and Y. Liang. Proximal gradient descent-ascent: variable con-
vergence under K L geometry. arXiv preprint arXiv:2102.04653, 2021.

[8] F. H. Clarke. Optimization and nonsmooth analysis. SIAM, 1990.

31



[9] B. Dai, A. Shaw, L. Li, L. Xiao, N. He, Z. Liu, J. Chen, and L. Song. SBEED: Convergent
reinforcement learning with nonlinear function approximation. In International Conference
on Machine Learning, pages 1125–1134, 2018.

[10] Y.-H. Dai, J. Wang, and L. Zhang. Optimality conditions and numerical algorithms for a
class of linearly constrained minimax optimization problems. SIAM Journal on Optimiza-
tion, 34(3):2883–2916, 2024.

[11] Y.-H. Dai and L. Zhang. Optimality conditions for constrained minimax optimization.
arXiv preprint arXiv:2004.09730, 2020.

[12] Y.-H. Dai and L. Zhang. The rate of convergence of augmented Lagrangian method for min-
imax optimization problems with equality constraints. Journal of the Operations Research
Society of China, pages 1–33, 2022.

[13] S. S. Du, J. Chen, L. Li, L. Xiao, and D. Zhou. Stochastic variance reduction methods
for policy evaluation. In International Conference on Machine Learning, pages 1049–1058,
2017.

[14] J. Duchi and H. Namkoong. Variance-based regularization with convex objectives. Journal
of Machine Learning Research, 20(1):2450–2504, 2019.

[15] G. Gidel, H. Berard, G. Vignoud, P. Vincent, and S. Lacoste-Julien. A variational inequality
perspective on generative adversarial networks. In International Conference on Learning
Representations, 2019.

[16] D. Goktas and A. Greenwald. Convex-concave min-max Stackelberg games. Advances in
Neural Information Processing Systems, 34:2991–3003, 2021.

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing
Systems, pages 2672–2680, 2014.

[18] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial exam-
ples. In International Conference on Learning Representations, 2015.

[19] G. N. Grapiglia and Y. Yuan. On the complexity of an augmented Lagrangian method for
nonconvex optimization. IMA J. Numer. Anal., 41(2):1508–1530, 2021.

[20] Z. Guo, Y. Yan, Z. Yuan, and T. Yang. Fast objective & duality gap convergence for
non-convex strongly-concave min-max problems with PL condition. Journal of Machine
Learning Research, 24:1–63, 2023.

[21] N. Ho-Nguyen and S. J. Wright. Adversarial classification via distributional robustness
with wasserstein ambiguity. Mathematical Programming, 198(2):1411–1447, 2023.

[22] F. Huang, S. Gao, J. Pei, and H. Huang. Accelerated zeroth-order and first-order mo-
mentum methods from mini to minimax optimization. The Journal of Machine Learning
Research, 23(1):1616–1685, 2022.

[23] C. Jin, P. Netrapalli, and M. Jordan. What is local optimality in nonconvex-nonconcave
minimax optimization? In International Conference on Machine Learning, pages 4880–
4889, 2020.

[24] C. Kanzow and D. Steck. An example comparing the standard and safeguarded augmented
Lagrangian methods. Oper. Res. Lett., 45(6):598–603, 2017.

[25] A. Kaplan and R. Tichatschke. Proximal point methods and nonconvex optimization.
Journal of global Optimization, 13(4):389–406, 1998.

32



[26] W. Kong and R. D. Monteiro. An accelerated inexact proximal point method for solving
nonconvex-concave min-max problems. SIAM Journal on Optimization, 31(4):2558–2585,
2021.

[27] D. Kovalev and A. Gasnikov. The first optimal algorithm for smooth and strongly-convex-
strongly-concave minimax optimization. Advances in Neural Information Processing Sys-
tems, 35:14691–14703, 2022.

[28] C. Laidlaw, S. Singla, and S. Feizi. Perceptual adversarial robustness: Defense against
unseen threat models. In International Conference on Learning Representations, 2021.

[29] T. Lin, C. Jin, and M. Jordan. On gradient descent ascent for nonconvex-concave minimax
problems. In International Conference on Machine Learning, pages 6083–6093, 2020.

[30] T. Lin, C. Jin, and M. I. Jordan. Near-optimal algorithms for minimax optimization. In
Conference on Learning Theory, pages 2738–2779. PMLR, 2020.

[31] S. Lu. A single-loop gradient descent and perturbed ascent algorithm for nonconvex func-
tional constrained optimization. In International Conference on Machine Learning, pages
14315–14357, 2022.

[32] S. Lu, I. Tsaknakis, M. Hong, and Y. Chen. Hybrid block successive approximation for
one-sided non-convex min-max problems: algorithms and applications. IEEE Transactions
on Signal Processing, 68:3676–3691, 2020.

[33] Z. Lu and Y. Zhang. An augmented Lagrangian approach for sparse principal component
analysis. Math. Program., 135(1-2):149–193, 2012.

[34] L. Luo, H. Ye, Z. Huang, and T. Zhang. Stochastic recursive gradient descent ascent for
stochastic nonconvex-strongly-concave minimax problems. Advances in Neural Information
Processing Systems, 33:20566–20577, 2020.

[35] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning
models resistant to adversarial attacks. In International Conference on Learning Repre-
sentations, 2018.

[36] G. Mateos, J. A. Bazerque, and G. B. Giannakis. Distributed sparse linear regression.
IEEE Transactions on Signal Processing, 58:5262–5276, 2010.

[37] O. Nachum, Y. Chow, B. Dai, and L. Li. DualDICE: Behavior-agnostic estimation of dis-
counted stationary distribution corrections. In Advances in Neural Information Processing
Systems, pages 2315–2325, 2019.

[38] J. Nocedal and S. J. Wright. Numerical optimization. Springer, 1999.

[39] M. Nouiehed, M. Sanjabi, T. Huang, J. D. Lee, and M. Razaviyayn. Solving a class of non-
convex min-max games using iterative first order methods. Advances in Neural Information
Processing Systems, 32, 2019.

[40] S. Qiu, Z. Yang, X. Wei, J. Ye, and Z. Wang. Single-timescale stochastic nonconvex-concave
optimization for smooth nonlinear td learning. arXiv preprint arXiv:2008.10103, 2020.

[41] H. Rafique, M. Liu, Q. Lin, and T. Yang. Weakly-convex–concave min–max optimiza-
tion: provable algorithms and applications in machine learning. Optimization Methods and
Software, pages 1–35, 2021.

[42] A. Rakhlin and K. Sridharan. Optimization, learning, and games with predictable se-
quences. In Advances in Neural Information Processing Systems, pages 3066–3074, 2013.

33



[43] M. F. Sahin, A. Eftekhari, A. Alacaoglu, F. Latorre, and V. Cevher. An inexact augmented
Lagrangian framework for nonconvex optimization with nonlinear constraints. Advances
in Neural Information Processing Systems, 32, 2019.

[44] M. Sanjabi, J. Ba, M. Razaviyayn, and J. D. Lee. On the convergence and robustness of
training gans with regularized optimal transport. Advances in Neural Information Process-
ing Systems, 31, 2018.

[45] S. Shafieezadeh-Abadeh, P. M. Esfahani, and D. Kuhn. Distributionally robust logistic
regression. In Advances in Neural Information Processing Systems, page 1576–1584, 2015.

[46] J. Shamma. Cooperative Control of Distributed Multi-Agent Systems. Wiley-Interscience,
2008.

[47] A. Sinha, H. Namkoong, and J. C. Duchi. Certifying some distributional robustness with
principled adversarial training. In International Conference on Learning Representations,
2018.

[48] J. Song, H. Ren, D. Sadigh, and S. Ermon. Multi-agent generative adversarial imitation
learning. Advances in neural information processing systems, 31, 2018.

[49] V. Syrgkanis, A. Agarwal, H. Luo, and R. E. Schapire. Fast convergence of regularized
learning in games. In Advances in Neural Information Processing Systems, page 2989–2997,
2015.

[50] B. Taskar, S. Lacoste-Julien, and M. Jordan. Structured prediction via the extragradient
method. In Advances in Neural Information Processing Systems, page 1345–1352, 2006.

[51] K. K. Thekumparampil, P. Jain, P. Netrapalli, and S. Oh. Efficient algorithms for smooth
minimax optimization. Advances in Neural Information Processing Systems, 32, 2019.

[52] I. Tsaknakis, M. Hong, and S. Zhang. Minimax problems with coupled linear constraints:
Computational complexity and duality. SIAM Journal on Optimization, 33(4):2675–2702,
2023.

[53] J. Wang, T. Zhang, S. Liu, P.-Y. Chen, J. Xu, M. Fardad, and B. Li. Adversarial at-
tack generation empowered by min-max optimization. In Advances in Neural Information
Processing Systems, 2021.

[54] D. Ward and J. M. Borwein. Nonsmooth calculus in finite dimensions. SIAM Journal on
control and optimization, 25(5):1312–1340, 1987.

[55] W. Xian, F. Huang, Y. Zhang, and H. Huang. A faster decentralized algorithm for non-
convex minimax problems. Advances in Neural Information Processing Systems, 34, 2021.

[56] Y. Xie and S. J. Wright. Complexity of proximal augmented Lagrangian for nonconvex
optimization with nonlinear equality constraints. J. Sci. Comput., 86(3):1–30, 2021.

[57] H. Xu, C. Caramanis, and S. Mannor. Robustness and regularization of support vector
machines. Journal of Machine Learning Research, 10:1485–1510, 2009.

[58] L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maximum margin clustering. In Advances
in Neural Information Processing Systems, page 1537–1544, 2005.

[59] T. Xu, Z. Wang, Y. Liang, and H. V. Poor. Gradient free minimax optimization: Variance
reduction and faster convergence. arXiv preprint arXiv:2006.09361, 2020.

34



[60] Z. Xu, H. Zhang, Y. Xu, and G. Lan. A unified single-loop alternating gradient projection
algorithm for nonconvex–concave and convex–nonconcave minimax problems. Mathemati-
cal Programming, pages 1–72, 2023.

[61] J. Yang, S. Zhang, N. Kiyavash, and N. He. A catalyst framework for minimax optimization.
In Advances in Neural Information Processing Systems, pages 5667–5678, 2020.

[62] H. Zhang, J. Wang, Z. Xu, and Y.-H. Dai. Primal dual alternating proximal gradient
algorithms for nonsmooth nonconvex minimax problems with coupled linear constraints.
arXiv preprint arXiv:2212.04672, 2022.

[63] J. Zhang, P. Xiao, R. Sun, and Z. Luo. A single-loop smoothed gradient descent-ascent
algorithm for nonconvex-concave min-max problems. Advances in Neural Information Pro-
cessing Systems, 33:7377–7389, 2020.

[64] R. Zhao. A primal-dual smoothing framework for max-structured non-convex optimization.
Mathematics of operations research, 49(3):1535–1565, 2024.

35


