
Context-Aware Conversation Adaptation for Human-Robot Interaction

Zhidong Su and Weihua Sheng*

Abstract— Existing conversational robots are mostly reactive
in that the interactions are usually initiated by the users. With
the knowledge of the environmental context such as people’s
daily activities, robots can be more intelligent and proactive. In
this paper, we proposed a context-aware conversation adap-
tation system (CACAS) for human-robot interaction (HRI).
First, a context recognition module and a language processing
module are developed to obtain the context information, user
intent and slots, which become part of the state. Second,
a reinforcement learning algorithm is developed to train an
initial policy with a simulated user. User feedback data is
collected through HRI using the initial policy. Third, a policy
combining the reinforcement learning-based policy with the
neural network-based policy is adapted based on the user
feedback. We conducted both simulated user tests and real
human subject tests to evaluate the proposed system. The results
show that CACAS achieved a success rate of 85% in the real
human subject test and 87.5% of participants were satisfied
with the adaptation results. For the simulation test, CACAS had
the highest success rate compared with the baseline methods.

I. INTRODUCTION

Social robots are usually equipped with cameras and
microphones, which allow the development of visual and
auditory abilities. Social robots can recognize the envi-
ronmental context of a user, such as activities of daily
living (ADLs), user’s facial expression, home scene, etc. For
example, existing social robots like Jibo [1], ElliQ [2] and
Amazon Astro [3] have cameras and microphones. They can
take photos and recognize human faces. These robots are also
able to conduct natural language conversation with humans
to perform tasks such as online shopping, checking weather,
telling jokes and news, creating reminders [4], etc. Even
these functions are useful and important in human’s daily
life, the separation of natural language conversation and the
awareness of the environmental context makes the robots
passive and unable to adapt the conversation to the users’
situations and needs. For example, Do et al. [5] utilized
a social robot to recognize human daily activities through
the sound collected from the home environment. However,
how the detected daily activity information can help improve
the robot’s intelligence and provide better services is not
considered.

Knowing the environmental context such as what the
human is doing is important to human-robot interaction
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Fig. 1: The context-aware conversation adaptation system.

(HRI). The works in [6]–[8] enable robots to understand
human actions and their environments and utilize the sensing
results to determine the corresponding actions. However,
such context information is not utilized for the robot to
initiate a conversation or the adaptation of the HRI to better
serve the humans. We believe that it would be beneficial to
improve robot intelligence if the robot can proactively start
the conversation and adapt to user’s preferences in different
environmental contexts.

In this paper, we proposed a context-aware conversation
system for HRI that is both proactive and adaptive. As
shown in Fig. 1, the robot uses its microphone and camera
to observe the user’s activity and initiates a conversation if
needed. Based on the user feedback and the observed context,
a reinforcement learning (RL)-based method is proposed
to adapt the robot’s actions. In addition, a user-initiated
conversation is utilized as extra feedback for the adaptation.
This method can optimize the system performance gradually
based on the responses or feedback from the users.

The main contributions of this paper are four folds. First,
the proposed CACAS enables a robot to proactively initiate
conversations and adapt to users in particular contexts, which
extends the frontier of HRI research. Second, we proposed
a user-modeling method that enables the robot to adapt its
actions in a simulation training environment which requires
less user effort, therefore making it more practical for robot
deployment in the real world. Third, we combined the RL-
based policy with a supervised learning-based policy to
take advantage of the strength of both policies. Fourth, we
conducted both simulation tests and human subject tests to
evaluate the performance of CACAS. The obtained results
are very promising. Our proposed method can achieve an
85% success rate after 7 days’ interaction and 87.5% of par-
ticipants were satisfied with the adaptation results. Besides,
CACAS also has the best performance in the simulation test,
which is 19%, 36%, and 68% higher than the three baseline
methods.

The rest of this paper is organized as follows. Section II
introduces the related work. Section III gives an overview of
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the system. Section IV details the proposed method. Section
V gives the experimental results. Section VI concludes our
work and discusses the future work.

II. RELATED WORK

Context information like daily activities and locations in
the environment is useful in human robot interactions. It can
help reduce the uncertainty in human intent recognition, and
offer an additional information channel for better interaction.
Trick et al. [6] integrated speech, gesture, gaze direction
and scene objects for improved HRI. The obtained context
information is used to reduce the uncertainty about the user
intention. However, if the context or user preference changes,
their method is unable to handle it. Do et al. [5] proposed a
sound-based human activity monitoring framework for social
robots. However, how the activity helps users in HRI is not
considered. Giorgio et al. [9] proposed a framework which
extracts the contextual information from the environment
and builds a context reasoning module to translate the
contextual knowledge into the robot’s behaviors. However,
even equipped with the context-aware ability, most of the
existing social robots did not use the context to adapt pre-
defined functions to different users in different contexts.

Tapus et al. [10] proved that if the robot behavior fits
user’s preference or personality, the users tend to spend more
time with the robot. Ritschel et al. [11] adapted the robot’s
linguistic style based on the social signals like engagement
or no engagement. Park et al. [12] used a model-free RL
method to adapt the robot’s story telling strategy based on
the students’ performance. Tsiakas et al. [13] personalized
the cognitive training of a socially-assistive robot based
on the task engagement and the user performance during
the task. To solve the sparse reward problem, Ferreira et
al. [14] utilized a socially-inspired reward obtained from
human emotion as an extra reward to speed up the adaptation
process. Their work can adapt the robot model to different
user features/personalities. However, how to adapt to users
in particular contexts and when to deploy a trained model to
different users, how to adapt its actions using less user input
are not addressed.

III. SYSTEM OVERVIEW

The software architecture of the proposed context-aware
conversation adaptation system is shown in Fig. 2, which has
three parts: a context recognition module that can recognize
human daily activities based on sound and home scenes
through images; a language processing module that processes
user utterance and generates response audio, which is imple-
mented in the same way shown in our previous work [4];
and an adaptation module that personalizes the dialog agent
based on the human-robot interactions and the context.

Context Recognition. The context information provides
extra information source in addition to the user speech,
which enables the robot to perform more proactively and
intelligently. In this paper, we focus on the sound-based
daily activities and image-based home scenes. For the
sound-based daily activities, there are 33 home environment

Fig. 2: The software architecture of the proposed CACAS.

sound events considered, namely, 1: cough, 2: cry, 3:
clear throat, 4: sneeze, 5: sniff , 6: fall down, 7: burp,
8: yawn, 9: snore, 10: drink water, 11: drink milk, 12:
drink soup, 13: eat apple, 14: eat noodle, 15: eat chips,
16: wash hands, 17: wash clothes, 18: wash dishes,
19: use scissor, 20: use blender, 21: use stove, 22:
use hair dryer, 23: use microwave, 24: use fan, 25:
watch TV , 26: type keyborad, 27: cut food, 28: fry food,
29: pour water into glass, 30: shave, 31: brush teeth, 32:
fulsh toilet, 33: do nothing. For the image-based home
scenes, we consider 6 categories, namely, 1: bedroom, 2:
living room, 3: kitchen, 4: bathroom, 5: dining room,
6: others. Utilizing the integrated microphone and camera,
the robot can obtain the context of human activities. The
obtained context is used as a part of the input state of the
adaptation module.

Adaptation Module. The adaptation module adapts the
robot actions using the reinforcement learning algorithm
based on user feedback, proactive input and context, which
is the main focus of this work.

Before real-world deployment of the robot, a user simu-
lator is designed to interact with the robot to train an initial
robot action policy. The reason to use the user simulator is
that it is unrealistic to ask real users to interact with the robot
from the beginning, as it requires many rounds of interactions
which take a very long time.

After deploying the initial policy to the robot, the user
feedback and user-initiated input can be collected through
human-robot interactions. The user-initiated input and the
user feedback are the user data that can be used to train a
user model and a neural network (NN) based policy. The user
model and the user simulator interact with the robot action
policy to update the robot action policy. The adapted robot
action policy is a combination of an RL-based policy and an
NN-based policy. Both the user model and the user simulator
can generate a response. Therefore a decision model is used
to choose a proper user response.
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IV. METHODOLOGY

In this section, we firstly introduce the context recognition
algorithm that recognizes the activities based on sound and
home scenes based on images. Secondly, the context-aware
HRI is modeled as a reinforcement learning problem. The
adaptation method is detailed at the end.

A. Context Recognition

We use the robot camera to capture home scene images
and the microphone to record the sounds generated from
human daily activities. For home scene recognition, we used
the Residual neural network (ResNet) [15]. For sound-based
activity recognition, we designed a Convolutional Neural
Network (CNN). The Mel-frequency cepstral coefficient
(MFCC) [16] is used as the sound feature. The duration of
the sound sample is set to 1 second. The sample rate is
32,000 Hz. The window size of the fast Fourier transform is
set to 2,048 and the step size is 1,024. The number of the
Mel band is set to 64. For each sound sample, the generated
feature shape is 64x32. We built a CNN network that has 3
convolutional layers (kernel size: 3 x 3, dimension: 64, 128,
256) and 1 dense layer (dimension: 128) to recognize the
sound activity.

B. Context-Aware HRI Formulation

1) HRI Process Modeling: The robot performs an action
by observing the current context and the interaction history,
which can be regarded as a Markov Decision Process (MDP)
[17]. The MDP can be described as a tuple {S,A, T,R, γ}.
S is the state set. The state s ∈ S includes the environ-
mental context and dialog status, which is the input to the
dialog agent/robot model. A is the action set, which is the
output of the dialog agent model. T is the state transition
probability matrix, which is usually used in the model-based
reinforcement learning method. R is the reward function. γ
∈ [0,1] is the discount factor. The cumulative reward with
the discount factor is R =

∑+∞
t=0 γ

trt, where t is the time
step and rt = R(st, at). The goal of MDP is to derive an
optimal policy which maximizes the cumulative reward. The
policy function π is a probability density function and maps
the state to an action π : S → A.

Table I lists the different components and the corre-
sponding dimensions of the state and the agent actions.
We utilize the one-hot vector to represent different state
components and concatenate them together to form the state.
The number in the brackets shows the dimension of each
component. The sub-state S1 and S2 were explained in
the System Overview section. The sub-state S3 is the
time when the activity is observed. We divide the whole
day into 12 segments of 2 hours each. Therefore, S3 =
{[0, 2), [2, 4), [4, 6), [6, 8), [8, 10), ..., [20, 22), [20, 24)}. The
sub-state S4 is the time between the current activ-
ity and the previous activity. The do nothing ac-
tivity is excluded here. S4 is defined as S4 =
{0, 1, 2, 5, 10, 15, 20, 30, 60, 90, 120, 200}. The unit of these
values is minute. S5 indicates the task that the robot is
performing, which is the same as the agent action. The

sub-state agent action is the action that the robot needs
to take based on the current observation. We designed a
total of 14 agent actions as shown in Table I. Those actions
are designed to handle the daily activities and show the
robot care for users. The sub-state user action is defined
as S7 = {“accept”, “reject”, “others”}. The total state
dimension is 94 and the agent action dimension is 14. The
total number of state is 16,765,056. All sub-states are utilized
by the robot policy to select an action.

The reward function provides a score to the dialog agent
which indicates how well the agent behaves. The dialog
agent’s behavior is optimized based on the reward. In this
study, if the user feedback intent is “accept”, reward R = 1.
If the user feedback intent is “reject”, R = -1. Otherwise, R
= 0.

TABLE I: State and agent actions.

State: S1: sound-based daily activity (33), S2: image-based home
scene (6), S3: current time (12), S4: activity repeat time interval (12),
S5: current task (14), S6: agent action (14) S7: user action (3).
Agent actions: do nothing, show compassion, chitchat, remind to
take medicine, ask to offer help, call someone for help, set a timer,
pain check, confirm sound, record sound, remind to turn off, remind to
be careful, remind to put back, remind to unplug

2) Robot Action Policy Learning: We use the Soft Actor-
Critic (SAC) algorithm [18] as the basic RL algorithm
to approximate the optimal robot action policy. Different
from model-based methods which require the state transition
probability matrix T , SAC is a model-free policy-based RL
method, which does not need to model the complex real
world and is more sample-efficient than other policy-based
RL methods such as TRPO [19] and PPO [20] because it is
off-policy. There are three networks that need to be optimized
during training, two Critic networks Qω1(s, a), Qω2(s, a),
and one Actor network πθ(s). Eq. (1) shows the loss function
to optimize the Critic networks, where N is the number of the
training samples and yi in Eq. (2) is the target value. γ and
α are the hyperparameters. Eq. (3) shows the loss function
to optimize the Actor network. After training, the Actor
network is used to select an action that has the maximum
probability as shown in Eq. (4).

Lcritic(ωj) =
1

N

N∑
i=1

(yi −Qωj
(si, ai))

2, j = 1, 2 (1)

yi = ri + γ min
j=1,2

Qωj
(si+1, ai+1)− αlogπθ(ai+1|si+1))

(2)

Lactor(θ) =
1

N

N∑
i=1

(αlogπθ(ai|si)− min
j=1,2

Qωj
(si, ai))

(3)

a = argmax
a∈A

(πθ(s)) (4)
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3) User Simulator: To train a SAC model, it is not practi-
cal to employ real users from the very beginning to interact
with the robot to obtain sufficient tuples/samples, since it
is time- and resource-consuming. Therefore, we proposed a
user simulator, which can reduce the human effort to train
and adapt the robot action policy. We firstly constructed a
basic daily activity-agent action acceptance (D4A) pairs. The
D4A pairs show the user’s sentiment polarity towards the
agent action when performing a specific activity. On top
of the D4A pairs, it is the user preferences. In response
generation, the user preference has the first priority and
the D4A pairs have the second priority. A function named
generate response is used to generate a response. It first
checks if the current state s and agent action a fit the user
preference. If it does not fit, D4A pairs are used to generate
a response.

When using the user simulator to train the dialog agent,
the user simulator generates a state every K minutes using
function generate state, which utilizes the time, interaction
history and user preference up to generate all sub-states.
The time starts at 00:00 and ends at 23:59 and increases
by K minutes each step. Therefore, there will be 24 x 60/K
epochs in one day. For training an initial policy, up is used to
generate sub-state elements. For adaptation training, the user
data D is used to generate the state, in which the activity
recorded in D has a higher probability of being selected.

C. Context-Aware Conversation Adaptation

The robot action policy trained by the initial user simu-
lator cannot accommodate the preferences of all users. For
example, a young user may not want to be offered as much
help as an older person. Therefore, it is necessary to adapt
the robot action policy to particular users. In the CACAS,
the robot can proactively initiate a conversation based on
its understanding of the user and the context. The users can
also initiate a conversation if they need any help. We use
the user-initiated input and feedback on the robot actions
to model the user preference. In Fig. 2, the “Adaptation”
module shows the proposed adaptation process. The user data
is utilized by neural networks (NN) to train a user model and
an agent/robot action policy. A decision model is used to
select one output from the user model or the user simulator.
The dialog agent is retrained to adapt to a specific user. The
agent policy is a combination of RL-based and NN-based
policies.

1) User Model: We use the Multi-Layer Perceptron
(MLP) algorithm to train the user model, which is used to
model the user preference and replace the user to provide
feedback during the simulation-based training. The input
feature Su is the first 6 components of the state Su =
{S1, S2, S3, S4, S5, S6}, which is a 91-D vector. The output
is a 3-D vector representing “accept”, “reject” or “others”. In
order to model a user, the most important thing is to collect
the user data from the interaction. We proposed different
ways to collect user data. Firstly, when the agent initiates
a conversation (type1), the user feedback is recorded. This
data is represented by Df . Secondly, when the user initiates

a conversation (type2), the user intent is classified using
NLU module. If the user intent belongs to one of the Agent
Actions shown in Table I except do nothing and there is
a sound activity, the robot asks the user for confirmation.
If confirmed, S6 is replaced by the user intent and this
generated Su is recorded as “accept”. This data is represented
by Di. In order to obtain more data, we assume that the agent
action proactively initiated by the user is his/her favorite
one. The rest of the agent actions are used to generate 13
training samples marked as “reject”. This generated data is
represented by Dg . For the same Su, the latest data sample
from Df and Di can replace the data in Df , Di and Dg .
The user model is updated after every N interactions. As
described above, the User Modeling Algorithm (UMA) is
proposed as shown in Table II.

TABLE II: User Modeling Algorithm.

Input: state Su, interaction index idx, model update interval N ,
conversation type tp, user data D = ∅, user response UR.
Output: user model fµ.

Function data collection(D, Su, tp, UR):
If tp == type1, Then

remove duplicate(Su,UR); Df = Df ∪ (Su,UR);
If tp == type2, Then

Su[-1] = UR;
remove duplicate(Su,“accept”); Di = Di ∪ (Su,“accept”);
new = generate new(Su,“reject”);
remove duplicate(new,“reject”); Dg = Dg ∪ (new,“reject”);

D = D ∪ Df ∪ Di ∪ Dg ;
Return D;

D = data collection(D, Su, tp, UR);
If idx%N == 0, Then

fµ = MLP(D);
Return fµ;

2) Policy Reshaping: RL-based methods have an ability
to carry out exploration and exploitation. However, it also
suffers from forgetting user feedback data. Supervised learn-
ing methods like neural networks (NN) have an ability to
memorize user data. But when it comes to performing as
an agent policy, the supervised learning methods suffer from
over-fitting when there is not enough user data and sample
inefficiency because only the “accept” user feedback can be
used. Therefore, we proposed to reshape the SAC policy by
combining the SAC policy with a supervised learning-based
policy. We use the MLP algorithm to model the policy, which
has the same dimensions of input and output as the SAC
policy, and the “accept” user feedback data are used. Eq. (5)
gives the final policy after Policy Reshaping (PR). β is the
importance weight, which is set to be 0.7 based on our test.

π(s) = βπθ(s) + (1− β)MLPpolicy(s) (5)

3) Adaptation Process: Table III shows the Context-
Aware Conversation Adaptation Algorithm (CACAA), which
demonstrates the adaptation process. In Step 1, the dialog
agent interacts with the user simulator to train an initial
policy. It is used in Step 2 to interact with the user. In
Step 2, or the adaptation stage, the user data D is obtained
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from HRI, which is used to train a user model fµ and a
supervised learning-based policy MLPpolicy . The Decision
Model (DM) decides the acceptance of the user model based
on fµ’s output. After adaptation, the adapted policy π is
deployed to interact with the user and wait for the next round
of adaptation.

TABLE III: Context-Aware Conversation Adaptation Algo-
rithm.

Input: initial user preference up, user data D = ∅,train days, epochs,
probability threshold thres, importance weight β.
Output: adapted policy π.

#Step 1: Train an initial policy;
Randomly initialize πθ , Qω1, Qω2;
For day in train days:
h = ∅; buffer b = ∅; t = 0; st=generate state(t,h,up);
For t in epochs:

#Table ??, Eq.(4)
at=argmax

a∈A
(πθ(st)); ur=generate response(up, st, at);

h = h ∪ (st,at); st+1=generate state(t,h,up);
b = b ∪ (st, at, ur, st+1);
Qωj ← Qωj - lr* ∂Lcritic(ωj)(b)

∂ωj
, j=1,2; #Eq.(1)

πθ ← πθ - lr* ∂Lactor(θ)(b)
∂θ

; #Eq.(3);

#Step 2: Adapt the robot policy based on user data;
Function DM(up, fµ, st, at):

predicted response, prob = fµ(st);
If predicted response != no response & prob > thres, Then

Return predicted response;
Else Return generate response(up, st, at); #Table ??

Randomly initialize MLP policy;
While True
Dnew , Su, tp, UR = HRI(real user, π);
D = D ∪ Dnew;
fµ = UMA(D, Su, tp, UR); # Table II
If fµ is new, Then
MLP policy ← MLP policy(D);
For day in train days:

For t in epochs:
h = ∅; buffer b = ∅; t = 0; st=generate state(t,h,D);
For t in epochs:

target policy π = βπθ + (1− β)MLPpolicy ; # Eq.(5)
at=argmax

a∈A
(π(st)); ur=DM(up, fµ, st, at);

h = h ∪ (st,at); st+1=generate state(t,h,D);
b = b ∪ (st, at, ur, st+1);
Qωj ← Qωj - lr* ∂Lcritic(ωj)(b)

∂ωj
, j=1,2; #Eq.(1)

πθ ← πθ - lr* ∂Lactor(θ)(b)
∂θ

; #Eq.(3);
π = βπθ + (1− β)MLPpolicy ; # Eq.(5)

V. EXPERIMENTAL EVALUATION

A. Context Recognition Evaluation

1) Experimental Setup: To train a sound-based daily
activity recognition model, for each of the 33 home environ-
ment sound events, we collected 200 audio segments. Each
audio has a duration of 1 second. The audio sources include
Google Audio Set [21], CHIME-HOME [22], FreeSound
[23] and self-recorded audios. We used a smart phone to play
the sound in our smart home testbed [5] at different locations
and distances. The channel is set to mono. The sampling rate
is unified to 32,000Hz. The data is divided into a training set
and a testing set with a ratio of 9:1. Therefore, there are 5,940

audios for training and 660 audios for testing. To train image-
based home scene recognition, we collected 200 images for
each home scene in our smart home testbed. The resolution
is 640 x 360. The data is also divided into a training set and
a testing set with a ratio of 9:1. Therefore, there are 1,080
pictures for training and 120 audios for testing.

2) Results and Analysis: We fine-tuned our collected
images on the publicly available pre-trained ResNet model
for 3 epochs and obtained an accuracy of 100% on the
testing set. For sound-based activity recognition, we trained
the model for 200 epochs and obtained an accuracy of 94.7%
on the testing set. We observed that most of sound activities
can be recognized at an accuracy of 100%. Even with a
good test performance, it should be noted that our testbed
is an ideal environment. To use the recognition models in
real environments, we need more training data to enhance
the model.

B. Adaptation Evaluation on Human Subjects

1) Experimental Setup: We recruited 8 human subjects
aged between 25 and 35 to test the CACAS, including 7
males and 1 female. The human subjects are all university
students and 3 of them are familiar with robots. The human
subject test was approved by the Oklahoma State University
IRB office under application No. IRB-22-252. We introduced
the system to the participants before we asked them to
describe 5 preferences that they want the robot to behave
to assist their daily life. Those preferences are only used
for testing purposes and the system has no access to them.
Both the robot and the user can initiate an action. When
the robot initiates an action, the user can accept, reject or
not respond to the action. If the user does not respond, the
interaction is not recorded. When the user initiates an action,
two interaction data points are recorded: the initiated action
is regarded as accepted and the robot action “do nothing” is
regarded as rejected in the current state.

The adaptation process was conducted in our ASCC Smart
Home testbed [24], where the participants interacted with the
robot [25]. The testbed mimics an apartment, which includes
a bedroom, a living room, a kitchen, a bathroom and a dining
room. The participants choose a room and the robot stays
with the user. They can also use different rooms for different
conversations. In order to conduct the experiment in an
efficient manner, we developed a web page as a user interface
to set the context. Users can use the browser on a tablet to
select the sub-states S3, S4, and S1 that they want to perform.
The sound of the activity is played by the speaker. The rest
of the sub-states are obtained automatically by the robot.
Participants were asked to perform their daily routines that
follow their preferences and interact with the robot around
15 times a day and last for 7 days. After each interaction day,
we utilize the proposed CACAS to adapt the policy. After
adaptation, the participant can interact with the robot in the
next day. It took each participant around 50 minutes to finish
the test. The attached video demonstrated the adaptation
process of the robot using the proposed method. To evaluate
users’ experience with the proposed adaptation system, we
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provided a post-test questionnaire which asks: “What is your
satisfaction level regarding the robot’s ability to adapt to
your preferences?” This question uses a linear scale, with
1 meaning very dissatisfied and 10 meaning very satisfied.

For comparison purpose, we also implemented 3 other
methods: a) the CACAS method without policy reshaping
(CACAS w/o PR), b) the original Soft Actor-Critic reinforce-
ment learning method (ORL) adapted using user data, and c)
the MLP policy, which is a neural network-based supervised
learning method (NN). We did not redo the experiment using
the 3 comparison methods since it will take a long time.
Therefore, we used the interaction data each day to adapt
those models and tested them by generating data using the
described preferences.

2) Results and Analysis: Fig. 3 shows the average of all
users’ success rate and the cumulative number of feedback
for 7 test days. The boundaries of the shaded region show the
maximum and minimum value of all users’ data. A successful
event is defined as the robot initiates an action and the user
accepts it. Initiating an action by the user is not regarded as
a successful event. Fig. 4 shows the comparison results of
the 4 methods obtained from the user-described preferences.
The results indicate the following:

• The average number of states covered by the 5 pref-
erence descriptions of each user is 1564 according to
our calculation. From Fig. 3, we can observe that on
the first day, the success rate is only 30%, which is the
result of the initial model. After 7 days of adaptation,
CACAS achieves a success rate of 85% with a total of
104 user interaction data. The success rate of the seventh
day is obtained from the training using the first 6 days’
data. Even with a large preference space, CACAS only
has two or three wrong robot actions on average in a
day’s interaction after 7 days. The post-survey showed
that 87.5% of the participants rated their satisfaction
with the adaptation results at 8 or higher. The mean
satisfaction rating is 8.125, with a standard deviation of
0.64.

• From Fig. 4, we can observe that on the last day, the
CACAS achieves the highest success rate of 89%, which
is 19%, 36% and 68% higher than CACAS w/o PR,
ORL, and NN, respectively. CACAS also has the best
performance in all the test days. Even without policy
reshaping (CACAS w/o PR), the proposed method still
outperforms the original reinforcement learning and
supervised learning methods.

From the human subject test, CACAS achieves a success
rate of 85% and 87.5% of participants were satisfied with
the adaptation results. From the simulation test based on
participants’ preferences, CACAS has the highest success
rate compared with the baseline methods. The proposed
CACAS has a good adaptation ability and is well accepted
by human subjects.

In the current setting, the robot is only given a very limited
number of actions to choose from, which is the limitation of
the current work. Some participants mentioned that they need
other skills than those on the skill list. We need to enlarge

Fig. 3: Success rate and cumulative number of feedback.

Fig. 4: Preference prediction comparison.

the robot action set and explore how to enable the robot
to expand its skills automatically according to users’ needs
in the future. Besides, relying solely on sound to recognize
activities has certain limitations in real environments. For
example, the sound event may come from other rooms, other
people or even pets. Therefore, it would be important to
distinguish the location of the sound and the subject that
generates it.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a context-aware conversation
adaptation system for HRI in which the robot can proactively
initiate a conversation and effectively adapt to different users
in particular contexts. We evaluated the CACAS with both
simulated and real users. The results show that our context-
aware conversation adaptation system achieves a good per-
formance, which is practical for robot deployment. In the
future, we will enhance the sound-based activity recognition
model by collecting more data and test the performance
in real home environments, which requires the robot to
distinguish the location and source of the sound events. We
will also recruit more participants to evaluate the proposed
method.
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