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Abstract. Recently, integrating eye-tracking techniques and texts into
image-based disease classification has gained traction. To address the
unmet needs such as heterogeneous data alignment, information propa-
gation and aggregation, and expert knowledge embedding, we propose an
innovative expert-guided Graph Neural Network (GNN) that uses radi-
ologists’ eye-gaze data and transcribed audio reports with X-ray images
during training. By distilling expert knowledge from gaze data and di-
agnosis reports, our GNN can achieve high accuracy using only X-ray
images during inference. This approach provides a robust framework for
disease diagnosis, embedded with the radiologists’ insights, addressing
challenges in aligning heterogeneous data, propagating local information
for global decisions, and leveraging expert knowledge effectively. Addi-
tionally, the attention maps on X-ray images which are generated from
the GNN model visualize the Region of Interest (ROI) for the diagnosed
disease. Evaluated on two benchmark chest X-ray datasets, the proposed
method outperforms state-of-the-art X-ray image classification methods.

Keywords: Multi-modal - Eye-gaze - Graph Neural Network - Text re-
ports - Radiology

1 Introduction

Disease categorization from medical images has always been a tough task in com-
puter vision [11]. The advancement in deep learning techniques has somewhat
tackled these issues [9]. However, medical image classification remains tricky
compared to natural image classification due to intricate anatomical structures
overlapping in planar (2D) views [1] and limited soft tissue contrast [14].
Recent studies have tackled these challenges by combining eye-tracking tech-
niques [26] and textual information [17] to augment the model with prior knowl-
edge of abnormality locations. Eye-tracking methods capture radiologists’ eye
movement data during screenings, providing supplementary location details that
spotlight potentially problematic regions [34]. By incorporating eye movement
data, deep learning models can gain a more coherent understanding of disease
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characteristics, thus improving diagnostic accuracy. Integrating text data, such
as clinical notes and diagnostic reports, with imaging data can significantly
improve model performance. For example, hybrid deep spatial and statistical
feature fusion methods enhance MRI classification by incorporating textual de-
scriptions of anatomical structures, improving contextual understanding [19].
Advances in multimodal AI, such as GPT-4 Vision for otolaryngology, integrate
patient-specific textual data to refine diagnostic accuracy [27]. Vision-language
pre-training models (VLPM) have advanced the integration of medical texts with
imaging data, creating a unified representation space that improves understand-
ing of text-image relationships and enhances zero-shot learning capabilities [43].
These studies highlight the synergy between textual information and X-ray im-
ages for accurate medical image classification and advocate for a multimodal
approach.
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Fig. 1: An overview of our proposed method using the eye gaze and texts along with
X-rays. The top side shows the training stage and the bottom side shows the workflow
in the inference stage where the model has three testing scenarios. In the training stage,
the tri-modality (X-ray image, eye gaze and text) is unified to create the graphs for
the GNN model’s input.

Despite the previous success, there are still several unsolved challenges: (1) Most
of previous works focus on image+gaze or image-+text pairs. When more data
types are involved (image, eye gaze, text, etc.), it is more difficult to align het-
erogeneous data (e.g., how to align a phrase in the text to an image region and
an eye gaze point?); (2) Image pixels or patches, phrases in texts, and eye gaze
points represent local information. How to propagate the local information to
its neighborhood and how to aggregate the local information to make a global
diagnosis decision? and (3) Eye gazes and text reports are leveraged for X-ray im-
age classification during the training stage. How to distill the expert knowledge
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for the inference stage when only X-ray image is available? Facing these chal-
lenges, we introduce RET-GNN (Radiologist Eye-gaze and Text-reports Graph
Neural Network), a Graph Neural Network (GNN)- based model that (1) aligns
heterogeneous data types at graph node level, (2) propagates local features to
neighboring nodes and assembles the features from all nodes for disease classifi-
cation, and (3) learns expert knowledge via their eye gaze and text report during
training and performs the inference only using X-ray images, as illustrated in
Fig. 1. During training, we choose the image as the central anchor for binding
eye gazes and texts, allowing for a more integrated and comprehensive analysis
of medical data. A graph is designed to propagate information between different
parts of the image, which facilitates the learning of relationships between var-
ious organs and enables the aggregation of information from the entire image
for the disease classification. During testing, the input is only chest X-ray image
without the eye gaze or speech transcript from the experts !, and the X-ray
image is classified by the trained GNN with embedded knowledge of eye gaze
and diagnosis report. The GNN also generates an attention map indicating the
suspect regions. The major contributions of our work are summarized as follows:

1. We design a graph that aligns data from multiple domains (image, eye gaze,
and text), using X-ray images as the central anchor. This approach allows
for a cohesive representation that combines various types of medical data,
enhancing the overall understanding and analysis of medical images.

2. We propagate eye gaze points and their time durations into Visual Attention
Maps (VAMs), which improves the graph model’s ability to capture and
utilize critical visual cues provided by radiologists. We propagate textual
information from individual graph nodes to their neighborhoods, so text
clues provided by radiologists are aware by more graph nodes. The graph
enables the model to understand and leverage the relationships between
different regions of the image, facilitating more accurate and robust disease
classification.

3. The proposed graph neural network model learns complex relationships be-
tween different image regions via aligned heterogeneous data types (image,
gaze, and text) during training, and the model embedded with expert knowl-
edge can perform inference only using image. Evaluated on two widely used
public datasets (MIMIC-CXR [21] and REFLACX [24]), the proposed RET-
GNN outperforms previous state-of-the-art methods in different testing sce-
narios.

2 Related Work

2.1 Chest X-Ray Image Classification

Chest X-ray classification has witnessed significant advances in recent years due
to the availability of large-scale public chest X-ray datasets and the development

! Previous works like [16,36] have used eye gaze and texts as the input during testing.
We also include them as testing scenario 2 and 3 for fair comparison with previous
works.
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of advanced machine learning techniques. Datasets such as MIMIC-CXR [20],
REFLACX [24], and others [8,10,29,31] have significantly contributed to model
training and evaluation. These datasets collectively provide nearly a million chest
X-ray images with class annotations, enabling the development of robust chest
X-ray classification algorithms. On the other side, advancements in deep learning
algorithms have further enhanced the accuracy and performance of chest X-ray
classification. Most methods primarily rely on unimodal chest X-ray images and
propose various network architectures for analysis [4,13,15,28].

2.2 Integration of Eye-Gaze Data in Medical Image Analysis

Recent studies have started to explore the integration of eye-gaze data into
chest X-ray classification tasks [3,22,33]. Research has shown that the inclusion
of human expert knowledge via eye-gaze patterns can significantly enhance the
accuracy of deep learning models. Prior mainstream works typically transform
eye-gaze data into visual attention maps (VAMs), which highlight radiologists’
attention regions on the corresponding medical images. These works can be
categorized based on their utilization of VAMs. Some studies apply VAMs to
process the images and take the processed images as the model input [18, 23,
41]. Others employ a CNN-LSTM hybrid two-stream neural network, where the
CNN processes the medical images, and the LSTM encodes the VAMs [21]. The
second category focuses on minimizing the difference between VAMs and class
activation maps (CAMs) [5,37] or the difference between VAMs and the attention
maps generated by a U-Net decoder [21,40]. More recently, after the release of
the Segment Anything Model (SAM) by Meta, a human-computer interaction
system called GazeSAM [35] was proposed. This system combines eye-tracking
technology with SAM, enabling users to segment the object they are looking at
in real-time, demonstrating the potential for real-time eye-gaze integration into
routine clinical practice. Existing methods of utilizing eye-gaze data for medical
image classification primarily focus on creating image and gaze pairs, limiting
their ability to integrate multiple data types. Additionally, using only VAMs in
deep learning models to extract gaze information may not effectively aggregate
local information for making a global diagnosis decision.

2.3 Integration of Text in Medical Image Classification

Vision-language pre-training models have facilitated the convergence of medical
texts with imaging data into a unified representation space, enhancing under-
standing and classification capabilities [43]. Notable works such as GloRIA [16]
and BioVIL [6] have demonstrated the potential of aligning chest X-ray images
with radiological reports through self-supervised contrastive learning, effectively
capturing both local and global visual features. Additionally, models like Med-
CLIP [39] and CXR-CLIP [42] have advanced training methodologies by refining
image-text specific loss functions, further improving classification performance.
Despite advancements in vision-language pre-training models that align chest X-
ray images with radiological reports, challenges remain in aligning heterogeneous
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data (image, gaze, text), propagating local information for global diagnosis, and
distilling expert knowledge for inference when only X-ray images are available.

3 Methodology

In this section, we describe the framework of the proposed RET-GNN (Radiolo-
gist Eye-gaze and Text-report Graph Neural Network) for disease classification.
RET-GNN extracts features from image patches, eye-gaze data, and text data
from radiologists’ audio reports (Fig. 2). A graph is built whose node combines
features from patch, gaze, position, and text embeddings (Fig. 3). Then, a GNN
updates and aggregates node information to predict the disease class and gener-
ate the attention map indicating the disease regions (Fig. 4).
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Fig. 2: An overview of feature extraction module to create patch-based node and its
feature using the X-ray image, visual attention map, and speech-to-text data from the
radiologist.

3.1 Graph Construction

Our proposed method integrates chest X-ray images, eye gaze data, and text
information. The chest X-ray image serves as the central anchor, providing a
structured grid based graph whose nodes are image patches. Eye-gaze data,
represented by scatter points, indicates radiologists’ attention locations. The
text data, represented by sentences, conveys the radiologists’ descriptions of the
areas they focused on. We construct graphs by combining X-ray image patches,
VAMs from gaze data, and text embeddings to represent each node. The feature
vector for patch-based node i, x;, is defined as follows:

xi = x{0 % 4+ x7, 0

)



6 J. Sultana et al.
where XET) is the text embedding, XEG) is the gaze embedding, and XEI) is the
patch embedding of image. These features collectively represent the N nodes
{X1,X2,..., XN}
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Fig. 3: An overview of our proposed graph construction using the features from image,
eye gaze, text, and position embeddings.

Image Patch Embedding The image is divided into N numbers of 15 x 15
patches and each patch is considered as an individual node. Image patch is used
as graph node because it assembles local context and is more computational-
efficient than individual pixels. We use the overlapping patch embedding method
to enhance feature extraction from image patches. This technique enlarges the
patch window so adjacent patches overlap by half, using a convolutional opera-
tion with zero padding to preserve spatial relationships and local features. Imple-
mented in the Pyramid Vision Transformer (PVT) v2, this method significantly
improves image classification, object detection, and segmentation by providing
richer feature representations compared to non-overlapping patch methods [38].

Eye Gaze Embedding Eye-gaze data provides attention locations and the
duration of focus, adding temporal information. As shown in Fig. 2, we extract
gaze coordinates and time spent at each point, creating a matrix g whose values
represent gaze duration. The longer a radiologist looks at a location, the more
red-saturated the color: g[u,v] = t. Here, ¢ is the time duration of eye gaze at
(u, v) location. Patch-level gaze data is generated by summing gaze values within
patches, and normalizing gaze intensity. To create VAMs, we aggregate fixation
times within each patch:

2= N g, 2)

(ug,v;)Epatch;

where i € [1, N] (total patches), and | € [1, L] (number of gazes). This scalar

2{%) is then replicated to a vector XZ(-G)

i € RP for feature fusion with image and
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text, where D denotes the feature dimension. x¢ represents the patch’s attention
feature that captures detailed attention patterns, allowing the model to focus on
important regions.

Text Embedding For text embedding, we first identify the start and end times
of gaze fixation from the time-series gaze events, as shown in Fig. 2 (Eye Gaze
Time). We filter out the stop words such as, ‘the’, ‘a’, ‘patient’ and so on, concate-
nate, and align transcript phrases within these gaze times to the corresponding
patches via the gaze fixation points. To propagate textual information to nearby
patches, we check each patch for phrases, fill empty patches with phrases from
their neighbors, and update the non-empty ones with their neighbors’ textual
information. This process is summarized by the following equation:

Phrases; = Phrases; U U Phrases;. (3)
JENN(1)

Here, NN(7) represents the neighboring nodes of patch i. When patch ¢ has no
phrases (Phrases; = 0), it inherits the union of phrases from its neighboring
patches. If patch i already contains phrases (Phrases; # 0), it is enriched by
adding unique phrases from its neighbors. This ensures robust propagation of
textual information, covering approximately 70% of initially empty patches. We
utilized BioClinicalBERT [2]|, a BERT variant fine-tuned on medical texts, to
capture biomedical semantics for the text encoder.

In short, our method leverages gaze data (fixation points and their start and
end times) to initialize the alignment between speech-to-transcript texts and
patches, and then propagates the textual information to a local neighborhood,
thereby enriching the semantic representation of image patches.

Position Embedding To maintain the original positional information in the
GNN after patch formation, we adopt a position embedding method from [12].
This involves adding a learnable absolute positional encoding vector XEP) to
the feature vector x; in Fig. 2 and calculating the relative positional distance
between nodes as (XE—P))TXEP) to determine neighbors in the k-nearest neighbors
algorithm for graph construction.

Link Creation To construct the links FE of the graph, we use the k-nearest
neighbors algorithm to define the connections between nodes [12]:

E={(xi,x;) | x; € K(x;)}, (4)

where K (z;) represents the k-nearest neighbors of x;. This method ensures that
graph G = (V, E) captures the relational information between different parts of
the image, integrating visual, gaze and text data effectively for GNN to process.
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3.2 Graph Neural Network

As illustrated in Fig. 4, our GNN model comprises B graph processing blocks,
an average pooling layer, a graph classification head, and an attention head.
Each graph processing block includes multiple fully connected (FC) layers, a
graph convolutional layer [25], and a graph attention network (GAT) layer [7].
Our graph contains N nodes corresponding to N image patches and each node
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Fig. 4: The architecture of the proposed Graph Neural Network (GNN).

has a D-dimensional feature vector, x; along with its position embedding XEP).

The input to a specific layer of the graph processing module at iteration t is
expressed as: X! = [x!,x0 ]n:[l,... - This module transforms the input into the

output defined by:
Y = w(2(0 (X)) + X, (5)

Z' =Wy (p(T5(Y"))) + Y, (6)

where & signifies the operation of graph convolution, ¢ represents the opera-
tion of the graph attention network layer, and ¥ indicates the fully connected
(FC) layer. The FC layers incorporate activation and batch normalization. At
the end of the process, a fully connected layer with a softmax function acts
as the classification head, delivering probability predictions for each class. The
attention head after the B graph processing blocks takes the input of A! =
(W3(Y?1) + Wy (p(¥3(Y?))) + Zt and feeds them to Grad-CAM [32] to generate
the VAMs from our GNN model. This design ensures that the GNN effectively
assembles relational data across various segments of the graph, facilitating a
comprehensive representation for disease classification.

Graph Attention Network Our attention mechanism in the graph processing
block is computed by applying a shared attention mechanism to neighboring
nodes. Specifically, given a node i and its neighbor j, the attention coefficient
e;j is calculated using the following equation:

eij = LeakyReLU (a' [Wx;||Wx;]), (7)
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where a is a learnable weight vector, W is a weight matrix, x; and x; are
the feature vectors of nodes i and j, respectively, and || denotes concatenation.
The LeakyReLU activation function is applied to introduce non-linearity. The
attention coefficients are then normalized using the softmax function. These
normalized attention coefficients are used to compute a weighted sum of the
neighbors’ features.

X, =0 Z a;;Wx; |, (8)
JEN(3)
where o is a non-linear activation function, ReLU and «;; is normalized attention
coefficient. The updated feature vector x; of node i incorporates information
from its most relevant neighbors.

3.3 Loss Function

To train our GNN model, we utilize two different types of loss functions: one
for the classification task and another for attention alignment. Combining these
loss functions, the overall loss for training the model is:

L= L:classiﬁcation + )\‘Cattentiona (9)

where \ is a hyperparameter that balances the contribution of the attention
loss to the total loss. This combined loss function ensures that the model not
only classifies accurately but also aligns its attention mechanisms with those of
human experts, leading to more interpretable and reliable predictions.

Classification Task Loss We employed the cross-entropy loss function for the
classification task. This loss function is defined as:

M
£classiﬁcation = - Z Ym IOg(?m)v (10)
m=1

where y,, is the true label and g, is the predicted probability, calculated over
all training samples, M. This loss function measures the difference between the
true labels and the predicted probabilities, guiding the model to improve its
classification accuracy.

Attention Loss For the attention alignment, we used the Intersection over
Union (IoU) as the attention loss function. This loss measures the overlap be-
tween the generated attention maps from the model and the VAMs derived from
the radiologist’s eye gaze data. The IoU loss is defined as:

Yom(Am N Vi)

a enionzl_—a 1
Favtent > (A U V) )
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where A,, represents the attention map generated by RET-GNN, and V,,, de-
notes the VAM from the radiologist’s eye gaze data. The intersection (A,, NV,
measures the common activated areas between the two maps, while the union
(Ay U Vy,) measures the total activated areas. Maximizing this overlap ensures
that the model’s attention aligns closely with human expert attention patterns.

4 Experiments

4.1 Implementation

We train our model using the AdamW optimizer with a learning rate of 0.0001
and a batch size of 32. 20% of the training dataset is allocated for validation, and
we preserve the top validation accuracy checkpoint including the optimal hyper
parameters. Our system uses an NVIDIA Tesla V100-PCIE-32GB GPU with
PyTorch. Each training iteration takes about 3 minutes, spanning 350 epochs.
These implementation details apply across different experiments.

4.2 Dataset Preparation

Our study utilizes a public chest X-ray dataset [21], comprising 1083 cases from
the MIMIC-CXR dataset [20], eye gaze data, audio transcripts, and classifica-
tion ground labels. Additionally, we employ the REFLACX dataset [24], which
includes eye-tracking data and timestamped report transcriptions for 2,616 chest
X-rays collected from five radiologists. This dataset comprises 3,032 sets of syn-
chronized gaze data, dictation reports, and classification labels. Both datasets
contain grayscale X-ray images (approx. 3000 x 3000 pixels) categorized as Nor-
mal, CHF, or Pneumonia. Model performance is assessed using metrics such
as accuracy and AUC. Data augmentation methods involve random resizing,
cropping to 224 x 224 pixels, horizontal flipping, and rotation up to 5 degrees.
For qualitative comparison, static visual attention maps (VAMs) are generated
as ground truth from the eye-gaze data, employing the post-processing method
outlined in [21].

4.3 Quantitative Comparison

We conducted a comprehensive comparison of our model against several latest
state-of-the-art methods to evaluate its performance. The methods compared
include the U-Net+Gaze model [21], the DenseNet121-based model [33], and
GazeGNN [36]. Each model uses the official training and test datasets from [21],
allowing for a fair evaluation by directly including their reported results.

The U-Net+Gaze model [21] combines U-Net model with gaze data for im-
proved medical image segmentation. Similarly, DenseNet121-based model [33]
uses a densely connected CNN to enhance classification performance. GazeGNN
[36] integrates gaze data within a GNN framework, capturing contextual re-
lationships. We also compared our model with other gaze-guided approaches
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Table 1: Classification results on the Chest X-Ray dataset MIMIC-CXR [21]. All
models compared are trained using images, gazes and texts. In practice, only image
is available during testing. Since some methods report testing results using additional
modalities beyond images, we include those scenarios for comparison purposes, though
they are not practical for real-world inferences. Different testing scenarios are color-
coded and the best results are denoted by bold.

Method Modality in Testing Accuracy AUC
X-ray Image Gaze Text

v X X - 0.857

U-Net+Gaze [21] v v “ i 0.870

BioViL [6] v X v 82.20% 0.891

DenseNet121 [33] v v X - 0.836

v X X 76.85%  0.858

GazeMTL [30) v v x  T850% 0.887

v X X 80.38%  0.893

GazeGRN [36] v v x  8318% 0923

v X X 85.23% 0.901

Ours v v x  86.05% 0.913

(RET-GNN) v X v 84.91% 0.926

using the same dataset, notably GazeMTL [30], which uses multi-task learning.
We retrained GazeMTL with the same splits as our model for fair comparison,
ensuring unbiased performance evaluation. The quantitative results are shown
in Tables 1 and 2.

The RET-GNN model leverages radiologists’ eye gaze and text data, us-
ing only X-ray images during inference for disease classification. X-ray images
serve as the central anchor, allowing the seamless use of other modalities. VAMs
capture critical visual cues, enhancing pattern recognition, as shown in Fig. 5.
Text data describing abnormal regions, combined with gaze data, significantly
boosts performance. Since other methods also report testing results using gazes
and texts beyond images, we include these testing scenarios for comparisons,
though we think it is impractical in real-world inference (we cannot ask radi-
ologists to provide their eye gaze and speech report on an image to diagnose
this image). To accommodate different testing scenarios, we set the tensors of
the unused modality to zero while the model is trained based on tri-modality of
X-ray images, eye gaze, and text. For instance, while the model is trained with
all modalities, we set eye-gaze feature vectors to zero during testing to evaluate
the model’s performance in the testing scenario of using X-ray images and text.

The RET-GNN model demonstrates superior performance across all testing
scenarios on the MIMIC-CXR dataset [21]. When using only X-ray images, it
achieves the highest accuracy of 85.23% and an AUC of 0.901, outperforming
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Table 2: Classification results on REFLACX dataset [24].

Method Modality in Testing Accuracy AUC

X-ray Image Gaze Text

SimCLR [6] v X % 78.80% 0.849
GIoRIA [16] v x v 79.00% 0.886
v X X 81.69% 0.900

Ours v v X 82.00%  0.862
(RET-GNN) v x v 83.02% 0.920

all other methods [30,36] in this real-world scenario. Combining X-ray images
and gaze data, the model achieves an even higher accuracy of 86.05% and an
AUC of 0.913, showcasing the added value of gaze data. Incorporating text data
with X-ray images results in an accuracy of 84.91% and the highest AUC of
0.926 in this category, indicating significant improvement from text integration.
When all three modalities (X-ray images, gaze, and text) are used, RET-GNN
achieves the best performance with an accuracy of 87.82% and an AUC of 0.938.
These results illustrate the model’s robustness and effectiveness in leveraging
multi-modal data for chest X-ray classification. Similar results can be seen for
the REFLACX dataset [24] across multiple testing scenarios. The higher AUC
values in our results indicate better model performance in distinguishing between
positive and negative classes.

4.4 Ablation Study

To study the effectiveness of eye gaze and transcript information during the
model training, we have conducted an ablation study. First, we remove the gaze
and text embeddings from the GNN models (we convert the tensors of the unused
modality to zero), using only the patch embedding from the X-ray images and
position embedding during training. Then, we remove the text data while retain-
ing gaze and position embeddings to observe the impact of text data. Similarly,
we remove gaze data while keeping other modalities to assess the importance
of gaze information. Finally, we compare these results with the model using all
modalities to evaluate the contribution of each data type. The ablation study
focuses on the effect of each modality during training for image classification,
with only X-ray images being used as input in the testing stage.

The comparison in Table 3 reveals several key insights. When combining gaze
data with X-ray images, the model achieves higher accuracy compared to using
X-ray images alone. We theorize that eye gaze helps the model focus on abnor-
mal regions, aiding pattern recognition for disease classification. The model also
shows higher accuracy when combining text data with X-ray images, though
the AUC value is slightly lower than using X-ray images alone, likely due to
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Table 3: Ablation study on the effect of the training for image classification. Only
X-ray image is used as input in the testing stage for the ablation study.

Modality in Testing Modality in Training Accuracy AUC

X-ray Image Gaze Text

X 77.36%  0.869
X 80.83% 0.866
v 84.43% 0.864
v 85.23%  0.901

X-Ray Image

ASENENEN
N X N X

the diversity of spoken reports. Text data alone may result in low-confidence
classifications, but when combined with gaze data, it significantly boosts AUC.
Additional information from the text about that region significantly helps the
model in finding the radiologists’ pattern for disease classification with greater
confidence, and gaze data makes the model focus on the abnormal region. This
highlights the complementary nature of gaze and text modalities, enhancing the
model’s robustness and accuracy. This comprehensive evaluation underscores
the value of incorporating multiple data types to improve the performance and
reliability of medical image analysis models. The model gains additional do-
main knowledge from radiologists’ eye gazes and text reports, beyond the X-ray
images. The text data, represented by sentences, reflects the radiologists’ de-
scriptions of the attention locations in images.

4.5 Qualitative Analysis

Figure 5 provides qualitative examples, showing heat maps that highlight areas
of higher focus by radiologists ((b) and (e)) and relevance to the model’s predic-
tions ((c) and (f)). Hotter colors (red, yellow) indicate regions used to determine
specific conditions. Correct predictions (green box) demonstrate strong corre-
lation between the highlighted areas (5(c)) and known disease markers (5(b)),
reflecting consistency between the model’s attention maps and diagnostic mark-
ers. Incorrect predictions (red box, 5(f)) show where the model’s focus may not
accurately represent diagnostic markers, suggesting areas for improvement in
model training and architecture.

Overall, this qualitative analysis emphasizes the model’s strengths in identi-
fying critical regions for correct predictions while also highlighting future work
for further refinement to reduce incorrect classifications. We identify some pos-
sible reasons for the misclassification of the X-ray images along with incorrectly
generated heatmaps. Due to overfitting to training data, our model may have
learned the patterns and noise specific to the training dataset instead of gen-
eralizing. The heatmaps generated from that might highlight features that are
overly specific to the training set but irrelevant to other data, leading to in-
correct regions of interest. Additionally, if certain classes are underrepresented
or over-represented (“Normal”), the model may not learn to recognize them ef-
fectively. This can lead to misclassifications, particularly for underrepresented
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Correct Prediction Incorrect Prediction

)

CHF Normal Pneumonia

Fig. 5: Visual comparison between the original eye gaze points and the generated
attention map from the GNN model, (a) The original chest X-ray image, (b) VAMs
generated from the time aggregation of the ground truth eye gaze data, and (c¢) The
generated attention map from our GNN.

classes, as the model’s learned features do not adequately distinguish between
different conditions. Moreover, the generated heatmaps may be inaccurate if the
model cannot fully capture the spatial and contextual relationships in the data,
leading to incorrect areas being highlighted. Since we are using the radiologist’s
eye gaze and text to aid the GNN model, the noise created by the human can
also mislead the model for the unseen test datasets.

5 Conclusion

In this paper, we present a novel framework that integrates data from multiple
domains (image, eye gaze, and text report) using X-ray images as the central
anchor. This approach combines various types of medical data to enhance the
overall understanding and analysis of medical images. We transform eye-gaze
data into VAMs using gaze points and time durations, capturing critical vi-
sual cues from radiologists. Our model also employs a text embedding method,
spreading textual information through a neighborhood propagation technique to
capture the global context within medical images. Eye gaze focuses the model
on abnormal regions, enhancing pattern recognition for disease classification.
Combined with text data, which describes abnormal regions, gaze data signifi-
cantly boosts the performance of our RET-GNN model. This method enhances
the model’s understanding of relationships between different image regions, re-
sulting in more accurate and robust disease classification, addressing challenges
in aligning heterogeneous data and leveraging expert knowledge effectively.
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