& .
—~ = future internet

Review

IoT Firmware Emulation and Its Security Application in Fuzzing:
A Critical Revisit

Wei Zhou *©, Shandian Shen !

check for
updates
Academic Editors: Olivier

Markowitch and Jean-Michel Dricot

Received: 28 November 2024
Revised: 25 December 2024
Accepted: 2 January 2025
Published: 6 January 2025

Citation: Zhou, W,; Shen, S.; Liu, P.
IoT Firmware Emulation and Its
Security Application in Fuzzing: A
Critical Revisit. Future Internet 2025,
17,19. https://doi.org/10.3390/
i17010019

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (
https://creativecommons.org/licens

es/by/4.0/).

and Peng Liu >*

School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074,
China; shenshandian@hust.edu.cn

College of Information Sciences and Technology, The Pennsylvania State University,

University Park, PA 16802, USA

* Correspondence: weizhou_sec@hust.edu.cn (W.Z.); pliu@ist.psu.edu (P.L.)

Abstract: As IoT devices with microcontroller (MCU)-based firmware become more com-
mon in our lives, memory corruption vulnerabilities in their firmware are increasingly
targeted by adversaries. Fuzzing is a powerful method for detecting these vulnerabilities,
but it poses unique challenges when applied to IoT devices. Direct fuzzing on these devices
is inefficient, and recent efforts have shifted towards creating emulation environments for
dynamic firmware testing. However, unlike traditional software, firmware interactions
with peripherals that are significantly more diverse presents new challenges for achieving
scalable full-system emulation and effective fuzzing. This paper reviews 27 state-of-the-
art works in MCU-based firmware emulation and its applications in fuzzing. Instead of
classifying existing techniques based on their capabilities and features, we first identify the
fundamental challenges faced by firmware emulation and fuzzing. We then revisit recent
studies, organizing them according to the specific challenges they address, and discussing
how each specific challenge is addressed. We compare the emulation fidelity and bug
detection capabilities of various techniques to clearly demonstrate their strengths and
weaknesses, aiding users in selecting or combining tools to meet their needs. Finally, we
highlight the remaining technical gaps and point out important future research directions
in firmware emulation and fuzzing.

Keywords: IoT devices; MCU; firmware; vulnerability detection; peripheral modeling;
firmware emulation; fuzz testing; hardware-in-the-loop

1. Introduction

A microcontroller unit (MCU) is a compact computer on a single integrated circuit,
containing one or more CPUs (processor cores), memory like flash, ROM, or RAM, and
programmable peripherals. MCUs are widely used in constrained IoT devices due to
their low power consumption, compact size, cost-effectiveness, and ability to integrate
peripherals for specific tasks. A recent report [1] states that over half of constrained IoT
devices use MCUs. However, due to resource constraints, on-chip MCUs lack the security
mechanisms present in general computers like x64, x86, and ARM Cortex-A, as well as
systems like Windows and Linux [2,3]. For instance, most microcontrollers (MCUs) lack a
memory management unit (MMU), which translates virtual memory addresses to physical
ones. As a result, firmware on MCUs typically cannot support task isolation or address
space randomization protection. In addition, firmware on MCU-based devices, often
written in memory-unsafe languages like C/C++, is prone to memory bugs. Due to market
pressure and cost constraints, these devices are frequently released without thorough code

Future Internet 2025, 17, 19

https:/ /doi.org/10.3390/£i17010019

https://doi.org/10.3390/fi17010019
https://doi.org/10.3390/fi17010019
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-7834-0839
https://orcid.org/0009-0004-6483-5485
https://doi.org/10.3390/fi17010019
https://www.mdpi.com/article/10.3390/fi17010019?type=check_update&version=1

Future Internet 2025,17, 19

2 of 20

auditing or security testing, leaving many vulnerabilities. Consequently, MCU-based
devices are easily compromised, posing significant risks. The American Information
Security Conference in April 2023 reported that over 50% of Distributed Denial of Service
(DDoS) attacks stem from the growing number of compromised IoT devices [4].

The rise in vulnerabilities within MCU firmware has led researchers to adapt general
software vulnerability detection techniques, particularly for fuzzing. Fuzzing has proven
to be a highly effective tool for vulnerability detection over the past decade [5], uncovering
thousands of security bugs in various software applications. However, directly applying
fuzzing tests to MCU based devices is impractical for firmware due to the slow fuzzing
speeds resulting from limited hardware resources. Researchers have attempted dynamic
testing in emulated environments, but fuzzing firmware without the original device is
difficult due to its tight integration with hardware interfaces (i.e., peripherals). Unlike
traditional system-based programs that use well-defined I/O interfaces like POSIX APIs
(e.g., read(fd, buf, len)), firmware must directly interact with peripheral registers and
interfaces. For instance, while a Linux program reads input using scanf or fread(buf,
1, size, fd), MCU firmware must first poll peripheral status registers (Line 3), read
input from registers (Line 5), and check for errors (Line 6), as shown in Listing 1. The
diverse configurations of peripherals across devices make universal emulation difficult.
Consequently, there are still significant research gaps in developing automatic, high-fidelity
firmware emulation environments and efficient fuzzing techniques.

Listing 1. Code snnippnet of external input reading from UART peripheral in a real-world
MCU firmware.

uint8_t read(...) {

1

2 e

3 while (!(USART1->SR & USART_SR_RXNE));

4 uint8_t data = USART1->DR;

5 if (USART1->SR & USART_SR_FE) return -1;
6

7

else return data;

Our paper reviews MCU firmware emulation and its fuzzing applications, focusing
on works from top international computer security conferences and journals over the past
decade (2014-2024), including IEEE S&P, CCS, USENIX Security, NDSS, ACSAC, ASIA CCS,
RAID, DSN, ESORICS, IEEE TIFS, and IEEE TDSC. Previous surveys only include works
up to 2022 [6-8]. With recent advancements in embedded device emulation technology,
especially from 2021 (as shown in Figure 1), it is crucial to revisit the state-of-the-art
in MCU-based firmware emulation and its applications. Unlike previous surveys, such
as those by Feng et al. [8], which summarize vulnerability detection methods across all
firmware types, including Linux-based and MCU-based, on real devices and emulators,
our study specifically targets MCU firmware emulation and its fuzzing applications. We
deliberately exclude Linux-based firmware and real device fuzzing applications to focus
on MCU firmware. This allows for a more detailed discussion of these tools and enables
direct comparisons, as they share a common dataset. Moreover, while earlier works
categorize studies based on technologies and applications, as seen in Fasano et al. [6] and
Wright et al. [7], our approach begins by identifying the key features of MCU firmware
to reveal the core challenges impacting emulation and fuzzing. We then reorganize the
research on embedded device firmware emulators around these challenges, emphasizing
how each study addresses them.

Future Internet 2025,17, 19

30f20

Count
12

10

2018 and before ~ 2019~2020 2021~2022 2023~2024 year

Figure 1. Number of papers related to MCU firmware emulators published in international confer-
ences within 10 years.

The remainder of this article is structured as follows: Section 2 summarizes the
software and hardware environment of MCU firmware, highlighting key differences from
general software. Section 3 explores the challenges and requirements for full system
emulation and enhanced fuzzing applications. Section 4 classifies recent work based on
the challenges addressed, summarizing methods, advantages, and drawbacks. Section 5
compares the emulation fidelity and bug detection capabilities of existing approaches.
Section 7 identifies technical gaps and suggests future research directions in firmware
emulation and fuzzing. Finally, Section 8 concludes the article.

2. Feature of MCU Firmware

This section summarizes the background information of MCU firmware , highlighting
three key features that differentiate it from general software as show in in Table 1.

Table 1. Comparison among MCU Firmware, General Purpose OS-based Firmware and
General Software.

Hardware Dependence ~ OS Type Layer Boundaries Driver Diversity Driver Interfaces

General Software

General-purpose OS

Based Firmware

MCU-based Firmware

Low Few Clear Low Standard

Less (Application)
High (Driver) Few Clear Moderate Standard
High Many Blur No Custom

2.1. Embedded Firmware Classification and Microcontroller-Based Firmware

Firmware refers to all software on an embedded device, including drivers, systems,
and applications. It can be categorized into three types based on the system types used [7].

* General-purpose OS-based firmware. This firmware uses adapted versions of tra-
ditional operating systems like Linux and Windows for embedded environments,
maintaining most desktop functionalities. They rely on high-end CPU architectures
like x86 and ARM Cortex-A, allowing general OS functions such as memory isolation
of processes. These systems can only run on high-end CPU-based embedded devices
like routers, with system and application components compiled separately.

* Specialized Embedded OS-based firmware. This category of systems employs spe-
cialized embedded operating systems, predominantly real-time operating systems

Future Internet 2025,17, 19

4 0f 20

(RTOS), which have lower computing power but higher real-time requirements. Exam-
ples of such RTOS include Zephyr, FreeRTOS, and RIoT. They are typically found in
commercial IoT products like small drones. In these systems, the OS and applications

are compiled into a unified binary.

¢ Bare-metal firmware. This category includes firmware without an OS abstraction

(also called Bare-metal Firmware). The application code directly accesses hardware

and is also statically linked into a single binary file, as seen in small sensors.

Due to limited computing and storage resources, only specialized embedded operating

systems or bare-metal firmware can run on MCUs. In this paper, “MCU firmware or

firmware” refers to this specialized embedded OS or bare-metal firmware.

2.2. Features of MCU Firmware

F1: Diverse hardware dependency environments. Unlike general software that interacts

directly with users or external files, firmware relies on hardware peripherals for external

interaction, making it tightly to these components. Figure 2 illustrates the hardware

environment of a drone based on ARM Cortex-M4 MCU, showcasing various peripherals.

These peripherals are categorized into on-chip (e.g., SPI, I2C, UART) and off-chip (e.g., WiFi,

Button). Firmware accesses off-chip peripherals indirectly through on-chip peripherals.

Firmware interacts with peripherals in four ways (highlighted with red lines):

® Peripheral Registers R/W: In most MCUs, such as ARM-based ones, peripheral
hardware registers are memory-mapped (MMIO), allowing the processor to access
them for status, configuration, and data queries. In a few MCUSs, such as Intel 8051,

these registers are accessed via port instructions.

@ IRQ: Actively verifying peripheral registers reading values wastes CPU cycles when
no events occur. Many MCUs support configuring peripherals to trigger interrupts for
events like timer completions or new data arrivals, allowing firmware to handle them

promptly in interrupt service routines (ISRs).

® DMA: To enhance high-throughput data transfer, some MCUs offer Direct Memory
Access (DMA), enabling peripherals to transfer data directly to and from main memory,

bypassing peripheral register reading via processor for faster large data transfers.

On-chip System

[Processor | D | on-chip off-chip
) Core peripherals peripherals
{ L
< SPI EEPROM
Interrupt |« ®, -| I'TT |
Controller 4—.-| I2C I I Gyroscope |
L _UART module

«—] ROM | 4 GPIO [Button |
“_TIMER Interaction ways:
—

T DMA @ Regs R/'W
< ©) CTRL @ IRQ
3® DMA
System Bus Peripheral Bus

Figure 2. Hardware components of a drone based on ARM Cortex-M4 MCU.

Future Internet 2025,17, 19

50f20

Firmware functionality varies significantly across devices, such as drones and door
locks, due to different peripheral controls and methods that can change at runtime. Conse-
quently, peripheral usage by firmware is highly varied, involving numerous methods.

F2: Blurring of boundaries and interface among application, library, and driver code. As
illustrated in Figure 3, in general, MCU firmware consists of three layers: the driver layer,
the operating system layer, and the application layer. The application layer, developed by
programmers, contains the device’s functional logic. The system layer includes real-time
operating systems like FreeRTOS, Zephyr, and MbedOS for task scheduling and control,
along with protocol libraries for external interactions. The driver layer manages hardware
peripherals, with most code provided by manufacturers through board support packages
(BSP) or open-source hardware abstraction layers (HALs). However, unlike general OSs and
software, the layer boundaries in firmware are often blurred, with many components being
optional, as shown in Figure 3. For instance, FreeRTOS [9] allows library or application
code to interact with hardware directly, bypassing system calls like bare-metal firmware.
Moreover, driver code can invoke system calls, such as system queue operations, making it
difficult to distinguish driver layers from other code layers.

Application Layer

| File System | GUI ‘| Application
T System/Library Layer |
' : RTOSs : : Protocol Libs ! : 3d_Party Libs ! !

HAL/BSP Drivers : Other Drivers !

T----

i Optional Component

Figure 3. Common components and layers in MCU firmware.

F3: Fragmentation of MCU Firmware Ecosystem. MCU-based devices are tailored for
specific tasks, such as sensors or drones, and their firmware is fragmented, unlike the
dominant OSs like Linux or Windows. Over 20 IoT operating systems exist, each with its
own compatible libraries, such as RT-Thread [10], which offers over 700 packages with
multiple versions. Different MCU vendors provide their own HAL/BSP libraries, like
STM32CubeMX [11], which are specific to their MCUs. These libraries often implement
different driver interfaces for peripheral controls, leading to incompatibility across various
HAL/BSP functions and OS drivers. Developers can also integrate third-party libraries or
create custom driver code for unique peripherals, compounding to the fragmented software
stack in the MCU firmware ecosystem.

3. Challenges Faced by Firmware Emulation and Its Application
in Fuzzing

This section highlights the challenges and the ideal goal of firmware emulation and
its application in fuzzing, focusing on three aspects of support for firmware emulation
approaches. First, CPU emulation, including CPU registers and instruction set translation, is
crucial for executing across various hardware architectures. Second, emulating peripheral
interactions is challenging due to the diverse peripherals and lack of general system
interfaces in MCU-based devices. Lastly, since firmware emulation aims for dynamic
testing, it must support fuzzing tests.

Future Internet 2025,17, 19

6 0f 20

3.1. CPU Emulation Support

Although MCU devices use diverse CPU architectures, the number is typically limited
to fewer than ten, such as ARM, MIPS, and RISC-V. Tools like QEMU [12] and Unicorn [13]
already support a wide range of commonly used embedded architectures. However,
devices used in specialized fields like industrial or automotive applications, such as ECUs,
may employ esoteric or custom architecture-specific instructions. Therefore, to emulate
MCU firmware, support for any given CPU architecture is necessary.

3.2. Peripheral Interaction Emulation Support

As mentioned in Section 2, while CPU emulation can be manually achieved, the diverse
configurations of individual devices make manual support for hundreds or thousands of
peripherals impractical. For instance, QEMU supports only a few peripherals for fewer
than ten MCU versions. Although QEMU lists the STM32F405 MCU, it actually supports
only six on-chip peripherals, like UART and SPI, out of more than 20 available. Moreover,
QEMU does not fully support peripheral configurations and interactions; for example, it
supports SPI only via peripheral register read /write, lacking interrupt and DMA support.
Initially, research like Avatar [14] proposed a hardware-in-the-loop solution that emulates
only the CPU and forwards peripheral access to real hardware. However, this method
suffers from performance issues, as peripheral operations on MCUs are much slower
than virtual memory operations on servers (MCU CPU frequency is in the hundreds of
MHz, compared to x64 CPUs operating over GHz) and cannot be used for parallel testing.
Peripheral emulation should ideally be automatic, have high applicability (capable of
emulating any MCU peripheral functions), and offer high fidelity (replicating the control
and data flow of a real device without actual hardware).

3.3. Fuzzing Application Enhancement

Fuzzing refers to an automated software testing technique that providing invalid,
unexpected, or random data as inputs to a computer program to test whether the program
perform as expected, which has been widely used in vulnerability detections. In general
software fuzzing, the process includes input generation, delivery, execution, feedback collec-
tion, and feedback-guided input mutation. It is divided into a front-end (input generation
and mutation) and a back-end (execution environment and feedback). In firmware fuzzing
within an emulation environment (see Figure 4), the emulator serves as the back-end, facili-
tating (1) test case reception, (2) emulated execution, (3) feedback collection, and (4) crash
detection. The emulated execution environment relies on CPU and peripheral emulation.
Inputs should be delivered when the firmware reads data from peripherals, as fuzzing
aims to uncover software bugs, which are more exploitable than hardware bugs. Unlike
general software with defined data I/O interfaces (as discussed in F2 and F3 in Section 2),
identifying external input/output interfaces in black-box firmware is challenging. For
feedback, fuzzers mainly use code coverage, requiring the emulator to support instruction
emulation at the basic block level and collect path and basic block feedback [15]. For
bug detection, general fuzzers detect bugs by using existing security mechanisms within
the target system or an integrated sanitizer. The sanitizer identifies bugs by detecting
undefined or suspicious behavior through instrumentation code inserted by the compiler
at runtime. However, MCU firmware, often using RTOS or bare-metal resources, lacks
these mechanisms and source code for instrumentation, leading to undetected memory
corruptions, also known as “silent” bugs [16]. Therefore, the emulator needs to support
more fine-grained memory monitoring for bug detection. An ideal fuzzing application
on an emulator should have low false-positive and -negative rates for bug detection and
testing at high speed.

Future Internet 2025,17, 19 7 of 20

Emulator

1

|

1

Generator Inputs -5 (oetsstor |

I
1 Fw. [0
I 0110
| Feedback
1
1

!

Front-end Back-end

Figure 4. Firmware fuzzing in an emulated environment.

4. State-of-the-Art Firmware Emulation and Its Application in Fuzzing

In this section, we summarize and reorganize the tools from all the research included
in Figure 1, categorizing them by the main challenges they address. As shown in Figure 5,
since CPU emulation is a fundamental component of firmware emulation, the following
works all depend on CPU emulation tools. Tools built on the same platform are generally
compatible, as demonstrated by the compatibility between Fuzzware and Halucinator.

- - Compatibility Relationship

— Dependence Relationship QEMU Ghidra Emulator

Avatar ‘ l P3{M % l S2E ‘ l Angr ‘ l Ember-10 ‘ l Perry ‘ | Unicorn ‘ l MetaEmu ‘ [MultiFuzz‘
7y

(o]t Lo oo |
I ffffffff 1 ffffffff I l ********** I 1 i e S et

FirmWire H Pretender ‘ l LaeLaps H Gerbil H Jetset H HEAPSTER H AH\:[H Fuzzware H *SEmu H SFuzz H AutoMap H HAL’ucinalor

SplITS SAFIREFUZZ

DCPU Emulation DPaIrial Emulation D Symbolic Execution D Peripheral Emulation D Fuzzing Enhancement B Peripheral Interaction Replacement

Figure 5. Dependence and compatibility among firmware emulators (the single-arrow line denotes
dependence, showing one tool is built upon or enhanced by another; the dotted double-arrow line
denotes compatibility, connecting tools that can be used together directly).

4.1. Solution to CPU Emulation Support

General binary emulators like Simics [17], QEMU [12], and Unicorn [13] support most
common CPU architectures. QEMU and Unicorn also offer memory mapping and periph-
eral forwarding, making them popular for full-system emulation with peripheral interaction
emulation tools. However, these emulators struggle with unknown CPU architectures,
requiring significant manual effort to add new ones within their Intermediate Representa-
tion (IR) frameworks. The Ghidra Emulator [18], developed by the NSA, supports more
instruction set architectures than QEMU and allows users to add new ones using SLEIGH
language definitions. For instance, MetaEmu [19] addresses the challenge of uncommon
processor architectures in automotive firmware through the Ghidra Emulator.

In addition, SAFIREFUZZ [20] pinpoint instruction translation as a key factor slows
down emulation. Instead of translating instructions for a general processor, it executes
firmware on more powerful hardware within the same instruction set family. By using high-
level peripheral function replacement and dynamic binary rewriting, it replaces peripheral
interactions and filters ARM Cortex-M specific instructions, allowing ARM Cortex-M
firmware to run on ARM Cortex-A servers without CPU emulation.

4.2. Solutions to Peripheral Interaction Support

Aside from the hardware-in-the-loop solutions, three approaches have been proposed
for handling diverse peripheral interaction in an emulated environment as summarized in
Table 2.

Future Internet 2025,17, 19

8 of 20

4.2.1. High-Level Peripheral Interaction Replacement

For Linux-based firmware, researchers can hook the Linux system call interface and
redirect it to driver function replacements for full-system emulations, as seen in Firma-
dyne [21], FirmAE [22], and ECMO [23]. Inspired by this, although MCU-based firmware
lacks a standard system call interface and has diverse OS kernels, researchers found that
hardware abstraction layer (HAL) interface functions are more common. They proposed
intercepting firmware calls to the HAL and replacing them with emulator functions, as
performed by HALucinator [24]. However, this approach requires a library matching tool
to identify HAL functions in the firmware and manual creation of replacement functions,
limiting its applicability and increasing labor costs.

4.2.2. Peripheral Interaction Modeling

To emulate diverse peripheral hardware with minimal manual effort, existing research
proposes various automatic peripheral interaction modeling methods.

Hardware Record-based method. Pretender [25] enhances hardware-in-the-loop solutions
for full-system emulation by recording real hardware feedback and using machine learning
to create peripheral emulation models. However, Pretender still needs the same hardware
as the firmware, which is often hard to access for practical firmware analysis. Similarly,
Conware [26] relies on hardware peripheral operation logs to build peripheral models.

Human Heuristic-based method. P2IM [27] introduces the first hardware-independent
automated method for creating peripheral emulation models. It infers peripheral register
types from firmware peripheral access patterns and establishes feedback models based
on these types. While effective for simple interactions, its reliance on human assumptions
limits its success with complex peripherals. DICE [28] uses a similar approach by modeling
DMA access patterns to automate DMA emulation models, supporting firmware emulation
with DMA-based peripherals. However, it is also constrained by human assumptions,
making it unsuitable for complex devices like Ethernet and USB DMA. FirmWire [29] offers
human-crafted peripheral models for baseband firmware.

Symbolic Constraints-based method. Peripheral modeling using symbolic contrarians
is a common approach in current emulation solutions to address the limitations of hu-
man heuristics-based approach. Laelaps [30] uses symbolic execution to handle unknown
peripheral reads by returning symbolic values and exploring program paths. However,
it requires continuous symbolic execution, leading to high overhead. To address this,
uEmu [31] automatically determines execution paths by analyzing execution states. It uses
symbolic execution to learn path constraints on valid execution state and create a peripheral
feedback knowledge base, which is used during dynamic execution, eliminating the need
for continuous symbolic execution and reducing overhead. Jetset [32] employs a search
strategy with incremental control flow graphs to guide symbolic execution for firmware
execution, similar to uEmu. Fuzzware [33] pinpoints models based on single or few path
constraints for overly restricting reachable paths. It uses symbolic execution to generate
broad peripheral feedback constraints, allowing more mutations during fuzz testing to
explore additional paths. This increases code coverage compared to previous models but
also results in more false positives than real hardware. Note that continuous symbolic
execution for peripheral input can lead to path explosion and high overhead, so current
solutions use local symbolic execution within functions handling peripheral input without
exploring all paths.

Fuzzing Feedback-based method. Ember-IO [34] introduces a feedback peripheral access
method using a fuzz testing feedback scheme. Instead of generating complete peripheral
models, it generates all hardware inputs through fuzz testing, caching only those values

Future Internet 2025,17, 19

9 of 20

that achieve higher code coverage to accelerate execution. This method increases code
coverage quickly but also results in more false positives and negatives.

External Information-based method. In 2022, Zhou et al. [35] noted that previous methods
for generating peripheral models relied solely on firmware, which lacks complete peripheral
logic, such as interrupt timing. This limitation leads to false positives in firmware-oriented
peripheral modeling. To enhance the accuracy of peripheral emulation models without
hardware reliance, they introduced SEmu. SEmu uses natural language processing (NLP)
to learn peripheral behavior from hardware manuals, converting this information into
structured conditional-action rules. By executing and linking these rules during runtime,
SEmu dynamically creates a peripheral model for each accessed peripheral, achieving
nearly 100% consistency with real hardware at the basic block level for simple peripherals.
Similarly, Perry [36] develops high-fidelity peripheral emulator models using external
open-source peripheral drivers.

4.2.3. Partial Emulation

For research on specific vulnerabilities or code snippets in firmware where full system
emulation is not required, researchers [37-39] propose slicing the code snippet without
peripheral interactions. For instance, HEAPSTER [37] focuses on detecting heap vulner-
abilities within firmware by emulating only a limited number of functions related to
heap operations.

Table 2. Summary of peripheral interaction emulation solution.

Method Years Tools Fidelity * Automation

2014 Awvatar [40] High Low
2022 AutoMap [41] High Low

2020 HALucinator [24] Moderate Low
2023 SAFIREFUZZ[20] Moderate Low

Hardware-in-the-loop

High-level Replacement

2020 Laelaps [30] Moderate Low
2021 pEmu [31] Moderate Moderate
Symbolic 2021 Jetset [32] Moderate Moderate
Constraints-based 2022 Fuzzware [33] Moderate High
2022 MetaEmu [19] Low Low
2024 AIM [42] Moderate Moderate
Perivheral Hardware 2019 Pretender [25] Moderate Moderate
enphera Record-based 2021 Conware [26] Moderate Moderate
Modeling
Human 2020 P2IM[27] Moderate Moderate
Heuristic-based 2021 DICE [28] Moderate Moderate
2022 FirmWire [29] Moderate Low
Fuzzing .
Feedback-based 2023 Ember-10 [34] Moderate High
Manual-based 2022 SEmu [35] High Low
Driver-based 2024 Perry [36] High Low
2019 Gerbil [38] Low Low
Partial Emulation 2022 HEAPSTER [37] Moderate Low
2022 SFuzz [39] Low Low

*: The fidelity level combines execution and data/memory fidelity, as shown in Figure 6.

Future Internet 2025,17, 19

10 of 20

Data/Men]. Fidelity

Perfect Less Automation

Register

HEAPSTER HALucinator AutoMap SEATAR

Internal \O Perry C>/
Memory SEmu
SAFIREFUZZ ~ FirmWire
QEMU A
Peripheral SFu.zz MetaEmu D Low Fidelity
Gerbil
Moderate
b Pretender Conware Fidelity

Jetset AIM

More Automation

External P2IM s
High Fidelit
Function HEmu DICE D g Y
Laelap Fuzzware
Ember-10

Execution
Black-box Module Function BB Instruction Cycle Perfect Fidelity

Figure 6. Fidelity of firmware emulators.

4.3. Solutions to Fuzzing Application Enhancement

Recent advancements in peripheral emulation technology have led researchers to re-
design the general fuzzing technology to better accommodate real-world firmware-specific
features including coverage feedback, input generation and mutation, and crash detection
as summarized in Table 3.

Coverage Feedback. As mentioned in Section 2, peripheral interrupts can actively trigger
ISR functions causing uncertain bursts in firmware execution. The exact point where the
interrupt occurs is usually not crucial, but switching execution to the ISR at different points
can create many meaningless new edges for edge-based coverage feedback fuzzers. To
address this, Ember-I0 [34] remaps edge-coverage feedback to separate edges in ISRs from
normal execution, eliminating invalid edges from unpredictable interrupts. MultiFuzz
directly uses basic block coverage to avoid these issues. Additionally, firmware often
performs multi-byte magic string checks for command processing in protocols. SplITS [43]
introduces feedback mechanisms for input-to-state mapping and seed retention for targeted
replacement mutations, efficiently handling multi-byte comparisons.

Input Generation and Mutation. Since real-world firmware typically not only uses single
peripheral but multiple peripherals at the same time, as shown in the drone in Figure 2.
However, existing fuzzers for general applications typically offer only a single flat input.
Thus, Hoedur [44] and MultiFuzz [45] enhanced general fuzzing techniques, especially for
input generation and mutation, to address the multi-stream nature of firmware inputs from
various peripherals.

Bug Detection. Firmware often contains “silent” bugs that do not cause device crashes.
While typical firmware fuzzing applications use basic crash detection, they often miss
these silent memory corruptions. To address this, uSBS [46] statically instruments bi-
naries to make memory corruptions observable. However, static binary rewriting for
firmware is challenging and lacks accuracy, making these solutions suitable only for simple
bare-metal firmware.

Future Internet 2025, 17, 19 11 of 20
Table 3. Summary of fuzzing application enhancement solution.
Firmware Feature Enhanced Years Tools
Component

Random Peripheral Coverage Feedback 2023 Ember-10 [34]
Interrupt

Multi-stream Input 2023 Hoedur [44]

Magic Value Check Input Generation & Mutation =~ 2023 SplITS [43]

Multi-stream Input 2024 MultiFuzz [45]
Silent Bug Bug Detection 2018 WYCINWYC [16]

2020 USBS [46]

5. Emulation Fidelity

Emulation fidelity is vital for firmware emulation, affecting its accuracy and applicabil-
ity in security applications. We qualitatively classify and compare fidelity among firmware
emulators, following the approach by Wright et al. [7]. This involves two dimensions:
execution fidelity, which measures control flow similarity to real hardware, and data/memory
fidelity, which assesses data consistency in the MCU device (memory and registers) and
data output to device peripherals compared to real hardware. Figure 6 summarizes the
fidelity distribution of these emulators and their degree of automation.

5.1. Execution Fidelity

Execution fidelity can be categorized into black-box, module-level, function-level,
basic-block, instruction-level, cycle-level, and perfect. As illustrated in Figure 5, firmware
emulators use QEMU [12], Unicorn [13], and Ghidra [18] for instruction set translation.
They convert instructions from a target set to a host set at the basic block level, using
an intermediate representation (IR) for translation. This approach provides execution
fidelity at most the basic block and instruction levels, even without considering peripheral
emulation. Consequently, no firmware emulator can achieve cycle-level fidelity, which
accurately replicates the CPU instruction cycle as real hardware does, or perfect fidelity,
where the emulator’s internal execution mirrors that of the actual machine.

Avatar achieves the highest execution fidelity by forwarding all peripheral access to
real hardware. Full system emulation solutions emulate all peripherals to execute entire
firmware code, thus their execution fidelity relies on the accuracy of peripheral modeling.
Solutions like AutoMap, SEmu and Perry, employ real hardware, hardware descriptions,
or driver source code to construct individual models for each peripheral, offering higher
fidelity compared to QEMU’s manually crafted peripheral emulation. Firmware-specific
modeling solutions such as Jetset, P2IM, and Fuzzware, while more automated, depend
on general assumptions without detailed hardware information, leading to lower fidelity.
Conware, which does not model peripherals but instead uses fuzzing input, results in
even lower fidelity. Partial emulation solutions such as SFuzz, Gerbil, and HEAPSTER
support only specific firmware functions, achieving module-level execution fidelity. For
instance, HEAPSTER concentrates on heap operations using heuristic methods, with many
functions returning constraint-solved values without actual execution. High-level function
replacement solutions fall in the middle; they bypass all peripheral emulation by hooking
and replacing the original driver function with a manually crafted function on the host.
This approach misses the execution of peripheral-related instructions, thereby ensuring
function-level execution consistency. Generally, firmware emulation based solely on the
firmware itself tends to have lower execution fidelity. Achieving higher fidelity necessitates
additional hardware information and the development of specific peripheral models for
various peripherals.

Future Internet 2025,17, 19

12 of 20

5.2. Data/Memory Fidelity
Data/memory fidelity ordered from coarsest to finest granularity are as follows:

* External Function: Data output from firmware in an emulator leads to similar func-
tions as real hardware.

¢ Peripheral: Data output from an emulator matches that of real hardware.

* Internal Memory: Data in the memory for running firmware in an emulator is consis-
tent with real hardware.

* Register: Data in memory and registers for running firmware in an emulator is
consistent with real hardware.

¢ Perfect: All data input, output, and memory space in the emulator matches real
hardware at all times, which is virtually unobtainable.

Avatar interacts with real peripherals, ensuring high data memory fidelity. However,
due to basic block translation, it handles peripheral interrupts only between blocks, not
simultaneously with triggers, maintaining internal memory fidelity. In full system emu-
lation, data fidelity relies on peripheral modeling methods. Solutions like SEmu, which
use external info for individual peripheral modeling, offer higher fidelity than general
firmware-specific models like P2IM and Fuzzware. In partial emulation, fidelity depends on
the consistency of emulated module functions. For example, while HEAPSTER only emu-
lates heap-related functions, resulting in low execution fidelity, it excludes peripheral data
and maintains memory consistency with real hardware. FirmWire’s function replacement
and peripheral emulation specific to baseband firmware also achieve high fidelity but with
less automation. Similarly, high-level replacement solutions using functional replacement
functions can achieve higher data consistency than peripheral emulation solutions. As
shown in Figure 6, higher execution fidelity enhances data and memory fidelity in full sys-
tem emulation. In addition, partial emulations or HAL replacement solutions bypass driver
code and involve fewer peripheral operations, resulting in data and memory consistency
that closely resembles the real device.

Fidelity VS Automation: To achieve higher-fidelity peripheral modeling, simply analyz-
ing firmware itself for general peripheral modeling is insufficient. Specific modeling for
different peripherals requires hardware information. Extracting this information directly
from the device can lead to hardware dependence issues, while obtaining it from hardware
reference manuals or driver code is complex and error-prone. This complexity demands
more human effort and reduces automation in high-fidelity modeling, as shown in Figure 6.
In contrast, when focusing on a specific application domain, achieving high-fidelity pe-
ripheral emulation may not be essential. For instance, HAL-based solutions, as discussed
in [24], can be utilized for testing application code exclusively. However, these solutions
necessitate the manual implementation of replacement functions. Similarly, partial emu-
lation can be employed to identify bugs that are less pertinent to peripheral operations,
such as specific heap-related issues [37], which demand higher-fidelity emulation solely in
memory. Nonetheless, the removal of peripheral-dependent code often requires manual
intervention, which can impede automation due to indistinct boundaries and custom inter-
faces, as elaborated in Section 2. In summary, high-fidelity firmware emulation results in
reduced automation, as illustrated in Figure 6 and Table 2.

6. Bug Detection Capability of Emulator’s Fuzzing Application

Given that the main use of current firmware emulators is fuzzing, this section further
compares and discusses their bug detection capabilities in fuzzing applications. We focus
on emulators whose main purpose is fuzzing and which have been tested for at least
24 h over multiple targets. Emulators not primarily used for fuzzing, such Gerbil [38],

Future Internet 2025,17, 19

13 of 20

HEAPSTER [37], and AIM [42], are excluded. Similarly, Conware [26] and Avatar [14], which
perform short-time and single-target fuzzing without a dedicated fuzzing process adoption,
are also out of scope, as are Pretender [25], Laelaps [30], and Jetset [32]. In our study, we
evaluate emulators that satisfy our predefined criteria by comparing their relative false-
positive and false-negative rates. This comparison utilizes results derived from fuzzing
experiments conducted on shared datasets. Specifically, we employ real-world firmware
samples from P2IM [27], which have been tested across all the tools under consideration.
For instance, the Fuzzware tool research paper reports a higher false-positive rate, and
subsequent studies confirm this using P2IM samples. In contrast, SEmu tests the same
dataset with no false positives, indicating a low false-positive rate. Meanwhile, MultiFuzz
claims to find more bugs and achieve higher coverage on the same dataset as Fuzzware,
suggesting a lower false-negative rate. The results are summarized in Table 4. Table 4
also outlines their fuzzing strategies, including the main functions in front-end and back-
end components.

6.1. False Positives

False positives in firmware fuzzing with emulators often result from low-fidelity periph-
eral emulation, leading to increased manual effort for bug reproduction and confirmation.

Low fidelity in peripheral emulation increases false positives. For instance, feeding
fuzzing test cases to peripheral hardware responses can lead to false crashes. Tools like
Fuzzware and Ember-IO might trigger peripheral interrupts before peripheral initialization
and even feed fuzzing test cases to hardware-generated MMIO registers reading, such
as SRs, causing uninitialized function pointers in interrupt service routines (ISRs) to lead
to false crashes. In comparison, fine-grained peripheral models, which incorporated
additional hardware information like SEmu and Perry, have relatively low false-positive
rates. Similarly, FirmWire and MetaEmu, designed for specific applications, rely on manual
configuration and tailored test constraints, resulting in fewer false positives. The accuracy
of fuzzing enhancements relies on the fidelity of their emulators.

6.2. False Negatives

False negatives in firmware fuzzing can have serious consequences, particularly for
security-sensitive devices in applications such as automotive, healthcare, and industry.
False negatives can be caused by two reasons: limited code coverage and bug detection
capabilities. Greater coverage means more parts of the firmware have been tested, which
typically results in fewer false negatives, and the ability to detect more types of bugs in less
time also reduces false negatives.

Coverage relies on both emulation capability and fuzzing strategies. If peripheral
emulation fails, the firmware may stall, resulting in limited coverage. Improving emulation
fidelity can increase coverage and reduce false negatives. Lower fidelity emulation can
increase error handling coverage in firmware, but it may mislead fuzzing mutations to
focus more on error handling rather than normal operations. For fuzzing strategies, many
fuzzing applications rely on general-purpose fuzzers like AFL [47], AFL++ [48], or libafl [49].
Many fuzzing applications use general-purpose fuzzers such as AFL [47], AFL++ [48], and
libafl [49]. To achieve higher coverage, recent research [34,43—45] has enhanced general
fuzzing technologies for real firmware targets by improving input generation, mutation,
and coverage feedback. For instance, Hoedur enhances libfuzzer [50] by handling multiple
peripheral input streams and applying mutation techniques specific to firmware, such as
recognizing peripheral input types and performing cross-input stream mutations, resulting
in higher coverage than previous methods.

Future Internet 2025, 17,19

14 of 20

Table 4. Comparison of firmware emulation’s fuzzing applications in bug finding capability.

Tools Mutation and Input . Coverage Feedback Bug Detection FP FN
Generation Interface/Constraints
HALucinator [24] AFL Specified Func./None Edge Basic Mem. Error+ Moderate-low Moderate
Heap-checking
SAFIREFUZZ [20] LibAFL Specified Func./None Non-colliding Edge Basic Mem. Error Moderate-low Moderate
P2IM [27] AFL Identified Data I0/None Edge Basic Mem. Error Moderate-high Moderate
uEmu [31] AFL Identified Data I0/None Edge Basic Mem. Error Moderate Moderate
DICE [28] AFL Identified Data I0/None Edge Basic Mem. Error Moderate Moderate
Ember-10 [34] AFL/AFL++ MMIO/Fuzz Cache Functionally Basic Mem. Error High Moderate
Equivalent Edge
Fuzzware [33] AFL/AFL++ MMIO/Modeling Edge Basic Mem. Error Moderate-high Moderate
SEmu [35] AFL/AFL++ Identified Data I0/None Edge Basic Mem. Error Moderate-low Moderate
Perry [36] AFL Specified Func./None Edge Basic Mem. Error Moderate-low Moderate
Hoedur [44] LibFuzzer + A MMIO/Multi-Stream Functionally Basic Mem. Error Moderate-low
+Modeling Equivalent Edge Emulator
SplITS [43] AFL +12S MMIO/Multi-Stream Edge + Comparison Basic Mem. Error Depended Moderate-low
+Modeling +Len.
MultiFuzz [45] AFL + 125+ Specified Func./None Block Basic Mem. Error Moderate-low
Len Extension
USBS [46] Fuzzer front-end Depended Memory Sanitizer * Moderate-low
SFuzz [39] AFL++ Specified Func./None Edge Basic Mem. Error Moderate Moderate
FirmWire [29] AFL++ Specified Func./Protocol Edge + Per-task Basic Mem. Error Moderate-low Moderate-low
MetaEmu [19] LibAFL Sp.e cified Edge Basic Mem. Error Moderate-low Moderate
Function/None
AutoMap [41] AFL Identified Data IO0/None Edge Basic Mem. Error Moderate-low Moderate-high

A: Len Extension + Cross-value + Cross-stream + Type-awareness. *: includes Null Pointer Dereference, Stack/Heap-based buffer overflow, format string, and double free detection.

Future Internet 2025,17, 19

15 of 20

Most firmware fuzzers includes basic memory error detection targeting memory
segment permission violations, such as buffer overflows or access to unmapped memory.
While studies suggest more detailed memory error detection and diverse bug identification,
these solutions often come with high overhead or require source code, which is not feasible
for real-world firmware [16]. Additionally, they are often specific to simple bare-metal
firmware, making them unsuitable for complex firmware like uSBS [46].

7. Discussion and Future Research

In this section, we explore current approaches for improved usage and propose direc-
tions for future research, as outlined in Figure 7.

Current and Short-term Future

Fidelity / — A o

Peripheral Mo_delmg with Training LLM For

more Information using Al . .
Firmware Emulation

Emulation Automation ’ .
+ Program Analysis

Applicability / —

N Combining emulation j‘} Building on high fidelity ‘
FP approach T emulator
1
SCC}lrlty N) . ’ Memory Sanitizer ‘:> Hardware opération ar%d
Application 7 data flow real time monitor
1

Scalability f —

’ Advance Fuzzing .:‘u} Hybrid Fuzzing, taint ‘
Technologies T analysis
1

Figure 7. Roadmap for future research directions.

7.1. Selection and Combination of Different Emulation Approaches

With the rise of firmware emulation approaches, various solutions offer distinct advan-
tages for different peripherals and application scenarios, affecting their performance and
stability across test sets. Selecting or combining emulators to test target firmware can achieve
higher fidelity and efficiency. For instance, while “hardware-in-the-loop” solutions have
hardware dependence, it provides a realistic debugging environment through real hardware
connections to accomplish high-fidelity emulation. If developers test a device with an un-
known peripheral that current tools cannot emulate, they can forward this peripheral to the
real hardware while keeping other peripherals in emulation. This approach facilitates testing
the device efficiently compared to complete “hardware-in-the-loop” solutions.

HALucinator bypasses peripheral emulation by replacing high-level hardware abstrac-
tion layer (HAL) functions with host implementations. However, building a comprehensive
database requires HAL source codes from major MCU vendors, limiting support for SoCs
with proprietary SDKs. Combining HAL replacement with peripheral modeling approach
could create an advanced firmware emulator with higher execution and data fidelity at the
same time. Developers can use HALucinator to match HAL functions and hook them to
host implementations, while peripheral modeling tools can emulate unknown peripherals
during runtime.

For applications like baseband or automotive, specialized firmware emulators such
as FirmWire and MetaEmu are preferable over general ones, as they offer more features
tailored to these specific uses.

7.2. Basic Information Recovery for Emulation

Most current firmware emulators require developers to configure basic memory layout,
start address, and other firmware information, assuming this can be found in the MCU
hardware manual or in formats like ELF files with symbol tables. However, firmware
dumped from real-world devices is often a pure binary without any information, even
the MCU model. Unlike general software binaries, basic information such as memory

Future Internet 2025,17, 19

16 of 20

loading address, entry address, and other definitions vary with different MCU models.
For accurate firmware dynamic emulation, knowledge of this information is essential. The
absence of this basic information significantly limits the practicality of current academic
dynamic analysis tools for real firmware and incurs much manual effort to identify these
information before running the tools. Combining statistical analysis techniques, such as
determining base addresses through fixed static global variable address analysis, was
performed in [51]. The automation of the extraction and construction of a comprehensive
firmware information knowledge base is a key technical challenge for firmware emulators.

7.3. Automated High-Fidelity Emulation for Complex and Custom Peripherals

Firmware in safety-critical applications demands high-fidelity emulation for fuzzing,
as even minor errors can have severe consequences. For instance, small mistakes in ADAS
firmware can result in traffic accidents, and deviations in medical IoT device firmware
could endanger lives. However, devices in automotive and industrial sectors often use
complex or custom peripherals that current emulators cannot accurately replicate. For
example, there is no existing tool that can automatically model complex peripherals like
USB or WiFi with precision. As a result, firmware analysis for these devices relies heavily
on statistical analysis or custom emulation models, requiring significant manual effort.
Automating the accurate generation of complex peripheral emulation models without real
hardware is a major technical challenge.

Advancements in Al technology offer new opportunities for achieving high-fidelity
peripheral emulation more automatically. For instance, Conware converts logs of real pe-
ripheral interactions (such as interrupts, reads, and writes) into directed acyclic graphs
(DAGs) and uses a novel graph-transformation technique to generate high-fidelity periph-
eral models. Advanced Reinforcement Learning [52] can also be applied to continually
learn from recorded logs, enhancing peripheral modeling. Similarly, SEmu utilizes NLP to
automatically generate peripheral models from hardware manuals, improving fidelity for
complex peripherals. The development of large language models like GPT-4, which have
shown greater capability than traditional NLP [53], may further enhance peripheral mod-
eling by learning from hardware manuals. With the advancement of LLMs, we can train
specialized models for firmware emulation using extensive firmware datasets, hardware
manuals, and open-source MCU software stacks in future.

7.4. More and Effective Security Application Support

Currently, advanced fuzzing techniques like hybrid fuzzing [54], directed fuzzing [55],
and stateful fuzzing [56], along with dynamic bug detectors such as MSan [57] and UB-
San [58], are not widely adopted for firmware targets. This is primarily due to two reasons:
first, the black-box nature of binaries makes instrumentation and context inference, such as
state variables, challenging for directed, stateful fuzzing and sanitizers. Second, although
symbolic execution has been integrated into emulation environments, it is mainly used for
peripheral modeling rather than continuous hybrid fuzzing like QSYM [54]. This limitation
arises from the need to modify machine code for improved symbolic execution perfor-
mance, which is tightly coupled with host architecture. The diverse and distinct nature
of firmware architectures presents challenges for such applications. To advance fuzzing
technology, future efforts should combine it with statistical analysis for better information
inference and focus on instrumenting intermediate representations rather than directly on
binary code to support diverse CPU architectures.

Firmware emulation security applications are mainly limited to fuzz testing due to
low data and memory fidelity. As emulation fidelity improves, more security analysis
technologies, such as taint analysis for detecting vulnerabilities like command injections,

Future Internet 2025,17, 19 17 of 20

can be applied to firmware targets. Additionally, MCU devices are used in security-sensitive
environments. Compliance checks with hardware operations are crucial, as errors that do
not affect control or data flow can still cause serious issues, such as failing to engage brakes
in an ASDS.

8. Conclusions

The increasing security vulnerabilities in microcontroller unit (MCU)-based devices
have heightened the focus on vulnerability detection in MCU firmware. Current research
emphasizes testing firmware in emulated environments to achieve higher levels of automa-
tion and efficiency, as well as to extract more internal information for identifying a broader
range of security issues. Our paper revisits the latest MCU firmware emulation approaches,
focusing on its key features and identifying core challenges in CPU emulation, peripheral
emulation, and fuzzing application enhancement. We categorize existing emulators based
on fidelity and bug detection capabilities to help users choose the right tools. Although
advancements have been made, current emulators still face challenges in balancing fidelity,
automation, and adaptability, indicating room for improvement. We also explore future
research opportunities and how emerging technologies, such as LLM, can address these
challenges. We posit that the integration of binary analysis with advanced Al technologies
will significantly enhance the automation, fidelity, and applicability of firmware emula-
tion and expanding security applications, making it a prominent area of interest in the
near future.

Funding: Peng Liu was funded by National Science Foundation under grant number CNS-2019340,
ECCS-2140175, the Department of Energy Office of Cybersecurity, Energy Security, and Emergency
Response (DOE CESER) under grant number RC-40125b-2023. Wei Zhou and Shandian Shen were
funded by the National Natural Science Foundation of China under grant number 62202188.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Foundation, E. IoT and Embedded Survey Report 2024. Available online: https://outreach.eclipse.foundation/iot-embedded-d
eveloper-survey-2024 (accessed on 21 December 2024).

2. Abbasi, A.; Wetzels, J.; Holz, T.; Etalle, S. Challenges in designing exploit mitigations for deeply embedded systems. In
Proceedings of the 2019 IEEE European Symposium on Security and Privacy (EuroS&P), Stockholm, Sweden, 17-19 June 2019;
pp- 31-46.

3. Zhou, W,; Jiang, Z.; Guan, L. Understanding MPU Usage in Microcontroller-based Systems in the Wild. In Proceedings of the
Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA, 3 March 2023.

4. NSFoCus. Insight RSA 2023: Botnet Threat Situation Observation. Available online: http://blog.nsfocus.net/rsa-2023insight2/
(accessed on 19 November 2024).

5. Godefroid, P. Fuzzing: Hack, art, and science. Commun. ACM 2020, 63, 70-76. [CrossRef]

6. Fasano, A; Ballo, T.; Muench, M.,; Leek, T.; Bulekov, A.; Dolan-Gavitt, B.; Egele, M.; Francillon, A.; Lu, L.; Gregory, N.; et al. Sok:
Enabling security analyses of embedded systems via rehosting. In Proceedings of the 2021 ACM Asia Conference on Computer
and Communications Security (CCS), Online, Hong Kong, 7-11 June 2021; pp. 687-701.

7. Wright, C.; Moeglein, W.A.; Bagchi, S.; Kulkarni, M.; Clements, A.A. Challenges in firmware re-hosting, emulation, and analysis.
ACM Comput. Surv. (CSUR) 2021, 54, 1-36. [CrossRef]

8. Feng, X,; Zhu, X;; Han, Q.L.; Zhou, W.; Wen, S.; Xiang, Y. Detecting vulnerability on IoT device firmware: A survey. IEEE/CAA].
Autom. Sin. 2022, 10, 25-41. [CrossRef]

9. FreeRTOS. FreeRTOS LTS libraries. Available online: https://www.freertos.org/Documentation/03-Libraries/01-Library-overv
iew /03-LTS-libraries/01-LTS-libraries (accessed on 21 December 2024).

10. RT-Thread. RT-Thread Packages. Available online: https://packages.rt-thread.org/ (accessed on 21 December 2024).

11. STMicroelectronics. STM32Cube Initialization Code Generator. Available online: https://www.st.com/en/development-tools/

stm32cubemx.html (accessed on 21 December 2024).

https://outreach.eclipse.foundation/iot-embedded-developer-survey-2024
https://outreach.eclipse.foundation/iot-embedded-developer-survey-2024
http://blog.nsfocus.net/rsa-2023insight2/
http://doi.org/10.1145/3363824
http://dx.doi.org/10.1145/3423167
http://dx.doi.org/10.1109/JAS.2022.105860
https://www.freertos.org/Documentation/03-Libraries/01-Library-overview/03-LTS-libraries/01-LTS-libraries
https://www.freertos.org/Documentation/03-Libraries/01-Library-overview/03-LTS-libraries/01-LTS-libraries
https://packages.rt-thread.org/
https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/development-tools/stm32cubemx.html

Future Internet 2025,17, 19 18 of 20

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Bellard, F. QEMU, a fast and portable dynamic translator. In Proceedings of the USENIX Annual Technical Conference, FREENIX
Track, Anaheim, CA, USA, 10-15 April 2005; pp. 41-46.

Quynh, N.A.; Vu, D.H. Unicorn: Next Generation CPU Emulator Framework. Available online: https://www.blackhat.com/d
ocs/us-15/materials /us-15-Nguyen-Unicorn-Next-Generation-CPU-Emulator-Framework.pdf (accessed on 21 December 2024).
Muench, M.; Nisi, D.; Francillon, A.; Balzarotti, D. Avatar 2: A multi-target orchestration platform. In Proceedings of the
Workshop on Binary Analysis Research (BAR) 2018, San Diego, CA, USA, 18 February 2018; pp. 1-11.

Kargén, U.; Shahmehri, N. Speeding up bug finding using focused fuzzing. In Proceedings of the 13th International Conference
on Availability, Reliability and Security (ARES) 2018, Hamburg, Germany, 27-30 August 2018; pp. 1-10.

Muench, M,; Stijohann, J.; Kargl, E; Francillon, A.; Balzarotti, D. What You Corrupt Is Not What You Crash: Challenges in
Fuzzing Embedded Devices. In Proceedings of the 25th Annual Network and Distributed System Security Symposium (NDSS)
2018, San Diego, CA, USA, 18-21 February 2018.

Magnusson, P.S.; Christensson, M.; Eskilson,].; Forsgren, D.; Hallberg, G.; Hogberg, J.; Larsson, F.; Moestedt, A.; Werner, B.
Simics: A full system simulation platform. Computer 2002, 35, 50-58. [CrossRef]

Agency, N.S. NSA’s Research Directorat Ghidra. Available online: https://ghidra-sre.org/ (accessed on 19 November 2024).
Chen, Z.; Thomas, S.L.; Garcia, ED. Metaemu: An architecture agnostic rehosting framework for automotive firmware. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (CCS), Los Angeles, CA, USA,
7-11 November 2022; pp. 515-529.

Seidel, L.; Maier, D.C.; Muench, M. Forming Faster Firmware Fuzzers. In the Proceedings of the 32nd USENIX Security
Symposium, Anaheim, CA, USA, 9-11 August 2023; pp. 2903-2920.

Chen, D.D.; Woo, M,; Brumley, D.; Egele, M. Towards automated dynamic analysis for linux-based embedded firmware. 23rd
Annual Network and Distributed System Security Symposium (NDSS) 2016, San Diego, California, USA, 21- 24 February 2016;
Volume 1, p. 1.

Kim, M.; Kim, D.; Kim, E.; Kim, S.; Jang, Y.; Kim, Y. Firmae: Towards large-scale emulation of iot firmware for dynamic analysis.
In Proceedings of the 36th Annual Computer Security Applications Conference (ACSAC) 2020, Online/Austin, TX, USA, 7-11
December 2020; pp. 733-745.

Jiang, M.; Ma, L.; Zhou, Y,; Liu, Q.; Zhang, C.; Wang, Z.; Luo, X.; Wu, L.; Ren, K. ECMO: Peripheral transplantation to Rehost
embedded Linux kernels. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security
(CCS), Online, Republic of Korea, 15-19 November 2021; pp. 734-748.

Clements, A.A.; Gustafson, E.; Scharnowski, T.; Grosen, P,; Fritz, D.; Kruegel, C.; Vigna, G.; Bagchi, S.; Payer, M. HALucinator:
Firmware re-hosting through abstraction layer emulation. In Proceedings of the 29th USENIX Security Symposium, Online,
12-14 August 2020; pp. 1201-1218.

Gustafson, E.; Muench, M.; Spensky, C.; Redini, N.; Machiry, A.; Fratantonio, Y.; Balzarotti, D.; Francillon, A.; Choe, Y.R.; Kruegel,
C.; etal. Toward the analysis of embedded firmware through automated re-hosting. In Proceedings of the 22nd International
Symposium on Research in Attacks, Intrusions and Defenses (RAID) 2019, Chaoyang District, Beijing, China, 23-25 September
2019; pp. 135-150.

Spensky, C.; Machiry, A.; Redini, N.; Unger, C.; Foster, G.; Blasband, E.; Okhravi, H.; Kruegel, C.; Vigna, G. Conware: Automated
modeling of hardware peripherals. In Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security
(AsiaCCS), Online, Hong Kong, 7-11 June 2021; pp. 95-109.

Feng, B.; Mera, A.; Lu, L. P2IM: Scalable and hardware-independent firmware testing via automatic peripheral interface modeling.
In Proceedings of the 29th USENIX Security Symposium, Online, 12-14 August 2020; pp. 1237-1254.

Mera, A.; Feng, B.; Lu, L.; Kirda, E. DICE: Automatic emulation of DMA input channels for dynamic firmware analysis. In
Proceedings of the 2021 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 24-27 May 2021; pp. 1938-1954.
Hernandez, G.; Muench, M.; Maier, D.; Milburn, A.; Park, S.; Scharnowski, T.; Tucker, T.; Traynor, P.; Butler, K. FIRMWIRE:
Transparent dynamic analysis for cellular baseband firmware. In Proceedings of the Network and Distributed Systems Security
Symposium (NDSS) 2022, San Diego, CA, USA, 24-28 April 2022.

Cao, C.; Guan, L.; Ming, J.; Liu, P. Device-agnostic firmware execution is possible: A concolic execution approach for peripheral
emulation. In Proceedings of the 36th Annual Computer Security Applications Conference (ACSAC) 2020, Austin, TA, USA, 7-11
December 2020; pp. 746-759.

Zhou, W.; Guan, L, Liu, P; Zhang, Y. Automatic firmware emulation through invalidity-guided knowledge inference. In
Proceedings of the 30th USENIX Security Symposium, Online, 11-13 August 2021; pp. 2007-2024.

Johnson, E.; Bland, M.; Zhu, Y.; Mason, J.; Checkoway, S.; Savage, S.; Levchenko, K. Jetset: Targeted firmware rehosting for
embedded systems. In Proceedings of the 30th USENIX Security Symposium, Online, 11-13 August 2021; pp. 321-338.
Scharnowski, T.; Bars, N.; Schloegel, M.; Gustafson, E.; Muench, M.; Vigna, G.; Kruegel, C.; Holz, T.; Abbasi, A. Fuzzware: Using
precise MMIO modeling for effective firmware fuzzing. In Proceedings of the 31st USENIX Security Symposium, Boston, MA,
USA, 10-12 August 2022; pp. 1239-1256.

https://www.blackhat.com/docs/us-15/materials/us-15-Nguyen-Unicorn-Next-Generation-CPU-Emulator-Framework.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Nguyen-Unicorn-Next-Generation-CPU-Emulator-Framework.pdf
http://dx.doi.org/10.1109/2.982916
https:// ghidra-sre.org/

Future Internet 2025,17, 19 19 of 20

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Farrelly, G.; Chesser, M.; Ranasinghe, D.C. Ember-10: Effective firmware fuzzing with model-free memory mapped IO. In
Proceedings of the 2023 ACM Asia Conference on Computer and Communications Security (AsiaCCS), Melbourne, VIC, Australia,
10-14 July 2023; pp. 401-414.

Zhou, W.; Zhang, L.; Guan, L.; Liu, P; Zhang, Y. What your firmware tells you is not how you should emulate it: A specification-
guided approach for firmware emulation. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS), Los Angeles, CA, USA, 7-11 November 2022; pp. 3269-3283.

Lei, C; Ling, Z.; Zhang, Y.; Yang, Y.; Luo, J.; Fu, X. A Friend’s Eye is A Good Mirror: Synthesizing MCU Peripheral Models
from Peripheral Drivers. In Proceedings of the 33rd USENIX Security Symposium, Philadelphia, PA, USA, 14-16 August 2024;
pp. 7085-7102.

Gritti, F,; Pagani, F.; Grishchenko, I.; Dresel, L.; Redini, N.; Kruegel, C.; Vigna, G. Heapster: Analyzing the security of dynamic
allocators for monolithic firmware images. In Proceedings of the 2022 IEEE Symposium on Security and Privacy (SP), San
Francisco, CA, USA, 22-26 May 2022; pp. 1082-1099.

Yao, Y.; Zhou, W.; Jia, Y.; Zhu, L.; Liu, P.; Zhang, Y. Identifying privilege separation vulnerabilities in IoT firmware with symbolic
execution. In Proceedings of the 24th European Symposium on Research in Computer Security (ESORICS) 2019, Luxembourg,
23-27 September 2019; pp. 638-657.

Chen, L.; Cai, Q.; Ma, Z.; Wang, Y.; Hu, H.; Shen, M.; Liu, Y.; Guo, S.; Duan, H.; Jiang, K,; et al. Sfuzz: Slice-based fuzzing for
real-time operating systems. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security
(CCS), Los Angeles, CA, USA, 7-11 November 2022; pp. 485—498.

Zaddach,].; Bruno, L.; Francillon, A.; Balzarotti, D.; et al. AVATAR: A Framework to Support Dynamic Security Analysis of
Embedded Systems’ Firmwares. In Proceedings of the 21st Annual Network and Distributed System Security Symposium (NDSS)
2014, San Diego, CA, USA, 23-26 February 2014; Volume 14, pp. 1-16.

Won,].Y.; Wen, H.; Lin, Z. What You See is Not What You Get: Revealing Hidden Memory Mapping for Peripheral Modeling.
In Proceedings of the 25th International Symposium on Research in Attacks, Intrusions and Defenses (RAID) 2022, Limassol,
Cyprus, 26-28 October 2022; pp. 200-213.

Feng, B.; Luo, M,; Liu, C.; Lu, L,; Kirda, E. AIM: Automatic Interrupt Modeling for Dynamic Firmware Analysis. IEEE Trans.
Dependable Secur. Comput. 2023, 21, 3866-3882. [CrossRef]

Farrelly, G.; Quirk, P; Kanhere, S.S.; Camtepe, S.; Ranasinghe, D.C. SplITS: Split Input-to-State Mapping for Effective Firmware
Fuzzing. In Proceedings of 28th European Symposium on Research in Computer Security (ESORICS) 2023, The Hague, The
Netherlands, 25-29 September 2023; pp. 290-310.

Scharnowski, T.; Worner, S.; Buchmann, F.; Bars, N.; Schloegel, M.; Holz, T. Hoedur: Embedded Firmware Fuzzing using
Multi-Stream Inputs. In Proceedings of the 32nd USENIX Security Symposium, Anaheim, CA, USA, 9-11 August 2023.
Chesser, M.; Nepal, S.; Ranasinghe, D.C. MultiFuzz: A Multi-Stream Fuzzer For Testing Monolithic Firmware. In Proceedings of
the 33rd USENIX Security Symposium, Philadelphia, PA, USA, 14-16 August 2024; pp. 5359-5376.

Salehi, M.; Hughes, D.; Crispo, B. uSBS: Static Binary Sanitization of Bare-metal Embedded Devices for Fault Observability. In
Proceedings of the 23rd International Symposium on Research in Attacks, Intrusions and Defenses (RAID) 2020, San Sebastian,
Spain, 14-15 October 2020; pp. 381-395.

Zalewski, M. American Fuzzy Lop. Available online: http://lcamtuf.coredump.cx/afl/ (accessed on 21 December 2024).
Fioraldi, A.; Maier, D.; Eififeldt, H.; Heuse, M. AFL++: Combining Incremental Steps of Fuzzing Research. In Proceedings of the
14th USENIX Workshop on Offensive Technologies (WOOT) 2020, Online, 11 August 2020.

Fioraldi, A.; Maier, D.C.; Zhang, D.; Balzarotti, D. Libafl: A framework to build modular and reusable fuzzers. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security (CCS), Los Angeles, CA, USA, 7-11 November
2022; pp. 1051-1065.

LLVM. libFuzzer—A Library for Coverage-Guided Fuzz Testing. Available online: https://llvm.org/docs/LibFuzzer.html
(accessed on 19 November 2024).

Wen, H.; Lin, Z.; Zhang, Y. Firmxray: Detecting bluetooth link layer vulnerabilities from bare-metal firmware. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security (CCS), Online, USA, 9-13 November 2020;
pp- 167-180.

Shakya, A.K.; Pillai, G.; Chakrabarty, S. Reinforcement learning algorithms: A brief survey. Expert Syst. Appl. 2023, 231, 120495.
[CrossRef]

Baktash, J.A.; Dawodi, M. Gpt-4: A review on advancements and opportunities in natural language processing. arXiv 2023,
arXiv:2305.03195.

Yun, L; Lee, S.; Xu, M,; Jang, Y.; Kim, T. QSYM: A practical concolic execution engine tailored for hybrid fuzzing. In Proceedings
of the 27th USENIX Security Symposium, Baltimore, MD, USA, 15-17 August 2018; pp. 745-761.

Bohme, M.; Pham, V.T.; Nguyen, M.D.; Roychoudhury, A. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS), Dallas, Texas, USA, 30 October-3 November 2017; pp. 2329-2344.

http://dx.doi.org/10.1109/TDSC.2023.3339569
http://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html
http://dx.doi.org/10.1016/j.eswa.2023.120495

Future Internet 2025,17, 19 20 of 20

56. Ba,].; Bchme, M.; Mirzamomen, Z.; Roychoudhury, A. Stateful greybox fuzzing. In Proceedings of the 31st USENIX Security
Symposium, Boston, MA, USA, 10-12 August 2022; pp. 3255-3272.

57. Stepanov, E.; Serebryany, K. MemorySanitizer: Fast detector of uninitialized memory use in C++. In Proceedings of the 2015
IEEE/ACM International Symposium on Code Generation and Optimization (CGO), San Francisco, CA, USA, 7-11 February
2015; pp. 46-55.

58. Developers, L. Undefined Behavior Sanitizer. Available online: https://clang.llvm.org/docs/UndeinAnedBehaviorSanitizer.ht
ml (accessed on 19 November 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://clang.llvm.org/docs/UndeﬁnedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndeﬁnedBehaviorSanitizer.html

	Introduction
	Feature of MCU Firmware
	Embedded Firmware Classification and Microcontroller-Based Firmware
	Features of MCU Firmware

	Challenges Faced by Firmware Emulation and Its Application in Fuzzing
	CPU Emulation Support
	Peripheral Interaction Emulation Support
	Fuzzing Application Enhancement

	State-of-the-Art Firmware Emulation and Its Application in Fuzzing
	Solution to CPU Emulation Support
	Solutions to Peripheral Interaction Support
	High-Level Peripheral Interaction Replacement
	Peripheral Interaction Modeling
	Partial Emulation

	Solutions to Fuzzing Application Enhancement

	Emulation Fidelity
	Execution Fidelity
	Data/Memory Fidelity

	Bug Detection Capability of Emulator's Fuzzing Application
	False Positives
	False Negatives

	Discussion and Future Research
	Selection and Combination of Different Emulation Approaches
	Basic Information Recovery for Emulation
	Automated High-Fidelity Emulation for Complex and Custom Peripherals
	More and Effective Security Application Support

	Conclusions
	References

