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ABSTRACT

Neural network models catastrophically forget previously learned
information while acquiring new knowledge, requiring a fundamen-
tal change in learning models and architectures. These enhance-
ments to architecture structures and training mechanisms lead to
an increase in memory and computational resources, making it
difficult to deploy models on resource-constrained edge devices. To
enhance both memory and computational efficiency, we propose a
model compression approach for spiking continual learning models,
where the model parameters are quantized with varying precision
according to their weight distribution.

Specifically, we explore the posit format with gradient scaling
and gradient accumulation techniques to reduce the quantization
error of the model while training. Synapses and regularization
parameters that play a role in catastrophic forgetting are designed
with an 8-bit posit format. The model exhibits a 4x reduction in
memory with a marginal impact ~ 2% on mean accuracy. This
model also exhibits a 30% increase in mean accuracy compared
to the 8-bit fixed point. We show that the posit spiking network
consumes 27% less energy compared to the 16-bit fixed point for
similar performance.
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1 INTRODUCTION

Neural network models have shown promising performance on
non-overlapping tasks with static underlying patterns. In contrast,
when trained sequentially on multiple tasks, they tend to forget
the knowledge from the previous tasks, a problem referred to as
catastrophic forgetting. This problem can be framed as a stability-
plasticity dilemma, with stability representing the preservation
of prior knowledge and plasticity indicating the ability to learn
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new knowledge. Several continual learning (CL) mechanisms have
been proposed in the literature [3, 18, 28] to achieve the stability-
plasticity balance during the learning process. Common methods
to address this issue include parameter regularization [1], replay or
rehearsal techniques [16], and dynamic architectures [24].

Several works have incorporated such mechanisms into neural
network models to improve continual learning capabilities at differ-
ent granularities [25]. However, a common issue among all these
approaches is that they are compute and memory intensive [3, 11],
making them unsuitable for resource-constrained edge devices. Pre-
vious studies explored regularization methods in spiking neural
networks (SNNs) to reduce compute and memory resources [23].
SNNss enable event-driven computation and efficient data encoding
and processing, where information is represented in the form of
sparse binary spike streams instead of high-precision data. This
serves two purposes: i) it allows short- and long-term information
retention [20], ii) it can lead to a reduction in computational cost
and power consumption by several orders of magnitude [8, 21].

There are limited explorations of optimizing continual learning
models during inference and learning, even more so for spiking
networks. The loss of information during the compression process,
which involves reducing the precision of the model parameters
in SNNs, has led to catastrophic degradation of the network per-
formance [19]. Existing SNN model compression techniques focus
on quantizing the model parameters for the inference phase to
shorten the latency and enhance energy efficiency. SNN quanti-
zation has also been shown to reduce memory footprint by ~ 4x
while maintaining accuracy within marginal degradation compared
to baseline [19].

It should be mentioned that there are several compression tech-
niques that one can incorporate in SNN models, such as pruning,
low-precision quantization, and low-rank factorization. Pruning
and quantization techniques focus mainly on reducing the redun-
dancy in the model, while low-rank factorization uses matrix/tensor
decomposition to identify the key parameters. In this work, we will
leverage the robustness of neural networks for quantization [6] and
emphasize on low-precision representation. Specifically, we study:
i) quantization of the parameters to tapered-low precision [13, 14]
which outperforms other approaches, ii) integration of posit-based
quantization techniques into continual learning models with acute
awareness of computational and memory constraints inherent to
edge devices.

The main contributions of this paper are:

(1) A posit-quantized continual learning mechanism to atten-

uate the effects of catastrophic forgetting that is compute-
and memory-efficient.



(2) We examine energy dissipation using an analytical approach
for the continual learning network quantized to 8-bit posit
and 16-/8-bit fixed-point representations.

2 BACKGROUND

2.1 Continual Learning

Neural network models often face the issue of catastrophic forget-
ting when learning multiple tasks. Previous studies address cata-
strophic forgetting by minimizing the overlap in representation
between tasks [4, 5], replaying samples from previously learned
tasks [2, 22], or penalizing changes to critical parameters (regulariza-
tion) to safeguard previously acquired knowledge from interference.
Our exploration in this work will be focused on the regularization
method. One notable data-focused regularization method, Learn-
ing without Forgetting (LwF) [15], utilizes previous task models
as soft labels for earlier tasks. Other approaches, such as Elastic
Weight Consolidation (EWC) [10] and Synaptic Intelligence (SI)
[26], estimate the importance of network parameters and penalize
changes to crucial parameters during subsequent task training. SI
further extends the EWC to use adaptable regularization. Despite
the effectiveness of the aforementioned approaches in addressing
catastrophic forgetting, they often triple the memory requirements
compared to base models. To address this challenge of memory,
TACOS [23] introduces metaplasticity combined with synaptic con-
solidation techniques in a spiking neural network. This approach
reduces memory requirements while improving the performance
of continual learning.

2.2 Quantization

Quantization is defined as mapping a large set of values to a fi-
nite or smaller set of values [6], which is used to approximate the
calculations of integrals. In neural networks, which are typically
dominated by computationally intensive operations, quantization
plays a critical role in mitigating the memory and computational
overhead by reducing bit-precision of the network activations and
their parameters. Some of the common quantization techniques use
uniform quantization [6], where high-precision floating point num-
bers are quantized to low-precision values as illustrated in Equa-
tion 1. Here, x is the value to be quantized, S is the scaling factor,
and Z is a constant to achieve symmetric distribution.

0(x) = znt(;—‘) +7 1)

Although low-precision uniform quantization has been proven
to be effective in reducing memory and computational cost, they
can cause a significant drop in network performance [6]. To ad-
dress this challenge, various non-uniform quantization techniques
have been introduced such as posit-based quantization [12, 13] and
tapered fixed-point quantization [14] which aligns the parameter
distribution with the numerical format distribution to reduce the
quantization error. These non-uniform numerical formats outper-
form the integer and floating point due to their high dynamic range
and high precision of the values close to zero [13]. It is important to
mention that there are numerous quantization techniques that have
been proposed in literature to compress network models without
compromising their accuracy while performing inference. However,
most of these techniques fail to achieve satisfactory performance
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during quantized training due to accumulation of quantization er-
ror. This problem may escalate further when dealing with continual
learning scenarios. Previous works in [9] and [27] targeted quan-
tization for continual learning. The former uses dual-fixed point
quantized metaplastic synapses while the latter uses probabilistic
metaplastic binary synapses to address catastrophic forgetting.

2.3 Low-precision Posit

The posit numerical format was first introduced by [7] as an alter-
native representation to the IEEE floating point formats. Due to its
higher dynamic range and high resolution compared to the IEEE
floats, it was employed at low precision for various applications to
avail the memory and computational benefits. Unlike IEEE floats,
numbers in posit are represented by Equation (2), where s, es, f's,
represents the sign, and the maximum number of bits allocated
for the exponent and the maximum value that can be attained
by fraction bits. e and f denote the exponent and fraction values,
respectively, and k is the the regime value, given by Equation 3.

0, if (00...0)
NaR, if (10...0)

(—1)5 x 227 %k » 2€ % (1 + 2%) otherwise

@)

X =

The regime bit-field is encoded based on the runlength (m) of
identical bits (r...r) terminated by either a regime terminating bit (r)
or the end of the n-bit value. Note that there is no requirement to
distinguish between negative and positive zero since only a single
bit pattern (00...0) represents zero. Furthermore, instead of defining
a NaN for exceptional values and infinity by different bit patterns, a
single bit pattern (10...0), “Not-a-Real” (NaR), represents exception
values and infinity. More details about the posit number format can

be found in [7].
k= {_m’
m-—1,

3 POSIT QUANTIZED CONTINUAL LEARNING

In this work, the TACOS [23] spiking continual learning algorithm
is used. The TACOS algorithm incorporates multiple local learning
mechanisms, such as metaplasticity and synaptic consolidation,
to preserve previous knowledge and learn continually, while ad-
dressing catastrophic forgetting. It is trained using the surrogate
gradient learning rule known as event-driven random back propa-
gation (eRBP) [17].

The main purpose of choosing the TACOS algorithm is two-fold.
Firstly, it demonstrates state-of-the-art performance on several
continual learning benchmarks. Second, it uses local learning with
spiking neurons to improve energy efficiency. The network consists
of neuronal units modeled by Leaky Integrate and Fire (LIF) neurons,
as described by Equation 4. In the LIF neuron, the synaptic current
I(¢) is derived from the weighted summation of spikes over time,
subsequently influencing the membrane potential. Given that the
synapses w; are encoded in 8-bit posit format, the computation of
the membrane potential presents two viable strategies. First, one
can preserve the synapses in posit format and decode them to full
precision during computations. Alternatively, not only the synapses
but also the membrane potential and other relevant variables to

ifr=0

ifr=1 )
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Figure 1: Continual learning spiking neural network architecture with posit quantized synapse parameters, synaptic consoli-
dation parameters, and metaplasticity parameters. The network learns in a single epoch, with 8-bit posit showing only ~ 3%
degradation in mean accuracy compared to 32-bit floating point.

posit format can be represented in posit format. In our approach, we Algorithm 1: PositCL training procedure
have opted for the former method. Thus, we develop a posit decoder
and encoder that converts the 8-bit posit realized synapses to 16-bit

Input : Input tasks 7, where T C 7 is a set of inputs and

X ) - ’ e ‘ target pairs {X?,Y}
fixed point and vice versa. This design choice is derived to reduce for t in 7 do
the computational complexity of the network while lowering the for epoch = 0 to maxE do
quantization error of the LIF neuron. for {x!,y'} in {X’, Y’} do
for 7 in T, do
V(i+1) = V(1) + [(th - V(t)) + I(t)RJ (4) Network Prediction: 3 = f(x*)
Fmem Error Accumulation: 7, % =-U+ERy
A N Update Neuron Trace: %X” = —% +S;(t)
H(E+1) =100 + —( 3 w;S; () = 1(1)) ) J/ Update Weights:
syn \ 5

= for j in S;(t) do
for i in Ipin < I; < Ipax do
wij(t+1) = Quant[w; (1) -

nSj(OUi(0)OIi(1)) f (m, w)]

To mitigate the impact of catastrophic forgetting, the training
process for synapses incorporates two crucial parameters linked
to each synapse, as depicted in Figure 1: metaplasticity parameters

and reference weights. These elements play a critical role in modu- end

lating synaptic plasticity and maintaining synaptic strength over end

long periods, respectively. However, storing each parameter in the end

network using a 32-bit floating point format imposes significant end

computational and energy burdens associated with memory stor- for i in S;(¢) do

age. To address these resource constraints, our approach quantizes wij(t+1) =

all three parameters related to these mechanisms to 8-bit posit and Quant[w; (1) = nif(m, w)(wij — wirj_f N

fixed-point formats. During training, the synapse parameters and
reference weights typically converge to values within the range
[1 — 107°], which requires exceptionally high precision close to

end

re re A re
wijf = Quant[wijf + #(wlj - wijf)]

zero. However, quantizing these parameters to an 8-bit fixed-point if xit "> muy&xt’ > myp; then
representation often results in a majority of values being rounded | m= Quant(lm += Am)
to zero, thus introducing a considerable quantization error. end
To alleviate this error, we adopt 8-bit posit quantization for these end
parameters, which offers both a high dynamic range and enhanced end

precision near zero. However, the metaplasticity parameters are
determined by accumulating a constant based on the activity of the
post-synaptic neuron. This accumulation process results in a linear
trajectory for the distribution of these parameters, which aligns well Therefore, we quantize the metaplasticity parameters into 8-bit
with the uniformly distributed nature of fixed-point representations. fixed-point format.
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Table 1: The individual and mean task accuracy for synapse representation with various bit-precision on the Split-MNIST task
after training sequentially for a single epoch in the domain-IL scenario. The accuracies in the “Without CL” column reflects the
performance of the spiking network without metaplasticity and synaptic consolidation mechanisms at full precision weights.

Task Without CL  32-bit FP TACOS 16-bits FXP 8-bit FXP 8-bit posit ES=0 8-bit posit ES=1 8-bit posit ES=2
Class 0,1 Acc. 31.54% 93.84% 91.76% 46.35% 89.63% 87.78% 88.03%
Class 2,3 Acc. 58.72% 78.78% 74.04% 50.80% 70.96% 72.58% 73.18%
Class 4,5 Acc. 13.18% 69.45% 61.26% 52.53% 59.15% 59.64% 59.53%
Class 6,7 Acc. 89.93% 92.82.0% 90.87% 87.65% 93.44% 93.39% 94.30%
Class 8,9 Acc. 97.73% 77.60% 81.87% 49.01% 84.37% 81.97% 81.19%

Mean Accuracy 58.22% 82.11% 79.31% 49.37% 79.51% 79.07% 79.30%
f(m,w) =e” mw] (6) the network tends to forget previously learned tasks when learning

Training the network with low-precision parameters introduces
a new challenge, where the gradients during the synapse update
quantize to zero, effectively freezing the network, thereby hindering
further learning and adaptation. To avoid gradient quantization to
zero, we adopt the gradient accumulation strategy, where gradients
are accumulated at higher precision on a batch of samples before up-
dating the synapses. By accumulating gradients, we increase their
range, reducing the likelihood of them quantizing to zero. In addi-
tion to gradient accumulation, we use a gradient scaling strategy
to further mitigate quantization errors. This strategy involves map-
ping both synapses and gradients to higher ranges of values suitable
for quantization, minimizing the impact of quantization-induced er-
rors. However, gradient scaling leads to computational overhead, as
it involves multiplying gradient updates to scale synapses to higher
ranges and dividing the quantized parameters to revert them to their
original range. Although gradient scaling introduces computational
complexity, it plays a crucial role in enhancing the performance
of the quantized network by reducing quantization errors and pre-
serving essential information for learning and adaptation.

4 RESULTS AND ANALYSIS
4.1 Continual learning performance

We evaluated the performance of the proposed network on Split-
MNIST dataset in a continual learning setting. The dataset splits
the MNIST data into five tasks, each containing two classes pre-
sented to the network in a sequential fashion. The experiments
were performed on 10000 training images and 2000 test images
with each task containing 2000 training and 400 test images. The
evaluation was performed according to the domain-incremental
setting, where the task identity is unknown to the network, and
the output neurons are also shared between the tasks. Table 1 illus-
trates the performance of the network after training on five tasks
sequentially with the network topology of 784 input neurons, 200
hidden neurons, and 2 output neurons.

The continual learning performance is calculated using the mean
accuracy metric, the average test accuracy across all tasks after per-
forming task-based training. We considered various scenarios and
setups to illustrate the impact of regularization techniques (meta-
plasticity and synaptic consolidation) and quantization on network
performance. The baseline network has no regularization tech-
niques incorporated into it, and all synaptic weights are realized
using the 32-bit floating-point format. In this setup, we observe that
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new ones. When the network is integrated with metaplasticity and
synaptic consolidation mechanisms, it preserves the old knowledge
from previous tasks and shows an improvement in the mean accu-
racy by 24.6% (see 32-bit FP TACOS column). Then, under the same
setup, the network parameters were quantized to 16-bit fixed-point
and 8-bit fixed-point, and this leads to a significant drop in accuracy
as it can be observed in Table 1. In contrast, when the network was
quantized to an 8-bit posit numerical format with three variations
of exponent bit ranging from 0 to 2, we noticed an enhancement
in the mean accuracy compared to 8-bit fixed point and also a bal-
ance in stability and plasticity of the model. The increase in mean
accuracy can be attributed to two reasons: Firstly, the posit format
has the ability to represent the gradients with high-dynamic range
and high resolution, unlike the fixed-point representation, which
effectively minimizes the quantization error. Secondly, the posit
format has the capability to represent small-scale values. In this
work, the training is performed in an online fashion and the lack of
gradient accumulation set it to zero when quantized with 8-bit fixed
point. This eventually freezes the network and halts the learning
process.

4.2 Energy analysis

To evaluate the efficiency of the posit quantization technique in
continual learning scenarios, we estimate the energy consumption
of deploying the quantized system on an edge device. Given the net-
work’s complexity, we employ an analytical approach to estimate
energy consumption, which implies characterizing the workload
of the individual computation units involved in network training
and then estimating the energy cost. Notably, computational units
such as accumulators, leaky integrate-and-fire neurons, exponential
functions, and multipliers are designed and synthesized under the
IBM 65nm technology node using the Synopsys Design Compiler
(DC) tool, and their energy profile is achieved using the Synopsys
PrimeTime-PX tool, as recorded in Table 2. Additionally, energy
requirements for reading from and writing to 16-bit and 8-bit mem-
ory are determined using the HP Cacti tool. It is crucial to mention
here that to compute LIF neuron activations and synapse updates,
the posit-quantized synapses need to be encoded into a 16-bit fixed
point and then decoded back into posit format after computation.
This necessitates the implementation of posit encoder and decoder
modules. These critical components were developed with insights
drawn from the approach outlined in [12].
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Figure 2: (a) Comparison of the training energy of the network with 16-bit fixed point and 8-bit posit numerical format with
one image of split-MNIST dataset. (b) illustrates the inference energy of the network for various numerical formats.

Table 2: The estimated energy dissipation of the spiking net-
work units during continual learning training,.

Module Bit precision Energy(pJ)

Accumulator 16-bit 0.2176
Multiplier 16-bit 1.471

LIF Neuron 16-bit 5.2192
Error accumulation 16-bit 1.1202
Exponent function 16-bit 1.0668
Posit decoder Es= 0 8-bit — 16-bit 0.8917
Posit decoder Es= 1  8-bit — 16-bit 0.9932
Posit decoder Es= 2 8-bit — 16-bit 0.9532
Posit encoder Es= 0  16-bit — 8-bit 1.216
Posit encoder Es=1  16-bit — 8-bit 1.140
Posit encoder Es= 2 16-bit — 8-bit 0.9876

Memory

SRAM read 16-bit 166.73
SRAM write 16-bit 128.48
SRAM read 8-bit 124.39
SRAM write 8-bit 78.17

Figure 2 provides an overview of the estimated energy dissipa-
tion during the training and inference of the continual learning
model using a single sample of split MNIST.The comparisons in
energy estimations were performed on the network, whose param-
eters were quantized to 16-bit fixed point, 8-bit fixed point, and
three topologies of 8-bit posit formats. Here, the energy was esti-
mated on the basis of specific design choices, where computations
were executed using a 16-bit precision, while the parameters were
stored at their respective quantization precision. Notably, a sig-
nificant reduction in training energy requirements is evident in
the plot when transitioning from the 16-bit fixed point to all 8-bit
representations, which can be attributed to the disparity in access
energy between the 16-bit memory and 8-bit memory. However, a
slight increase of # 1 — 2% in energy consumption was observed
for posit compared to 8-bit fixed point due to the inclusion of posit
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encoder and decoder modules. Despite this minor increment in
energy, the 8-bit posit-quantized models outperformed the 8-bit
fixed point by achieving = 30% improvement in mean accuracy.
This indicated that with careful quantization, the continual learning
model shows robustness to quantization while capitalizing on its
benefits. A similar pattern of energy savings through parameter
quantization to 8-bit posit compared to 16-bit fixed point, can be
observed in inference as well.

5 CONCLUSION

In this paper, we propose a low-cost, memory-efficient quantization
technique for continuous learning networks that can be deployed
on edge devices. The proposed quantized model utilizes 8-bit quan-
tized metaplasticity and synaptic consolidation techniques to mit-
igate catastrophic forgetting. Beside mitigating the catastrophic
forgetting, the 8-bit quantization reduces the total memory require-
ment by 2X compared to 16-bit fixed point and 4x compared to
32-bit floating point with marginal degradation in the mean accu-
racy across tasks. In terms of energy efficiency, we found that the
quantized posit network reduces energy consumption by ~ 27%
compared to the 16-bit fixed point. These enhancements in com-
putation cost, energy efficiency, and compactness can seamlessly
support continual learning on the edge.
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