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ABSTRACT

Neural network models catastrophically forget previously learned

information while acquiring new knowledge, requiring a fundamen-

tal change in learning models and architectures. These enhance-

ments to architecture structures and training mechanisms lead to

an increase in memory and computational resources, making it

di�cult to deploy models on resource-constrained edge devices. To

enhance both memory and computational e�ciency, we propose a

model compression approach for spiking continual learning models,

where the model parameters are quantized with varying precision

according to their weight distribution.

Speci�cally, we explore the posit format with gradient scaling

and gradient accumulation techniques to reduce the quantization

error of the model while training. Synapses and regularization

parameters that play a role in catastrophic forgetting are designed

with an 8-bit posit format. The model exhibits a 4× reduction in

memory with a marginal impact ≈ 2% on mean accuracy. This

model also exhibits a 30% increase in mean accuracy compared

to the 8-bit �xed point. We show that the posit spiking network

consumes 27% less energy compared to the 16-bit �xed point for

similar performance.
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1 INTRODUCTION

Neural network models have shown promising performance on

non-overlapping tasks with static underlying patterns. In contrast,

when trained sequentially on multiple tasks, they tend to forget

the knowledge from the previous tasks, a problem referred to as

catastrophic forgetting. This problem can be framed as a stability-

plasticity dilemma, with stability representing the preservation

of prior knowledge and plasticity indicating the ability to learn
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new knowledge. Several continual learning (CL) mechanisms have

been proposed in the literature [3, 18, 28] to achieve the stability-

plasticity balance during the learning process. Common methods

to address this issue include parameter regularization [1], replay or

rehearsal techniques [16], and dynamic architectures [24].

Several works have incorporated such mechanisms into neural

network models to improve continual learning capabilities at di�er-

ent granularities [25]. However, a common issue among all these

approaches is that they are compute and memory intensive [3, 11],

making them unsuitable for resource-constrained edge devices. Pre-

vious studies explored regularization methods in spiking neural

networks (SNNs) to reduce compute and memory resources [23].

SNNs enable event-driven computation and e�cient data encoding

and processing, where information is represented in the form of

sparse binary spike streams instead of high-precision data. This

serves two purposes: i) it allows short- and long-term information

retention [20], ii) it can lead to a reduction in computational cost

and power consumption by several orders of magnitude [8, 21].

There are limited explorations of optimizing continual learning

models during inference and learning, even more so for spiking

networks. The loss of information during the compression process,

which involves reducing the precision of the model parameters

in SNNs, has led to catastrophic degradation of the network per-

formance [19]. Existing SNN model compression techniques focus

on quantizing the model parameters for the inference phase to

shorten the latency and enhance energy e�ciency. SNN quanti-

zation has also been shown to reduce memory footprint by ≈ 4×

while maintaining accuracy within marginal degradation compared

to baseline [19].

It should be mentioned that there are several compression tech-

niques that one can incorporate in SNN models, such as pruning,

low-precision quantization, and low-rank factorization. Pruning

and quantization techniques focus mainly on reducing the redun-

dancy in the model, while low-rank factorization uses matrix/tensor

decomposition to identify the key parameters. In this work, we will

leverage the robustness of neural networks for quantization [6] and

emphasize on low-precision representation. Speci�cally, we study:

i) quantization of the parameters to tapered-low precision [13, 14]

which outperforms other approaches, ii) integration of posit-based

quantization techniques into continual learning models with acute

awareness of computational and memory constraints inherent to

edge devices.

The main contributions of this paper are:

(1) A posit-quantized continual learning mechanism to atten-

uate the e�ects of catastrophic forgetting that is compute-

and memory-e�cient.
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(2) We examine energy dissipation using an analytical approach

for the continual learning network quantized to 8-bit posit

and 16-/8-bit �xed-point representations.

2 BACKGROUND

2.1 Continual Learning

Neural network models often face the issue of catastrophic forget-

ting when learning multiple tasks. Previous studies address cata-

strophic forgetting by minimizing the overlap in representation

between tasks [4, 5], replaying samples from previously learned

tasks [2, 22], or penalizing changes to critical parameters (regulariza-

tion) to safeguard previously acquired knowledge from interference.

Our exploration in this work will be focused on the regularization

method. One notable data-focused regularization method, Learn-

ing without Forgetting (LwF) [15], utilizes previous task models

as soft labels for earlier tasks. Other approaches, such as Elastic

Weight Consolidation (EWC) [10] and Synaptic Intelligence (SI)

[26], estimate the importance of network parameters and penalize

changes to crucial parameters during subsequent task training. SI

further extends the EWC to use adaptable regularization. Despite

the e�ectiveness of the aforementioned approaches in addressing

catastrophic forgetting, they often triple the memory requirements

compared to base models. To address this challenge of memory,

TACOS [23] introduces metaplasticity combined with synaptic con-

solidation techniques in a spiking neural network. This approach

reduces memory requirements while improving the performance

of continual learning.

2.2 Quantization

Quantization is de�ned as mapping a large set of values to a �-

nite or smaller set of values [6], which is used to approximate the

calculations of integrals. In neural networks, which are typically

dominated by computationally intensive operations, quantization

plays a critical role in mitigating the memory and computational

overhead by reducing bit-precision of the network activations and

their parameters. Some of the common quantization techniques use

uniform quantization [6], where high-precision �oating point num-

bers are quantized to low-precision values as illustrated in Equa-

tion 1. Here, G is the value to be quantized, ( is the scaling factor,

and / is a constant to achieve symmetric distribution.

& (G) = �=C (
G

(
) + / (1)

Although low-precision uniform quantization has been proven

to be e�ective in reducing memory and computational cost, they

can cause a signi�cant drop in network performance [6]. To ad-

dress this challenge, various non-uniform quantization techniques

have been introduced such as posit-based quantization [12, 13] and

tapered �xed-point quantization [14] which aligns the parameter

distribution with the numerical format distribution to reduce the

quantization error. These non-uniform numerical formats outper-

form the integer and �oating point due to their high dynamic range

and high precision of the values close to zero [13]. It is important to

mention that there are numerous quantization techniques that have

been proposed in literature to compress network models without

compromising their accuracy while performing inference. However,

most of these techniques fail to achieve satisfactory performance

during quantized training due to accumulation of quantization er-

ror. This problem may escalate further when dealing with continual

learning scenarios. Previous works in [9] and [27] targeted quan-

tization for continual learning. The former uses dual-�xed point

quantized metaplastic synapses while the latter uses probabilistic

metaplastic binary synapses to address catastrophic forgetting.

2.3 Low-precision Posit

The posit numerical format was �rst introduced by [7] as an alter-

native representation to the IEEE �oating point formats. Due to its

higher dynamic range and high resolution compared to the IEEE

�oats, it was employed at low precision for various applications to

avail the memory and computational bene�ts. Unlike IEEE �oats,

numbers in posit are represented by Equation (2), where B, 4B, 5 B ,

represents the sign, and the maximum number of bits allocated

for the exponent and the maximum value that can be attained

by fraction bits. 4 and 5 denote the exponent and fraction values,

respectively, and : is the the regime value, given by Equation 3.

G =





0, if (00...0)

#0', if (10...0)

(−1)B × 2
2
ěĩ×: × 2

4 ×
(
1 +

5

2Ĝ ĩ

)
, otherwise

(2)

The regime bit-�eld is encoded based on the runlength (<) of

identical bits (A ...A ) terminated by either a regime terminating bit (A )

or the end of the =-bit value. Note that there is no requirement to

distinguish between negative and positive zero since only a single

bit pattern (00...0) represents zero. Furthermore, instead of de�ning

a NaN for exceptional values and in�nity by di�erent bit patterns, a

single bit pattern (10...0), “Not-a-Real” (#0'), represents exception

values and in�nity. More details about the posit number format can

be found in [7].

: =

{
−<, if A = 0

< − 1, if A = 1
(3)

3 POSIT QUANTIZED CONTINUAL LEARNING

In this work, the TACOS [23] spiking continual learning algorithm

is used. The TACOS algorithm incorporates multiple local learning

mechanisms, such as metaplasticity and synaptic consolidation,

to preserve previous knowledge and learn continually, while ad-

dressing catastrophic forgetting. It is trained using the surrogate

gradient learning rule known as event-driven random back propa-

gation (eRBP) [17].

The main purpose of choosing the TACOS algorithm is two-fold.

Firstly, it demonstrates state-of-the-art performance on several

continual learning benchmarks. Second, it uses local learning with

spiking neurons to improve energy e�ciency. The network consists

of neuronal units modeled by Leaky Integrate and Fire (LIF) neurons,

as described by Equation 4. In the LIF neuron, the synaptic current

� (C) is derived from the weighted summation of spikes over time,

subsequently in�uencing the membrane potential. Given that the

synapsesF 9 are encoded in 8-bit posit format, the computation of

the membrane potential presents two viable strategies. First, one

can preserve the synapses in posit format and decode them to full

precision during computations. Alternatively, not only the synapses

but also the membrane potential and other relevant variables to
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Figure 1: Continual learning spiking neural network architecture with posit quantized synapse parameters, synaptic consoli-

dation parameters, and metaplasticity parameters. The network learns in a single epoch, with 8-bit posit showing only ≈ 3%

degradation in mean accuracy compared to 32-bit �oating point.

posit format can be represented in posit format. In our approach, we

have opted for the former method. Thus, we develop a posit decoder

and encoder that converts the 8-bit posit realized synapses to 16-bit

�xed point and vice versa. This design choice is derived to reduce

the computational complexity of the network while lowering the

quantization error of the LIF neuron.

+ (C + 1) = + (C) +
�C

g<4<

[(
+A4BC −+ (C)

)
+ � (C)'

]
(4)

� (C + 1) = � (C) +
�C

gB~=

( #∑

9=1

F 9( 9 (C) − � (C)
)

(5)

To mitigate the impact of catastrophic forgetting, the training

process for synapses incorporates two crucial parameters linked

to each synapse, as depicted in Figure 1: metaplasticity parameters

and reference weights. These elements play a critical role in modu-

lating synaptic plasticity and maintaining synaptic strength over

long periods, respectively. However, storing each parameter in the

network using a 32-bit �oating point format imposes signi�cant

computational and energy burdens associated with memory stor-

age. To address these resource constraints, our approach quantizes

all three parameters related to these mechanisms to 8-bit posit and

�xed-point formats. During training, the synapse parameters and

reference weights typically converge to values within the range

[1 − 10
−5], which requires exceptionally high precision close to

zero. However, quantizing these parameters to an 8-bit �xed-point

representation often results in a majority of values being rounded

to zero, thus introducing a considerable quantization error.

To alleviate this error, we adopt 8-bit posit quantization for these

parameters, which o�ers both a high dynamic range and enhanced

precision near zero. However, the metaplasticity parameters are

determined by accumulating a constant based on the activity of the

post-synaptic neuron. This accumulation process results in a linear

trajectory for the distribution of these parameters, which aligns well

with the uniformly distributed nature of �xed-point representations.

Algorithm 1: PositCL training procedure

Input : Input tasks T , where) C ⊂ T is a set of inputs and

target pairs {XC ,YC }

for C in T do

for 4?>2ℎ = 0 to<0G� do

for {GC , ~C } in {- C , . C } do

for g in gB8< do

Network Prediction: ~̂C = 5 (GC )

Error Accumulation: gD
mU
mC = −U + ER*

Update Neuron Trace: 3
3C
- CA

= −- ĪĨ

gĪĨ
+ (8 (C)

// Update Weights:

for 9 in ( 9 (C) do

for 8 in �<8= ≤ �8 ≤ �<0G do
F8, 9 (C + 1) = &D0=C [F8, 9 (C) −

[( 9 (C)*8 (C)Θ(�8 (C)) 5 (<,F)]

end

end

end

end

for 8 in (8 (C) do
F8, 9 (C + 1) =

&D0=C [F8, 9 (C) − [1 5 (<,F) (F8, 9 −F
A4 5
8, 9 )]

end

F
A4 5
8 9 = &D0=C [F

A4 5
8 9 + �C

gĨěĜ
(F8 9 −F

A4 5
8 9 )]

if GCA8 > <Cℎ&G
CA
9 > <Cℎ1 then

< = &D0=C (< += �<)

end

end

end

Therefore, we quantize the metaplasticity parameters into 8-bit

�xed-point format.
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Table 1: The individual and mean task accuracy for synapse representation with various bit-precision on the Split-MNIST task

after training sequentially for a single epoch in the domain-IL scenario. The accuracies in the “Without CL” column re�ects the

performance of the spiking network without metaplasticity and synaptic consolidation mechanisms at full precision weights.

Task Without CL 32-bit FP TACOS 16-bits FXP 8-bit FXP 8-bit posit ES=0 8-bit posit ES=1 8-bit posit ES=2

Class 0,1 Acc. 31.54% 93.84% 91.76% 46.35% 89.63% 87.78% 88.03%

Class 2,3 Acc. 58.72% 78.78% 74.04% 50.80% 70.96% 72.58% 73.18%

Class 4,5 Acc. 13.18% 69.45% 61.26% 52.53% 59.15% 59.64% 59.53%

Class 6,7 Acc. 89.93% 92.82.0% 90.87% 87.65% 93.44% 93.39% 94.30%

Class 8,9 Acc. 97.73% 77.60% 81.87% 49.01% 84.37% 81.97% 81.19%

Mean Accuracy 58.22% 82.11% 79.31% 49.37% 79.51% 79.07% 79.30%

5 (<,F) = 4−|<F | (6)

Training the network with low-precision parameters introduces

a new challenge, where the gradients during the synapse update

quantize to zero, e�ectively freezing the network, thereby hindering

further learning and adaptation. To avoid gradient quantization to

zero, we adopt the gradient accumulation strategy, where gradients

are accumulated at higher precision on a batch of samples before up-

dating the synapses. By accumulating gradients, we increase their

range, reducing the likelihood of them quantizing to zero. In addi-

tion to gradient accumulation, we use a gradient scaling strategy

to further mitigate quantization errors. This strategy involves map-

ping both synapses and gradients to higher ranges of values suitable

for quantization, minimizing the impact of quantization-induced er-

rors. However, gradient scaling leads to computational overhead, as

it involves multiplying gradient updates to scale synapses to higher

ranges and dividing the quantized parameters to revert them to their

original range. Although gradient scaling introduces computational

complexity, it plays a crucial role in enhancing the performance

of the quantized network by reducing quantization errors and pre-

serving essential information for learning and adaptation.

4 RESULTS AND ANALYSIS

4.1 Continual learning performance

We evaluated the performance of the proposed network on Split-

MNIST dataset in a continual learning setting. The dataset splits

the MNIST data into �ve tasks, each containing two classes pre-

sented to the network in a sequential fashion. The experiments

were performed on 10000 training images and 2000 test images

with each task containing 2000 training and 400 test images. The

evaluation was performed according to the domain-incremental

setting, where the task identity is unknown to the network, and

the output neurons are also shared between the tasks. Table 1 illus-

trates the performance of the network after training on �ve tasks

sequentially with the network topology of 784 input neurons, 200

hidden neurons, and 2 output neurons.

The continual learning performance is calculated using the mean

accuracy metric, the average test accuracy across all tasks after per-

forming task-based training. We considered various scenarios and

setups to illustrate the impact of regularization techniques (meta-

plasticity and synaptic consolidation) and quantization on network

performance. The baseline network has no regularization tech-

niques incorporated into it, and all synaptic weights are realized

using the 32-bit �oating-point format. In this setup, we observe that

the network tends to forget previously learned tasks when learning

new ones. When the network is integrated with metaplasticity and

synaptic consolidation mechanisms, it preserves the old knowledge

from previous tasks and shows an improvement in the mean accu-

racy by 24.6% (see 32-bit FP TACOS column). Then, under the same

setup, the network parameters were quantized to 16-bit �xed-point

and 8-bit �xed-point, and this leads to a signi�cant drop in accuracy

as it can be observed in Table 1. In contrast, when the network was

quantized to an 8-bit posit numerical format with three variations

of exponent bit ranging from 0 to 2, we noticed an enhancement

in the mean accuracy compared to 8-bit �xed point and also a bal-

ance in stability and plasticity of the model. The increase in mean

accuracy can be attributed to two reasons: Firstly, the posit format

has the ability to represent the gradients with high-dynamic range

and high resolution, unlike the �xed-point representation, which

e�ectively minimizes the quantization error. Secondly, the posit

format has the capability to represent small-scale values. In this

work, the training is performed in an online fashion and the lack of

gradient accumulation set it to zero when quantized with 8-bit �xed

point. This eventually freezes the network and halts the learning

process.

4.2 Energy analysis

To evaluate the e�ciency of the posit quantization technique in

continual learning scenarios, we estimate the energy consumption

of deploying the quantized system on an edge device. Given the net-

work’s complexity, we employ an analytical approach to estimate

energy consumption, which implies characterizing the workload

of the individual computation units involved in network training

and then estimating the energy cost. Notably, computational units

such as accumulators, leaky integrate-and-�re neurons, exponential

functions, and multipliers are designed and synthesized under the

IBM 65nm technology node using the Synopsys Design Compiler

(DC) tool, and their energy pro�le is achieved using the Synopsys

PrimeTime-PX tool, as recorded in Table 2. Additionally, energy

requirements for reading from and writing to 16-bit and 8-bit mem-

ory are determined using the HP Cacti tool. It is crucial to mention

here that to compute LIF neuron activations and synapse updates,

the posit-quantized synapses need to be encoded into a 16-bit �xed

point and then decoded back into posit format after computation.

This necessitates the implementation of posit encoder and decoder

modules. These critical components were developed with insights

drawn from the approach outlined in [12].
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Figure 2: (a) Comparison of the training energy of the network with 16-bit �xed point and 8-bit posit numerical format with

one image of split-MNIST dataset. (b) illustrates the inference energy of the network for various numerical formats.

Table 2: The estimated energy dissipation of the spiking net-

work units during continual learning training.

Module Bit precision Energy(pJ)

Accumulator 16-bit 0.2176

Multiplier 16-bit 1.471

LIF Neuron 16-bit 5.2192

Error accumulation 16-bit 1.1202

Exponent function 16-bit 1.0668

Posit decoder Es= 0 8-bit→ 16-bit 0.8917

Posit decoder Es= 1 8-bit→ 16-bit 0.9932

Posit decoder Es= 2 8-bit→ 16-bit 0.9532

Posit encoder Es= 0 16-bit → 8-bit 1.216

Posit encoder Es= 1 16-bit → 8-bit 1.140

Posit encoder Es= 2 16-bit → 8-bit 0.9876

Memory

SRAM read 16-bit 166.73

SRAM write 16-bit 128.48

SRAM read 8-bit 124.39

SRAM write 8-bit 78.17

Figure 2 provides an overview of the estimated energy dissipa-

tion during the training and inference of the continual learning

model using a single sample of split MNIST.The comparisons in

energy estimations were performed on the network, whose param-

eters were quantized to 16-bit �xed point, 8-bit �xed point, and

three topologies of 8-bit posit formats. Here, the energy was esti-

mated on the basis of speci�c design choices, where computations

were executed using a 16-bit precision, while the parameters were

stored at their respective quantization precision. Notably, a sig-

ni�cant reduction in training energy requirements is evident in

the plot when transitioning from the 16-bit �xed point to all 8-bit

representations, which can be attributed to the disparity in access

energy between the 16-bit memory and 8-bit memory. However, a

slight increase of ≈ 1 − 2% in energy consumption was observed

for posit compared to 8-bit �xed point due to the inclusion of posit

encoder and decoder modules. Despite this minor increment in

energy, the 8-bit posit-quantized models outperformed the 8-bit

�xed point by achieving ≈ 30% improvement in mean accuracy.

This indicated that with careful quantization, the continual learning

model shows robustness to quantization while capitalizing on its

bene�ts. A similar pattern of energy savings through parameter

quantization to 8-bit posit compared to 16-bit �xed point, can be

observed in inference as well.

5 CONCLUSION

In this paper, we propose a low-cost, memory-e�cient quantization

technique for continuous learning networks that can be deployed

on edge devices. The proposed quantized model utilizes 8-bit quan-

tized metaplasticity and synaptic consolidation techniques to mit-

igate catastrophic forgetting. Beside mitigating the catastrophic

forgetting, the 8-bit quantization reduces the total memory require-

ment by 2× compared to 16-bit �xed point and 4× compared to

32-bit �oating point with marginal degradation in the mean accu-

racy across tasks. In terms of energy e�ciency, we found that the

quantized posit network reduces energy consumption by ≈ 27%

compared to the 16-bit �xed point. These enhancements in com-

putation cost, energy e�ciency, and compactness can seamlessly

support continual learning on the edge.
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