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Abstract

Lifelong learning, which refers to an agent’s ability to con-
tinuously learn and enhance its performance over its lifes-
pan, is a significant challenge in artificial intelligence (Al),
that biological systems tackle efficiently. This challenge is
further exacerbated when Al is deployed in untethered en-
vironments with strict energy and latency constraints. We
take inspiration from neural plasticity and investigate how
to leverage and build energy-efficient lifelong learning ma-
chines. Specifically, we study how a combination of neu-
ral plasticity mechanisms, namely neuromodulation, synap-
tic consolidation, and metaplasticity, enhance the continual
learning capabilities of AI models. We further co-design ar-
chitectures that leverage compute-in-memory topologies and
sparse spike-based communication with quantization for the
edge. Aspects of this co-design can be transferred to feder-
ated lifelong learning scenarios.
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Introduction

In recent years, there have been remarkable breakthroughs
in the field of artificial intelligence (AI). However, the emer-
gence of new generation of applications such as self-driving
vehicles, wearable devices, etc. will require new forms of
Al capable of learning continuously throughout their life-
time. Al machines will need to acquire new skills without
compromising old ones, adapt to changes, and apply pre-
viously learned knowledge to new tasks while conserving
limited resources. Moreover, the workload profile for life-
long learning has different characteristics on the edge, such
as processing data at variable frequencies, operating under
strict memory and compute constraints, and optimizing for
energy-accuracy trade-offs in real-time (Kudithipudi et al.
2023). To enable such learning, we draw inspiration from the
neural plasticity mechanisms and propose hardware-software
co-design approaches that are amenable to the edge. The plas-
ticity mechanisms regulate memory and learning based on
the local context and internal state of the system. This ability
plays a key role in adapting to novelty and inducing dynamic
behavior in the network.
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In terms of the software model, we designed a task-
agnostic lifelong learning algorithm with local composi-
tional plasticity mechanisms that are inherently energy ef-
ficient (Soures et al. July 2021). The model uses mecha-
nisms such as i) metaplasticity (plasticity of plasticity) to pro-
tect previous knowledge encoded in important synapses; ii)
synaptic consolidation, a form of long-term plasticity to cap-
ture knowledge over multiple time scales; and iii) neuromod-
ulation, to improve the distribution of information through-
out the network and facilitate the exploitation of information
overlap between tasks. These mechanisms can be integrated
with the base SNN model in a modular manner without de-
pending on the type of network architecture (, e.g. dense,
convolutional, recurrent) or the learning rule. The combina-
tion of these mechanisms outperformed state-of-the-art in a
variety of continual learning scenarios with streaming data,
where model sees samples only once and is unaware of task
switching during training or inference.

We designed the first online continual learning accelera-
tor with multiple co-design strategies: minimizing memory
read and write operations, co-locating compute and mem-
ory, and model-aware reconfigurability (Karia et al. 2022).
Our approach relies on sparse spike-based communication,
transmitting only spike indices , reducing memory access
and memory size by ~ 2X. An initial study of the efficiency
of the proposed mechanisms , unlike some prior approaches,
they do not grow over time in memory capacity or compute
complexity.
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