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Abstract: In this paper, we prove Strichartz estimates for many body Schrödinger equations in the periodic

setting, specifically on tori 𝕋d , where d ≥ 3. The results hold for both rational and irrational tori, and for small
interacting potentials in a certain sense. Our work is based on the standard Strichartz estimate for Schrödinger

operators on periodic domains, as developed in [J. Bourgain and C. Demeter, The proof of the l2 decoupling
conjecture,Ann. of Math. (2) 182 (2015), no. 1, 351–389]. As a comparison, this result can be regarded as a periodic
analogue of [Y. Hong, Strichartz estimates for N-body Schrödinger operators with small potential interactions,
Discrete Contin. Dyn. Syst. 37 (2017), no. 10, 5355–5365] though we do not use the same perturbation method.

We also note that the perturbation method fails due to the derivative loss property of the periodic Strichartz

estimate.
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1 Introduction

1.1 Background and Motivations

We consider the following many-body Schrödinger equation in the periodic setting for N particles in d dimen-
sions, with d ≥ 3 and N ≥ 1:

{
(i∂t + HN)u(t, x1 , . . . , xN) = 0,

u(0, x1 , . . . , xN) = u0(x1 , . . . , xN) ∈ L2x1 ,...,xN ,
(1.1)

where

HN = Δx − VN =
N
∑
α=1

Δxα − ∑
1≤α<β≤N

V(xα − xβ).

Each particle is denoted by xα ∈ 𝕋d , where 𝕋 = ℝ/2πℤ, for any α ∈ {1, . . . , N}. The potential V represents the

interactions between any two particles.

The integer parameter N ≥ 1 in the Schrödinger equation represents the number of particles in a quan-

tum system, which can often be very large. The interacting potentials of the form V(xα − xβ) represent the
interactions between any two particles, which depend on their relative distance. Additionally, 𝕋d denotes

d-dimensional tori, which can be either rational or irrational.
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When N = 1, the initial value problem (1.1) reduces to the nonlinear Schrödinger equation (NLS) with

a potential, which has been extensively studied in the Euclidean case (i.e., when 𝕋d is replaced by ℝd). This
case is also known as the “single-body case”, and the research on decay properties has a long history (see the

introduction of [20], the survey [32], and references therein). In this paper, we focus on the general case where

N ≥ 1, which can involve new difficulties compared to the single-body case, such as the issue of interacting

potentials. See [3, 4] and the references therein regarding Strichartz estimate for the “single-body case”.

The aim of this paper is to explore the Strichartz-type estimates for the N-body Schrödinger equation (1.1) in
the periodic setting. Previous research on the Euclidean case of (1.1) has been conducted in [20], with additional

research on the two-body case in [9] utilizing the scheme presented in [25]. The primary goal is to generalize the

Strichartz-type estimates found in [20] to the periodic case. Additionally, the authors are interested in explor-

ing the recent developments in the topic of “dynamics of NLS on tori” by combining both “periodic spaces”

and “many-body Schrödinger equations”, i.e., studying the estimates for many-body Schrödinger equations on

periodic spaces. In the next paragraph, we will briefly discuss the background of “NLS on tori”.

The nonlinear Schrödinger equation is highly relevant in the context of nonlinear optics, and in the study of

Bose–Einstein condensates, which has been extensively studied in recent decades in various settings, including

the Euclidean spaces, torus setting, and waveguide manifolds.¹ The well-posedness theory and the long-time

behavior in the Euclidean setting (at least in the defocusing scenario) have been very well understood (see for

instance [11, 12, 26]). The periodic model is also an important and challenging setting for the study of NLS. Many

works have been done and a significant amount of progress has beenmade in recent years. We refer to [7, 8, 17–

19, 22, 23, 28, 37–39, 41, 42, 44] with regard to the torus andwaveguide settings and [30, 34, 40] for other dispersive

equations on waveguides. At last, we refer to [5, 13, 36] for some classical textbooks on the study of NLS.

As this paper focuses on the estimates and the PDE-level aspects of equation (1.1), rather than the mathe-

matical physics level, we will not delve too deeply into the background of many-body problems/equations from

a physical perspective. Interested readers can refer to the introductions of [6, 9, 10, 14, 16, 33] and the references

therein for more information.

To the best of the authors’ knowledge, this paper is the first result towards understanding the long-time

dynamics of many-body Schrödinger equations in the context of periodic spaces (tori).

1.2 The statement of main results

We are ready to state the main result of this paper, i.e., Strichartz estimate for (1.1). We will also discuss some

nonlinear results for this model (see Section 5).

Wenote that, as in [20, 43], we need to assume some smallness for the potential V and this smallness does not

depend on the initial data (only depends on the particle number N and the universal constant). The condition

is as follows:

|V(x)| + |((1 − Δ)
ε
2 V)(x)| ≤ C

N2
(1.2)

for some ε > 0 that can be arbitrarily small. The main theorem reads:

Theorem 1.1. Assuming d ≥ 3, we consider (1.1) and fix a finite time interval I. There exists a small number ε > 0
such that if the interacting potential V satisfies condition (1.2), then for q = 2(d+2)

d and any α ∈ {1, . . . , N}, we have

‖eitHN u0‖Lqt,xα (I×𝕋d)L2x̂α (𝕋d(N−1)) ≲ε ‖u0‖Hε(𝕋Nd) ,

where xα refers to the α-th variable and x̂α denotes the remaining N − 1 spatial variables other than the α-th
variable xα , i.e.,

x̂α = (x1 , . . . , xα−1 , xα+1 , . . . , xN) ∈ 𝕋d(N−1) ,

and
‖u‖Hε(𝕋Nd) = ‖(1 − Δx)

ε
2 u‖L2(𝕋Nd) , where x = (x1 , . . . , xN) ∈ 𝕋Nd .

1 Waveguide manifolds indicate semi-periodic spaces ℝm × 𝕋n (m, n ≥ 1). The dynamics of NLS on waveguide manifolds is a hot

topic understudied in recent decades.
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Remark 1.2. Since q = 2(d+2)
d is the endpoint exponent for d-dimensional Strichartz estimate (see [2]), Theo-

rem 1.1 can be understood in this way: one considers a certain particle and fix other particles in L2-norms; then
the Strichartz estimate in the periodic setting can be recovered for (1.1). As shown on the right-hand side, there

is also an ε derivative loss. The estimates when q > 2(d+2)
d can be obtained via the interpolation with the mass

conservation.

Remark 1.3. Theorem 1.1 also includes the special case (N = 1, one body case): Strichartz estimate for NLS with
a potential in the periodic setting. When the potential satisfies certain conditions (such as (1.2)), the standard

Strichartz estimate as in [2] can be recovered, which is also known to be new.

Remark 1.4. One can view (1 − Δx)
ε
2 as a spectral multiplier for the Laplace Beltrami operator on𝕋Nd , or equiv-

alently, as a Fourier multiplier acting on the periodic function u inℝNd , see, e.g., [21, Proposition 4] for the proof
of equivalence of these two Sobolev norms.

Remark 1.5. Theorem 1.1 concerns Strichartz norms in this type: Lqt,xαL
2

x̂α (i.e., considering a certain particle

xα and fix other particles in L2-norms). Another formulation for Strichartz estimate² is considering Lqt,x-type
norms where x = (x1 , . . . , xN) is for all particles (i.e., treating all particles equally, without fixing any particle in
L2-norm). One can show, for q = 2(Nd+2)

Nd , there exists ε > 0 such that

‖eitHN u0‖Lqt,xα (I×𝕋Nd) ≲ε ‖u0‖Hε(𝕋Nd) .

The proof is similar to Theorem 1.1with littlemodifications sowe omit it. See the proof of Theorem 1.1 in Section 4

for more details.

The main strategy for proving Theorem 1.1 is briefly stated as follows. First, different from the Euclidean case

([20]), using a modification of [20] will not give the desired estimate due to the derivative loss of the Strichartz

estimate in the periodic setting (see Section 3 for explanations). The proof is based on the Strichartz estimate on

tori [2] and two more elements: the equivalence of the Sobolev-type norms and the observation that the time

interval is finite. See Section 4 for more details. The nonlinear applications of Theorem 1.1 will be discussed in

Section 5 and we will make a few remarks in Section 6.

At last, we note that the interacting potentials can be defined in the periodic setting (see the appendix in [31]

as an example). For convenience, we still use the notation V(x − y) instead of V(d(x, y))where d is the associated
metric.

1.3 Structure of this paper

The rest of this article is organized as follows. In Section 2,we discuss function spaces and some estimates for this

model; in Section 3, we explain that the perturbationmethod (as in [20]) fails due to the derivative loss property

for the periodic Strichartz estimate; in Section 4, we present the proof for Theorem 1.1 (Strichartz estimate); in

Section 5, we discuss the nonlinear applications of the Strichartz estimates (well-posedness); in Section 6, we

provide some additional remarks on this line of research.

1.4 Notations

Wewrite A ≲ B to say that there is a constant C such that A ≤ CB.We use A ≃ Bwhen A ≲ B ≲ A. Particularly, we
write A ≲u B to express that A ≤ C(u)B for some constant C(u) depending on u. We use C for universal constants
and N for the number of particles.

We say that the pair (p, q) is d-(Strichartz) admissible if
2

p +
d
q =

d
2
, 2 ≤ p, q ≤ ∞ (p, q, d) ̸= (2,∞, 2).

2 See [20, Theorem 1.1] for these two different types of Strichartz estimates in the Euclidean setting.
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Throughout this paper, we regularly refer to the spacetime norms

‖u‖Lpt Lqx(It×𝕋d) = (∫
It

( ∫
𝕋d

|u(t, z)|q dz)
p
q

dt)
1

p

.

For the tori case, one often chooses the same exponent for t and x. As stated in the above theorems, we will use
the following notations for convenience:

∙ x refers to the whole spatial variable,
∙ xα denotes the α-th spatial variable,
∙ x̂α represents the remaining N − 1 spatial variables except the α-th variable xα .
Similar to the Euclidean case, function spaces such as Vp

Δ
are also tightly involved. We will discuss them in

Section 2. (See also [20].)

Again, similar to the Euclidean case, to deal with the interacting potentials, we define the rotation opera-

tor Rαβ with respect to the α-th variable xα and the β-th variable xβ by

Rαβ(f(x1 , . . . , xα−1 ,
xα − xβ
√2

, xα+1 , . . . , xβ−1 ,
xα + xβ
√2

, xβ+1 , . . . , xN)) = f(x1 , . . . , xN).

That is, after applying the operatorRαβ , the function f rotates its α-th variable xα and β-th variable xβ , resulting
in the disappearance of the interaction between them.

2 Preliminaries

In this section, we discuss the Littlewood–Paley operators and some function spaces for the model (1.1). See

[20, Sections 2–4] for the Euclidean analogue.

We define the Fourier transform on 𝕋d as follows:

(Ff)(ξ) = ∫
𝕋d

f(z)e−iz⋅ξ dz,

where ξ = (ξ1 , ξ2 , . . . , ξd) ∈ ℤd . We also note the Fourier inversion formula

f(z) = c ∑
(ξ1 ,...,ξd)∈ℤd

(Ff)(ξ)eiz⋅ξ .

Moreover, we define the Schrödinger propagator eitΔ by

(FeitΔ f)(ξ) = e−it|ξ|2 (Ff)(ξ).

We are now ready to define the Littlewood–Paley projections. First, we fix η1 : ℝ → [0, 1], a smooth even func-
tion satisfying

η1(ξ) =
{
{
{

1, |ξ| ≤ 1,
0, |ξ| ≥ 2,

and M = 2j a dyadic integer. Let ηd : ℝd → [0, 1],

ηd(ξ) = η1(ξ1)η1(ξ2)η1(ξ3) ⋅ ⋅ ⋅ η1(ξd).

We define the Littlewood–Paley projectors P≤M and PM by

F(P≤M f)(ξ) := ηd(
ξ
M )F(f)(ξ), ξ ∈ ℤd ,

and

PM f = P≤M f − P≤ M
2

f.
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For any dyadic M ∈ (0,∞), we define

P≤M := ∑
L≤M,L dyadic

PL , P>M := ∑
M>L,L dyadic

PL .

Next, we state the standard Strichartz estimate in the tori setting. See [2, 28]. (Moreover, see [25] for the Euclidean

analogue and [1] for the waveguide manifold analogue.)

Lemma 2.1 (Strichartz estimate in tori). Fix d ≥ 1 and a finite time interval I. For p ≥ 2(d+2)
d , we have

‖P≤MeitΔxu0‖Lpt,x(I×𝕋d) ≲|I| M
d
2
− d+2p +ε‖u0‖L2x(𝕋d) .

Here the ε can be removed when p is apart from the endpoint 2(d+2)
d .

Remark 2.2. As we can see, compared with the Euclidean case, there are three main differences for the tori

case regarding the standard Strichartz estimate:

(1) the appearance of the frequency truncation operator,

(2) it is a local estimate (i.e., on finite time interval I),
(3) the derivative loss ε.
These differences will cause some new difficulties for our problem compared to the Euclidean case.

It is natural to extend the above estimate for the many-body case as follows,

Proposition 2.3 (Strichartz estimate for the many-body case). Fix d ≥ 1, N ≥ 1 and a finite time interval I. For
p ≥ 2(d+2)

d and α ∈ {1, . . . , N}, we have

‖P≤MeitΔx1 ,...,xN u0‖Lpt,xα (I×𝕋d)L2x̂α (𝕋d(N−1)) ≲ M
d
2
− d+2p +ε‖u0‖L2x(𝕋Nd) ,

where xα refers to the α-th variable and x̂α denotes the remaining N − 1 spatial variables other than the α-th
variable xα , i.e.,

x̂α = (x1 , . . . , xα−1 , xα+1 , . . . , xN) ∈ 𝕋d(N−1) .

Here the Littlewood–Paley operator P≤M indicates the frequency truncation for all x1 , . . . , xN (it is also true if
it is only restricted to and xα-direction, i.e., Pxα≤M ). Again, the ε can be removed when p is different from the
endpoint 2(d+2)

d .

Proof of Proposition 2.3. Note that the Littlewood–Paley operator P≤M commutes with the linear Schrödinger

operator eitΔx = eitΔx1 ,...,xN . Moreover, eitΔx1 ,...,xN is unitary. Applying the Minkowski (p > 2) and the standard tori
Strichartz estimate (Lemma 2.1), we have

‖P≤MeitΔx1 ,...,xN u0‖Lpt,xα (I×𝕋d)L2x̂α (𝕋d(N−1)) = ‖Pxα ,≤Me
itΔxα u0‖Lpt,xα (I×𝕋d)L2x̂α (𝕋d(N−1))

≲ ‖Pxα ,≤MeitΔxα u0‖L2x̂α L
p
t,xα (I×𝕋d)

≲ M
d
2
− d+2p +ε‖u0‖L2x̂α L2xα

= M
d
2
− d+2p +ε‖u0‖L2x .

Again, here I indicates a finite time interval since the Strichartz estimate in the tori setting (Lemma 2.1) concerns
the local estimate.

As mentioned in [20, at the end of Section 3.3], Strichartz estimates with frozen spatial variables (as Proposi-

tion 2.3 above) are insufficient to prove Strichartz estimate for (1.1) due to the presence of interacting potentials.

Therefore, a space-time norm that plays the role of the rotated space-time norm is required. This part is almost

the same as [20, Section 4.1], with some natural modifications. For more details, we also refer to [18, 19, 29].

We note that the definitions and properties in [20, Section 4.1] are general enough to be naturally applied

to our model in the tori setting. The authors construct function spaces with favorable properties for a separable

Hilbert space H and self-adjoint operator S. In this paper, we can choose H to be L2x and S to be Δx in the tori set-
ting, where x = (x1 , . . . , xN) and xα ∈ 𝕋d for α ∈ {1, . . . , N}, as in (1.1). Therefore, the definitions and associated
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properties for our casewill also hold. Hence, we refer to [20, Section 4.1] for the function spaces and correspond-

ing estimates and properties. For instance, we will use the following property of the Vp
Δ
-space, which follows

from the definition (see [20, Proposition 2]):

‖1[0,∞)]eitΔxu0‖V p
Δx
= ‖u0‖L2x .

Moreover, the duality, the inclusion properties, and the transference principle of Vp
Δ
-space are also often used.

See [20, Section 4.1]. The transference principle is as follows:

Lemma 2.4 (Transference principle). Let d ≥ 1, 1 < p < 2, q ≥ 2 and X a Banach space. If a function u : ℝ → X
satisfies the bound

‖eitΔxu0‖Lqt X ≲ ‖u0‖L2x ,

then
‖u‖Lqt X ≲ ‖u‖V p

Δx
.

Remark 2.5. We note that the Bourgain spaces Xs,b
(also known as Fourier restriction space) enjoy the similar

transfer principle (see [36] formore info.). As summarized in [20], the Strichartz estimates in the Vp
Δx
sharpen the

bounds in Xs,b
by 0+ in that Strichartz estimates in the Xs,b

space do not cover the endpoint Strichartz estimates,

while those in the Vp
Δx
-space do.

3 Why does the perturbation method fail for the periodic case?

In this section, we will explain why the perturbation method (as in [20] with suitable modifications) fail for
the periodic case. It is natural try this method since the small potentials are under considerations. We will first

explain the main idea and attempt to apply this method to prove the Strichartz estimate for (1.1) (see [20] for

the Euclidean case.). Then we can see how it fails.

The proof of many body Strichartz estimates in [20] relies on the properties of the function space Vp
Δx
and

a perturbation method. The main idea is to first establish a nonlinear estimate for each arbitrary interacting

potential by treating it as a perturbation, and then summing up all the potentials. The key estimate in the proof is

Proposition 3.1 (the tori analogue of [20, Proposition 4]), which deals with a single arbitrary interacting potential

by regarding it as a forcing term. This estimate allows one to handle all the interacting potentials uniformly as

perturbations. Finally, by using the smallness assumption, we can apply a perturbation method to obtain the

desired Strichartz estimate. We refer to [20] for more details.

In comparison to the case with a single potential (N = 1), the interacting potentials in this problem pose

difficulties due to their rotational invariance. As a result, the function space Vp
Δx
, which is flexible under rota-

tions, is required. We consider the Strichartz estimate in Theorem 1.1. In fact, one may also consider Strichartz

estimate in the form of Proposition 2.3 by replacing the Laplacian by the HN operator in (1.1). (However, that

case would be more difficult.³)

The main estimate one needs is as follows:

Proposition 3.1. Let d ≥ 3, 1 < p < 2 and q > 2(d+2)
d . Let I be a finite interval. Consider u solves (1.1). Thenwe have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
1I

t

∫
0

ei(t−s)Δx (V(xα − xβ)u(s)) ds
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩V p

Δ

≤ C‖V‖
L

q
q−2
x (𝕋d)
‖u‖V p

Δ

,

where C is for the universal constant.

Remark 3.2. Proposition 3.1 indicates that one can regard the potential terms as perturbations. It suffices to

consider one arbitrary interacting potential V(xα − xβ) since the V
p
Δ
-norm is rotation-flexible.

3 In contrast to the Euclidean case [20], the presence of a frequency truncation operator in this proof would be a new difficulty.

This operator is necessary to handle the low-frequency modes, which are affected differently by the interaction potentials than the

high-frequency modes.
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Remark 3.3. See [20, Proposition 4] for the Euclidean analogue. Since one concerns the tori case, it is enough to
consider a local-in-time version (on a finite time interval I).

We now explain why this will not work as follows. (We will try to prove it as in the Euclidean case with natural

modifications.) The issue comes from the derivative loss property of the Strichartz estimate on tori.

A tentative proof which fails. For notational convenience, we denote

w = 1I
t

∫
0

ei(−s)Δx (F(s)) ds,

where F = V(xα − xβ)u(s) is treated as the forcing term (or say a perturbative term). We will estimate w by the

duality argument. Since we only expect w ∈ Vp
− , not w ∈ Vp

, we consider w̃(t) = w(−t). Similar to [20, Proposi-
tion 4], using duality, it suffices to show that

J
∑
j=1
⟨a(tj−1), w̃(j) − w̃(tj−1)⟩L2x ≲ ‖V‖L

q
q−2
x

‖u‖V p
Δ

for any fine partition of unity t = {tj}
J
j=0 and any U

p󸀠
-atom a(t) = ∑Kk=1 1(sk−1 ,sk)ϕk−1. (We note that the Up󸀠

-space

is the dual of the Vp
Δ
-space.) Doing some standard simplifications as in [20, Proposition 4] (expanding atoms a

in terms of ϕk), one can get a simpler sum

K
∑
k=1
⟨ϕk−1 , w̃(sk) − w̃(sk−1)⟩L2x .

We further write it as

K
∑
k=1
⟨ϕk−1 , w̃(sk) − w̃(sk−1)⟩L2x = −

K
∑
k=1

−sk−1

∫
−sk

⟨ϕk−1 , e−isΔx (F(s))⟩L2x ds = −
K
∑
k=1

−sk−1

∫
−sk

⟨eisΔxRϕk−1 ,R(F(s))⟩L2x ds

= −
K
∑
k=1
∫
ℝ

⟨eisΔxRϕk−1 , 1[−sk ,−sk−1]R(F(s))⟩L2x ds,

where R denotes any rotation operator. (It is just Rαβ for interacting potential V(xα − xβ).) We want to con-

trol it by ‖V‖L
q
q−2
x
‖u‖V p

Δ

. Then, applying Hölder’s inequality, the Strichartz estimate (Proposition 2.3) and the

transference property of Vp
Δx
-space (Lemma 2.4), we estimate it by

K
∑
k=1
⟨ϕk−1 , w̃(sk) − w̃(sk−1)⟩L2x

=
K
∑
k=1
⟨ϕk−1 , w̃(sk) − w̃(sk−1)⟩L2x

≲
K
∑
k=1
‖eitΔRϕk−1‖Lq󸀠t Lqxα L

2

x̂α
‖1[−sk ,−sk−1]R(F(s))‖Lqt Lq

󸀠
xα L

2

x̂α
(using the Hölder)

≲
K
∑
k=1
‖eitΔRϕk−1‖Lqt Lqxα L2x̂α ‖1[−sk ,−sk−1]R(F(s))‖Lqt Lq

󸀠
xα L

2

x̂α
(since it is a finine time interval)

≲ M
d
2
− d+2q

K
∑
k=1
‖ϕk−1‖L2x‖V‖L

q
q−2
x

‖1[−sk ,−sk−1]R(u)‖Lqt Lqxα L2x̂α (using the Strichartz estimate. Mpower
appears!)

≲
K
∑
k=1
‖ϕk−1‖L2x‖V‖L

q
q−2
x

‖1[−sk ,−sk−1](u)‖V p
Δx

(using the transference principle. It fails!)

≲ ‖V‖
L

q
q−2
x

󵄩󵄩󵄩󵄩‖ϕk−1‖L2x
󵄩󵄩󵄩󵄩lp󸀠 ⋅
󵄩󵄩󵄩󵄩‖1[−sk ,−sk−1](u)‖V p

Δx

󵄩󵄩󵄩󵄩lp (using the Hölder)

≲ ‖V‖
L

q
q−2
x

󵄩󵄩󵄩󵄩‖1[−sk ,−sk−1](u)‖V p
Δx

󵄩󵄩󵄩󵄩lp .
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The first equality (the first line equals the second line) follows from the addition of Fourier two supports, where

C is some positive constant; q󸀠 is the dual of q in the sense of

1

q
+

1

q󸀠 = 1.

Moreover, q and q
q−2 are the Hölder dual of q

󸀠
in the sense of

1

q
+

1

q
q−2
=

1

q󸀠 .

In the last line we have used the inclusion property of discrete Lp spaces (i.e., lp-spaces). (Note that 1 < p < 2
implies p󸀠 > 2.)

To close the argument, now it remains to show that

‖‖1[−sk ,−sk−1](u)‖V p
Δx
‖lp = {

K
∑
k=1
‖1[−sk ,−sk−1)u‖

p
V p
Δx
}

1

p

≤ ‖u‖V p
Δx
.

This estimate follows exactly as the Euclidean case (using the definition of Vp
Δx
). There is no difference in the

periodic setting. The tentative proof ends here.

Comments. As we mentioned, the problem arises when we use the transference principle. This works surely

for the Euclidean case. However, for the periodic case, it fails because of the essential derivative loss. (See
Lemma 2.4.) This argument fails also due to theM-powerwill not disappear such that the right-hand side cannot

be controlled, which leads the failure of the perturbative method.

We also note that even for the one body case (N = 1 in (1.1)), this method would still not work. The essential
reason is still the derivative loss of Strichartz estimate.

4 The proof for Theorem 1.1

As discussed in the previous section, the perturbation method fails due to the derivative loss property for the

periodic Strichartz estimate. Instead one needs to investigate more the property of the H-operator (treating the
Laplacian and the interacting potentials as a whole). In this section, we present a new method rather than the

perturbation method to obtain the Strichartz estimates (i.e., our main theorem, Theorem 1.1).

Before we state the proof for Theorem 1.1, we first mention three key elements as follows. As we will see

very soon, they play crucial roles.

Key element 1. We will use the following equivalence of norms frequently: ‖(1 + H)εu‖L2x ∼ ‖(1 − Δ)
εu‖L2x

(where H = −Δ + V).

Key element 2. We will use the fact that we consider the Strichartz estimate on a finite time interval. It is
important. For the Euclidean case, this scheme does not work since an infinite time interval is concerned for

that case.

Key element 3. We will use Strichartz estimate on tori (i.e., Lemma 2.1, see Bourgain–Demeter’s seminal

work [2] on Strichartz estimate via the decoupling method) as blackbox. This estimate is essential.

Proof of Theorem 1.1. Recall that we have the assumption for the potential V ,

|V(x)| + |((1 − Δ)
ε
2 V)(x)| ≤ C

N2
, (4.1)

for some constant C > 0.
If V satisfies (4.1), it is then straightforward to check that HN = Δx − VN = ∑Nα=1 Δxα − ∑1≤α<β≤N V(xα − xβ)

is self-adjoint and C − HN is a positive operator, and we also have

C−1
0
‖(1 − Δx)u‖L2(𝕋Nd) ≤ ‖(C − HN)u‖L2(𝕋Nd) ≤ C0‖(1 − Δx)u‖L2(𝕋Nd)
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for some constant C0. By Stein’s analytic interpolation theorem (see [35]), this implies

‖(C − HN)εu‖L2(𝕋Nd) ≈ ‖(1 − Δx)εu‖L2(𝕋Nd) for all 0 < ε ≤ 1. (4.2)

Recalling Proposition 2.3, we know for q = 2(d+2)
d ,

‖eitΔxu0‖Lqt,xα (I×𝕋d)L2x̂α ≲ ‖u0‖Hε(𝕋Nd) (4.3)

for arbitrarily small ε-derivative loss. We note that our goal is to show for the same q, the following estimate
can be recovered for the HV operator:

󵄩󵄩󵄩󵄩e
itHV u0󵄩󵄩󵄩󵄩Lqt,xα (I×𝕋d)L2x̂α

≲ ‖u0‖Hε(𝕋Nd) .

By Duhamel’s principle,

eitHN u0 = eitΔxu0 − i ∑
1≤α<β≤N

t

∫
0

ei(t−s)ΔxV(xα − xβ)eisHN u0 ds.

The first term can be treated by using (4.3). For the second term, note that for each term in the summation,

by (4.3), we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

t

∫
0

ei(t−s)ΔxV(xα − xβ)eisHN u0 ds
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Lqt,xα (I×𝕋d)L2x̂α

≤
1

∫
0

‖e−isΔxV(xα − xβ)eisHN u0‖Hε(𝕋Nd) ds

=
1

∫
0

‖V(xα − xβ)eisHN u0‖Hε(𝕋Nd) ds.

(4.4)

By using the fractional Leibniz rule of Kenig, Ponce, and Vega [27] (see also Kato and Ponce [24]), we have for

each fixed s,

‖V(xα − xβ)eisHN u0‖Hε(𝕋Nd) ≤ ‖V‖L∞(𝕋d)‖eisHN u0‖Hε(𝕋Nd) + ‖((1 − Δ)
ε
2 V)‖L∞(𝕋d)‖eisHN u0‖L2(𝕋Nd)

+ ‖V‖Lpε1 (𝕋d)‖e
isHN u0‖Lqε2 (𝕋Nd) .

(4.5)

Here
1

p +
1

q =
1

2
, 1 < p, q < ∞, ε1 + ε2 = ε with 0 < ε1 , ε2 < 1, and for 1 < p, q < ∞, ‖f‖Lpε (𝕋d) = ‖(1 − Δ)

ε
2 f‖Lp(𝕋d)

and ‖f‖Lqε (𝕋Nd) = ‖(1 − Δx)
ε
2 f‖Lq(𝕋Nd) .

By Sobolev inequality, if we choose q close enough to 2, it is not hard to show

‖eisHN u0‖Lqε2 (𝕋Nd) ≤ ‖e
isHN u0‖Hε(𝕋Nd) .

By (4.2), we also have

‖eisHN u0‖Hε(𝕋Nd) ≈ ‖(C + HN)
ε
2 eisHN u0‖L2(𝕋Nd) = ‖(C + HN)

ε
2 u0‖L2(𝕋Nd) ≈ ‖(1 − Δx)

ε
2 u0‖L2(𝕋Nd) . (4.6)

By (4.1), (4.4), (4.5) and (4.6), we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∑

1≤α<β≤N

t

∫
0

ei(t−s)ΔxV(xα − xβ)eisHN u0 ds
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Lqt,xα (I×𝕋d)L2x̂α

≤ C‖u0‖Hε(𝕋Nd) ,

which completes the proof of Theorem 1.1.

5 Discussions for the nonlinear applications

In this section, we discuss some related nonlinear applications (well-posedness theory) based on the established

Strichartz estimates. We will consider two cases: 4D cubic model and 3D quintic model since they are typical

NLS models.
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On 4D cubic periodic NLS. First, we recall the 4D cubic NLS model⁴ as follows:

(i∂t + Δx,y + V(x − y))u = |u|2u, u(0, x, y) = u0(x, y) ∈ H1

x,y ,

where x, y ∈ ℝ2. We denote H = Δx,y + V(x − y). After we have the Strichartz estimate for the operator H as in

Theorem 1.1, in general, there are several standard steps to establish the well-posedness theory:

(1) function spaces (Bourgain space Xs,b
and Vp

-Up
-type spaces, for examples),

(2) bilinear estimate,

(3) nonlinear estimate,

(4) the proof of the well-posedness theory.

We first present an easy way to show the well-posedness once we consider high regularity data.⁵ We consider

the general case (1.1). The calculations are as follows: For s > dN
2
,

‖u‖Hs ≤ ‖eitHu0‖Hs +
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

t

∫
0

ei(t−s)H |u|2u(s) ds
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Hs

≤ ‖u0‖Hs +
t

∫
0

‖ei(t−s)H |u|2u(s)‖Hs ds

≤ ‖u0‖Hs +
t

∫
0

‖|u|2u(s)‖Hs ds

≤ ‖u0‖Hs +
t

∫
0

‖u‖3Hs ds

≤ ‖u0‖Hs + T‖u‖3Hs .

By taking T > 0 small enough, it yields

‖u‖Hs ≤ 2‖u0‖Hs .

Since the higher regularity assumption is too strong, that would be good if the well-posedness theory could be

established in the energy space (i.e.,H1
space) since 4D cubicNLS and 3Dquintic NLS are both energy critical.We

consider the 4D cubicmodel. If one further assumes that the linear operator eitH commuteswith the Littlewood–
Paley operator PN ,⁶ then the next lemma would follow from [28].

Lemma 5.1 (Bilinear estimate). Fix whole dimension d ≥ 3 and 0 < T < 1. Then for 1 ≤ N2 ≤ N1, we have

‖uN1
vN2
‖L2t,x([0,T)×𝕋d) ≲ N

d−2
2

2
‖uN1
‖Y0([0,T))‖vN2

‖Y0([0,T)) .

We note that Y0 space is based on the H-operator. The proof follows from Lemma 3.1 in [28] once we have eitH

commute with the Littlewood–Paley operator.

Then the following nonlinear estimate holds in a standard way, which gives the well-posedness results for

both of the two models: 4D cubic NLS and 3D quintic NLS. We refer to [28] for more details.

Lemma 5.2. Fix whole dimension d = 3, 4, for any 0 < T < 1, we have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

t

∫
0

ei(t−s)ΔF(u(s)) ds
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩X1([0,T))

≲ ‖u‖
d+2
d−2
X1([0,T)) ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

t

∫
0

ei(t−s)Δ(F(u + w)(s) − F(u)(s)) ds
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩X1([0,T))

≲ ‖w‖X1([0,T))(‖u‖X1([0,T)) + ‖w‖X1([0,T)))
4

d−2 .

4 One may also consider 4D cubic NLS with a potential in the periodic setting, i.e., (i∂t + Δx + V(x))u = |u|2u, u(0, x) = u0(x) ∈ H1

x ,

where x ∈ 𝕋4.
5 We note that we use the fact that the linear operator eitH is unitary.

6 This assumption is a little too strong and not very natural.
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On 3D quintic periodic NLS. The well-posedness theory would be similar to the 4D case with suitable modifi-

cations due to the quintic nonlinearity so we leave it for interested readers.

6 Further remarks

Finally, we would like to make a few additional remarks regarding the many-body Schrödinger model (1.1).

(1) An interesting direction is to considermany-body equations with nonlinearity F(t, x1 , . . . , xN) and study
their long-time behavior. There are few general theories and results regarding this topic, even for the Euclidean

case, such as global well-posedness theory and long-time behavior. It may also be challenging to consider the

general case, and the two-body case could still serve as a useful starting point. For instance, the Λ-equation in

the Hartree–Fock–Bogoliubov equations is an example of the two-body case, although it is part of a coupled

system, which makes it more complicated. (See [9, 16] for more details.) See Section 5 for some discussions.

(2) The results presented in this paper are focused solely on the estimates and PDE-level analysis of many-

body Schrödinger equations. It would be interesting to study the many-body Schrödinger equations in the tori

setting (or waveguide setting, as in [43]) from the perspectives of mathematical physics. Examples of such per-

spectives include [10, 14, 15]. A natural question is to generalize the classical results on many body problems to

the periodic case.
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