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Abstract—We discuss experiments involving two tasks in Quan-
tum Natural Language Processing (QNLP): text classification
and disambiguation. In the classification task, we utilized an
amplitude encoding algorithm and achieved perfect accuracy on
the 1ambeq dataset discussed in literature. We obtained accuracy
from 55% to 72.5% on the more complex and realistic Amazon
review dataset. This is a reasonable result given the current state-
of-the-art results in QNLP. Additionally, when using vector di-
mension reduction for embeddings, we found that UMAP leads to
the best results in our experiment setting. All classification results
were done on the default.qubit simulator in pennylane
0.36 python library. Our classification results highlight the
potential of quantum algorithms in practical applications. In
the disambiguation task, we selected 18 ambiguous nouns, 32
unambiguous nouns, and 18 different verbs. OQur experiments
using the QASM simulator within the giskit Python library
demonstrated that the simulator could perfectly differentiate
between the various meanings of ambiguous nouns in differ-
ent contexts. Furthermore, we extended our study to a real
quantum device, the ibm_kyoto quantum computer. There, we
tested our disambiguation approach on a subset of 4 random
nouns (2 ambiguous and 2 unambiguous) and observed that
ibm_kyoto could achieve an accuracy range of 82.1% to 98.9%
in disambiguation tasks, extending the datasets and improving
the results of existing ambiguity resolution experiments [1]. Our
work demonstrates the capability of quantum computing in
dealing with real-world NLP tasks, hence contributing to the
advancement of both QML and NLP.

Index Terms—Natural Language Processing, Semantics, Sen-
timent Analysis, Supervised Machine Learning

I. INTRODUCTION

Quantum computing algorithms have emgerged since the
1990s, with pioneering work by researchers like Shor and
Grover [2], [3]. Quantum computing has shown achievements
in various disciplines in recent years, like chemistry [4],
finance [5], machine learning [6], optimization [7] and cryp-
tography [8].

Quantum Natural Language Processing (QNLP) is such a
particularly promising subfield of Quantum Machine Learning
(QML) [9]. QNLP is aimed to leverage the power of quantum
computers to perform Natural Language Processing (NLP)
tasks, potentially demonstrating a quantum advantage in such
NLP tasks. A potential quantum advantage in QNLP could
be related to vector spaces being a successful model to
describe natural language properties (e.g., semantics and to
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some extend syntax) and at the same time vector spaces being
an inherent property of quantum computing [10]. The compat-
ibility between vector space models and quantum computing
is rooted in the similarity of the mathematical structures of
both quantum mechanics and state-of-the-art models of natural
language syntax and semantics. In quantum mechanics, vector
spaces are physical Hilbert spaces of quantum states [11].
On the other hand, linguists have long used vector spaces
to model linguistic semantic spaces [12]. It is astonishing
that there is an apparent morphism between the vector spaces
in these two seemingly unrelated disciplines. In some QNLP
work this is shown using Lambek’s pregroup grammar [13],
[14] as a model for natural language syntax. The similarity
between quantum mechanics and natural language suggests
a potential natural fit for QNLP on quantum hardware [10].
This emerging field has drawn increasing attention due to its
potential to understand how quantum machines understand and
process natural language [15].

Within QNLP, we focus on two schools of thought, among
various other approaches. The first approach, as mentioned
earlier, is based on the similarity between quantum mechanics
and natural language, utilizing mathematical frameworks like
pre-group grammar [13] and category theory [16] to model
some linguistic properties. Foundational frameworks in this
area have been established by authors like Bob Coecke in the
2010s [14], [17]-[19]. These frameworks integrate syntax and
semantic natural language properties in quantum mechanics
via pregroup grammar, a formalism with context-sensitive
complexity [14], [20] that captures the syntactic structure of
natural language in a mathematically rigorous way. This line of
research has led to the development of systems like DisCoCat
[14] and DisCoPy [21] that have become the groundwork of
the first QNLP experiment on IBM quantum computers [22].
The DisCoCat and DisCoPy frameworks have bridged the gap
between linguistic theories and quantum mechanics.

The second approach to QNLP is based on Machine Learn-
ing algorithms. Authors including Widdows [1] have demon-
strated the potential of state-of-the-art quantum computers for
processing real-life language datasets. They conducted a clas-
sification task on realistic IMDB dataset [23], highlighting the
feasibility of QNLP applications. Additionally, they performed
the first QNLP ambiguity resolution task on an 11-qubit IonQ
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quantum computer. However, due to the limited size of the
TonQ computer, their dataset was small, having only two verbs
and five nouns. Despite these limitations, their work presents
a significant step in demonstrating practical applications of
QNLP and quantum computing.

In this work, we aim to further demonstrate the capabili-
ties of quantum computers in dealing with classification and
ambiguity resolution tasks. Building on the methodology and
results from previous research [1], we explore algorithms in
QML, trying to improve both the performance and the scope
of QNLP applications. Through this research, we also seek
to contribute to the growing QNLP community by providing
open-source code, finally enhancing our knowledge of how
quantum computers can understand and process real-life hu-
man language.

II. APPROACHES
A. Classification

We conducted binary classification experiments on datasets
from the 1ambeq [20] and the Amazon review dataset [24].

We first vectorized the texts in the datasets using the
Word2Vec [25] word embeddings in the gensim 4.1.2
Python library [26], as well as the spaCy 3.7 library [27].
The Word2vec vectors serve as a baseline and are not state-
of-the-art embedding models. The vector length in Word2vec
for every word token is 300 dimensions of real numbers.

To reduce the computational effort, we applied various
dimension reduction techniques to the Word2vec word em-
beddings. The dimension reduction techniques utilized in this
paper are PCA, LDA, and t-SNE from the scikit-learn
library [28], and UMAP from the umap-learn library [29]
for manifold learning. Following this, we implement the am-
plitude encoding algorithm and divide—and—conquer encoding
algorithm from [30], using the gm1l module from the Python
package Pennylane 0.37.0 [31].

Finally, we train our pipelines on the default.qubit
simulator from pennylane at 15 iterations. Each iteration
was comprising 150 steps and a learning rate of 0.1. The data
was split into train, validation,and test sets with a ratio of 6:2:2.
Subsequently, we record the training accuracy, validation ac-
curacy, and test accuracy for each combination of {dataset,
vectorizer, dimension reduction method, quantum encoding
algorithm} , to identify the most economic combinations for
scenarios with limited computing resources.

B. Ambiguity Resolution

Natural language words and utterances can be ambiguous,
and the capacity to disambiguate linguistic expressions in
specific contexts and situations is a fundamental property of
the human language faculty [32]. Disambiguation in NLP
represents one of the early successes of word vector models
via term-document or term-term co-occurrence matrices [33].
While in current NLP approaches all words are represented
the same, i.e., vectors of the same length, in early NLP
proposals preceding the Deep Learning revolution, nouns
were for example treated as vectors in semantic space, and
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adjectives modifying nouns were treated as matrices acting on
the vectors in computational linguistics [34]. In newer NLP
approaches in QNLP, authors like Widdows [1] treated nouns
as vectors and transitive verbs as matrices.

Before developing the quantum framework that encodes
verbs and nouns in quantum circuits, it’s worth mentioning
a simple linguistic insight. A common linguistic assumption
is that predicates require arguments, e.g., noun phrases as their
objects and subject, composing this way a complex predicate
(Verb Phrase) or sentence. They could be assumed to be
functions that map nominal arguments to complex predicates
or sentences. Assuming that predicate heads like verbs (or
nouns and adjectives) has led to interesting approaches using
categorial grammar approaches in linguistics. From the early
Bar—Hillel’s work [35] in the 1960s, to the Combinatory
Categorial Grammer (CCG) [36], or the Lambek’s pregroup
grammar [13], the influence of this simple insight can be seen
in all of them.

Inspired by the aforementioned authors and insight, we
treat nouns as vectors and transitive verbs as matrices in our
computational model. Using vectors to record the information
of nouns in the meaning space is a natural and common way
[11, [32], [34]. If we can also use vectors to record information
about verb phrases, we can then naturally formulate verbs as
matrices, which are a common way to describe linear functions
between two different vector spaces.

While the dimensionality of word embeddings in models
like Word2vec is driven by empirical experimentation with
real NLP tasks using neural models, in this approach, we
determine the dimensions of noun vectors for classification
purely for the classification task as such. To determine the
dimension of the noun vectors, we classify these nouns into
16 distinct categories based on their meanings:

Animals, Technology/Devices, Food,

Body Parts, Nature, Plants, Tools/Equipment,
Music/Sound, Communication/Writing,
Weather/Elements, Action/Movement, Objects/Containers,
Traffic/Transportation, Espionage, People.

Emotion/Feeling,

Therefore, we can represent both ambiguous and unambigu-
ous nouns in our dataset as 16-dimensional vectors. For illus-
tration, we list the vector representations of three ambiguous
nouns—Fan, Mole, and Date—alongside three unambiguous
nouns—Screwdriver, Dolphin, and Infiltration in Table 1. This
approach allows us to handle the complexity of ambiguous
nouns while maintaining consistency in representation across
the dataset.

To represent transitive verbs as matrices, we need to concep-
tualize them as functions that take for example nouns as input
and produce verb phrases or complex predicates as output.
To determine the appropriate dimensions, we must classify all
meaningful output verb phrases, i.e., combinations of transitive
verbs and nouns as objects. For example, in the case of the verb
cultivate, the phrase cultivate palm is meaningful, whereas
the phrase cultivate ocean is not. After thorough analysis,
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TABLE I
VECTOR REPRESENTATIONS OF Fan, Mole, Date, Screwdriver, Dolphin
AND Infiltration

we classified all meaningful verb phrases into 10 distinct
categories as follows:

Action, Consumption,
Medical Examination, Exploration, Gardening,
Emotion, Observation,

Operation,

Communication,
Investigation.

Thus we can assume that each transitive verb is a function
from a 16-dimensional vector space to a 10-dimensional vector
space. We represent each verb as a 10 x 16 matrix, mapping
the meaning space of nouns to the meaning space of verb
phrases. For example, the verb admire can be represented
by the 10 x 16 matrix in Table II, while the matrix of the

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TABLE I

MATRIX REPRESENTATION OF THE VERB Admire

verb cultivate is given in Table III. The entries in the matrices
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TABLE III

MATRIX REPRESENTATION OF THE VERB Cultivate

capture the idea that the verbs take nouns as arguments and
return a verb phrase between the column categories and row
categories of the nonzero entries. E.g., the verb cultivate has
only 1 nonzero entry in position (6, 7) , while the 6th category
of nouns is Plant and the 7th category of verb phrases is
gardening. Then we know that the verb cultivate is something
that expects a plant name and give the meaning of a gardening
activity. Similarly, we know that the verb admire is something
that expects a person and expresses a particular feeling or
emotion as shown in
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A.

We can convert the vectors and matrices into quantum
circuits by applying X and CX gates to qubits representing
each category, at the nonzero entries in the matrix and vector
representations of the nouns and verbs. For example, the
quantum circuit of the noun Fan is provided in Figure 1.

The quantum circuit for admire is provided in Figure 2.

With the quantum circuits of verbs and nouns, we can
compose the circuits together into larger quantum circuits that
represent the output verb phrases. To perform the ambiguity
resolution task, we need to measure the output of the target
dimension of the matrix to an ancillary classical bit. If the
result of the measurement is ’1°, we know that the quantum
computer can distinguish the difference between two meanings
of the ambiguous noun, otherwise it fails to disambiguate
the two meanings. For illustration, the quantum circuit for
measuring the meaning of the verb phrase is admire fan is
in Figure 3.

Animals ——
People
) Animals
Animals Operation Techmotogypevices J———
Technology/Devices
& e
Foed Emotion —
R Emotion —— @3-
Espionage N
o nvestgation |
People _n_ Investigation —— oo 2 .
Fig. 1. Quantum Fig. 2.  Quantum Fig. 3. Quantum
Circuit for Fan Circuit for Admire Circuit for phrase
Admire Fan

III. DATA AND RESULTS

Classification

The datasets can be seen in our Github repository.

We have listed our classification results with test accuracy
greater than 53% in Table IV, with test accuracy greater than
80% highlighted.

We conclude that we have achieved perfect test accuracy
on the lambeqg dataset and accuracy 55% to 72.5% on the
Amazon review dataset.

We also observe that on the 1ambeq dataset, both the com-
bination {spaCy, UMAP, amplitude encoding} and {spaCy,
None, amplitude encoding} (indicating no dimensionality re-
duction on the word vectors) achieve 100% test accuracy.
However, the former combination requires only 1 qubit,
whereas the latter uses 16 qubits to achieve the classification
results. In contrast, with the Amazon review dataset, the com-
bination {Word2Vec, UMAP, divide-and-conquer encoding}
achieves the highest test accuracy in our experiments. Based
on these observations, we conclude that UMAP is the most
effective dimensionality reduction technique in our setting. We
are aware of issues with the Word2vec word embeddings,
e.g., the lack of disambiguation and conflation of multiple
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semantic properties in one word vector. However, this did not
impact our experimental results.

What makes our results interesting is that we used only 1
qubit to achieve perfect accuracy on the lambeq dataset by
combining UMAP and quantum encoding algorithms, whereas
other researchers required 5 qubits in [22] and 4 qubits in
[1]. This demonstrates a significant advancement in the field
of QNLP experiments, particularly in scenarios with limited
computing resources.

Due to the complex nature of natural language and online
written reviews, our test accuracy on the Amazon review
dataset ranges from 55% to 72.5%, indicating that current
QML methods are still not fully equipped to process natural
language. However, when compared to the 57% to 62%
accuracy achieved on the IMDB dataset [23], our results are
still reasonable.

B. Ambiguity Resolution

In the ambiguity resolution task our dataset consists of 50
nouns and 18 transitive verbs in English. Among the 50 nouns,
18 of them are ambiguous, exhibiting multiple meanings or
senses depending on the context in which they are used.

Chest, Wave,
Bark, Palm,
Duck, Mouse,

Pitch,
Stress,
Bolt,

Jam,
Bat,
Mole,

Rock, Fan, Seal,
Date, Pen, Crane,

32 of the verbs are unambiguous, each verb we assumed to
have a single main meaning.

Screwdriver, Infiltration, Dolphin,
Rainbow, Thunderstorm, Bread, Email,
Tree, Flower, Computer, Sadness,
Air conditioner, Happiness, Ocean,
Dance, Apple, Jump, Mountain,
Jar, Teacher, Bicycle,

Book, Liver,
Box,
Heart,

Symphony,

Car, Guitar,

Elephant,

Surveillance, Hammer,

Doctor

Among the ambiguous nouns, each noun has two meanings,
e.g., Mouse can either be an animal or an input device for a
computer. This duality in meaning adds a layer of complexity
to our dataset, necessitating sophisticated models capable of
accurately distinguishing between these varied contexts.

The vocabulary of transitive verbs is:

Catch, Cultivate, Fill,
Feel,

Avoid,
Observe,

Examine, Emphasize,

Admire, Utilize,

Eat

Explore,
Turn on, Uncover,

Perform,
Listen,

We used 16+ 10 = 26 qubits in total for each measurement
and obtained results for our ambiguity resolution task using
both the gasm_simulator from giskit—-aer 0.14.2
and the ibm_kyoto quantum computer from IBM. It can be
observed in Table III, the left column contains the results from
the simulator, while the right column contains the results from
ibm_kyoto.

Due to the limitation of quantum computing resources,
we randomly selected 2 ambiguous nouns and 2 unam-
biguous nouns for testing on ibm_kyoto. In contrast, the
gasm_simulator was used to test all ambiguous nouns,

all of which were perfectly distinguished when preceded
by different verbs. This approach highlights the potential of
quantum computing for natural language processing tasks,
despite current resource constraints.

We observe that on gasm_simulator, the accuracy for
ambiguity resolution is 100%, while on ibm_kyoto, the
accuracy falls in the range 82.1% to 98.9% for different verbs.
Our results on both simulator and ibm_kyoto are in Figure
4

In our setting, we can conclude that the simulator can
perfectly disambiguate all the ambiguous words we selected,
but a real quantum computer cannot do so perfectly. Although
near—term quantum computers are not perfect in understanding
human language and processing semantics, we are provided
challenges as well as exciting opportunities. By enhancing
their capability in understanding human language, we can push
the boundaries of current QNLP and unlock the full potential
of quantum computers in the future work.

IV. CONCLUSION

We performed two tasks in QNLP: text classification and
ambiguity resolution.

For classification task, we used amplitude encoding and
divide—and—conquer algorithms, achieving perfect accuracy
on the lambeqg dataset and 55%-72.5% accuracy on the
Amazon review dataset, comparable to current QNLP state—
of—the—art results [1]. Using UMAP as dimension reduction on
word embeddings yielded the best results in our setting. All
classifications were done on the default .qubit simulator
in pennylane 0.36.0.

For ambiguity resolution task, we tested 50 nouns (18
ambiguous and 32 unambiguous) and 18 verbs on the QASM
simulator in giskit 1.1.1, which perfectly distin-
guished meanings of ambiguous nouns in context. We also
tested 4 random nouns (2 ambiguous and 2 unambigous) on
ibm_kyoto with 82.1%-98.9% accuracy. Our work extends
datasets and improves results of existing ambiguity resolution
experiments [1].

DATA AVAILABILITY

All code and data discussed in this work are avail-
able in the GitHub repository https://github.com/chizhang24/
entangled-meanings. The models used are all freely available
online.
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