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Abstract—We demonstrate how word and text embeddings as
n-dimensional real vectors used in classical Natural Language
Processing (NLP)/AI applications can be mapped to quantum
states or quantum embedding representations in Quantum Ap-
plications using NLP and AI. Models like fastText [1], [2],
GloVe [3], Numberbatch [4], or BERT [5] are common NLP
embedding vectors or models that encode semantic properties
of words or text fragments. We use these models to evaluate
mapping properties and compression rate, as well as information
preservation in quantum embeddings. For mapping embedding
vectors to quantum states, we use encoding strategies, such as
Amplitude Encoding. The encoding strategies allow us to map
large dense vectors from the embedding models to compact
quantum states using different compression ratios. The com-
pression with Amplitude Encoding can be 2n to N , resulting
in a mapping of a 1,024-dimensional vector of reals in the
classical environment to a 10-qubit state. The goal of this work
is to evaluate these strategies with respect to their compression
ratio and measure the preservation of semantic information
using similarity scores. We show that the resulting quantum
embeddings based on mapped classical computing embeddings
exhibit the same relational properties and that there is no
significant loss of semantic information in the conversion from
classical n-dimensional real vector embeddings to qubit states.
We conclude that the experimental results allow us to quantum
compute semantic similarities of words or text, reusing existing
and freely available embedding models from classical NLP/AI
computing.

Index Terms—Word embeddings, Semantic Similarity, Quan-
tum Embeddings, Natural Language Processing

I. INTRODUCTION

Vector representation of linguistic units, for example, words,
sentences, or text in classical Natural Language Processing
(NLP) and AI applications, is essential for search algorithms,
neural network architectures, and machine learning algorithms.
Instead of using a specific vector length of arbitrary real
values, such vectors are trained using Distributional Semantics
[6]. That is, the vectorized representations of words in the form
of dense vectors should contain semantic properties that can
be measured in terms of similarity. Semantically related words
are closer to each other than semantically unrelated words
by means of Linear Algebra. The similarity in these models
can be measured using, e.g., cosine similarity or Euclidean
distance between dense vectors (i.e., word embeddings).

Rath and Date (2023) [7] demonstrate that encoding meth-
ods that map dense classical vectors to quantum embeddings,
e.g., basis encoding, angle encoding, or amplitude encoding
used in popular Machine Learning (ML) algorithms, can be
used successfully used in Quantum Computing (QC), and
the resulting quantum embeddings can in fact ”contribute to
improved classification accuracy and F1 scores” in the relevant
applications.

While these encoding methods have been reported to be
adequate for Quantum ML applications [7], to the best of
our knowledge, we do not have found experimental results
measuring the information loss related to semantic similarity
in the different encoding methods from classical embedding
vectors to quantum embeddings. The work here is focusing on
exactly that.

II. QUANTUM WORD SIMILARITIES: METHODOLOGY

Using classical word embedding models we generate vector
representations for individual words or word sequences. We
encode these vectors as quantum embeddings using various
methods as for example basis encoding or amplitude encoding.
We then measure the quantum similarity between two quantum
embeddings.

Our approach to defining the quantum similarity between
two words is via the SWAP test [8]. The SWAP test can be
performed between any two circuits S and T of the same num-
ber of qubits and is a way to measure the difference between
S and T . Suppose the qubits in S are named s0, s1, . . . , sn−1

and those in T are t0, t1, . . . , tn−1 with an ancillary qubit
q0, the SWAP test performs first the Hadamard gate then the
controlled SWAP gate from q0 to si and ti, i = 0, . . . , n − 1
and again the Hadamard gate. It then measures the value of
q0. The circuit for the SWAP tests is plotted in Fig.1.

Suppose we use amplitude encoding from [9] to encode 2
N = 2n real vectors into the circuits S and T . If we write
each state |si⟩ as

|si⟩ =
1

∥si∥

N−1∑
j=0

sij |j⟩
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q0 H H

s0
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sn−1

t0

T. . .

tn−1

Fig. 1. Quantum circuit for the SWAP test between two circuits S and T

where |j⟩ j = 0, . . . N − 1 is the standard basis of the Hilbert
space C⊗n ≃ (R2)⊗n ≃ R2n = RN , we can write the
quantum state |S⟩ of the circuit S as

|S⟩ = 1√
N

N−1∑
i=1

|i⟩ ⊗ |si⟩ ⊗ |bi⟩

where |bi⟩ is the eigenstate of the Pauli matrix σz of eigenvalue
yi ∈ {0, 1}. After a straightforward calculation [10], we know
the probability of measuring q0 having outcome 1 is

P (1;S, T ) =
1

4
(1− 1

N
√
2

N−1∑
i=0

yi ⟨si|ti⟩)

=
1

4
(1− 1

N
√
2

N−1∑
i=0

yi cos (si, ti)).

(1)

Now suppose we have two words word1 and word2,
and suppose their vector representations in some model,
e.g. fastText are vec(word1) and vec(word2). Af-
ter applying amplitude encoding to vec(word1) and
vec(word2), we denote the corresponding quantum circuits
circ(word1) and circ(word2), we define the SWAP
distance swap_dist(word1, word2) between word1
and word2 to be

swap_dist(word1, word2)

= P (1;circ(word1), circ(word2))
, (2)

which is the probability of measuring 1 from q0 with S =
circ(word1) and T = circ(word2)

III. DATA AND RESULTS

We used the following models to select word pairs and mea-
sure classical similarities (Cosine Similarity) using the model
embeddings. All models except Numberbatch [4] were English
word lists, but many of those contained non-English words
and non-words or non-linguistic expressions. The Number-
batch model is multilingual that is trained on the ConceptNet
knowledge graph. BERT is not a model that consists of word

and vector pairs, but rather a transformer [11] that is a deep
learning [12] model that generates a vector representation for
some input text.

• fastText, 300-dimensional word vectors, 2.5 mil. words
• GloVe, 840 billion tokens, 300-dimensional word vectors,

2.1 mil. words
• Numberbatch, 300-dimensional vectors, 516,783 words
• BERT, 768-dimensional word vectors
For the experiments, we selected 4400 randomly picked

word pairs that exist in all models. We computed the Cosine
Similarity and the Quantum Word Similarity for all pairs using
the vector representations from the four models listed above.

In addition to the randomly selected words, we created a
word list of 100 words that belong to different semantic topics
or fields, for example:

• apple tree grape vine
• car truck bus bike motorcycle
• doctor nurse surgeon dentist vet
Measuring the Correlation Coefficient over 4400 word pairs

using Cosine Similarities and Quantum similarities we achieve
a score of almost 0.90 on average for the pre-computed vector
models, indicating that the information loss is minimal and
insignificant.

The code and data for this poster are available at
https://github.com/dcavar/q-embeddings-QCE24.
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