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Abstract

The North American freshwater genus Forbesichthys is composed of facultative cave-dwelling fishes restricted to springs
and caves in southern Illinois, southeastern Missouri, southwestern Kentucky, and central Tennessee. These fishes were
previously considered a single species, the Spring Cavefish (F. agassizii), but recent molecular evidence led to the rec-
ognition of the Shawnee Hills Cavefish (F. papilliferus). The Shawnee Hills Cavefish is hypothesized to be restricted to
Illinois, Missouri, Kentucky and north-central Tennessee, whereas the Spring Cavefish is restricted to the Eastern Highland
Rim of central Tennessee. However, the distributions of Forbesichthys are difficult to ascertain due to their intermittent
appearance in surface springs, making sampling challenging. We assessed the species status, distribution, connectivity,
and population sizes of the Forbesichthys spp. using Restriction-site Associated DNA sequencing (RADseq) and the mito-
chondrial NADH dehydrogenase 2 locus. Our results corroborate the recognition and hypothesized distributions of the
Shawnee Hills Cavefish and Spring Cavefish. Furthermore, we suggest the recognition of three Evolutionary Significant
Units (ESUs) and two Management Units (MUs) within the Shawnee Hills Cavefish. Although all populations analyzed
appear to have reasonable genetic diversity and population stability over time, this regionalization has implications for
both groundwater policy and management. Our study provides important information relevant to understanding potential
population distributions and the identification of unique lineages that may deserve additional protection.
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Introduction

Rare, Threatened, or Endangered (RTE) species are often
characterized by shortfalls that can hamper conservation and
management efforts (Hortal et al. 2015). Knowledge gaps
about a species’ complete distribution (Wallacean shortfall),
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abundance and population dynamics (Prestonian shortfall),
or species interactions (Eltonian shortfall) can result in
poorly informed conservation prioritization and misallo-
cation of resources (Lomolino and Heaney 2004; Cardoso
et al. 2011; Hortal et al. 2015). Furthermore, understand-
ing whether species have restricted distributions and lim-
ited habitat breadth is crucial to assess their vulnerability to
extinction (Davis et al. 2015; Chichorro et al. 2019). As the
understanding of species boundaries develops, it is possible
for single widespread species assumed to be of little conser-
vation concern to comprise multiple lineages with narrow
ranges and requiring conservation actions (Niemiller et al.
2013b; Gales et al. 2023). Simply put, managing a species
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without basic knowledge of its range or population dynam-
ics can result in allocation of resources to areas that do not
maximize the effectiveness of said efforts (Arponen 2012).
The modern genomics era has only expanded opportunities
to gain critical insights and a finer-grained perspective to
address some of these shortfalls, particularly with respect to
RTE species (Avise 2010; Ouborg 2010; Ouborg et al. 2010;
Supple and Shapiro 2018).

Incorporating genomics into conservation efforts has
facilitated a more fulsome assessment of RTE species by
increasing species and population-level resolution (for
example, see Patton et al. 2019; Niemiller et al. 2013c,
2022a, b). Moreover, these same genomic data can be har-
nessed to delineate various levels of conservation units such
as cryptic species, Evolutionary Significant Units (ESU),
or Managements Units (MU), ultimately guiding better-
informed management interventions (Funk et al. 2012;
Stanton et al. 2019). This is particularly applicable in spe-
cies occupying narrow environmental niches with disjunct
ranges, as the assessment of the population dynamics of
these species particularly benefits from genetic analyses.
For example, species restricted to springs and spring-fed
creeks such as the Barrens Topminnow (Fundulus julisia)
have been found to have distinct ESUs and MUs (Hurt et
al. 2017), cryptic reef-associated fish have been identified
in association with discontinuity of reefs (Priest et al. 2016),
and gobies that are restricted to mudflats have been found
to exhibit high levels of genetic differentiation associated

Fig. 1 Picture of the Spring Cave-
fish (Forbesichthys agassizii)
taken from Clayborne Spring in
Coffee County, Tennessee and the
Shawnee Hills Cavefish (Forbe-
sichthys papilliferus) taken from
Snake Road in Union County,
Illinois. Copyright: Matthew
Niemiller

with distance between coastlines (Corush et al. 2022). How-
ever, despite the opportunities presented by genomics, it
also poses challenges, primarily associated with analytical
limitations, as well as sampling constraints due to species
endangerment status or accessibility issues (Steiner et al.
2013; Shafer et al. 2015).

Forbesichthys spp. inhabit springs, spring runs, and asso-
ciated surface waters but also occur in subterranean waters
of southern Illinois, southeastern Missouri, western Ken-
tucky, and central Tennessee (Weise 1957; Woods and Inger
1957; Smith and Welch 1978; Etnier and Starnes 1993;
Niemiller and Poulson 2010). The genus Forbesichthys
(former Chologaster and later Forbesella) has traditionally
recognized a single species, Spring Cavefish (Forbesichthys
agassizii); however, the Shawnee Hills Cavefish (F. papil-
liferus) (Fig. 1) also known as Northern Spring Cavefish or
Karst Cavefish, was recently resurrected based on a limited
mitochondrial and nuclear loci dataset from nine samples
from nine localities (Niemiller et al. 2013a, c). This was
subsequently supported via genomics based on six samples
from four localities (Hart et al. 2020). Based on these stud-
ies, the Shawnee Hills Cavefish was hypothesized to be
restricted to Illinois, Missouri, Kentucky, and Tennessee,
although no samples of the Shawnee Hills Cavefish from
Tennessee nor Missouri were sequenced. The species has
been found east of the Mississippi River in southern Illi-
nois, west of the Mississippi River in southeastern Missouri,
in north-central Tennessee, and in the Western Pennyroyal

Spring Cavefish (Forbesichthys agassizii)

Shawnee Hills Cavefish (Forbesichthys papilliferus)
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Karst in Kentucky. All of these populations are located in
regions influenced by different geological formations. For
instance, £ papilliferus in Illinois is found in the LaRue-
Pine Hills with Devonian-age geology (Kolata and Nimz
2010) while the southeastern Missouri population is found
in Ordovician-age geology (Thompson 1991), and the Ken-
tucky and northern Tennessee populations in Mississip-
pian-age geology (McDowell 1986). Similarly, the Spring
Cavefish appears to be predominantly found in the Barrens
Plateau section of the Eastern Highland Rim of central Ten-
nessee (Starnes and Etnier 1986; Hart et al. 2020) which
corresponds to Mississippian-age geology (Peterson 1962).
Moreover, NatureServe (2024) includes populations from
the Green River watershed in Kentucky southward into Ten-
nessee as F. agassizii based on Adams et al. (2020). Yet,
conclusions from these studies were based on samples from
a limited number of locales and did not include the entirety
of the species’ distribution.

Troglobitic species in the family Amblyopsidae include
many RTE species. These include the Hoosier Cavefish
(Amblyopsis hoosieri), Northern Cavefish (4. spelaea),
Southern Cavefish (Typhlichthys subterraneus), and the
Ozark Cavefish (Troglichthys rosae), which are classified
as ‘Critically Imperiled’ (S1), ‘Vulnerable’ (S3), ‘Imperiled’
(S2), and ‘Vulnerable’ (G3), respectively (Chakrabarty et al.
2014; Office of Kentucky Nature Preserves 2019; Nature-
Serve 2024), and the Alabama Cavefish (Speoplatyrhinus
poulsoni) listed federally as endangered (Federal Register
1988). Prior conservation assessments under [UCN Red List
criteria, which considered all Forbesichthys populations as a
single species (i.e., F. agassizii), evaluated the taxon as hav-
ing a low extinction risk (i.e., Least Concern; NatureServe
(2013). Moreover, earlier surveys to understand the distri-
bution of the cavefish in Illinois have revealed what appear
to be largely stable populations in southern Illinois (Metzke
et al. 2016). The revised assessments of the status and dis-
tribution of Forbesichthys spp. may alter prioritization of
resources and approaches to conserving species within the
genus. More recently, given its restricted distribution within
Illinois, the Spring Cavefish was listed as Threatened on
the Illinois List of Endangered and Threatened Species in
2020 (Illinois Endangered Species Protection Board 2020).
Also, following the recognition of the Shawnee Hills Cave-
fish, Missouri listed this species as endangered (Missouri
Department of Conservation 2024). Although the most
recent NatureServe conservation assessment recognizes
both species, it does not assign a subnational status rank
for Kentucky for either species while the Spring Cavefish
is ranked as ‘Apparently Secure’ (S4) in Tennessee (Nature-
Serve 2024). Given the restricted distributions of the Spring
Cavefish and Shawnee Hills Cavefish, there is a pressing
need to resolve their species boundaries and distributions to

better understand their global and subnational conservation
status.

Throughout much of their distribution, Forbesichthys
spp. are only seasonally observed on the surface (Weise
1957; Smith and Welch 1978; Niemiller and Poulson 2010).
Despite indications of stable populations, assessing their
abundance is challenging due to sampling difficulties and
stochastic hydrological shifts in their habitats (Metzke
and Holtrop 2014; Metzke et al. 2016). Nonetheless, For-
besichthys spp. appear to be quite locally abundant where
they occur. For instance, previous surveys in southern Illi-
nois (Metzke et al. 2016) and our findings at Rich Pond in
Warren County, Kentucky (n=30), demonstrate this trend.
Fishes have the ability to disperse through subterranean
passages including across watershed boundaries (Ray et
al. 2014), thus Forbesichthys, which regularly use ground-
water habitats, may potentially be less restricted by surface
watershed boundaries. By contrast, mark-recapture studies
of Forbesichthys have thus far provided little evidence of
dispersal among springs (Adams et al. 2000). In line with
the Prestonian and Wallacean shortfalls, we know relatively
little about groundwater connections and potential barriers
to dispersal as well as the full potential range of this spe-
cies. The Shawnee Hills Cavefish currently has a disjunct
distribution with a population west of the Mississippi River
in southeastern Missouri (McDonald and Pflieger 1979) and
the southern Illinois range, but many questions remain, such
as whether Forbesichthys found in Missouri, Illinois, and
Kentucky represent discrete populations, and whether the
Illinois range represents multiple populations. Given the
above, conservation of the understudied Forbesichthys spp.
can be informed by genetic and genomic data to fill knowl-
edge gaps. Here, we aim to address the following questions:
(1) Are the distributions of Forbesichthys spp. based on
genomics congruent with previous reports based on ND2
mitochondrial DNA? (2) Do Forbesichthys spp. show evi-
dence of population structure? and (3) Is there evidence of
stable or decreasing population sizes in Forbesichthys spp.
that would inform their potential extinction risk?

Materials & methods
Data collection

Forbesichthys spp. were collected primarily from springs
and associated spring runs located in the states of Illinois,
Missouri, Kentucky and Tennessee (Table S1). Locales with
extant occurrence records were visited in spring when indi-
viduals were more likely to be present in surface waters.
Fishes were collected with dip nets and sampling contin-
ued until targeted habitats were exhausted or ten individuals
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were collected. We performed non-lethal tissue sampling of
fin clips and preserved tissues in 95% EtOH. A total of 228
tissue samples from Forbesichthys spp. were collected from
25 localities.

DNA extraction

We extracted whole genomic DNA using DNeasy® Blood
and Tissue kits (Qiagen©) with the following modification
to the protocol: after the addition of 200 pl of AL buffer,
samples were incubated at 70 °C for 10 min and then 200 pl
of EtOH were added. Samples were stored at 4 °C overnight
before processing via spin column filtration as directed in
the manufacturer’s protocol. Finally, the elution buffer was
warmed to 60 °C prior to the final elution step. After extrac-
tion, samples were quantified using a Qubit™ 3 Fluorom-
eter (ThermoFisher).

Mitochondrial DNA sequencing

From the extracted whole genomic DNA, we amplified a
1,044 bp fragment of the NADH dehydrogenase 2 (ND2)
mitochondrial locus using primers and protocols outlined
previously (Kocher et al. 1995) and as used by Niemiller et
al. (2013a) for amblyopsid cavefishes, including samples of
both Forbesichthys species. Amplified DNA was sequenced
using Applied Biosciences (ABI) 3730xl DNA Analyzers
at Roy J. Carver Biotechnology Center at the University of
Illinois at Urbana Champaign (UIUC) and Eurofins, Inc.
(Louisville, Kentucky), chromatograms were checked visu-
ally, and contigs assembled using Geneious Prime version
11. All sequences were trimmed to the same length with no
missing data. Existing ND2 sequences representing Forbe-
sichthys spp. including outgroup sequences for Amblyopsis
spelaea were downloaded from NCBI GenBank (Table S1).

Sequences were aligned using MAFFT v7.490 (Katoh
and Standley 2013). Aligned sequences were analyzed using
maximum-likelihood phylogenetic analysis in IQ-TREE 2
using ModelFinder to find the best substitution model and
assessing support using 1,000 replicates for ultrafast boot-
strapping (Kalyaanamoorthy et al. 2017; Hoang et al. 2018;
Minh et al. 2020). Haplotype network was constructed using
the median-joining method in the program PopART (Leigh
and Bryant 2015).

RAD sequencing

RAD libraries were prepared following the BestRAD pro-
tocol (Ali et al. 2016) using restriction enzyme Sbfl and
NEBNext® Ultra™ DNA Library Prep Kit for Illumina®
as detailed in Ackiss et al. (2020) and as follows: Genomic
DNA concentrations were normalized to 20 ng/pl for library
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preparation. Samples were ordered based on concentration
and plated with 76 samples per plate. For initial diges-
tion, 10 ul of normalized DNA was added to 0.68 ul water,
1.2 ul 10x CutSmart® Buffer (NEB), and 0.12 pl of Sbfl-
HF (NEB) per sample. Samples were placed in the thermo-
cycler at 37 °C for 60 min followed by 80 °C for 20 min.
After digestion, an additional 1.44 pul of water, 0.4 pl of
T4 DNA Ligase Buffer with rATP (NEB), 0.16 ul T4 DNA
Ligase (NEB), and 2 pl of well-specific adapter was added
to each well. To ligate adapters, samples were then placed
in the thermocycler at 25 °C for 90 min followed by 65 °C
for 20 min. After adapters were added to digested DNA,
libraries were created for each plate by pooling 5 pl of each
sample together, creating three libraries each containing
labeled DNA from 76 samples. The 3 samples were then
sonicated for a total of 3 min in increments of 30 s with
59 s between cycles. Sonication occurred at 25% ampli-
tude using the Q500® sonicator (Qsonica). Sonicated DNA
was visualized on 2% E-Gel™ EX Agarose Gels (Invitro-
gen™) to verify the bulk of the DNA was in the desired
size range (200-500 bp). Samples were then purified using
a double-sided (0.65X and 1.0X) purification with AMPure
XP beads. To remove non-ligated DNA that fell within the
target size range, an additional purification was done using
Dynabeads™ M-280 Streptavidin (Invitrogen). To remove
the Sbfl enzyme liberated in the previous step, an additional
1.5X AMPure XP bead clean-up was completed. Follow-
ing the “Protocol for use with NEBNext Ultra DNA Library
Prep Kit for Illumina (E7370)” in conjunction with the
NEBNext® Ultra™ DNA Library Prep Kit for Illumina® and
NEBNext® Multiplex Oligos for Illumina® (Index Primers
Set 1), final library preparation was conducted with the fol-
lowing modifications. NEBnext Adaptor for Illumina® was
used in a 1:10 dilution. Cleanup of Adapter-ligated DNA
was done with size selection targeting 250 bp fragments.
PCR enrichment of adapter-ligated DNA was modified to:
21 ul DNA, 2 pl of i5 primer and 2 pl of i7 primer. The final
PCR was run for 12 cycles. Final libraries were sent to the
Roy J. Carver Biotechnology Center at UIUC for pooling
and sequencing on the Illumina® NovaSeq™ 6000 using the
Sp or S4 flow cells.

SNP calling and filtering

Sequence read data were demultiplexed using process_rad-
tags from STACKS 2.64 (Rochette et al. 2019) using the
flag --bestrad specific for the data prepared with BestRAD
libraries and specifying the enzyme Sbfl. Each read was then
aligned to a Forbesichthys agassizii draft genome assem-
bly (GenBank accession GCA 026546735.1). We aligned
reads using bwa 0.7.17 (Li and Durbin 2009) with default
parameters followed by compression into sorted bam files
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using samtools (Danecek et al. 2021). The bam files were
used as input by the STACKS’s module gstacks to generate
a catalog of loci. Loci were then filtered with the follow-
ing conditions. A locus was kept if it was present at least
in 65% of the individuals and had a minimum allele count
of 3, using the STACKS’s module populations. Additional
filtering steps were carried out with vcftools (Danecek et al.
2011) including, the removal of individuals with more that
30% missing data, keeping genotypes with more than 2 read
depth, mean depth across sites of 5, less than 91 read depth,
and genotype quality equal or greater than 20. To account
for linkage disequilibrium among loci, we thinned the SNPs
to one every 500 bp across the genome using the flag --thin
from vcftools. Filtered SNPs were output in a variant call
format (VCF) for downstream analyses (See Fig. S1 for a
general overview of analyses).

Population structure

To study population structure, we ran multiple analyses.
For fastSTRUCTURE (Raj et al. 2014) which assesses the
number of K populations and admixture between them, we
tested K values ranging from 1 to 25 (the maximum number
of sampling localities) using the default convergence crite-
rion (10~%), simple priors, and a random starting seed. Three
independent runs were performed across K values 1 to 25.
The optimal K number of clusters in each run was assessed
with the chooseK.py script. We performed Discriminant
Analysis of Principal Components (DAPC) in adegenet
(Jombart 2008; Jombart et al. 2010). We employed a
k-means clustering algorithm to identify an optimal number
of clusters from 1 to 25 with 1,000 randomly starting cen-
troids in each k-means iteration, and compare the clustering
solutions using Bayesian Information Criterion (BIC). To
avoid overfitting of discriminant functions, we used a-score
optimization to evaluate the optimal number of principal
components (PCs) to retain in the DAPC. With population
assignments, we estimated measures of genetic differentia-
tion by Fgr (an indicator of reduced gene flow) using the R
package hierfstat (Goudet 2005). Significance was evaluated
by generating p-values using a permutation test with 1000
replicates in R. In addition, we estimated 95% confidence
intervales from 100 bootstrap replicates over loci using the
program boot.ppfst, from hierfstat. Confidence intervales
that do not include zero were considered as significant val-
ues. Diversity summary statistics was carried out based on
the ND2 sequences including nucleotide diversity (Paradis
2010), haplotype richness, effective number of haplotypes
[equation: 1/ (Sum pi*2), (Brown and Weir 1983)], private
haplotypes, unbiased haplotype diversity [equation: (N /
(N-1)) * 1 - Sum pi"2, (Anon 1996)], where N is the number
of sequences and pi is the frequency of the i allele for the

population. For the RADseq data we calculated observed
heterozygosity, expected heterozygosity, and inbreeding
coefficient using the R packages, hierfstat (Goudet 2005)
and dartR (Gruber et al. 2018; Mijangos et al. 2022).
Phylogenetic reconstruction was carried out in IQTREE2
version 2.2.0.6 (Minh et al. 2020). The input file alignment
was generated by converting the VCF output to PHYLIP for-
mat using the script vef2phylip.py (Ortiz 2019). By default,
vef2phylip.py writes heterozygotes with ambiguous base
coding. In IQ-TREE, ambiguous constant sites (e.g. Cvs. Y
which indicates C or T) are considered invariant. Therefore,
invariant sites from the resulting alignment were automati-
cally removed by IQTREE2 to avoid violation of the use of
the ascertainment bias correction flag (+ ASC). To select the
best model, we use ModelFinder with correction for ascer-
tainment bias using the option -m MFP+ASC in IQTREE2,
and branch support was calculated using ultrafast bootstrap
(UFBS) for 1000 replicates (Kalyaanamoorthy et al. 2017;
Hoang et al. 2018; Minh et al. 2020). UFBS was interpreted
as strong support if greater than 95% (Hoang et al. 2018).

Effective population size

To better understand the population dynamics of Forbesi-
chthys spp. and potential concerns for genetic bottlenecks,
we estimated changes over time in effective population size
(N,), the size of an idealized population (as described in Liu
& Fu [2015]). Note that effective population size does not
indicate the true number of individuals (i.e., census popu-
lation size), and estimates of effective population may be
smaller or larger than this number; rather, it gives an indica-
tion of population genetic diversity, such as the capacity for
the population to avoid inbreeding. We estimated effective
population size using Stairway Plot 2 (Liu and Fu 2020)
based on the site frequency spectrum (SFS) calculated
using the script easySFS.py (Gutenkunst et al. 2009) from
the VCF generated from STACKS 2 including variant and
invariant sites. The easySFS script implements a down pro-
jection method proposed by Marth et al. (2004) to account
for the presence of missing data, a feature common in RAD-
seq datasets. This method consists of “projecting down” to
a smaller number of samples and taking an “average over”
all possible resamplings to create a complete data matrix.
The projection values (i.e., reduced sample size to be used)
were chosen by maximizing the number of segregating sites
within each population as recommended in Gutenkunst et
al. (2009). To convert estimates from coalescent units to
population sizes and absolute time, we assumed a genera-
tion time of 1 based on the FishTraits database (Frimpong
and Angermeier 2009; Xie et al. 2013) and a mean muta-
tion rate of 5.97x10~° mutations per generation across
species of fish (Bergeron et al. 2023). Because this mean
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rate is faster than observed in multiple independent stud-
ies in diverse fishes including in Atlantic Herrings (Clupea
harengus) (2.0 x 10~%; (Feng et al. 2017), Guppies (Poecilia
reticulata) (2.89x107°%; (Burda and Konczal 2023), Lake
Malawi Cichlids (Cichlidae) (3.5x10~%; (Malinsky et al.
2018), and Nine-spined Sticklebacks (Pungitius pungitius)
(4.29-4.83 x1077%; (Zhang et al. 2023), we also performed
the analysis with half the mutation rate of 2.99 x 10~° muta-
tions per generation to span this range.

Results
Population structure and phylogenetic analysis
Mitochondrial ND2 dataset

We successfully amplified ND2 sequences from 222 indi-
vidual cavefishes resulting in an alignment of 918 base
pairs with 112 parsimony informative sites (Table S1). Our
analysis recovered two main clades within Forbesichthys:
one corresponding to the Shawnee Hills Cavefish and the
other corresponding to the Spring Cavefish, with a mean 5%
(SD=0.09) uncorrected pairwise divergence between them
(Fig. 2). We identified three haplotypes (n=62) within the
Spring Cavefish restricted to Tennessee, two of which are
shared across watershed boundaries (Haps1-3; Figs. 2, 3
and 4; Table S1-S2). Within the Shawnee Hills Cavefish,

Fig. 2 Maximum likelihood
phylogenetic analysis of the ND2
dataset inferred using IQ-TREE
version 2.2.0.6. Ultrafast boot-
strap support values over 50%
are shown. Duplicated sequences
per location were collapsed. Tip
labels information contain: State
Location_Haplotype Number of
individuals

] IL/MO

[ Cumberland River
Il Green River

[ Spring Cavefish

we identified 17 haplotypes (Table S2). One clade was
formed by four haplotypes unique to Illinois and a single
unique haplotype within Missouri (Hap8, n=13). Two of
the haplotypes are from GenBank sequences from Illinois
Cave Spring Cave (JX459215 and JX459216, INHS 37654).
These Illinois haplotypes included one dominant haplotype
(Hap4; n=12), and three unique haplotypes each includ-
ing a single sample (Haps5-7; Figs. 2, 3 and 4, Table S2).
The remaining 12 haplotypes from Kentucky and Tennessee
differed from the Illinois-Missouri clade by two substitu-
tions (Hap17, 2 samples) or a clade that differed by at least
four substitutions including 11 haplotypes in Kentucky and
one unique haplotype (Hap20) found in a single Tennessee
sample from Clarksville Lake Cave in Montgomery County.
Only Hapll (n=43) was shared between the Green River
and Cumberland River, while Hap17 (n=2), Hap18 (n=7),
and Hap20 (n=1) were unique to the Cumberland River,
while Hap9 (n=14), Hap10 (n=46), Hap12 (n=2), Hap13
(n=2), Hapl4 (n=2), Hapl5 (n=3), Hapl6 (n=2), and
Hap19 (n=4) were unique to the Green River. The Shawnee
Hills Cavefish had greater mitochondrial genetic diversity in
Kentucky than in the other states, and these haplotypes are
distinct from those found in Illinois and Missouri. Nearly all
sites had only one or two haplotypes, with the exception of
Spring Creek which had five (Figs. 3 and 4).

KY_BlueSprings-PenningtonRd_Hap16__2_
KY_RichPond_Hap10__28_
KY_SpringCreek_Hap15__ 3_
I~ KY_SpringCreek_Hap13__2_
_r KY_S;?ringCreek_HapM_Z_
KY_SpringCreek_Hap12__2_
I-KY_BootsRandolphGC_Hap18__7_
KY_DyerHillSpring_Hap11__3_
KY_SpringCreek_Hap11__4_
KY_BootsRandolphGC_Hap11__9_
KY_nearGuthrie_Hap11__15_
@_ KY_MortonRdSpringRun_Hap11__11_
KY_RichPond_Hap11__1_
[~ TN_ClarksvLC_Hap20__1_
I~ KY_LakeSpringRd_Hap9__14_
—-KY_ConradRd_Hap19__ 5_
IL_Vandermyde-OtterSprings_Hap4__ 7_
JX459216.1_Forbesichthys-papilliferus_Hap4__1_
IL_DeerSpring_Hap4__3_
IL_ClassSpring_Hap4__2_
IL_RattlesnakeFerrySpring_Hap7__1_
IL_ClassSpring_Hap6__1_
MO_CapelacroixBluffs_Hap8__13_
JX459215.1_Forbesichthys-papilliferus_Hap5__1_
KY_DyerHillSpring_Hap17__2_
TN_RigsbyPond_Hap2_ 21_
TN_LanceSpring_Hap2_ 2_
TN_JarrellsSpring_Hap2__10_
TN_PondSpring_Hap2__14_
m TN_ClayborneSpring_Hap2__2_
TN_BarnRamseySpring_Hap2__7_
m TN_BarnRamseySpring_Hap3__1_
TN_MountainCreek_Hap1__1_

TN_BlueSprings_Hap1__5_ H

JX977885.1_Amblyopsis-spelaca_Hap22__ 1_

KY_GriderPond_Hap10__17_
fY_LakeSprinng;Ham 0_1_

Shawnee Hills Cavefish

Spring Cavefish
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Kentucky 14
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Hap12
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18_TN_ClarksvLC
19_TN_ClayborneSpring

20_TN_JarrellsSpring

21_TN_MountainCreek

Hap18
Hap19
Hap20

22_TN_PondSpring
23_TN_RigsbyPond
H24_TN_LanceSpring
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Location Haplotype 8 222288 1
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3_IL_RattlesnakeFerrySpring 1
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Fig. 3 Sites sampled in Illinois, Missouri, Kentucky, and Tennessee
included in the ND2 analysis. Sites are color-coded by haplotype (see
Fig. 1), with the sizes of the circle indicating the number of samples

RAD SNP dataset

A total of 126 individual cavefishes were sequenced. SNP
genotyping of RAD loci data resulted in a dataset of 11,289
variable SNPs with 8% missing data. Population structure
analysis with DAPC (Fig. 5) and fastSTRUCTURE (Fig. 6)
supported four clusters. Maximum likelihood phylogenetic
analysis again recovered two main clades corresponding
to the two species, with subclades mostly matching popu-
lation clusters identified by DAPC and fastSTRUCTURE
(Fig. 7). Twenty specimens from Tennessee corresponded
to the Spring Cavefish (Fig. 8). The Shawnee Hills Cavefish
clade was divided into three subclades. Two subclades were
identified within Kentucky: one represented by 31 individ-
uals in the Cumberland River, and one represented by 47
individuals from the Green River (Fig. 8). The Clarksville
Lake Cave individual in Tennessee (Cumberland River) was
grouped with the Kentucky Cumberland River population
cluster in fastSTRUCTURE, but was reconstructed as sis-
ter to all other samples of Shawnee Hills Cavefish in the
phylogeny. Furthermore, the Green River clade in Kentucky

from each site. Inset map of the United States shows the study area
enclosed in a square. Map generated in QGIS version 3.10.14-A
Coruiia

was more closely related to a clade including Illinois-Mis-
souri samples (14 samples for each state) than they were to
the Cumberland River clade, but the relationship was not
strongly supported (80% UFBS for clade formed by Green
River Kentucky and Illinois-Missouri clades). An Illinois
clade was identified as sister to a Missouri clade (Fig. 7);
however, despite the clearly distinct clades in the tree, these
two populations were not strongly supported as separate
clusters by DAPC or fastSTRUCTURE.

Nuclear BestRAD phylogenetic and population analy-
ses provided greater resolution among specimens than
mitochondrial ND2 due to the greater amount of genetic
variation in the much larger genomic dataset. Mitochon-
drial and nuclear data support the genetic distinctiveness
of Spring Cavefish and Shawnee Hills Cavefish. While
a haplotype unique to Missouri compared to Illinois does
indicate some minor genetic differentiation, the genomic
RAD data provided far greater resolution in identifying two
separate clades. In the Cumberland River and Green River,
most haplotypes were unique to each watershed, but they
did not form distinct clades, and Hapl1 was found in both
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Fig. 4 Haplotype network of ND2 sequences. Circles indicate each
haplotype, with the size of the circle indicating the number of samples
identified with that haplotype. Each tick indicates the number of sub-
stitution differences between haplotypes. Circles are shown with pie
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Fig. 5 Discriminant analysis of principal components (DAPC) of
11,289 SNPs. Inset shows the Bayesian Information Criterion (BIC)
for the estimation for the number of clusters. Four clusters are evident
based on the point where the “elbow” in BIC values occurs or starts
to flatten out. Data points belonging to each species are included in
dashed ellipses
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the Cumberland River and Green River drainages. In the
nuclear DNA RAD dataset, two main clades are identified
that were split between each river drainage, with the excep-
tion of the Clarksville Lake Cave sample (as previously
noted). Furthermore, while Cumberland River and Green
River ND2 haplotypes almost all form a clade, in the RAD-
seq data the Green River clade is more closely related to
the Illinois-Missouri population rather than forming a clade
with the Cumberland River clade (Fig. 7).

We also assessed genetic differentiation by comput-
ing pairwise Fqr among the five populations identified by
nuclear genomic data (with Illinois and Missouri split as
two separate populations) to understand the evidence for
genetic connectivity among populations. Populations expe-
riencing consistent gene flow are expected to be quite simi-
lar, and therefore have low values of genetic differentiation
(near 0), while populations that are completely isolated will
have genetic differentiation near 1. Pairwise Fqp between
Illinois and Missouri were the smallest at 0.272, consistent
with their relatively close relationship (Table 1), but still
indicative of significant genetic differentiation (all p-val-
ues <0.0001, permutation test). All other pairwise Fqp were
much larger, and evidence of strong genetic differentiation
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Fig. 6 Population assignment suggested by fastSTRUCTURE was
K=3 (Model complexity that maximizes marginal likelihood=3;
Table S5) and K=4 (Model components used to explain structure in

(0.436, 0.439, 0.542), and suggesting remarkably low con-
nectivity among genetic clusters of Shawnee Hills Cave-
fish. On the other hand, shared haplotypes observed across
localities within the Spring Cavefish in Tennessee suggests
high connectivity. Nearly maximum genetic differentiation
was estimated between Shawnee Hills Cavefish populations
and Spring Cavefish (>0.927), indicative of a long history
of genetic isolation and reinforcing their designation as dis-
tinct species (Table 1).

Effective population size

Number of SNPs, segregating sites, and samples used based
on selecting the optimal projection are reported in Table S3.
From a medium-high population size in deep time, popula-
tions experienced a sharp decline followed by a rebound and
finally by a more contemporary population decline. This rel-
atively recent population decline, however, appears to have
started 1,000-7,500 years ago (depending on the assumed
mutation rate), prior to expected anthropogenic influences
on groundwater (Figs. 9 and 10). Although population struc-
ture can affect estimates of effective population size, ana-
lyzing Illinois and Missouri together and separately did not
greatly influence results for each population, which is con-
sistent with recent divergence. There is a more recent stabil-
ity in population size in the last 30-100 years (depending
on the assumed mutation rate). Regardless of the mutation
rate assumed, the current effective population sizes among
populations were generally similar, ranging between 5,000
and 7,000 effective individuals.

data=4) based on 11,289 SNPs. K=5 did not indicate a separation
between Illinois and Missouri (not shown)

Discussion

It can be particularly difficult to assess the distributions and
population sizes of RTE species, which has consequences
for their conservation. In particular, groundwaters harbor
many endemic species and are an increasingly threatened
habitat (Sacco et al. 2024); this would be expected to have
consequences for the conservation of diverse species depen-
dent on spring and groundwaters, such as Forbesichthys.
The distribution of species in this genus is difficult to assess
due to the intermittent appearance of individuals in surface
springs. The population level mitochondrial and genomic
investigation herein provides information relevant to under-
standing potential population breaks and the uniqueness of
potential lineages that may deserve protections.

Distribution of the Shawnee Hills and Spring
Cavefish

Here we confirm Shawnee Hills Cavefish and Spring Cave-
fish as distinct lineages consistent with their recognition as
separate species. Rather than being a single, wider-ranging
species, this restricts each one to reduced distributions.
Indeed, given our current data and distributional knowledge,
these species may well represent short-range endemics
(Harvey et al. 2011; Davis et al. 2015). Given the above, we
argue that, at a minimum, a re-evaluation of the global con-
servation status of each species is imperative. This includes
additional surveys for intervening localities between genet-
ically-distinct clusters and species, as well as monitoring
of known populations. However, we will note that, to date,
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Cluster IL1
IL1 -

MO 1

(0.232-0.319) | (0.416-0.453)

(0.516-0.556)((0.974-0.977)

MO 1

(0.422-0.459)

(0.520-0.565)| (0.974-0.977)

- (0.276-0.306)| (0.924-0.929)

KY 3 0.536

TN 4 0.975

Table 1 Pairwise genetic differentiation based on 11,289 SNPs
between major lineages (see Fig. 4). Estimated Fgy values are the low
diagonal and lower and upper bound 95% confidence interval val-
ues are in the upper diagonal in parenthesis. IL 1 and MO 1 refer to
the Illinois and Missouri populations in lineage 1 of Shawnee Hills
Cavefish. TN 4 refers to the Spring Cavefish. KY 2 and KY 3 refer

population distributions, at least in Illinois, appear stable
(Metzke and Holtrop 2014).

Our present cluster delineations clarify the potential for
geographic breaks that limit connectivity between species

0.288 - (0.949-0.948)

to the Cumberland River and Green River clusters of Shawnee Hills
Cavefish respectively. Fqp values near 1 between the Shawnee Hills
Cavefish and Spring Cavefish indicate virtually no genetic connec-
tivity. High Fg; values between other lineages indicate limited gene
flow, even between Illinois and Missouri. All Fg values showed a
p-value < 0.0001 based on permutation test

and among genetically-distinct populations. The separation
between the Shawnee Hills Cavefish and Spring Cavefish is
consistent with prior results (Niemiller and Poulson 2010;
Niemiller et al. 2013a, c; Hart et al. 2020). Previous studies,

Illinois
4

Location Genetic cluster
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Fig. 8 Sites sampled in Illinois, Missouri, Kentucky, and Tennessee
included in the genomic RADseq analysis. Sites are color-coded by
the mean probability of cluster assignment across all samples within
a site (see Fig. 4), with the sizes of the circle indicating the number of

samples from each site. Inset map of the United States shows the study
area enclosed in a square. Map generated in QGIS version 3.10.14-A
Corufia
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Fig. 9 Effective population size (N,) estimates from Stairway Plot 2
based on population-specific analyses (see number of sequences and
SNPs in Table S3), assuming a generation time of 1 year and a muta-

however, included relatively few samples from relatively
few sites. The Shawnee Hills Cavefish is found in south-
east Missouri, southern Illinois, southwestern Kentucky,
and north-central Tennessee through associations with the
Mississippi River, Ohio River, Green River, and Cumber-
land River. The separation between the Illinois-Missouri
and Kentucky clades is explained by the Ohio River, which
may act as a barrier to dispersal. The separation between
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tion rate of 5.97x 10~ per generation (Bergeron et al. 2023). The
upper and lower transparent lines correspond to the 95% confidence
interval

Kentucky populations appears to be best explained by
separation between populations found in the Cumberland
River watershed and those in the Green River watershed.
The clade separation between Illinois and Missouri popu-
lations is explained by the current position of the Missis-
sippi River presenting a biogeographic barrier to dispersal.
This is potentially consistent with the geological history
of the Mississippi River and this population as previously
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Fig. 10 Effective population size (N,) estimates from Stairway Plot 2
based on population-specific analyses (see number of sequences and
SNPs in Table S3), assuming a generation time of one year and a muta-

proposed (McDonald and Pflieger 1979), and recovered in
other cave species (Katz et al. 2018). This Missouri popula-
tion would have previously been continuous with the Illinois
population, but the Mississippi River was diverted eastward
roughly 2,000 years ago (Fisk 1944), isolating this popula-
tion from most of the range in southern Illinois and Ken-
tucky. Consequently, geographic breaks in Forbesichthys

tion rate of 2.99 x 10~° per generation. The upper and lower transpar-
ent lines correspond to the 95% confidence interval

appear to be fairly well explained by major watershed
boundaries.

Alternatively, while the Illinois cluster in the Pine Hills
corresponds to Devonian-age geology, the Missouri cluster
corresponds to Ordovician-age geology and the Kentucky
and Tennessee clusters correspond to the Highland Rim in
Mississippian-age geology (McDowell 1986; Starnes and
Etnier 1986; Thompson 1991; Kolata and Nimz 2010). This
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suggests that the distribution and lack of gene flow may also
be influenced by geological strata. Thus, while the Mis-
sissippi River’s role as a barrier is significant, geological
factors should not be discounted in understanding the popu-
lation dynamics of Forbesichthys.

Genetic connectivity patterns among populations of
the Shawnee Hills Cavefish and Spring Cavefish

Some aspects of the population genomics of Shawnee Hills
Cavefish remain to be resolved. The locality on the Ken-
tucky side of the Lower Ohio River (Dyer Hill Spring, site
9) exhibits slight admixture with the Illinois-Missouri pop-
ulation, while other localities in Kentucky appear to have
little to no contribution (Figs. 6 and 8). Despite the high
genetic differentiation between the two lineages suggesting
virtually no connectivity overall, this slight admixture could
be indicative of limited connectivity between populations
in close proximity on either side of the Ohio River, or per-
haps ancestral polymorphism shared between populations.
Shawnee Hills Cavefish have been intermittently found in
the Lower Ohio-Bay HUCS on the east side (Metzke and
Holtrop 2014), although none were found in the course of
the present study. Individuals here would be geographically
close to the westernmost Kentucky populations, which may
promote occasional introgression. Given that the intro-
gressed signal is currently assigned to the sampled Illinois
population, this suggests that Lower Ohio Illinois individu-
als are genetically similar to the western Illinois samples
we obtained; in other words, that there is a single wide-
spread population in Illinois rather than a unique population
in the Lower Ohio-Bay HUCS. Although the present-day
Ohio River may have intermittently isolated the Illinois and
Kentucky populations, occasionally, individuals of the Illi-
nois population may have crossed the Ohio River through
either surface or subterranean waters. However, our lack of
genomic data of the Shawnee Hill Cavefish from the Lower
Ohio River renders it an open question as to whether indi-
viduals can move across the Ohio River, and whether gene
flow is unidirectional (i.e. only from Illinois to Kentucky) or
bidirectional (i.e. also from Kentucky to Illinois).

The relationship of Shawnee Hills Cavefish in Ten-
nessee (Clarksville Lake Cave, site 18) to other popula-
tions of Shawnee Hills Cavefish in Kentucky also requires
additional research. While this sample is assigned to the
Cumberland River population, fastSTRUCTURE suggests
some probability of admixture from the Illinois (5%) and
Green River (17%) populations of the Shawnee Hills Cave-
fish, while phylogenetic analysis suggests it is sister to all
other Shawnee Hills Cavefish (Fig. 6). Interpreting the fast-
STRUCTURE result might suggest some form of introgres-
sion into this region from Illinois and Green River, but this
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is unlikely due to its greater geographic distance from Illi-
nois. An alternative interpretation from the phylogeny is this
sample represents a fourth lineage of Shawnee Hills Cave-
fish, and therefore some ancestral polymorphism is shared
between populations, although the placement outside the
remaining samples is poorly supported (54% UFBS for the
clade formed by the remaining samples). Nevertheless, it is
most likely that this sample is somewhat biased by missing
data, which can both pull samples towards the root in phy-
logenetic analysis and increase uncertainty in population
assignment in structure analyses. We find that this sample
has 24% missing data, which is relatively high compared to
the overall (mean) proportion of 8%, although it is also not
the sample with maximum missing data (range 0.66—-37%).
The ND2 haplotype for this sample is unique, but groups
within other Kentucky samples, consistent with this popula-
tion not representing a separate lineage.

The distribution and habitat of the Spring Cavefish
almost mirrors that of the Barrens Topminnow (Fundulus
Julisia) a critically endangered species restricted to springs
and spring-fed creeks (Williams and Etnier 1982; Jelks et
al. 2008), yet the genetic signature of the two species is
very different. The topminnow has two ESUs between the
Elk River and Caney Fork, and 2 MUs between two dif-
ferent river systems within the Caney Fork drainage (Hurt
et al. 2017). However, no such pattern is shown in the
Spring Cavefish between the Elk, Duck (¥ julisia, historical
records), and Caney Fork systems. This seems to suggest
that the Spring Cavefish likely uses aquifer connections for
gene flow that are not reflected in surface drainages.

Evolutionary significant units and management
units within the Shawnee Hills Cavefish

Given unexpected and pronounced genetic diversity recov-
ered within the Shawnee Hills Cavefish (Figs. 3, 4, 5, 6,
7 and 8), we conservatively suggest that, at a minimum,
the three major lineages of Shawnee Hills Cavefish should
be designated as Evolutionarily Significant Units (ESUs)
(Moritz 1994). Specifically, an Illinois-Missouri clade, the
Cumberland River drainage clade, and the Green River
drainage clade all represent distinct ESUs and should be
managed accordingly (Figs. 5, 6, 7 and 8). Despite finding
similarity in the mitochondrial and nuclear genomes among
Illinois and Missouri fish, suggesting these localities are
closely related, the recovery of significant genetic differen-
tiation between Missouri and Illinois suggests population
fragmentation between the two states, providing support
for the recognition of separate Management Units (MUs)
for each state. This yields a total of three ESUs within the
Shawnee Hills Cavefish, one of which is split into two MUs.
The inclusion of the Cumberland River and Green River
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populations within Shawnee Hills Cavefish contradicts the
suggestion that Shawnee Hills Cavefish may be restricted
to Illinois and Missouri (Adams et al. 2020). These popula-
tions of Forbesichthys are clearly more closely-related to
the Illinois and Missouri populations than they are to Spring
Cavefish, and we thus assign them to the Shawnee Hills
Cavefish. Evolutionary divergence among lineages may
indicate that ESUs are not interchangeable if future relo-
cation is ever needed. Transplantation to Adams County of
Shawnee Hills Cavefish has previously failed (Adams et al.
2020), which might be explained by differences in locally
adaptive alleles among ESUs. This regionalization also has
implications for policy of groundwater usage (Taylor et al.
2024), as populations occurring in particularly restricted
regions (e.g. the Missouri clade) may be more threatened
by continued intensification of groundwater usage. More-
over, prolonged droughts resulting from climate change,
along with groundwater pollution stemming from agricul-
tural activities, could exacerbate the threat of extirpation for
certain localized populations.

Effective population size is a metric that facilitates explo-
ration of the level of genetic diversity, which is important
for understanding the potential that populations may expe-
rience elevated inbreeding risk (Lohmueller et al. 2008),
or lack sufficient genomic diversity and thus capacity for
adaptation (England et al. 2003). There is some uncertainty
in estimates of effective population size due to both esti-
mation uncertainty as well as uncertainty in an appropriate
mutation rate. Generally, effective population sizes seem to
have been relatively low compared to historic or prehistoric
effective population sizes, but appear to have been stable
between the last 30—100 years, between 5,000 and 7,000
individuals (with broader confidence intervales) may exist
for each of the ESUs (i.e., llinois-Missouri clade, Cumber-
land River, and Green River drainage clades). Nonetheless,
even these estimates are above the 500 threshold consid-
ered as a good measure that facilitates the maintenance of
genetic adaptability (Harmon and Braude 2010), or even the
higher 1000 threshold (Frankham et al. 2014). These popu-
lation size estimates stand in contrast to those of some other
fish species associated with groundwater-fed systems, such
as the Watercress Darter (Etheostoma nuchale) (N,: 657—
1,760) (Fluker et al. 2010), the Trispot Darter (E. trisella)
(N,: 33-208) (Fast et al. 2024), and the Arkansas Darter
(E. cragini) (N,: 208-1,360) (Baker et al. 2018). Similarly,
many species across diverse taxa fail to meet the 50/500
rule thresholds, although freshwater fishes are more likely
to meet these thresholds than mammals, amphibians, and
plants, but less likely than marine fishes (Clarke et al. 2023).
Given the replication across populations and species in
changes in effective population size change, we suggest that
the population decline and rebound may have been driven

by ancient climatic events affecting all populations concur-
rently. Nevertheless, our estimates of effective population
size so far suggest that there is sufficient genetic diversity
(see also summary statistics Table S4) in all Forbesichthys
spp. populations to avoid inbreeding and to adapt to chang-
ing environments.

The proposed Illinois and Missouri MUs presented simi-
lar effective population sizes (10,000+), both when consid-
ered as single and separate populations, which is reflective
of their recent divergence. While counterintuitive because
the sum of the effective population sizes estimated for
each state is not the estimated effective population size of
the samples analyzed together, this similarity in effective
population size indicates just how recently the two popula-
tions have diverged, as estimated effective population sizes
through time reflect when these two populations comprised
a single ancestral population.

Considerations for future research of the Shawnee
Hills Cavefish

Genetic monitoring of the Shawnee Hills Cavefish is
important for assessing its distribution and genetic diver-
sity. Specifically, determining if populations from the Ohio
River-Bay HUCS are extant, and if so, genetic data shed
light on whether individuals from these watersheds are con-
nected with individuals from other Illinois watersheds and if
there is signal for introgression from the Cumberland River.
Furthermore, repeated sampling could be useful for assess-
ing changes in genetic diversity over time (both short- and
long-term), which may help to confirm whether genetic
diversity has indeed remained stable. We also foresee con-
tinued decreases in genome sequencing costs and techno-
logical shifts to allow for more complete investigations of
genome-wide genetic diversity, which may provide further
information in relation to conservation.

Presently available data are sufficient to test a variety
of genomic questions with potential conservation signifi-
cance. Evolutionary distinctiveness has been proposed as
complementary information to prioritize species for con-
servation, as extinction of evolutionarily distinct lineages
may lead to the irrevocable loss of tens of thousands to even
millions of years of independent evolutionary history (Nee
and May 1997; Veron et al. 2017); while there appears to be
divergence within the Shawnee Hills Cavefish populations,
it would be possible to estimate the timing of divergence
between these ESUs to quantify their evolutionary distinc-
tiveness. Further research could be aimed at determining
whether genetic differentiation among populations may be
due exclusively to genetic drift, or if there are signals of
local adaptation, which as previously noted may have con-
sequences in extreme cases where extirpation is likely and
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propagation, reintroduction, or translocation may be a last
resort (thought these measures should be taken with caution,
see George et al. 2009). In addition, given the availability
of whole genome sequence data for spring cavefish species
(i.e., whole mitogenomes), it may be possible to design,
optimize, and validate eDNA assays for further assess-
ing population presence and seeking new sites, even when
spring cavefishes are in subsurface habitats. Positive eEDNA
samples can also be used for deeper genome sequencing for
understanding genetic diversity and population assignment.

Our genomic data address some of the Wallacean and
Prestonian shortfalls relating to species of Forbesichthys. A
clearer understanding of species distribution, evolutionary
significant units, management units, population sizes, and
genetic differentiation between springs and caves add to the
general knowledge necessary to develop more effective and
meaningful species management. Our findings of restrictive
connectivity across the range of the Shawnee Hills Cave-
fish coupled with the identification of distinct three ESUs
and two MUs leads to the conclusion that local manage-
ment across its range is necessary to protect the diversity
found within the Shawnee Hills Cavefish. Similarly, the
much smaller range of the Spring Cavefish, including areas
of heavy plant nursery agriculture with groundwater pump-
ing (Federal Register 2019), suggests a need for increased
conservation efforts.

Supplementary Information The online  version  contains
supplementary material available at https://doi.org/10.1007/s10592-
024-01640-8.
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