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A B S T R A C T

Pursuing innovative materials through integrating machine learning (ML) with materials informatics hinges 
critically upon establishing accurate processing-structure–property-performance relationships and consistently 
applying them in training datasets. Pivotal to unraveling these relationships is an accurate representation of the 
microstructure in computational models. In this study, we use transmission electron microscopy (TEM) micro-
graphs of carbon nanotubes (CNTs) within a polymer matrix to construct representative polymer-nanotube 
composite (PNC) models. We then simulate the models using the coarse-grained molecular dynamics (CG-MD) 
technique to elucidate the in昀氀uence of 昀椀ller morphology and aggregation on the mechanical properties of PNCs. 
Besides CNTs, we consider cyanoethyl nanotubes (C3NNT) as a representative of the carbon nitride family, which 
has remained largely unexplored as a PNC 昀椀ller for load-bearing purposes. We employ the CG-MD results to train 
ML models—neural network (NN), support vector regression (SVR), and Gaussian process regression (GPR)—to 
predict the strain–stress responses of PNCs. Results indicate the profound in昀氀uence of the 昀椀ller morphology and 
aggregation on the elastic and shear stiffness of PNC composites. A high degree of transverse isotropy is observed 
in the mechanical behavior of composites with perfectly oriented 昀椀llers, with Poisson’s ratios surpassing con-
ventional upper bounds observed in isotropic materials. For a given morphology, C3NNT composites exhibit 
higher stiffness in longitudinal and transverse directions than CNT composites. The ML models demonstrate 
accuracy in predicting the strain–stress response of the composites, with the GPR model showing the highest 
accuracy, followed by the NN and SVM models. This accuracy makes the ML models readily integrable into a 
multiscale modeling framework, signi昀椀cantly enhancing the ef昀椀ciency of transferring information across scales.

1. Introduction

The ongoing effort to combine machine learning (ML) and materials 
informatics with the integrated computational materials engineering 
(ICME) paradigm has accelerated the design of new materials. This effort 
has led to the emergence of large-scale active learning models that 
drastically expedite material exploration through an iterative process, 
thereby reducing the traditional reliance on heuristic methods and 
minimizing the need for extensive trial and error [1]. At the core of this 
process are predictive models grounded in processing-structur-
e–property-performance (PSPP) relationships that quickly evaluate the 
target properties of generated candidates, screen them, and guide the 
next round of active learning [2,3]. Such models can also be integrated 

with an inverse design framework to generate potential processing- 
structure combinations that likely yield speci昀椀ed properties [4].

Developing predictive models for polymer nanocomposites is 
particularly challenging due to the wide range of compositions, phe-
nomena, and interactions these materials feature. These factors occur 
across various scales of time, length, complexity, and uncertainty that, 
in turn, complicate their PSPP relationships [5]. For instance, individual 
nanotubes (NTs) within a polymer matrix tend to adopt wavy forms and 
entangle to achieve a more energetically favorable con昀椀guration. Ag-
gregation and waviness of NTs affect their intra- and inter-stress trans-
fer, deteriorating the mechanical properties and causing inconsistency 
in their measured properties [6,7].

Disregarding the in昀氀uence of 昀椀ller aggregation and waviness often 

* Corresponding author.
E-mail address: hyazdani@missouri.edu (H. Yazdani). 

Contents lists available at ScienceDirect

Computational Materials Science
journal homepage: www.elsevier.com/locate/commatsci

https://doi.org/10.1016/j.commatsci.2024.113399
Received 24 April 2024; Received in revised form 20 August 2024; Accepted 16 September 2024  

Computational Materials Science 246 (2025) 113399 

Available online 17 October 2024 
0927-0256/© 2024 Published by Elsevier B.V. 

mailto:hyazdani@missouri.edu
www.sciencedirect.com/science/journal/09270256
https://www.elsevier.com/locate/commatsci
https://doi.org/10.1016/j.commatsci.2024.113399


leads to overestimating the mechanical properties of polymer compos-
ites [8]. This has been consistently corroborated through various studies 
involving atomistic [9–11], micromechanical [12], and 昀椀nite element 
[13] simulations. Most of these studies, however, limited their focus to 
CNTs, with little to no consideration for the combined in昀氀uence of 昀椀ller 
heterogeneity and morphology on mechanical properties. Predictive ML 
models were also not in the scope of these works.

The review above emphasizes the need for predictive ML models 
trained using data that considers 昀椀ller morphology and the intricate 
interplays between nano昀椀llers and polymer matrices. However, unrav-
eling these interplays for every conceivable combination of polymers 
and nano昀椀llers would be impractical. Insights gained from polymer 
nanocomposites that lend themselves to imaging can provide useful 
frameworks to develop transfer learning-based approaches to micro-
structure reconstruction and PSPP predictions, thereby improving the 
predictive capability and reliability of results. One such polymer is 
polyvinyl chloride (PVC).

PVC is a widely used thermoplastic polymer [14] known for its high 
tensile strength, exceptional impact and chemical resistance [15], low 
moisture absorption, and non-conductive nature [16], making it suitable 
for various applications ranging from construction materials to health-
care products. Adding materials like carbonaceous or metallic particles 
to PVC creates pathways for electron 昀氀ow, enabling its use in applica-
tions requiring electrical conductivity. For instance, we have added 
critical concentrations of carbon black and carbon nanotubes (CNTs) to 
PVC to impart an engineered degree of conductivity and produce smart 
composites for strain-sensing applications [17–22]. The micrographs we 
obtained from CNT-昀椀lled PVC across different length scales provided 
substantial subsurface information that proved very bene昀椀cial in 
reconstructing microstructure for our computational simulations [23]. 

This information can be extended to other NTs like cyanoethyl nano-
tubes (C3NNTs), which have shown promising mechanical properties in 
our recent atomistic simulations [24,25]. In a composite form, the 
presence of nitrogen in carbon nitrides (such as C3NNTs) may increase 
their nonbonded interactions with the host polymer and result in high- 
performance composites, but this topic has remained largely 
unexplored.

Here, we report the use of transmission electron microscopy (TEM) 
micrographs to construct PVC composite models 昀椀lled with CNT and 
C3NNT bundles and simulate their tensile response using coarse-grained 
molecular dynamics (CG-MD). Models differing in the degree of wavi-
ness and number of NTs are simulated for tensile stress–strain response. 
The responses are used to train ML models that accurately predict the 
strain–stress response of PNCs with unseen waviness and aggregation 
characteristics.

2. Methodology

2.1. Modeling

Fig. 1 shows the TEM image of a CNT bundle within a PVC matrix 
that was used to inform the construction of computational models in this 
study [23,26]. The CNTs in the TEM image were assumed to be ideally 
represented by a sinusoidal shape as shown in expressed by y = Acos 
(2πz/λ), z * [0, λ], where A and λ are the amplitude and wavelength of 
the wavy NT, respectively, as shown in Fig. 2 [27]. The waviness 
parameter is de昀椀ned as α = A/λ to represent the degree of the waviness 
of the NTs. Also, the degree of 昀椀ller aggregation was denoted by the 
aggregation number (N), which is equal to the number of 昀椀llers in a 
model. Four values for α and four values for N were combined, as 
summarized in Table 1, to de昀椀ne 16 unique models. All CNTs and 
C3NNTs were assumed to be armchair (6,6) tubes with an aspect ratio of 
62.5 (length to diameter). The length of bundles in all models was 50.0 
nm.

Two central MD schemes used for PNCs include all-atom MD (AA- 
MD) and coarse-grained MD (CG-MD). In AA-MD, each atom in the 
material system is explicitly represented, and its position and velocity 
are tracked as they evolve over small time steps. AA-MD allows for a 
highly accurate representation of the molecular structure and dynamics 
but is computationally intractable for large systems. In contrast, CG-MD 
offers enhanced sampling ef昀椀ciency by lumping neighboring atoms into 
clusters, termed beads, and employing appropriate functions to repre-
sent their interactions accurately. It also allows longer MD simulation 
times by accommodating larger time steps for con昀椀gurational sampling. 
Such balance that CG-MD strikes between computational ef昀椀ciency and 
accuracy enables studying larger systems over longer durations that may 

Fig. 1. TEM image of a CNT bundle used to inform microstructure recon-
struction [23,26].

Fig. 2. A schematic of a wavy NT.

Table 1 
Summary of simulated NT-PVC models.

Aggregation number, 
N

Waviness parameter, α (A [nm], λ [nm])

1, 3, 7, 11 0.0 (0.0, 50.0), 0.07 (3.4, 49.2), 0.13 (5.9, 44.4), 0.23 (8.2, 
36.0)
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be inaccessible to AA-MD simulations [28,29]. In this study, AA-MD was 
used for NTs, while CG-MD was employed to model and simulate the 
PVC fraction of the models where each C2H2Cl monomer of PVC was 
represented by a bead and interacted with the NTs’ AA model.

Modeling involved four stages. First, for a given set of α and N, an 
AA-MD simulation was performed on straight 昀椀ller(s) to deform them 
into the wavy con昀椀guration corresponding to the α value. The 昀椀ller(s) 
coordinates were recorded at the end of the simulation. Next, a self- 
avoiding random walk algorithm was used to randomly place 1,000- 
bead PVC chains around the 昀椀ller(s). The number of chains in each 
representative volume element (RVE) was chosen to achieve a 昀椀ller 
content of 3 wt% while ensuring a density of approximately 1.3 g/cm3, 
consistent with the density of pure PVC. In the third stage, the PVC part 
of the model was relaxed for 42 ns (ns) to eliminate residual stresses in 
all dimensions following four steps: the part was 1) amorphized by 
elevating the temperature to 1000 K under canonical (NVT) ensemble, 
2) cooled down to 300 K in 1 ns, 3) allowed to relax over 20 ns under the 
NVT ensemble, and 4) further relaxed over 20 ns under the isothermal- 
isobaric ensemble (NPT) ensemble at 300 K with Berendsen thermostat 
and barostat. The 昀椀llers were ‘昀椀xed’ during this relaxation episode to 
avoid having them in昀氀uenced by elevated temperatures. Finally, the 

entire model (PVC chains and NTs) was relaxed for 1 ns under the NPT 
ensemble before the simulations, as described in the next section. The 
coordinates of the model constituents were recorded for later recall in 
the tensile simulations. Fig. 3 shows the 昀椀nal structure of a model with 
seven CNTs (N=7) and a waviness parameter of α = 0.23.

2.2. Simulations

Interactions among PVC beads were described using a CG force 昀椀eld 
that we have previously developed and reported elsewhere [30]. The 
Tersoff potential function [31] de昀椀ned the interactions among CNT and 
C3NNT atoms. The nonbonded interactions were modeled using the van 
der Waals (vdW) formulation. A time step of 1 fs (fs) was used, and 
periodic boundary conditions (PBC) were applied in all directions of the 
model. The simulation box was sized so that the distance between the 
box edge and the bundle edge was greater than the vdW cutoff, ensuring 
accurate simulation of the bundles in periodic RVEs without unintended 
overlaps or interactions. All MD simulations were performed with 
LAMMPS [32] and visualized with OVITO [33].

The models were assumed to be orthotropic [27] because the 昀椀ller 
has different reinforcing effects in longitudinal (chord) and transverse 
directions—in orthotropic materials, elastic properties are direction- 
dependent at each point, but there are three mutually orthogonal 
planes of symmetry with respect to which stretch and shear modes are 
uncoupled, and also the three shear modes are uncoupled from one 
another [34]—the orthotropic constitutive law (stiffness matrix) of 
orthotropic, elastic materials relating the state of stress to the state of 
strain contains nine coef昀椀cients, assuming 昀椀nite strain. These co-
ef昀椀cients can be computed by subjecting a material to uniaxial tension/ 
compression in three principal directions (1, 2, 3) and in-plane shear in 
the 1–2, 1–3, and 2–3 planes, as shown in Fig. 4. Nine independent 
elastic constants of the material can then be calculated from the elastic 
coef昀椀cients (e.g., see [27] for the formulation). These constants with 
reference to the principal material directions 1, 2, and 3 (Fig. 4) include 
Young’s moduli E1, E2, E3, shear moduli G12, G13, G23, and Poisson’s 
ratios ν12, ν13, and ν23, where the subscripts denote the face and direc-
tion of stress, respectively. Here, the models were subjected to uniaxial 
tension and shearing scenarios as described at the rate of 0.001 Å/fs. The 
simulations involved plugging the previously curved NTs into a new 
simulation box and relaxing them for 1 ns under NPT at 300 K and zero 
pressure before applying uniaxial/shear deformations.

Fig. 3. A sliced view of an MD model 昀椀lled with seven CNTs. The inset shows 
its side view.

Fig. 4. Schematic of the loading scenarios used to derive elastic constants.
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2.3. Machine learning (ML) models

Neural networks (NNs), Gaussian process regression (GPR), and 
support vector regression (SVR) are examples of ML algorithms that 
have extensively been used to predict material properties [35–37]. Like 
any other ML algorithm, they vary signi昀椀cantly in their approaches, 
strengths, and suitability for different data types and tasks.

2.3.1. Neural networks (NNs)
NNs are ML models inspired by the human brain. They have evolved 

into a broad family of algorithms and architectures that can tackle a 
wide range of complex tasks. NNs are composed of nodes and edges, 
loosely mimicking brain neurons and synapses that connect them. The 
nodes are arranged in an architecture comprising an input layer, one or 
more hidden layers, and an output layer. Each node in a layer computes 
a weighted sum of its inputs. Given n as the total number of inputs xi 
being summed for the current node j, the weighted sum of node j is 
calculated as [38]: 
zj =

3n
i=1wijxi + bj (1) 

where wij is the weight associated with the connection between 
nodes i and j, and b is the bias of node j. The weighted average is then 
passed through an activation function aj to produce the node’s output: 
aj = σ

(zj
) (2) 

The weights and biases are usually initialized with small random values 
and then adjusted over many iterations (epochs) until the network’s 
performance meets the desired criteria (e.g., a prescribed mean square 
error, MSE). The highly 昀氀exible architecture of NNs enables them to 
learn complex patterns but makes their mechanism opaque and their 
outputs challenging to interpret. Also, the performance of NNs heavily 
depends on the size of the dataset, with them often yielding poor pre-
dictions if the dataset is sparse [39].

2.3.2. Gaussian process regression
Gaussian process regression (GPR) is a nonparametric approach for 

modeling complex relationships between inputs and outputs without 
assuming a prede昀椀ned form for the underlying function or distribution 
[41]. In other words, GPR’s predictions are in昀氀uenced explicitly by the 
observations in the dataset. This means that, unlike methods like linear 
regression, GPR does not require prede昀椀ned basis functions that match 
the system’s response. This 昀氀exibility enables GPR to model highly 
nonlinear responses using only a few parameters. Another key feature of 
GPR is that it offers uncertainty estimation for predictions, differenti-
ating between the quality of predictions in interpolation versus extrap-
olation scenarios.

GPR uses prior knowledge about a system’s responses across its co-
variate (independent variables) domain and uses observed data to up-
date this knowledge. This prior knowledge is represented using a joint 
multivariate normal probability distribution function (PDF), which as-
sumes that the function values at different points in the input vector are 
jointly Gaussian distributed.

Let x = {x1, x2, …, xD} be the input vector (D observed locations), y 
be the observed target vector, and f(x) be the function value. If the 
distribution over function value is assumed to be described by a 
Gaussian process (GP) de昀椀ned as—in a GP, any 昀椀nite collection of 
random variables is jointly Gaussian distributed—: 
f(x) > G P (m(x), k(x, x’) ) (3) 

where m(x) and k(x,x′) are the mean function and covariance function 
(kernel) of f(x) at observed locations de昀椀ned as 
m(x) = E[f(x)] (4) 

k(x, x́ ) = E[(f(x) − m(x) )(f(x́ ) − m(x́ ) ) ] (5) 

GPR updates this joint prior PDF to obtain the posterior distribution over 
the function values at any new input vector x* = {x*1, x*2, …, x*P} (P 
prediction locations). This posterior distribution at prediction locations, 
conditioned on D observations, remains Gaussian and is given by: 
f(x*) > G P

(m(x*), σ2(x*)
) (6) 

where the posterior mean vector and covariance matrix at prediction 
locations are: 
m(x*) = k(x*, x)k(x,x)−1y (7) 

σ
2(x*) = k(x*, x*)− k(x*, x)k(x,x)−1k(x,x*) (8) 

in which k(x*,x) is the covariance matrix between the new and training 
input vectors, and k(x, x)−1 is the inverse of the covariance matrix from 
the prior distribution [42,43]. GPR has been shown to outperform NNs 
and SVMs when the training dataset is small, making it a competitive 
choice because it can achieve high accuracy by learning from fewer 
simulations, whereas otherwise, extensive and computationally expen-
sive MD simulations would be required to produce suf昀椀cient data. 
However, when dimensionality is large (D>1000, which is unlikely in 
materials science), building prior knowledge matrices becomes 
computationally inconvenient [43]. Like NNs, it also suffers from poor 
interpretability [44].

2.3.3. Support vector regression (SVR)
Support vector machines for regression, also known as support vec-

tor regression (SVR), use a different objective function compared with 
other regression techniques. Instead of minimizing the ordinary least 
square (OLS), SVR seeks to 昀椀nd a hyperplane that 昀椀ts most of the data 
within a speci昀椀ed margin. The hyperplane can then be used to determine 
the most likely label for unseen data [45]. SVR employs a kernel func-
tion to map the input data to a higher-dimensional feature space, making 
it easier to de昀椀ne the hyperplane. The prediction made by an SVR model 
is expressed as: 

y(x) =
3N

i=1wnK(x, xn)+ b (9) 

where ωn represents the weights, b is the bias term, K(x, xn) is the kernel 
function, and N is the number of features. SVR uses OLS as a constraint 
for regression accuracy, making it less prone to over昀椀tting [46]. This 
technique is bene昀椀cial when the relationships between features and the 

Fig. 5. Illustration of stress–strain data points used for training and testing 
ML models.
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target variable are nonlinear. However, similar to GPR, implementing 
SVR can increase the computational costs of training on large datasets 
[47].

In this study, for ML training and testing, the 昀椀rst 5 % strain leg of the 
strain–stress curves was divided into 20 equal segments (i.e., 0.25 % 
increments), and the stress and strain values at the end of each segment 
were recorded (σi, εi, i = 1–20) (Fig. 5). To train and test the ML models, 
the strain values, waviness parameter, and aggregation number were 

used as the independent variables, and stresses in three directions were 
used as the dependent variables. A random 80–20 split was used for 
training and testing the ML models.

Fig. 6. In昀氀uence of 昀椀ller waviness and aggregation on longitudinal strain–stress response of PVC composites: a and b) N=1, c and d) N=3, e and f) N=7, and g and 
h) N=11.
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3. Results and Discussion

3.1. Stress–strain response

Simulations of pure PVC indicated a tensile elastic modulus of 1.46 
± 0.32 GPa, a shear modulus of 0.56 ± 0.04 GPa, and a Poisson’s ratio of 
0.28 ± 0.01, assuming isotropic behavior due to amorphous structure. 
In the composite form, PVC was in昀氀uenced by bundle size and curvature 
to varying extents, with the 昀椀ller playing a signi昀椀cant role. Fig. 6 shows 
the stress–strain response of the simulated PVC and composite models in 
the longitudinal direction. Generally, all models exhibit a linear 
response within the range of strain considered. At a given strain, C3NNT- 
昀椀lled PVC sustained a higher level of stress than CNT-昀椀lled PVC. Also, 
waviness and aggregation signi昀椀cantly reduced stiffness (slope of the 
curves).

3.2. Elastic modulus response

Fig. 7 shows the in昀氀uence of waviness and aggregation on the 
composites’ elastic moduli (stiffness) in different directions. The 
following observations can be made: 

a) Fig. 7a, b, c: For a given waviness and aggregation, C3NNT com-
posites exhibit higher stiffness in longitudinal and transverse di-
rections than CNT composites. At 昀椀rst glance, this observation 
contrasts with our previous MD works where, for the same chirality 
of (6,6), individual CNTs were found to be 17 % stiffer than indi-
vidual C3NNTs [24,48]. This difference can be explained by stronger 
nonbonded interactions between C3NNT 昀椀llers and PVC and among 
C3NNT 昀椀llers compared with those in the CNT composites. 
Nonbonded interactions play a crucial role due to the high surface- 
to-weight ratio of 1D 昀椀llers like CNT and C3NNT, resulting in a 
large interface with PVC. Consequently, the strength of interactions 
at the interface between PVC and 昀椀llers signi昀椀cantly impacts the 
elastic moduli of nanotube composites. According to energy terms of 
the vdW formulation for nitrogen and carbon atoms within a com-
parable interaction cutoff, the nonbonded energy between PVC and a 
unit cell of C3NNT 昀椀ller (which includes six carbon atoms and two 
nitrogen atoms) is approximately 17 % stronger than the interaction 
between PVC and a unit cell of CNT consisting of eight carbon atoms. 
Likewise, the nonbonded interactions between a pair of nitrogen 
atoms (between two C3NNTs) are nearly twice as strong as those 
between a pair of carbon atoms (between two CNTs). This results in 

Fig. 7. In昀氀uence of waviness and aggregation on tensile elastic moduli of PVC composites in a, b) transverse direction, E11, c, d) transverse direction, E22, and e, f) 
longitudinal direction, E33. Simulated elastic modulus of PVC: 1.46 ± 0.32 GPa.
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stronger nonbonded interactions and, consequently, larger elastic 
moduli for C3NNT-昀椀lled PVC nanocomposites.

b) Fig. 7a and b: Aside from the general enhancement noted in the 
transverse elastic moduli of the composites compared with pristine 
PVC, the transverse elastic moduli of the composites consistently 
increase with the waviness parameter, reaching the maximum 
improvement of 58 % for C3NNT where N=3 and α = 0.23, and 37 % 
for CNT where N=3 and α = 0.12. This observation, which has 
previously been made in other composites [27,49], can be attributed 
to the increased effective interfacial area between the 昀椀ller and the 
polymer matrix due to the 昀椀ller curvature, promoting better load 
transfer and stress distribution across the composite material. 
Additionally, waviness may introduce geometric constraints or 
hinder the movement of polymer chains, thereby reducing the 
mobility of polymer segments and increasing the overall stiffness of 
the composite. This in昀氀uence, however, is inde昀椀nite. Beyond a 
certain level of waviness, the stiffness begins to decrease or level off, 
possibly due to localized stress concentrations and disorientation or 
distortion of polymer chains that, in turn, weaken the 昀椀ller-matrix 
bonding, compromising load transfer ef昀椀ciency.

c) Fig. 7a and b: The in昀氀uence of aggregation on the reinforcing effect 
of the 昀椀ller in the transverse direction does not follow a consistent 
trend. Most composite models become stiffer as the aggregation 
number increases to N=3 and then soften with further aggregation. 
This observation can be explained by load transfer and chain 
mobility changes, as previously noted. C3NNT composites exhibit 
higher transverse stiffness than CNT composites and more sensitivity 
to aggregation and waviness.

d) Fig. 7c Regarding the longitudinal elastic modulus, increased wavi-
ness reduces the modulus, irrespective of the aggregation number 
and 昀椀ller type. This reduction amounts to nearly 65 % when wavi-
ness increases from α = 0 to α = 0.07 for both CNT and C3NNT and 
further decreases to 80 % for α = 0.12 and then plateaues. Although 
waviness and aggregation negatively impact the longitudinal elastic 
modulus of the composites, the 昀椀llers still provide a minimum 
improvement of 37 % to the stiffness of pristine PVC.

e) While our simulations indicate substantial enhancements in the 
transverse and longitudinal elastic moduli of CNT- and C3NNT-昀椀lled 
PVC composites, these values differ signi昀椀cantly from those observed 
in our experimental studies. Importantly, our simulations, which 
extended up to 5 % strain, successfully capture the linear 

Fig. 8. In昀氀uence of waviness and aggregation on shear moduli of PVC composites: a, b) G12, c, d) G13, and e, f) G23. Simulated shear modulus of PVC: 0.56 ±
0.04 GPa.
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stress–strain response seen in experiments, particularly up to 40 % 
strain for multi-walled CNT-昀椀lled PVC composites. However, the 
elastic modulus predicted by simulations (~1.8 GPa) is signi昀椀cantly 
higher than the ~ 9 MPa observed experimentally [20]. This 
discrepancy can be attributed to several factors: 1) the small length 
scales and use of PBC in MD simulations, 2) the idealized, defect-free 
CNTs and perfect interfaces assumed in simulations, which do not 
account for defects, impurities, or imperfect interfaces present in real 
materials, 3) the limited time scales in MD compared with the longer 
time scales in real-time experiments, and 4) differences in CNT 
orientation, bundle formation, and interaction in real composites, 
which are not fully captured in the simulations, as we have previ-
ously detailed elsewhere [22].

3.3. Shear modulus response

Fig. 8 shows the in昀氀uence of waviness and aggregation on the shear 
stiffness of the composites in different planes. The following insights can 
be drawn: 

a) Single, straight NTs reduce the shear modulus of pristine PVC in all 
planes. This behavior can be attributed to insuf昀椀cient load transfer 
due to weak nonbonded interactions in the absence of proper surface 
functionalization or chemical treatment [50].

b) Similar to transverse elastic moduli, all shear moduli increase with 
waviness. This observation can be attributed to the 昀椀ller curvature. 
Although bonding in our RVEs is primarily governed by vdW in-
teractions, the increased curvature from waviness introduces addi-
tional contact points and reduces the mobility of polymer chains, in 
turn improving shear stiffness [27]. Further improvements can be 
achieved by functionalizing the 昀椀ller [11,51].

c) Aggregation increases the shear modulus, with the maximum 
improvement observed when N=3. This observation could be due to 
the larger interfacial contact area with the polymer matrix that, in 
turn, leads to enhanced load transfer and higher shear modulus. In 
addition, the relatively stronger vdW interactions within nanotube 
bundles than between the 昀椀ller and the matrix provide cohesive 
forces within the bundles that facilitate a more uniform distribution 
of shear stresses within them, improving shear rigidity. Heavily 
aggregated 昀椀llers may experience non-uniform stress distribution, 
cause weakened interfacial regions, and facilitate chain mobility, 
reducing shear stiffness. This observation is consistent with the 
pattern previously seen and discussed for the elastic moduli.

d) Signi昀椀cant differences are observed between G12, G13, and G23 to 
varying extent depending on aggregation and waviness. Overall, 
ceteris paribus, shear stiffness in the 2–3 plane (i.e., G23) is the 
lowest, and that in the 1–2 plane is the highest. Since, in both cases, 
the 昀椀ller falls completely in a plane parallel to the shear planes (i.e., 
the in昀氀uence of waviness largely eliminated), this observation 

Fig. 9. In昀氀uence of waviness and aggregation on Poisson’s ratio of PVC composites: a, b) ν12, c, d) ν13, and e, f) ν23. Simulated Poisson’s ratio of PVC: 0.28 ± 0.01.
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suggests restricted mobility for polymer chains in the transverse di-
rection, or in other words, the alignment of polymer chains along the 
longitudinal direction. G13 exhibits an intermediate behavior gov-
erned perhaps by a competition between tension and compression 
zones formed in the curve’s trough during shear that tend to pull or 
push the polymer chains away/against the 昀椀ller(s).

e) Overall, stronger nonbonded interactions between nitrogen atoms in 
C3NNT and polymer beads than carbon atoms in CNT and polymer 
beads manifest themselves in higher shear stiffness for given degrees 
of waviness and aggregation.

3.4. Poisson’s ratio response

Poisson’s ratio, νij, is the ratio of strain in the i-th direction to that in 
the j-th direction when the medium is loaded in the j-th direction (based 
on Maxwell’s reciprocal theorem, νij/νji = Ei/Ej). For a D-dimensional, 
isotropic medium, ν can be expressed in terms of the isothermal bulk 
modulus B and the shear modulus G, which represent the size/volu-
metric and shape/morphological changes of the material, respectively: 
ν = (DB/G − 2)/[(D − 1)DB/G+2]                                               (10)

The stability condition for isotropic media requires that B/G>0. This 
requirement yields the theoretical limits for the Poisson’s ratio of these 
media to be: 
–1.0 f ν f 1/(D − 1)                                                                   (11)

Substituting D=3 in Equation (11) gives the theoretical range for 
Poisson’s ratio of a 3D, isotropic material as −1.0 f ν f 0.5. For 2D 
solids, this range expands to −1 to 1 [52], and for anisotropic elastic 
materials, it could be boundless [53,54].

Fig. 9 shows the in昀氀uence of waviness and aggregation on Poisson’s 

ratio of the composites in different planes. The following observations 
can be made: 

a) Fig. 9a uncovers a notable observation that raises intriguing parallels 
with the upper bound Equation (2) draws for Poisson’s ratio. We 
observe a Poisson’s ratio ν12 value close to 1.0 for straight cases. 
Since ν12 is the ratio of strains in transverse directions, this obser-
vation suggests a high degree of transverse isotropy in the mechan-
ical behavior of composites with perfectly oriented 昀椀llers [55], 
wherein deformation in one transverse direction induces a nearly 
equal and opposite deformation in the other transverse direction. 
This behavior is akin to the mechanical response exhibited by 
isotropic 2D materials, where Poisson’s ratio may exceed the con-
ventional upper bound of 0.5 observed in isotropic 3D materials. It 
also suggests that certain transversely isotropic materials may 
behave analogously to 2D materials when loaded in a transverse 
direction.

b) Poisson’s ratio exhibits a distinct trend dependent on the curvature 
of the nanotube measured in direction 1 upon an extension in di-
rection 3 (i.e., ν13, Fig. 9b). Irrespective of the degree of aggregation 
and nanotube type, ν13 exhibits an initial increase with waviness, 
followed by a reversal of this trend at higher degrees of curvature, 
ultimately converging towards values comparable to those observed 
in straight-bundle cases. This observation suggests complex in-
teractions between the con昀椀nement provided by the curved bundle 
and the alignment of polymer chains. The initial increase could be 
attributed to the enhanced mobility of the polymer chains facilitated 
by the presence of a wavy bundle, allowing for greater lateral 
contraction. However, at higher degrees of waviness, structural 
constraints imposed by the bundle could hinder this lateral 
contraction, leading to a decrease in ν13.

Fig. 10. Performance of a) NN, b) GPR, and c) SVM in predicting stress in all CNT-昀椀lled cases. d) Comparison of techniques for stress in three directions (X, Y, Z; 
respectively, 1, 2, 3) for the ‘N=7; α = 0.07′ CNT case.
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c) Poisson’s ratio calculated in direction 2 when stretched in direction 3 
(i.e., ν23, Fig. 9c) shows a consistent decrease as the bundle curvature 
increases, suggesting heightened con昀椀nement experienced by poly-
mer chains at higher bundle curvatures that reduces their lateral 
movement.

d) In contrast to the differences observed in elastic and shear moduli, 
there is not a very signi昀椀cant distinction between Poisson’s ratios of 
CNT- and C3NNT-昀椀lled PVC nanocomposites.

3.5. Predictive ML models

Fig. 10 and Fig. 11 show the predictive performance of the ML 
techniques for CNT and C3NNT cases, respectively. The models were 
trained to predict longitudinal and transverse stresses in the composite 
models given longitudinal strain, waviness parameter, and aggregation 
number. Performance evaluations are made based on the 1:1 line and 
the R-squared (R2) metric, representing variance in predictions made for 
the dependent variables from the independent variables. Consistently 
high R2 values for all three models are observed. A closer examination is 
made in Fig. 10d and Fig. 11d to highlight differences in predictive 
performance among the three models. The 昀椀gures correspond to the case 
where N=7 and α = 0.07, and the stress–strain responses in three di-
rections obtained using the MD simulations are also shown as the 
reference. It can be seen that GPR exhibited superior stress prediction 
accuracy over SVM and NN. This observation aligns with existing 
literature suggesting GPR’s enhanced accuracy in scenarios involving 
sparse datasets [40]. Furthermore, NN demonstrated a similar stress 
prediction accuracy. Its relatively lower computational cost renders it a 
compelling option for mechanical property predictions, especially in the 
context of large datasets.

The accuracy observed highlights the ef昀椀cacy of the ML models in 
capturing the complex nonlinear behavior of polymer composites. The 

stress–strain behavior of polymer composites is generally nonlinear and 
in昀氀uenced by several factors, including the properties of the polymer 
and the 昀椀ller, viscoelastic effects, environmental and loading conditions, 
the extent of strain, as well as 昀椀ller morphology and aggregation. Given 
the extensive range of possible parameter combinations, relying solely 
on atomistic simulations in a multiscale context would be computa-
tionally prohibitive. The ML models developed in this study take some of 
these parameters as inputs, run them through their learned patterns, and 
accurately predict the stress–strain response of the composite up to 5 % 
strain. This level of deformation is below the thresholds commonly 
stipulated by engineering codes to meet serviceability criteria [21]. The 
demonstrated accuracy of the ML models renders them suitable for 
integration into a multiscale framework, enabling an ef昀椀cient bridging 
of nanoscale simulations with larger-scale models at a substantially 
lower computational cost.

4. Conclusion

Coarse-grained molecular dynamics simulations were carried out to 
understand the in昀氀uence of 昀椀ller characteristics, such as bundle size and 
curvature, on the mechanical properties of PVC composites 昀椀lled with 
carbon and cyanoethyl nanotubes (CNTs and C3NNTs). Overall, C3NNT 
composites showed higher stiffness, which was attributed to stronger 
nonbonded interactions and enhanced load transfer ef昀椀ciency. Elastic 
and shear modulus responses indicated the profound role of 昀椀ller 
morphology and aggregation in modulating stiffness, with notable dif-
ferences observed between different planes. Furthermore, analysis of 
Poisson’s ratio response unveiled intriguing parallels with isotropic 2D 
materials, with upper values close to 1.0. The data was used to develop 
machine learning models for predicting the mechanical properties of the 
composite, with Gaussian process regression exhibiting better perfor-
mance than neural networks and support vector machines. Overall, 

Fig. 11. Performance of a) NN, b) GPR, and c) SVM in predicting stress in all C3NNT-昀椀lled cases. d) Comparison of techniques for stress in three directions (X, Y, Z; 
respectively, 1, 2, 3) for the ‘N=7; α = 0.07′ C3NNT case.
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these 昀椀ndings contribute to developing predictive models and enhance 
our ability to design polymer nanocomposites with tailored mechanical 
properties for various applications. Future research could bene昀椀t from 
incorporating more accurate and representative images obtained from 
multiple scales of composite materials. Such images will enhance the 
昀椀delity of the data used for modeling. They can be integrated into 
multiscale modeling to advance our understanding of polymer nano-
composites and serve as a platform for producing quality data required 
to develop accurate and ef昀椀cient machine learning models for materials 
discovery.
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