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ABSTRACT

Pursuing innovative materials through integrating machine learning (ML) with materials informatics hinges
critically upon establishing accurate processing-structure—property-performance relationships and consistently
applying them in training datasets. Pivotal to unraveling these relationships is an accurate representation of the
microstructure in computational models. In this study, we use transmission electron microscopy (TEM) micro-
graphs of carbon nanotubes (CNTs) within a polymer matrix to construct representative polymer-nanotube
composite (PNC) models. We then simulate the models using the coarse-grained molecular dynamics (CG-MD)
technique to elucidate the influence of filler morphology and aggregation on the mechanical properties of PNCs.
Besides CNTs, we consider cyanoethyl nanotubes (C3NNT) as a representative of the carbon nitride family, which
has remained largely unexplored as a PNC filler for load-bearing purposes. We employ the CG-MD results to train
ML models—neural network (NN), support vector regression (SVR), and Gaussian process regression (GPR)—to
predict the strain-stress responses of PNCs. Results indicate the profound influence of the filler morphology and
aggregation on the elastic and shear stiffness of PNC composites. A high degree of transverse isotropy is observed
in the mechanical behavior of composites with perfectly oriented fillers, with Poisson’s ratios surpassing con-
ventional upper bounds observed in isotropic materials. For a given morphology, CsNNT composites exhibit
higher stiffness in longitudinal and transverse directions than CNT composites. The ML models demonstrate
accuracy in predicting the strain-stress response of the composites, with the GPR model showing the highest
accuracy, followed by the NN and SVM models. This accuracy makes the ML models readily integrable into a
multiscale modeling framework, significantly enhancing the efficiency of transferring information across scales.

1. Introduction

with an inverse design framework to generate potential processing-
structure combinations that likely yield specified properties [4].

The ongoing effort to combine machine learning (ML) and materials
informatics with the integrated computational materials engineering
(ICME) paradigm has accelerated the design of new materials. This effort
has led to the emergence of large-scale active learning models that
drastically expedite material exploration through an iterative process,
thereby reducing the traditional reliance on heuristic methods and
minimizing the need for extensive trial and error [1]. At the core of this
process are predictive models grounded in processing-structur-
e—property-performance (PSPP) relationships that quickly evaluate the
target properties of generated candidates, screen them, and guide the
next round of active learning [2,3]. Such models can also be integrated
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Developing predictive models for polymer nanocomposites is
particularly challenging due to the wide range of compositions, phe-
nomena, and interactions these materials feature. These factors occur
across various scales of time, length, complexity, and uncertainty that,
in turn, complicate their PSPP relationships [5]. For instance, individual
nanotubes (NTs) within a polymer matrix tend to adopt wavy forms and
entangle to achieve a more energetically favorable configuration. Ag-
gregation and waviness of NTs affect their intra- and inter-stress trans-
fer, deteriorating the mechanical properties and causing inconsistency
in their measured properties [6,7].

Disregarding the influence of filler aggregation and waviness often
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Fig. 1. TEM image of a CNT bundle used to inform microstructure recon-
struction [23,26].

leads to overestimating the mechanical properties of polymer compos-
ites [8]. This has been consistently corroborated through various studies
involving atomistic [9-11], micromechanical [12], and finite element
[13] simulations. Most of these studies, however, limited their focus to
CNTs, with little to no consideration for the combined influence of filler
heterogeneity and morphology on mechanical properties. Predictive ML
models were also not in the scope of these works.

The review above emphasizes the need for predictive ML models
trained using data that considers filler morphology and the intricate
interplays between nanofillers and polymer matrices. However, unrav-
eling these interplays for every conceivable combination of polymers
and nanofillers would be impractical. Insights gained from polymer
nanocomposites that lend themselves to imaging can provide useful
frameworks to develop transfer learning-based approaches to micro-
structure reconstruction and PSPP predictions, thereby improving the
predictive capability and reliability of results. One such polymer is
polyvinyl chloride (PVC).

PVC is a widely used thermoplastic polymer [14] known for its high
tensile strength, exceptional impact and chemical resistance [15], low
moisture absorption, and non-conductive nature [16], making it suitable
for various applications ranging from construction materials to health-
care products. Adding materials like carbonaceous or metallic particles
to PVC creates pathways for electron flow, enabling its use in applica-
tions requiring electrical conductivity. For instance, we have added
critical concentrations of carbon black and carbon nanotubes (CNTs) to
PVC to impart an engineered degree of conductivity and produce smart
composites for strain-sensing applications [17-22]. The micrographs we
obtained from CNT-filled PVC across different length scales provided
substantial subsurface information that proved very beneficial in
reconstructing microstructure for our computational simulations [23].
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Fig. 2. A schematic of a wavy NT.

Table 1
Summary of simulated NT-PVC models.

Aggregation number,
N

Waviness parameter, a (A [nm], 2 [nm])

1,3,7,11 0.0 (0.0, 50.0), 0.07 (3.4, 49.2), 0.13 (5.9, 44.4), 0.23 (8.2,

36.0)

This information can be extended to other NTs like cyanoethyl nano-
tubes (C3NNTs), which have shown promising mechanical properties in
our recent atomistic simulations [24,25]. In a composite form, the
presence of nitrogen in carbon nitrides (such as C3NNTs) may increase
their nonbonded interactions with the host polymer and result in high-
performance composites, but this topic has remained largely
unexplored.

Here, we report the use of transmission electron microscopy (TEM)
micrographs to construct PVC composite models filled with CNT and
C3NNT bundles and simulate their tensile response using coarse-grained
molecular dynamics (CG-MD). Models differing in the degree of wavi-
ness and number of NTs are simulated for tensile stress—strain response.
The responses are used to train ML models that accurately predict the
strain-stress response of PNCs with unseen waviness and aggregation
characteristics.

2. Methodology
2.1. Modeling

Fig. 1 shows the TEM image of a CNT bundle within a PVC matrix
that was used to inform the construction of computational models in this
study [23,26]. The CNTs in the TEM image were assumed to be ideally
represented by a sinusoidal shape as shown in expressed by y = Acos
(2mz/2), z € [0, 1], where A and 4 are the amplitude and wavelength of
the wavy NT, respectively, as shown in Fig. 2 [27]. The waviness
parameter is defined as a = A/\ to represent the degree of the waviness
of the NTs. Also, the degree of filler aggregation was denoted by the
aggregation number (N), which is equal to the number of fillers in a
model. Four values for a and four values for N were combined, as
summarized in Table 1, to define 16 unique models. All CNTs and
C3NNTs were assumed to be armchair (6,6) tubes with an aspect ratio of
62.5 (length to diameter). The length of bundles in all models was 50.0
nm.
Two central MD schemes used for PNCs include all-atom MD (AA-
MD) and coarse-grained MD (CG-MD). In AA-MD, each atom in the
material system is explicitly represented, and its position and velocity
are tracked as they evolve over small time steps. AA-MD allows for a
highly accurate representation of the molecular structure and dynamics
but is computationally intractable for large systems. In contrast, CG-MD
offers enhanced sampling efficiency by lumping neighboring atoms into
clusters, termed beads, and employing appropriate functions to repre-
sent their interactions accurately. It also allows longer MD simulation
times by accommodating larger time steps for configurational sampling.
Such balance that CG-MD strikes between computational efficiency and
accuracy enables studying larger systems over longer durations that may
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Fig. 3. A sliced view of an MD model filled with seven CNTs. The inset shows
its side view.

be inaccessible to AA-MD simulations [28,29]. In this study, AA-MD was
used for NTs, while CG-MD was employed to model and simulate the
PVC fraction of the models where each CoH,Cl monomer of PVC was
represented by a bead and interacted with the NTs’ AA model.
Modeling involved four stages. First, for a given set of @ and N, an
AA-MD simulation was performed on straight filler(s) to deform them
into the wavy configuration corresponding to the a value. The filler(s)
coordinates were recorded at the end of the simulation. Next, a self-
avoiding random walk algorithm was used to randomly place 1,000-
bead PVC chains around the filler(s). The number of chains in each
representative volume element (RVE) was chosen to achieve a filler
content of 3 wt% while ensuring a density of approximately 1.3 g/cm?,
consistent with the density of pure PVC. In the third stage, the PVC part
of the model was relaxed for 42 ns (ns) to eliminate residual stresses in
all dimensions following four steps: the part was 1) amorphized by
elevating the temperature to 1000 K under canonical (NVT) ensemble,
2) cooled down to 300 K in 1 ns, 3) allowed to relax over 20 ns under the
NVT ensemble, and 4) further relaxed over 20 ns under the isothermal-
isobaric ensemble (NPT) ensemble at 300 K with Berendsen thermostat
and barostat. The fillers were ‘fixed” during this relaxation episode to
avoid having them influenced by elevated temperatures. Finally, the

P =

11’ 12’ 13
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entire model (PVC chains and NTs) was relaxed for 1 ns under the NPT
ensemble before the simulations, as described in the next section. The
coordinates of the model constituents were recorded for later recall in
the tensile simulations. Fig. 3 shows the final structure of a model with
seven CNTs (N=7) and a waviness parameter of a = 0.23.

2.2. Simulations

Interactions among PVC beads were described using a CG force field
that we have previously developed and reported elsewhere [30]. The
Tersoff potential function [31] defined the interactions among CNT and
C3NNT atoms. The nonbonded interactions were modeled using the van
der Waals (vdW) formulation. A time step of 1 fs (fs) was used, and
periodic boundary conditions (PBC) were applied in all directions of the
model. The simulation box was sized so that the distance between the
box edge and the bundle edge was greater than the vdW cutoff, ensuring
accurate simulation of the bundles in periodic RVEs without unintended
overlaps or interactions. All MD simulations were performed with
LAMMPS [32] and visualized with OVITO [33].

The models were assumed to be orthotropic [27] because the filler
has different reinforcing effects in longitudinal (chord) and transverse
directions—in orthotropic materials, elastic properties are direction-
dependent at each point, but there are three mutually orthogonal
planes of symmetry with respect to which stretch and shear modes are
uncoupled, and also the three shear modes are uncoupled from one
another [34]—the orthotropic constitutive law (stiffness matrix) of
orthotropic, elastic materials relating the state of stress to the state of
strain contains nine coefficients, assuming finite strain. These co-
efficients can be computed by subjecting a material to uniaxial tension/
compression in three principal directions (1, 2, 3) and in-plane shear in
the 1-2, 1-3, and 2-3 planes, as shown in Fig. 4. Nine independent
elastic constants of the material can then be calculated from the elastic
coefficients (e.g., see [27] for the formulation). These constants with
reference to the principal material directions 1, 2, and 3 (Fig. 4) include
Young’s moduli E;, Ey, E3, shear moduli Gy, G13, Go3, and Poisson’s
ratios vy, 113, and vog3, where the subscripts denote the face and direc-
tion of stress, respectively. Here, the models were subjected to uniaxial
tension and shearing scenarios as described at the rate of 0.001 A/fs. The
simulations involved plugging the previously curved NTs into a new
simulation box and relaxing them for 1 ns under NPT at 300 K and zero
pressure before applying uniaxial/shear deformations.

22’ 21’ 33’ ’

23

Fig. 4. Schematic of the loading scenarios used to derive elastic constants.
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2.3. Machine learning (ML) models

Neural networks (NNs), Gaussian process regression (GPR), and
support vector regression (SVR) are examples of ML algorithms that
have extensively been used to predict material properties [35-37]. Like
any other ML algorithm, they vary significantly in their approaches,
strengths, and suitability for different data types and tasks.

2.3.1. Neural networks (NNs)

NNs are ML models inspired by the human brain. They have evolved
into a broad family of algorithms and architectures that can tackle a
wide range of complex tasks. NNs are composed of nodes and edges,
loosely mimicking brain neurons and synapses that connect them. The
nodes are arranged in an architecture comprising an input layer, one or
more hidden layers, and an output layer. Each node in a layer computes
a weighted sum of its inputs. Given n as the total number of inputs x;
being summed for the current node j, the weighted sum of node j is
calculated as [38]:

Zj = Z:;lwijxi-s—bj (1)

where wj; is the weight associated with the connection between
nodes i and j, and b is the bias of node j. The weighted average is then
passed through an activation function g; to produce the node’s output:

a = (F(Zj) (2)

The weights and biases are usually initialized with small random values
and then adjusted over many iterations (epochs) until the network’s
performance meets the desired criteria (e.g., a prescribed mean square
error, MSE). The highly flexible architecture of NNs enables them to
learn complex patterns but makes their mechanism opaque and their
outputs challenging to interpret. Also, the performance of NNs heavily
depends on the size of the dataset, with them often yielding poor pre-
dictions if the dataset is sparse [39].

2.3.2. Gaussian process regression

Gaussian process regression (GPR) is a nonparametric approach for
modeling complex relationships between inputs and outputs without
assuming a predefined form for the underlying function or distribution
[41]. In other words, GPR’s predictions are influenced explicitly by the
observations in the dataset. This means that, unlike methods like linear
regression, GPR does not require predefined basis functions that match
the system’s response. This flexibility enables GPR to model highly
nonlinear responses using only a few parameters. Another key feature of
GPR is that it offers uncertainty estimation for predictions, differenti-
ating between the quality of predictions in interpolation versus extrap-
olation scenarios.

GPR uses prior knowledge about a system’s responses across its co-
variate (independent variables) domain and uses observed data to up-
date this knowledge. This prior knowledge is represented using a joint
multivariate normal probability distribution function (PDF), which as-
sumes that the function values at different points in the input vector are
jointly Gaussian distributed.

Let x = {x1, X2, ..., Xp} be the input vector (D observed locations), y
be the observed target vector, and f(x) be the function value. If the
distribution over function value is assumed to be described by a
Gaussian process (GP) defined as—in a GP, any finite collection of
random variables is jointly Gaussian distributed—:

F) ~ ZPm(x),k(x,X)) 3)

where m(x) and k(x,x’) are the mean function and covariance function
(kernel) of f(x) at observed locations defined as

m(x) = E[f(x)] @
k(x,x) = E[(f(x) — m(x) ) (f(x) — m(x))] ®)
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Fig. 5. Illustration of stress-strain data points used for training and testing
ML models.

GPR updates this joint prior PDF to obtain the posterior distribution over
the function values at any new input vector x* = {x+1, X+, ..., X=p} (P
prediction locations). This posterior distribution at prediction locations,
conditioned on D observations, remains Gaussian and is given by:

f(xe) ~ TP (m(x:),0%(x+) ) ©

where the posterior mean vector and covariance matrix at prediction
locations are:

m(x.) = k(x-, X)k(x,x) "'y )
62 (%) = k(%Xe, X+ ) — k%0, X)k(X, X) " k(X, X+ ®

in which k(x+,x) is the covariance matrix between the new and training
input vectors, and k(x, %)~ is the inverse of the covariance matrix from
the prior distribution [42,43]. GPR has been shown to outperform NNs
and SVMs when the training dataset is small, making it a competitive
choice because it can achieve high accuracy by learning from fewer
simulations, whereas otherwise, extensive and computationally expen-
sive MD simulations would be required to produce sufficient data.
However, when dimensionality is large (D>1000, which is unlikely in
materials science), building prior knowledge matrices becomes
computationally inconvenient [43]. Like NN, it also suffers from poor
interpretability [44].

2.3.3. Support vector regression (SVR)

Support vector machines for regression, also known as support vec-
tor regression (SVR), use a different objective function compared with
other regression techniques. Instead of minimizing the ordinary least
square (OLS), SVR seeks to find a hyperplane that fits most of the data
within a specified margin. The hyperplane can then be used to determine
the most likely label for unseen data [45]. SVR employs a kernel func-
tion to map the input data to a higher-dimensional feature space, making
it easier to define the hyperplane. The prediction made by an SVR model
is expressed as:

y(x) = Zi  WaK(x, %) +b (©)]

where w,, represents the weights, b is the bias term, K(x, x,,) is the kernel
function, and N is the number of features. SVR uses OLS as a constraint
for regression accuracy, making it less prone to overfitting [46]. This
technique is beneficial when the relationships between features and the
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Fig. 6. Influence of filler waviness and aggregation on longitudinal strain-stress response of PVC composites: a and b) N=1, c and d) N=3, e and f) N=7, and g and

h) N=11.

target variable are nonlinear. However, similar to GPR, implementing
SVR can increase the computational costs of training on large datasets
[47].

In this study, for ML training and testing, the first 5 % strain leg of the
strain-stress curves was divided into 20 equal segments (i.e., 0.25 %
increments), and the stress and strain values at the end of each segment
were recorded (o;, €, i = 1-20) (Fig. 5). To train and test the ML models,
the strain values, waviness parameter, and aggregation number were

used as the independent variables, and stresses in three directions were
used as the dependent variables. A random 80-20 split was used for
training and testing the ML models.
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3. Results and Discussion

3.1. Stress—strain response

Simulations of pure PVC indicated a tensile elastic modulus of 1.46
=+ 0.32 GPa, a shear modulus of 0.56 + 0.04 GPa, and a Poisson’s ratio of
0.28 + 0.01, assuming isotropic behavior due to amorphous structure.
In the composite form, PVC was influenced by bundle size and curvature
to varying extents, with the filler playing a significant role. Fig. 6 shows
the stress—strain response of the simulated PVC and composite models in
the longitudinal direction. Generally, all models exhibit a linear
response within the range of strain considered. At a given strain, C3NNT-
filled PVC sustained a higher level of stress than CNT-filled PVC. Also,
waviness and aggregation significantly reduced stiffness (slope of the

curves).

3.2. Elastic modulus response

Fig. 7 shows the influence of waviness and aggregation on the
composites’ elastic moduli (stiffness) in different directions. The
following observations can be made:

a) Fig. 7a, b, c: For a given waviness and aggregation, CsNNT com-
posites exhibit higher stiffness in longitudinal and transverse di-
rections than CNT composites. At first glance, this observation
contrasts with our previous MD works where, for the same chirality
of (6,6), individual CNTs were found to be 17 % stiffer than indi-
vidual C3NNTs [24,48]. This difference can be explained by stronger
nonbonded interactions between C3NNT fillers and PVC and among
C3NNT fillers compared with those in the CNT composites.
Nonbonded interactions play a crucial role due to the high surface-
to-weight ratio of 1D fillers like CNT and CsNNT, resulting in a
large interface with PVC. Consequently, the strength of interactions
at the interface between PVC and fillers significantly impacts the
elastic moduli of nanotube composites. According to energy terms of
the vdW formulation for nitrogen and carbon atoms within a com-
parable interaction cutoff, the nonbonded energy between PVC and a
unit cell of C3NNT filler (which includes six carbon atoms and two
nitrogen atoms) is approximately 17 % stronger than the interaction
between PVC and a unit cell of CNT consisting of eight carbon atoms.
Likewise, the nonbonded interactions between a pair of nitrogen
atoms (between two C3NNTs) are nearly twice as strong as those
between a pair of carbon atoms (between two CNTs). This results in
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Fig. 8. Influence of waviness and aggregation on shear moduli of PVC composites: a,
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stronger nonbonded interactions and, consequently, larger elastic
moduli for C3NNT-filled PVC nanocomposites.

Fig. 7a and b: Aside from the general enhancement noted in the
transverse elastic moduli of the composites compared with pristine
PVC, the transverse elastic moduli of the composites consistently
increase with the waviness parameter, reaching the maximum
improvement of 58 % for C3NNT where N=3 and a = 0.23, and 37 %
for CNT where N=3 and a« = 0.12. This observation, which has
previously been made in other composites [27,49], can be attributed
to the increased effective interfacial area between the filler and the
polymer matrix due to the filler curvature, promoting better load
transfer and stress distribution across the composite material.
Additionally, waviness may introduce geometric constraints or
hinder the movement of polymer chains, thereby reducing the
mobility of polymer segments and increasing the overall stiffness of
the composite. This influence, however, is indefinite. Beyond a
certain level of waviness, the stiffness begins to decrease or level off,
possibly due to localized stress concentrations and disorientation or
distortion of polymer chains that, in turn, weaken the filler-matrix
bonding, compromising load transfer efficiency.

b) Gia, ¢, d) Gi3, and e, ) Go3. Simulated shear modulus of PVC: 0.56 +

c) Fig. 7a and b: The influence of aggregation on the reinforcing effect

d

=

of the filler in the transverse direction does not follow a consistent
trend. Most composite models become stiffer as the aggregation
number increases to N=3 and then soften with further aggregation.
This observation can be explained by load transfer and chain
mobility changes, as previously noted. CsNNT composites exhibit
higher transverse stiffness than CNT composites and more sensitivity
to aggregation and waviness.

Fig. 7c Regarding the longitudinal elastic modulus, increased wavi-
ness reduces the modulus, irrespective of the aggregation number
and filler type. This reduction amounts to nearly 65 % when wavi-
ness increases from @ = 0 to @ = 0.07 for both CNT and C3NNT and
further decreases to 80 % for @ = 0.12 and then plateaues. Although
waviness and aggregation negatively impact the longitudinal elastic
modulus of the composites, the fillers still provide a minimum
improvement of 37 % to the stiffness of pristine PVC.

e) While our simulations indicate substantial enhancements in the

transverse and longitudinal elastic moduli of CNT- and C3NNT-filled
PVC composites, these values differ significantly from those observed
in our experimental studies. Importantly, our simulations, which
extended up to 5 % strain, successfully capture the linear
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stress—strain response seen in experiments, particularly up to 40 %
strain for multi-walled CNT-filled PVC composites. However, the
elastic modulus predicted by simulations (~1.8 GPa) is significantly
higher than the ~ 9 MPa observed experimentally [20]. This
discrepancy can be attributed to several factors: 1) the small length
scales and use of PBC in MD simulations, 2) the idealized, defect-free
CNTs and perfect interfaces assumed in simulations, which do not
account for defects, impurities, or imperfect interfaces present in real
materials, 3) the limited time scales in MD compared with the longer
time scales in real-time experiments, and 4) differences in CNT
orientation, bundle formation, and interaction in real composites,
which are not fully captured in the simulations, as we have previ-
ously detailed elsewhere [22].

3.3. Shear modulus response

Fig. 8 shows the influence of waviness and aggregation on the shear

stiffness of the composites in different planes. The following insights can
be drawn:

a) Single, straight NTs reduce the shear modulus of pristine PVC in all

planes. This behavior can be attributed to insufficient load transfer
due to weak nonbonded interactions in the absence of proper surface
functionalization or chemical treatment [50].

Fig. 9. Influence of waviness and aggregation on Poisson’s ratio of PVC composites: a, b) v12, ¢, d) v13, and e, f) vo3. Simulated Poisson’s ratio of PVC: 0.28 + 0.01.

b) Similar to transverse elastic moduli, all shear moduli increase with

waviness. This observation can be attributed to the filler curvature.
Although bonding in our RVEs is primarily governed by vdW in-
teractions, the increased curvature from waviness introduces addi-
tional contact points and reduces the mobility of polymer chains, in
turn improving shear stiffness [27]. Further improvements can be
achieved by functionalizing the filler [11,51].

c) Aggregation increases the shear modulus, with the maximum

improvement observed when N=3. This observation could be due to
the larger interfacial contact area with the polymer matrix that, in
turn, leads to enhanced load transfer and higher shear modulus. In
addition, the relatively stronger vdW interactions within nanotube
bundles than between the filler and the matrix provide cohesive
forces within the bundles that facilitate a more uniform distribution
of shear stresses within them, improving shear rigidity. Heavily
aggregated fillers may experience non-uniform stress distribution,
cause weakened interfacial regions, and facilitate chain mobility,
reducing shear stiffness. This observation is consistent with the
pattern previously seen and discussed for the elastic moduli.

d) Significant differences are observed between Gis, Gi3, and Ga3 to

varying extent depending on aggregation and waviness. Overall,
ceteris paribus, shear stiffness in the 2-3 plane (i.e., Gg3) is the
lowest, and that in the 1-2 plane is the highest. Since, in both cases,
the filler falls completely in a plane parallel to the shear planes (i.e.,
the influence of waviness largely eliminated), this observation
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Fig. 10. Performance of a) NN, b) GPR, and ¢) SVM in predicting stress in all CNT-filled cases. d) Comparison of techniques for stress in three directions (X, Y, Z;

respectively, 1, 2, 3) for the ‘N=7; a = 0.07' CNT case.

suggests restricted mobility for polymer chains in the transverse di-
rection, or in other words, the alignment of polymer chains along the
longitudinal direction. Gy3 exhibits an intermediate behavior gov-
erned perhaps by a competition between tension and compression
zones formed in the curve’s trough during shear that tend to pull or
push the polymer chains away/against the filler(s).

Overall, stronger nonbonded interactions between nitrogen atoms in
C3NNT and polymer beads than carbon atoms in CNT and polymer
beads manifest themselves in higher shear stiffness for given degrees
of waviness and aggregation.

—

€

3.4. Poisson’s ratio response

Poisson’s ratio, vy, is the ratio of strain in the i-th direction to that in
the j-th direction when the medium is loaded in the j-th direction (based
on Maxwell’s reciprocal theorem, v;j/vj; = Ei/E;). For a D-dimensional,
isotropic medium, v can be expressed in terms of the isothermal bulk
modulus B and the shear modulus G, which represent the size/volu-
metric and shape/morphological changes of the material, respectively:

v = (DB/G — 2)/[(D — 1)DB/G+2] (10)

The stability condition for isotropic media requires that B/G>0. This
requirement yields the theoretical limits for the Poisson’s ratio of these
media to be:

-1.0<v<1I/D-1) (11

Substituting D=3 in Equation (11) gives the theoretical range for
Poisson’s ratio of a 3D, isotropic material as —1.0 < v < 0.5. For 2D
solids, this range expands to —1 to 1 [52], and for anisotropic elastic
materials, it could be boundless [53,54].

Fig. 9 shows the influence of waviness and aggregation on Poisson’s

ratio of the composites in different planes. The following observations
can be made:

a) Fig. 9a uncovers a notable observation that raises intriguing parallels
with the upper bound Equation (2) draws for Poisson’s ratio. We
observe a Poisson’s ratio vj3 value close to 1.0 for straight cases.
Since vq5 is the ratio of strains in transverse directions, this obser-
vation suggests a high degree of transverse isotropy in the mechan-
ical behavior of composites with perfectly oriented fillers [55],
wherein deformation in one transverse direction induces a nearly
equal and opposite deformation in the other transverse direction.
This behavior is akin to the mechanical response exhibited by
isotropic 2D materials, where Poisson’s ratio may exceed the con-
ventional upper bound of 0.5 observed in isotropic 3D materials. It
also suggests that certain transversely isotropic materials may
behave analogously to 2D materials when loaded in a transverse
direction.

Poisson’s ratio exhibits a distinct trend dependent on the curvature
of the nanotube measured in direction 1 upon an extension in di-
rection 3 (i.e., v13, Fig. 9b). Irrespective of the degree of aggregation
and nanotube type, v13 exhibits an initial increase with waviness,
followed by a reversal of this trend at higher degrees of curvature,
ultimately converging towards values comparable to those observed
in straight-bundle cases. This observation suggests complex in-
teractions between the confinement provided by the curved bundle
and the alignment of polymer chains. The initial increase could be
attributed to the enhanced mobility of the polymer chains facilitated
by the presence of a wavy bundle, allowing for greater lateral
contraction. However, at higher degrees of waviness, structural
constraints imposed by the bundle could hinder this lateral
contraction, leading to a decrease in v3.

b

—



H. Ghasemi and H. Yazdani

Computational Materials Science 246 (2025) 113399

R?=1 R2=1
08 1:1 line 08 4—1:1 line,
07} 07}
= -
S o6 Sosf
<} o
é 051 % 05}
? 04t B 04t
o °
Q
go3f Losl
° S
E (5
o 02+ & 02+
0.1 | 01|
00 | 00 F
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a) 00 01 02 03 04 05 06 07 08 b) 00 o1 02 03 04 05 06 07 o08
True Stress (GPa) True Stress (GPa)
0.7 0.30
R?=0.99 ——MD-X |
1:1 line 0.27 ——MD-Y ¥
06 | ——MD-Z ®
024 H @ NN-X
= O NNY
SO5F 021H o
g <o1sph ™
T 0.
@041 g o
o Qo1sH @
D o3l @ *
3 B012H O
] = <o
Lo2l 9 0.09
o
o 0.06
01}
0.03
0.0 | 0.00
i 1 1 L 1 1 L \CL
c) oo 0.1 0.2 03 0.4 0.5 0.6 o7 d)g 1 2 3 4 5
True Stress (GPa) Strain (%)

Fig. 11. Performance of a) NN, b) GPR, and c¢) SVM in predicting stress in all C3NNT-filled cases. d) Comparison of techniques for stress in three directions (X, Y, Z;

respectively, 1, 2, 3) for the ‘N=7; a = 0.07' C3NNT case.

¢) Poisson’s ratio calculated in direction 2 when stretched in direction 3
(i.e., va3, Fig. 9¢c) shows a consistent decrease as the bundle curvature
increases, suggesting heightened confinement experienced by poly-
mer chains at higher bundle curvatures that reduces their lateral
movement.

d) In contrast to the differences observed in elastic and shear moduli,
there is not a very significant distinction between Poisson’s ratios of
CNT- and C3NNT-filled PVC nanocomposites.

3.5. Predictive ML models

Fig. 10 and Fig. 11 show the predictive performance of the ML
techniques for CNT and C3NNT cases, respectively. The models were
trained to predict longitudinal and transverse stresses in the composite
models given longitudinal strain, waviness parameter, and aggregation
number. Performance evaluations are made based on the 1:1 line and
the R-squared (R%) metric, representing variance in predictions made for
the dependent variables from the independent variables. Consistently
high R? values for all three models are observed. A closer examination is
made in Fig. 10d and Fig. 11d to highlight differences in predictive
performance among the three models. The figures correspond to the case
where N=7 and a = 0.07, and the stress-strain responses in three di-
rections obtained using the MD simulations are also shown as the
reference. It can be seen that GPR exhibited superior stress prediction
accuracy over SVM and NN. This observation aligns with existing
literature suggesting GPR’s enhanced accuracy in scenarios involving
sparse datasets [40]. Furthermore, NN demonstrated a similar stress
prediction accuracy. Its relatively lower computational cost renders it a
compelling option for mechanical property predictions, especially in the
context of large datasets.

The accuracy observed highlights the efficacy of the ML models in
capturing the complex nonlinear behavior of polymer composites. The

10

stress—strain behavior of polymer composites is generally nonlinear and
influenced by several factors, including the properties of the polymer
and the filler, viscoelastic effects, environmental and loading conditions,
the extent of strain, as well as filler morphology and aggregation. Given
the extensive range of possible parameter combinations, relying solely
on atomistic simulations in a multiscale context would be computa-
tionally prohibitive. The ML models developed in this study take some of
these parameters as inputs, run them through their learned patterns, and
accurately predict the stress—strain response of the composite up to 5 %
strain. This level of deformation is below the thresholds commonly
stipulated by engineering codes to meet serviceability criteria [21]. The
demonstrated accuracy of the ML models renders them suitable for
integration into a multiscale framework, enabling an efficient bridging
of nanoscale simulations with larger-scale models at a substantially
lower computational cost.

4. Conclusion

Coarse-grained molecular dynamics simulations were carried out to
understand the influence of filler characteristics, such as bundle size and
curvature, on the mechanical properties of PVC composites filled with
carbon and cyanoethyl nanotubes (CNTs and C3NNTs). Overall, CSNNT
composites showed higher stiffness, which was attributed to stronger
nonbonded interactions and enhanced load transfer efficiency. Elastic
and shear modulus responses indicated the profound role of filler
morphology and aggregation in modulating stiffness, with notable dif-
ferences observed between different planes. Furthermore, analysis of
Poisson’s ratio response unveiled intriguing parallels with isotropic 2D
materials, with upper values close to 1.0. The data was used to develop
machine learning models for predicting the mechanical properties of the
composite, with Gaussian process regression exhibiting better perfor-
mance than neural networks and support vector machines. Overall,
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these findings contribute to developing predictive models and enhance
our ability to design polymer nanocomposites with tailored mechanical
properties for various applications. Future research could benefit from
incorporating more accurate and representative images obtained from
multiple scales of composite materials. Such images will enhance the
fidelity of the data used for modeling. They can be integrated into
multiscale modeling to advance our understanding of polymer nano-
composites and serve as a platform for producing quality data required
to develop accurate and efficient machine learning models for materials
discovery.
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