CHATDBG: Augmenting Debugging with Large Language
Models

KYLA H. LEVIN?, University of Massachusetts Amherst, USA

NICOLAS VAN KEMPEN®, University of Massachusetts Amherst, USA

EMERY D. BERG ERT, University of Massachusetts Amherst, USA and Amazon Web Services, USA
STEPHEN N. FREUND, Williams College, USA

Debugging is a critical but challenging task for programmers. This paper proposes CHATDBG, an Al-powered
debugging assistant. CHATDBG integrates large language models (LLMs) to significantly enhance the capabili-
ties and user-friendliness of conventional debuggers. CHATDBG lets programmers engage in a collaborative
dialogue with the debugger, allowing them to pose complex questions about program state, perform root
cause analysis for crashes or assertion failures, and explore open-ended queries like ‘why is x null?’. To
handle these queries, CHATDBG grants the LLM autonomy to take the wheel: it can act as an independent
agent capable of querying and controlling the debugger to navigate through stacks and inspect program state.
It then reports its findings and yields back control to the programmer. By leveraging the real-world knowledge
embedded in LLMs, CHATDBG can diagnose issues identifiable only through the use of domain-specific
reasoning. Our CHATDBG prototype integrates with standard debuggers including LLDB and GDB for native
code and Pdb for Python. Our evaluation across a diverse set of code, including C/C++ code with known bugs
and a suite of Python code including standalone scripts and Jupyter notebooks, demonstrates that CHATDBG
can successfully analyze root causes, explain bugs, and generate accurate fixes for a wide range of real-world
errors. For the Python programs, a single query led to an actionable bug fix 67% of the time; one additional
follow-up query increased the success rate to 85%. CHATDBG has seen rapid uptake; it has already been
downloaded more than 75,000 times.
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1 Introduction

Debuggers help programmers identify and fix bugs by letting them investigate program state
and navigate program execution. Debuggers for mainstream languages, including GDB [39] and
LLDB [27] (for C, C++, and Rust), JDB (for Java), Pdb (for Python), and the Chrome or Firefox
debuggers (for JavaScript), generally provide the same functionality. In particular, most debuggers
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support observing program execution via tracing and reporting when a program reaches a given
line or function of source code; interrupting execution and returning control to the debugger when
the program reaches a given line or function via breakpoints, when a particular condition is true
via conditional breakpoints, or when a variable changes via watchpoints (a.k.a. data breakpoints);
inspecting local variables, globals, heap objects, and backtraces of the call stack; and resuming
program execution line-by-line (single-step) or at the granularity of function calls.

Debuggers can be helpful, but finding and fixing software defects remains a deeply challenging
and time-consuming task [7, 20, 47]. Programmers must still reason about program behavior to
ascertain what went wrong. They must formulate and test hypotheses about program execution,
they must read and understand code they may have not written, and they must pore over potentially
voluminous information. Such information includes lengthy executions, large amounts of program
data, and many stack frames that potentially span multiple threads.

This paper introduces the CHATDBG Al-powered debugger assistant. CHATDBG integrates into
and significantly extends the functionality of standard debuggers. CHATDBG builds on the insight
that large language models (LLMs), such as OpenAI’s GPT-4 [34], enable a debugger to leverage
insights and intuition from the vast real-world knowledge embedded in LLMs. This knowledge
enables CHATDBG to fix classes of issues that depend on logical thinking and domain-specific
reasoning beyond the ability to write and debug programs. For example, Figure 2 illustrates the use
of CHATDBG to debug a program by leveraging a knowledge of statistics that cannot be gleaned
from the program itself.

A debugger integrated with CHATDBG continues to provide its full range of functionality but
also lets programmers engage in debugging dialogs where they can ask high-level questions like
‘why is x null here? or ‘why isn’t this value what I expected?’. The question can be as
simple as ‘why?’ if a program has crashed or failed an assertion. To answer such queries, CHATDBG
orchestrates a conversation with an LLM. A key feature of CHATDBG is that it grants autonomy
to the LLM to “take the wheel” and act as an independent agent [10, 42] while answering the
programmer’s queries. Specifically, the LLM issues “function calls” [33] to run commands in the
underlying debugger to investigate program state, execute code, or obtain source code. The results
of those calls are sent back to the LLM to use in constructing its response. After answering a query,
control is returned to the programmer, who may then enter additional commands or chat messages.

Our prototype of CHATDBG integrates into three widely used debuggers: GDB, LLDB, and Pdb.
Our evaluation presents a range of case studies demonstrating that CHATDBG improves significantly
on existing debuggers. On a suite of unpublished Python scripts and Jupyter notebooks written by
undergraduate students, one or two queries is sufficient for CHATDBG to properly diagnose and
fix defects 85% of the time, typically at a cost well under $0.20 USD. CHATDBG is also effective at
identifying causes and providing fixes for a range of real-world bugs in C/C++ code.

This paper makes the following contributions:

e It introduces CHATDBG, an Al-powered debugger assistant that enables large language
models to “take the wheel” and control the debugger via agentic reasoning.

e It describes the implementation of our CHATDBG prototype.

e It presents an evaluation of CHATDBG that demonstrates its significant advantages over
existing debugger functionality.

Our evaluation shows that CHATDBG is broadly applicable to many domains and programming
languages, and we expect it to be particularly useful for novice programmers, who often lack the
experience to effectively use debuggers. CHATDBG is also useful for experienced programmers,
who can augment debugging sessions with CHATDBG’s reasoning capabilities in a conversational
and interactive way.
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Source code for bootstrap.py

from datascience import *
from ds101 import *

def make_marble_sample():
table = Table().read_table('marble-sample.csv')
return table.column('color")

def proportion_blue(sample):
return sample

T % T R Y R R

11 def resampled_stats(observed_marbles, num_trials):

12 stats = bootstrap_statistic(observed_marbles,
13 proportion_blue,
14 num_trials)

15 assert len(stats) == num_trials

16 return stats

18 observed_marbles = make_marble_sample()
19 stats = resampled_stats(observed_marbles, 5)

21 assert np.isclose(np.mean(stats), 0.7)

Fig. 1. An example program containing several bugs (§2). It is supposed to create an array of marble
colors, compute the proportions of blue marbles in resamples of that array, and assert that their mean is
about 0.7, the proportion for the array.

2 Overview

This section illustrates CHATDBG’s features and ability to assist in debugging the program in
Figure 1. That program is a distillation of real errors encountered by students in an introductory
data science lab. It creates an array observed_marbles representing the colors of marbles (red or
blue) in a sample stored in a file. It then calls bootstrap_statistic to create same-sized resamples
of that array. That function computes a statistic for each resample and returns an array of those
statistics. In this case, the statistic is proportion_blue, the proportion of blue marbles. Given a
sufficiently large number of trials, the mean of the resamples’ statistics should be close to 0.7, the
proportion of blue marbles in the original sample [6].

The program fails the assertion in resampled_stats, and Figure 2 illustrates a debugging session.
To try to figure out what went wrong, the user issues the Pdb command p num_trials to view
the value of that variable. Continuing debugging with existing tools would likely involve issuing
additional commands, examining data files, source code, and examining library documentation.
With CHATDBG, the user instead starts a dialog with the debugger, asking why doesn’t stats
have 5 elements? While constructing the answer (in blue ), the LLM takes the wheel and directly
issues debugger commands ( yellow ). These include standard Pdb commands and a CHATDBG-
specific info command for accessing the source code and docstrings for any user-written code, as
well as the docstrings for library code (which we assume is correct and not the root cause of errors).

CHATDBG identifies and corrects the root cause: proportion_blue incorrectly computes the
desired statistic. When CHATDBG cannot identify the root cause, it suggests further debugging steps
and control is returned to the user, who may continue the chat, issue further debugger commands,
or both. Figure 3 illustrates this scenario, where a version of bootstrap.py with the corrected
proportion_blue function fails the assertion on line 21.
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$ chatdbg bootstrap.py

Traceback (most recent call last)
File "/python3.11/site-packages/ipdb/__main__.py",
pdb. _run(stdlib_pdb._ScriptTarget(mainpyfile))
File "/python3.11/pdb.py", line 1659, in _run
self.run(target.code)
File "/python3.11/bdb.py", line 600, in run
exec(cmd, globals, locals)
File "<string>", line 1, in <module>
File "./bootstrap.py", line 19, in <module>
stats = resampled_stats(observed_marbles, 5)
File "./bootstrap.py", line 15, in resampled_stats
assert len(stats) == num_trials
AssertionError
Uncaught exception. Entering post mortem debugging
Running 'cont' or 'step' will restart the program

(ChatDBG) p num_trials
5
(ChatDBG) Why doesn’t stats have 5 elements?

(ChatDBG) p len(stats)
150

(ChatDBG) info bootstrap_statistic

bootstrap_statistic(observed_sample, compute_statistic, num_trials)
Creates num_trials resamples of the initial sample. Returns an array of the
provided statistic for those samples.

* observed_sample: the initial sample, as an array.

* compute_statistic: a function that takes a sample as an array and returns
the statistic for that sample.

* num_trials: the number of bootstrap samples to create.

You MUST assume that “bootstrap_statistic™ is specified and implemented correctly.

(ChatDBG) p proportion_blue
<function proportion_blue at 0x1050b00e0>

(ChatDBG) info proportion_blue
8 def proportion_blue(sample):
9 return sample

From the information we have, the stats variable in resampled_stats is supposed to have 5 elements, but it actually has 150
elements...

The Python debugger output shows a reference to a variable or function called proportion_blue, which is used as the
compute_statistic parameter for bootstrap_statistic. Upon looking at the proportion_blue function’s definition, it is
found that the function simply returns the input sample without computing a statistical value. This means that for each of the
num_trials (which is 5), bootstrap_statistic is adding the entire sample to the stats array without processing the sample
to obtain a single statistic value...

Recommendation

To fix this issue, the proportion_blue function must be corrected to perform the intended computation of returning the
proportion of blue marbles in the sample:
def proportion_blue(sample):

return np.mean(sample == 'B')

Fig. 2. A debugging session with CHATDBG (§2). For brevity, we elide repetitive or unimportant parts.
CHATDBG catches the assertion failure on line 15 and prompts the user to enter commands (bold and
highlighted in gray ). Commands issued by CHATDBG when it takes the wheel are highlighted in yellow ,

and its response is highlighted in blue .
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( $ chatdbg bootstrap.py
Traceback (most recent call last):
File "./bootstrap.py", line 21, in <module>
assert np.isclose(np.mean(stats), 0.7)

AANAAAANAAAAAAAAAAAAAAAAAAAAAAAA

AssertionError

(ChatDBG) Why is the mean of stats not close to 0.7?

(ChatDBG) p np.mean(stats)
0.7466666666666667

(ChatDBG) info resampled_stats

(ChatDBG) info make_marble_sample

(ChatDBG) info bootstrap_statistic

Recommendation

1. Check the CSV file marble-sample.csv to verify the proportion of blue to red marbles and ensure it is close to 70% blue
marbles.

2. Review the implementation of the proportion_blue function...

3. Verify that the proportion_blue function ... is available in the current scope or imported correctly.

(ChatDBG) p proportion_blue(observed_marbles)
0.7
(ChatDBG) That value is correct.

(ChatDBG) p stats
array([0.66666667, 0.8 , 0.63333333,
0.76666667, 0.86666667])

At this point, the most straightforward explanation for the error is that the number of trials is not enough to accurately reflect
the expected mean due to random sampling effects. Increasing the number of trials would likely result in an average statistic
that is closer to the expected value of 0.7, following the Law of Large Numbers.

Recommendation

Increase the number of bootstrap trials significantly (e.g., from 5 to something like 1000 or more) to reduce the variability of the
mean...

Fig. 3. A debugging session demonstrating how CHATDBG incorporates real-world knowledge (§2).
After correcting proportion_blue in Figure 1, the program fails on line 21 because the mean proportion of
blue marbles in the resamples is not the expected value. CHATDBG identifies high variance resulting from the
small number of trials as the root cause.

The user asks why the mean of stats is not close to 0.7, and CHATDBG’s initial response
suggests examining whether 0.7 is the appropriate expected value. To verify this, the user then
computes the proportion of blue marbles with a debugger command and tells CHATDBG that 0.7
is indeed the correct value. In its follow-up, CHATDBG points to the low number of trials (five)
as the issue. The LLM drew this correct conclusion without seeing any discussion of trial size or
variance in any program state, code, or documentation encountered during the chat. A powerful
aspect of CHATDBG is its ability to exploit real-world knowledge in its analyses (here, the fact
that bootstrapping depends on large numbers of resamples) without specific instruction or user
intervention.
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Table 1. Debugger features and their dates of introduction (§3). Most key features have been around
for decades. By integrating into modern debuggers (GDB, LLDB, and Pdb), CHATDBG inherits all of their
features while significantly extending them with functionality to explain bugs and their root causes, propose
fixes, and answer arbitrary natural-language queries over program state. (An asterisk or year in italics means
the feature is limited in functionality, performance, or depends on specific hardware support.)
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DDT [19], 1961 VRNV
EXDAMS [3,1969 v v v
Mesa[43,1979 v VS 4 S S
Dbx [26], 1981 Y VT N YV VY
GDB [39], 1986 A Y Y Y Y R U T
Pdb, 1992 v v v v v v v v v
LLDB, 2010 v v v v v v v v v
CHATDBG, 2023 v v v v v v v v v v v v

3 Related Work

Table 1 presents an overview of previous interactive debuggers, together with their features. The
first interactive debugger, DDT, introduced breakpoints, single-stepping, and stack navigation in
1961 [19]. By 1979, the Mesa debugger had most key features of modern debuggers, including
source-level debugging, conditional breakpoints, tracing, and the ability to display run-time state
and evaluate code [43]. Arbitrary conditional breakpoints date back at least to 1990 with Dbx [26].
Watchpoints were introduced by 1991 and have been in GDB since version 3.93.

In other work, Ko and Myers present Whyline, an interactive, trace-based debugger that lets
programmers select from a range of queries and identifies (via static and dynamic analysis) a
timeline that answers the query [18]. Programmers can only select from those queries presented
by Whyline as options. In contrast, CHATDBG permits programmers to pose arbitrary queries
that it answers via a dialog with an LLM. Whyline’s use of traces gives it the ability to answer
questions that might not be straightforward to answer with the current program state but limits its
applicability to relatively short-lived executions.

The goal of program slicing, introduced by Weiser in 1981 [41], is to produce a shorter version
of a program limited to the source code that could have led to an error. Program slicing has been
extensively studied; Weiser’s paper has been cited over 5,000 times to date. As Section 4.7 describes,
CHATDBG performs backwards slicing to collect code spread across code cells to facilitate debugging
of Jupyter notebooks.

Fault localization seeks to identify the likely location of a defect’s root cause. Several prior
studies have investigated the use of machine learning and LLMs for fault localization. Some of the
studied techniques apply machine learning to source code features, coverage data, or other static
code features to predict faulty lines of code, but they do not utilize dynamic state and run-time
information. DeepFL [24], Grace [28] and DeepRLA4FL [25] are examples of such systems. Similarly,
LLMAO [44] employs LLMs to provide suspiciousness scores for each line of code in a given
program, but only provides access to the source code. AutoFL [16] also utilizes an LLM and enables
it to statically retrieve source code and coverage information about the program via function
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calls. However, the system requires a failing test case as input and does not employ run-time state
information.

CHATDBG improves upon these systems by providing an LLM with access to run-time program
state and the ability to take control of the underlying debugger. Both features enhance the LLM’s
ability to provide more accurate and informative feedback to the user. We also note that other fault
localization techniques can be used in tandem with CHATDBG to improve results, as suggested by
Section 5.1’s utilization of backwards slicing to identify code relevant to a bug in Python notebooks
and Section 5.2’s utilization of AddressSanitizer [37] to provide a better starting point for diagnosing
and fixing memory errors in native code.

Automated program repair is another active area of software engineering research [9]. Systems
for automatic program repair attempt to generate source-level program patches that prevent a
program from failing. CHATDBG performs best-effort automated program repair by requesting
that the LLM propose code fixes as part of its response, ultimately letting the programmer drive
code changes using these suggestions. Previous research has shown that automated program repair
hints can provide significant help in the debugging process and suggests that the benefits of correct
advice outweigh the risk of deceptive ones [8].

3.1 Concurrent Work

Several approaches developed concurrently with CHATDBG have also integrated LLMs into auto-
matic program repair or fault localization techniques to enhance the debugging process. Robin [2]
is a chat-based debugging assistant designed to help users diagnose errors more quickly. Both Robin
and CHATDBG provide a limited program context to the LLM at the beginning of a conversation.
However, Robin has no direct access to any additional context about the program and execution
state; the user must manually retrieve and provide these items. Robin’s functionality is therefore
roughly equivalent to the Enriched Stack configuration of CHATDBG, detailed in Section 5.1. As
Figure 6 shows, CHATDBG achieves a nearly two-fold increase improvement in diagnosing errors
versus the Enriched Stack configuration. CHATDBG’s effectiveness generally increases further
with targeted questions and follow-up discussions with the user.

AutoCodeRover [48] and SWE-agent [45] are complementary approaches that focus on fault
localization and automatic repair, relying exclusively on issue descriptions and source code. CHAT-
DBG additionally leverages run-time information to identify root causes and propose fixes. Section 5
demonstrates the strength of this approach over relying solely on static information. Both Au-
toCodeRover and SWE-agent perform an evaluation using SWE-bench [15], which was created to
evaluate the efficacy of such static tools; unfortunately, this benchmark suite is not applicable to
CHATDBG due to its extensive usage of run-time information.

RepairAgent [4] and AutoSD [17] are tools that employ LLMs in specific workflows that mimic
standard debugging strategies in an attempt to repair pre-identified bugs. While successful in some
settings, both tools rely on the user providing a failing test case and the precise location of the bug.
By contrast, CHATDBG does not require this information. CHATDBG also enables a more flexible
workflow that permits collaboration with the developer in addition to seamless integration into the
standard debugging process.

4 Implementation
4.1 Using CHATDBG: Preliminaries

CHATDBG integrates with existing debuggers as either a plug-in or a direct extension. Our primary
focus to date has been an extension to Pdb, which supports both non-interactive Python scripts
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and interactive sessions in IPython or Jupyter notebooks, and a plug-in for LLDB to support C/C++
code. A subset of features has been ported to GDB and WinDBG.

Configuration for Python is minimal and limited to the installation of the chatdbg package with
the standard package installer, plus one optional shell script command to add it as an extension to
IPython. CHATDBG extends either the standard pdb.Pdb debugger or IPython’s implementation of
Pdb, depending on how it is run. Configuration for LLDB and other C/C++ debuggers is similarly
straightforward. LLDB can be installed through standard package managers if it is not already
present, and the CHATDBG plug-in is installed via a single shell command. Since CHATDBG leverages
OpenAI’s LLMs, the user must also set an environment variable to a valid OpenAI API key within
their system’s configuration settings.

4.2 Debugging a Target Program

For Python, debugging with CHATDBG begins by running chatdbg on the target program. No
special preparation of the target is needed; Python’s managed run time ensures that debugging
information and source code is always available. Debugging is supported in IPython interactive
sessions or Jupyter notebooks via the standard command-line flag --pdb or the Jupyter magic
command %pdb, respectively. Control drops into the debugger when an exception occurs.

For C and C++, debugging begins by running 11db on the target program. The target program
must be an unstripped executable generated with the -g compiler flag, which ensures the availability
of DWARF debug information that describes the memory layout and maps the program’s machine
code back to the original source code. That information is essential for the effective debugging of
unmanaged code.

CHATDBG also handles native code generated for other languages but may require additional
steps. For example, to debug a Rust target program, the Cargo.toml file must list CHATDBG as
a dependency and the main function must be annotated with #[chatdbg: :main] to ensure that
error messages are visible to CHATDBG through a log file.

4.3 CHATDBG Architecture Overview

CHATDBG orchestrates communication between the user, the debugger, and the LLM, as shown
in the architecture diagram in Figure 4. The operations in the command loop pseudocode map
naturally onto debugger APIs and onto LLM APIs supporting completion and function calls [33].
CHATDBG currently utilizes OpenATD’s API [32] and GPT-4 models. We provide a brief overview of
the CHATDBG architecture and then elaborate on the most salient technical innovations below.
(1 CuatDBG dispatches standard commands, such as p num_trials in Figure 2, directly to the
underlying debugger (lines 3-7). It also preserves those commands and their output in the history
variable for later communication to the LLM. (2) Any other text entered by the user, such as ‘why
doesn’t stats have 5 elements?’, is directed to CHATDBG, which creates a prompt to send to
the LLM. If this is the start of a chat, CHATDBG bundles basic instructions, information from the
debugger about the current stack and error, program inputs, history of user commands, and the text
together in an initial prompt (lines 9-12). Otherwise, CHATDBG bundles only the history since the
last chat step and text (line 14). The MAKEPROMPT function concatenates the prompt components
into a string, respecting any length limits set by the LLM by selectively truncating parts as needed.
(3 CuATDBG then sends the prompt to the LLM and processes the response stream, which
includes both (4) requests to run debugger commands (lines 19-22) and () prose for the user (line
23). In Figure 2, CHATDBG runs four debugging commands, including one to print the length of
the stats array, via this mechanism as the LLM constructs its response. CHATDBG echoes those
commands and their outputs to the user. Once the full response has been processed, CHATDBG
returns control to the user. As Section 4.5 discusses, CHATDBG augments the underlying debuggers
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s

1: history =
= 2: loop
fesponse 3 line = INnpUT()
“ee""‘\m free-formtext (2 prompt 4 if ISDEBUGGERCOMMAND(line) then
y R ® 5: output = DoCommaND(line)
° errorinfo 6 PrINT(Output)
-Cgff;,?,dw 0 LY 7 history = history + (line + “—” + output)
’G/W command Existing 8 else
- > lpg:bli%gBer) 9 if not CHATINPROGRESS() then
output T 10: prompt = MAKEPROMPT(INSTRUCTIONS(),
U — 11: ENRICHEDSTACK(), INPUTS(),
| ) . .
(22%:2;3;53{;:: 12: ERRrOR(), history, line)
source tools 13: else
14: prompt = MAKEPROMPT(history, line)
(1D Standard commands are handled by the existing debugger. 15: }SIEND(promp H
16: istory = “”

(2 CHATDBG converts free-form text into a suitable prompt.
@ CuaTDBG sends the prompt 17: while REsPONSEPENDING() do

The LLM takes the wheel and directly issues commands & match RECEIVE()
to the underlying debugger. This step may involve con- 1% case DeBUG(cmd) =
sulting other tools, such as a language server for native 2% output = DOC(“)MMAND(Cmd)
code. 21: PRINT (cmd + “—” + output)
® The LLM responds to the prompt. 22: SeND(output)
23: case MESSAGE(text) = PRrINT(text)

Fig. 4. CHATDBG architecture and command processing algorithm (§4.3).

with specialized commands for the LLM to use when taking the wheel. For example, the CHATDBG
variant for native code installs debugger commands that utilize the clangd language server [5, 30]
to retrieve source code corresponding to symbol definitions.

4.4 Initial Prompts and Enriched Stack Traces

In addition to including the user’s text, the initial prompt conveys instructions to LLM and the
context surrounding the error. We illustrate the components of the prompt in this section, using the
initial prompt in Figure 5 that was generated for the first query in Figure 2 as a running example.

Instructions. The instructions at the top of the prompt ask the LLM to answer questions about
the root cause of the error, to focus on user code, to explain values stored in variables, and to end
each response with either a fix or suggestions for further debugging steps. The last item ensures a
relatively consistent structure for answers that facilitates reading them and evaluating their quality.
Paragraphs 2-4 of the instructions are the take the wheel prompt described in Section 4.5.

Enriched stack trace. CHATDBG's success at identifying and fixing errors relies critically on
providing the LLM with sufficient details to reveal the cause of the error. A key source of that
information is the run-time stack. Debuggers provide a way for the user to view the stack trace but
often only show function names, source file locations, and possibly a couple lines of code for each
stack frame. CHATDBG provides a more detailed enriched stack trace to the LLM. That stack trace
includes the types and values of variables for each frame, as well as a larger window of at least 10
lines of code. Enriched stack traces also elide frames corresponding to library code to better focus
the LLM on user-written code, which CHATDBG assumes to be the most likely cause of errors.

In Python, CHATDBG leverages Pdb’s internal data structures to build enriched stack traces.
When converting values to suitable string representations, CHATDBG must balance utility with
the size of the string produced. For objects, CHATDBG calls the object’s __repr__ method if an
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Instructions:
You are a debugging assistant. You will be given a Python stack trace for an error and answer questions related to the root
cause of the error.

Call the debug function to run Pdb debugger commands on the stopped program. You may call the debug function to run
the following commands: bt, up, down, p expression, list. Call debug to print any variable value or expression that you
believe may contribute to the error.

Call the info function to get the documentation and source code for any variable, function, package, class, method reference,
field reference, or dotted reference visible in the current frame. Examples include: n, e.n where e is an expression, and t.n
where t is a type. Unless it is from a common, widely-used library, you MUST call info exactly once on any symbol that is
referenced in code leading up to the error.

Call the provided functions as many times as you would like.

The root cause of any error is likely due to a problem in the source code from the user. Explain why each variable contributing
to the error has been set to the value that it has. Continue with your explanations until you reach the root cause of the error.
Your answer may be as long as necessary.

End your answer with a section titled “Recommendation” that contains one of:
- afix if you have identified the root cause
— anumbered list of 1-3 suggestions for how to continue debugging if you have not

Enriched Stack Trace:
The program has this stack trace:
[... skipping 4 hidden frame(s)]

./bootstrap.py(19)<module>()
16 assert len(stats) == num_trials

18 observed_marbles = make_marble_bag()
---> 19 resampled_stats(observed_marbles, 5)

Global variables:
observed_marbles: ndarray = array(['R', 'R', 'R', ..., 'B',
'B', 'B'l, dtype='<U1")

> ./bootstrap.py(16)resampled_stats()

14 num_trials)
15

---> 16 assert len(stats) == num_trials
17

18 observed_marbles = make_marble_bag()

Variables in this frame:
num_trials: int = 5

observed_marbles: ndarray = array(['R', 'R', 'R', ...,
'B', 'B', 'B'], dtype='<U1")
stats: ndarray = array(['B', 'R', 'B', ..., 'R', 'B',
'R'], dtype='<U32')

Error:
The program encountered the following error:
AssertionError
The code assert len(stats) == num_trials is correct and must not be changed.
History:

This is the history of some pdb commands I ran and the results:
(ChatDBG) p num_trials
5

User Text:
Why doesn’t stats have 5 elements?

Fig. 5. The initial prompt for the debugging session in Figure 2 (§4.4). For brevity, the enriched stack
includes only five lines of source in each frame, rather than the default of 10.
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appropriate (non-default) version exists. Otherwise, it iterates over the object’s fields and recursively
converts their values to strings. Similarly, CHATDBG recursively converts the values stored in
aggregate structures like lists, arrays, and dictionaries to strings, but limits the number of elements
shown to a small, fixed number. The rest of the elements are abbreviated with an ellipsis (...). This
recursive conversion of values to strings is limited to a depth of three, at which point any remaining
values are again abbreviated with ellipses. This strategy balances the need to provide the LLM with
sufficient information to diagnose the error with the need to avoid overwhelming it with too much
information. In cases with the elided details are important, the LLM can request them via the take
the wheel mechanism.

CHATDBG follows roughly the same approach in LLDB, utilizing the static types embedded in
the DWARF debugging information to decode the stack. In addition, any pointers are dereferenced
to show the values being referred to as well; null pointers and illegal dereferences are dropped.

Inputs. The initial prompt also includes the target’s command line arguments and standard input
when that information is available from the underlying debugger. These are empty and elided in
Figure 5.

Error. A description of the error causing execution to stop is extracted from the underlying
debugger. When the error is due to an assertion failure, CHATDBG instructs the LLM to assume
that the assertion is valid as written so that it will look beyond the assertion for the real problem.

History. The initial prompt also includes the history of commands already issued by the user, as
well as their outputs. This builds a more complete context surrounding the user’s query.

4.5 Taking the Wheel

CHATDBG supports take the wheel debugging via the function call capabilities in OpenAI’s API
and most recent models [33]. This agentic approach [10, 42] lets clients register callback functions
with the LLM for obtaining additional information while constructing a response. The LLM calls
these functions by sending special messages to the client as part of its response stream. The client
receives those messages, computes the requested results, and sends them back to the LLM. The
initial prompt describes how to use the available functions.

For example, CHATDBG registers a debug(command) function for running a command
in the underlying debugger. The LLM calls debug("p len(stats)") through this mecha-
nism in the session from Figure 2. CHATDBG then runs Pdb’s command processing routine,
onecmd("p len(stats)"), and captures the output to and send back. CHATDBG similarly uses
the SBCommandInterpreter.HandleCommand routine in LLVM. In both cases, the command and
output are printed so the user can see these steps.

The LLM has sufficient background knowledge on debuggers and requires no additional training
to navigate up/down the stack, inspect variables and heap data, evaluate expressions, and perform
other typical debugger operations.

Supporting agentic reasoning over run-time program state via function calls is a key technical
innovation of CHATDBG. Without this capability, there would be no effective way to provide the
LLM with a detailed view of relevant program state. A common alternative technique for handling
large amounts of task-specific data in LLMs is to employ a retrieval augmented generation (RAG)
model [23], which collects and stores the data in a vectorized database that is then made available
to the model for retrieval. However, that approach seems less useful in this context, as program
state information will be distinct for each debugging session and not easily vectorized.
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Table 2. CHATDBG command extensions (§4.6). CHATDBG extends the underlying debuggers with several
new commands to help the LLM navigate through and understand the target’s code. CHATDBG provides
access to them via the LLM’s function call API.

Command Debugger Output
info symbol Pdb The source code and/or docstring for a symbol referring to any function, method,
field, class, or package.
slice symbol Pdb The source code in the backwards slice of the global symbol. Interactive
IPython/Notebook sessions only.
code loc LLDB The source code surrounding loc, where loc has the form filename:1lineno.

definition loc symbol LLDB The declaration for the first occurrence of symbol at loc, where loc has the
form filename:1lineno.

4.6 Navigating the Code

While the LLM can often leverage pre-existing background knowledge of common Python and
C/C++ standard libraries, it will likely have limited-to-no knowledge of any user-defined code
or third-party library functions. Trying to include all possibly-relevant source code in the initial
prompt would be infeasible and would prevent CHATDBG from scaling to larger codebases. Instead,
CHATDBG extends the underlying debuggers with several new commands designed to help the
LLM navigate through and understand the target’s code. These commands are available to the LLM
via function calls and listed in Table 2.

CHATDBG augments Pdb with the info command, which prints the docstring for any func-
tion, class, field, method, or package. It additionally prints the source code for any user-defined
function. The info requests in Figure 2 demonstrate these two cases for proportion_blue and
bootstrap_statistic, respectively. The command is implemented via the standard inspect and
pydoc Python libraries.

The info command is not directly reproducible for unmanaged code in LLVM because there
is no comparable existing debugger support for retrieving the source or documentation for
a symbol. Instead, CHATDBG adds two other debugging commands to LLDB. The first, code,
prints the code surrounding a source location described by a filename and line number, as in
code polymorph.c:118. The second command, definition, prints the location and source
code for the definition corresponding to the first occurrence of a symbol on a given line of
code. For example, definition polymorph.c:118 target prints the location and source for
the declaration of target corresponding to its use on that line. The definition implementation
leverages the clangd language server, which supports source code queries via JSON-RPC and
Microsoft’s Language Server Protocol [30].

4.7 Slices for Interactive Python

CHATDBG supports debugging interactive IPython sessions and Jupyter notebooks. Interactive
sessions lead to many individual code cells that are each evaluated separately. Cells may be evaluated
out-of-order, override definitions from earlier cells, and communicate values to other cells through
top-level global variables. Others have noted the challenges of reasoning about program behavior
in this context [11, 38]. CHATDBG provides an additional slice debugging command to facilitate
that reasoning. The slice command computes the backwards slice for any variable used in the
current cell that was defined in previously-executed cells. It returns the code for cells in that slice.
Suppose the code from bootstrap.py in Figure 1 were written in four notebook cells as shown
below:
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In[2]: def make_marble_sample(): ...
In[3]: def proportion_blue(sample): ...

In[4]: def resampled_stats(observed_marbles, num_trials):
stats = bootstrap_statistic(observed_marbles,
proportion_blue,
num_trials)
assert len(stats) == num_trials
return stats

In[5]: observed_marbles = make_marble_sample()
stats = resampled_stats(observed_marbles, 5)

After evaluating these cells, slice(observed_samples) returns the source for the cells labeled
In[2] and In[5], and slice(stats) returns the source for all four cells. CHATDBG uses ipyflow
to compute slices [14, 38].

4.8 Security and Risks

It is possible for the LLM to issue debugging commands containing arbitrary code through the
debug function call provided by CHATDBG. That code could, for example, delete files or execute
other malicious actions on the client. CHATDBG mitigates this risk by sanitizing LLM-generated
debugging commands before running them. For Python, the sanitizer ensures that any functions
called in LLM-provided commands belong to a user-configurable whitelist. For native code, code
provenance is harder to track and languages are more permissive, so the sanitizer rejects any
commands calling functions. CHATDBG supports an —-unsafe flag to disable sanitizing when the
client system is running in an isolated environment that obviates the need for such protections.

It is also possible for the LLM to hallucinate and respond with incorrect or misleading diagnoses
and fixes. CHATDBG mitigates this risk by not directly applying proposed code fixes or suggestions
to the target code. Instead, CHATDBG presents them to the user, who may then vet and judge the
quality of the LLM’s responses and decide whether or not to follow suggested changes.

5 Evaluation

We demonstrate CHATDBG’s capacity to identify the root cause of defects and provide fixes in two
contexts: bugs in relatively small Python programs written by students and bugs in large C/C++
programs. The former have well-defined expected behavior that enables us to thoroughly and
systematically assess CHATDBG. The latter demonstrates its effectiveness on unmanaged code when
unusual corner cases trigger crashes. Our evaluation addresses the following research questions:
RQ1: Is CHATDBG effective at diagnosing and fixing bugs in Python? RQ2: Which components of
CHATDBG contribute to its effectiveness? RQ3: Is CHATDBG effective at diagnosing and fixing
bugs in unmanaged code (C/C++)?

5.1 Python

We applied CHATDBG to all of the bugs in a collection of student labs from two introductory
computer science courses; see Table 3. Bugs c1-c8 are in non-interactive scripts from a programming
class that perform various file reading and text processing tasks. Bugs s1-s14 are in Jupyter
notebooks [40] from a data science class that manipulate, visualize, and compute over arrays
and tables. Some bugs were apparent to the programs’ authors. Others were identified during
autograding.
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Table 3. Python programs exhibiting a variety of common errors (§5.1). Programs c1-c8 are command
line scripts, and programs s1-s14 are Jupyter notebooks, which utilize two non-standard libraries consisting
of 3,000 lines of code. Semantic errors reflect failed tests expressed as assertions. Crashes reflect unexpected

termination due to any other type of error.

Name LoC Type Reported Exception Root Cause

cl 48  semantic Assertion Error Off-by-one error in an h-index computation

c2 81 crash Name Error Parameter not referenced properly

c3 64 crash Value Error Error in CSV column label leads to improper data parsing
c4 89 crash Index Error A class’s __str__ fails if an object’s internal list is empty
c5 29 crash Index Error Missing one of two base cases in a recursive function

c6 72 crash Name Error Multiple errors related to building list of user-defined objects
c7 71  semantic Assertion Error Failure to convert input to lower case before processing

c8 72  semantic Assertion Error Missing test for lowercase words

sl 123 semantic Assertion Error Incorrect drop and rename operations leading to bad data
s2 124  semantic Assertion Error Incorrect max operation on a table

s3 124  semantic Assertion Error Incorrect aggregation function in pivot operation

s4 124  semantic Assertion Error Incorrect aggregation function in group operation

s5 162  semantic Assertion Error Hardcoded table data in wrong order

s6 162 crash Name Error Typo in variable reference

s7 45 semantic Assertion Error Function confuses parameter and global variable

s8 49  semantic Assertion Error Wrong percentile used in confidence interval construction
s9 112 semantic Assertion Error Wrong percentile used in confidence interval construction
s10 118  semantic Assertion Error Loops doesn’t append to array correctly

s11 181 crash Value Error Creates a sample without replacement larger than the input
s12 127 crash Value Error Incorrect label when accessing column value for table row
s13 127 crash Value Error Pivot uses wrong columns for row/columns in new table
s14 65 crash Index Error Incorrect computation of random sample under null hypothesis

Unlike many existing bug benchmarks for Python, these programs are unpublished and thus
not in the language model’s training data. In addition, the programs have clear correctness criteria
that lead to objective effectiveness metrics in our experiments. The bugs are representative of
common mistakes because they were introduced by real humans, rather than synthetically generated.
They range from scoping issues, algorithmic errors, and misuse of library functions to subtle
misunderstanding of domain knowledge. They include both semantic errors leading to failed tests
and crashing errors that terminate execution abruptly. Further, they reflect two important, widely-
used modalities for Python programming: non-interactive scripts and interactive computational
notebooks. CHATDBG supports debugging in both settings.

Programs were prepared by removing them from their automatic grading harness and replacing
failed unit tests with assert statements that generate exceptions. We focus our evaluation on
Python and perform an ablation study by progressively enabling CHATDBG features. We ran each
program ten times under the five configurations in Table 4: Default Stack includes standard stack
traces, as generated by ipdb [13], with 5 lines of code per frame in the initial prompt, but it does
not support the LLM taking the wheel. Enriched Stack generates enriched stacks with ten lines of
code per frame, and +Take the Wheel additionally permits CHATDBG to run debugger commands.
These three configurations all use why? as the initial user text. + Targeted Question asks a question
specific to the failure. For semantic errors, which validate the values stored in variables, these
questions describe what those values should be or what they intend to represent. For crashes, the
questions relate the crash to expected behavior, as in the following; we designed our questions to
be “neutral” and not hint at the root cause.
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Table 4. Configurations used in the Python experiments (§5.1).

Confisuration Stack Take the Initial Ask a
& Trace Wheel Prompt  Follow-up
Default Stack standard why?
Enriched Stack enriched why?
+Take the Wheel enriched v why?
+Targeted Question  enriched v specialized
+Dialog enriched v specialized v
c Default Stack | —@
£ Enriched Stack | —————e
a, +Take the Wheel o
=
& +Targeted Question o
O .
+Dialog ®
[ [ I [ |
0 25 50 75 100

Success Rate (%)

Fig. 6. Overall CHATDBG success rate for each configuration (§5.1). CHATDBG innovations and user-
provided context gradually increase effectiveness.

c3 (Crash) Why am I not reading the CSV file correctly?

s11 (Crash) Why am I not able to sample 100 rows?

c1 (Semantic) Why am I not getting 3?

s1 (Semantic) bill_length_mean_by_species should be a table of the mean bill lengths of
each species in our data set. Why isn’t it?

The final +Dialog configuration is the same as +Targeted Question but extends the chat with a
second query. All trials use the same follow up: Continue to explain your reasoning and give me a fix
to make it work as I describe. Context-specific follow-ups work better, but we opted for consistency.

CHATDBG used the gpt-4-1106-preview model for these experiments. Under +Targeted Ques-
tion, the first prompt and response led to, on average, a chat of about 10,000 tokens (7,500 words),
a cost of about $0.12 USD under OpenAl’s current pricing model [35], and a completion time of
about 25 seconds. Subsequent steps in extended debugging dialogs incurred comparable costs. Time
was highly variable and dominated by the performance of OpenAI’s service. These characteristics
will be different for other platforms and models and, given current trends, we expect significant
reductions in both time and cost as models improve.

RQ1: Is CHATDBG effective at diagnosing and fixing bugs in Python?

Each response was manually examined and deemed a success if it included an accurate explanation
of the error and an actionable fix. That fix could be either code or a prose description in which all
necessary details were made explicit. To avoid bias in this assessment, explicit criteria for each
program was determined prior to examining the responses.

Figure 6 shows the success rate under each configuration. The simplest configuration, Default
Stack, provides functionality roughly equivalent to the user copying and pasting the program
stack trace and basic error information into an LLM chat window and requesting a fix. We use this
configuration as a baseline for evaluating the impact of CHATDBG’s more advanced configurations.
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Fig. 7. Success rate for CHATDBG for each program and configuration (§5.1). Vertical lines show the
mean.

With all features enabled, CHATDBG was successful at identifying and fixing bugs in well over half
of the trials. Any time or energy expended by the user manually debugging those cases would be
all but eliminated by using CHATDBG.

RQ1 Summary: Even with just the simple question why?, CHATDBG was successful 57% of the
time. With questions specialized to the target’s particular error, that number jumps to 67%, and
with an additional dialog step CHATDBG succeeded in identifying and fixing the defect in 85%
of the trials.

RQ2: Which components of CHATDBG contribute to its effectiveness?

Figure 7 presents the success rates for each program under each configuration. The Enriched
Stack plots demonstrate that enriched stacks provide some benefit, particularly for crashes in
which the stack contains sufficient information to diagnose the problem, but they alone do not
provide much improvement for many semantic errors in which the relevant computation steps
complete before failure. However, enriched stacks coupled with letting the LLM take the wheel led
to significant improvement in the success rate for both crashing and semantic bugs, as shown in
the +Take the Wheel plots.

Using the +Take the Wheel feature, the LLM issues from 0 to 12 debugging commands per
run, most commonly calling the info, slice (for notebooks), and p (print) debugging commands.
While all of these commands provide useful information about execution state and code, the slice
command was critically important for notebooks. Without it, success rates rarely improved when
the LLM took the wheel.

The +Targeted Question configuration demonstrates the impact of providing even the most
modest details about expected behavior in queries. When the LLM is asked to continue its reasoning
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in +Dialog, CHATDBG’s success rate improves despite the follow-up prompt providing no feedback
on the contents or quality of the first response. This phenom indicates that constraints on the
underlying LLM’s response lengths may prevent it from conducting the amount of reasoning
necessary to develop a fix in a single step. The success rates for +Targeted Question and +Dialog
demonstrate the importance of continued dialogs and user input. We expect those features to be
even more important to CHATDBG’s success when diagnosing bugs in more complex programs.

The LLM also demonstrated its background knowledge with the responses including, for example,
details of Python idioms and libraries, the definition of h-index [12], and the implementation and
limitations of various statistical techniques.

Failures were generally due to the LLM not always recognizing or discovering key aspects of
a program’s behavior. We observe that in some cases, enabling additional features in CHATDBG
decreases its success rate. We attribute this result to the fact that longer and more complex prompts
can occasionally degrade the effectiveness of LLMs [22]. In general, the further the distance between
the root cause of a bug and observable effect, the more challenging it was for CHATDBG (and
people [47, p. 243]) to find it. In some cases, it was on the right track but did not converge on an
actionable fix. In others, it suggested changes that would introduce other bugs. It also occasionally
made mistakes, such as conflating proportions and percentages or failing to handle unusual corner
cases. All of these could be mitigated by feedback from the user in subsequent follow-ups.

RQ2 Summary: While all features of CHATDBG contribute to its success, the technical innova-
tions enabling it to take the wheel are critical. The most sophisticated configurations show that
user-provided contextual information about behavior and engaging in multi-step dialogs are
particularly good ways to improve its effectiveness.

52 CandC++

Programs in unmanaged languages such as C and C++ are vulnerable to memory safety errors.
These memory errors can also hinder the debugging process: the crash may not occur immediately
at the memory violation but instead much later on, and the crash may cause corruption of the stack
and/or heap, making it challenging to recover any useful information.

Table 5 summarizes the programs extracted from the BugBench [29] and BugsC++ [1] suites
used to evaluate CHATDBG's effectiveness at debugging unmanaged code. Programs used in this
evaluation are all real-world applications with concrete known bugs. The four BugBench programs
were selected as the only ones we could retrieve, build, and reproduce on our system. The BugsC++
suite does not include the original crash-causing inputs. However, it provides links to the original
bug report, CVE identifier, and/or exploit-fixing patch, from which we manually retrieve crash
reproduction information. We randomly selected and reproduced four bugs from the “memory
error” category.

Some of the programs studied do not crash at run time. We employed AddressSanitizer [37] to
force a crash at the moment a memory violation occurs to trigger those defects. AddressSanitizer is
already capable of reporting some information about the crash when it happens. However, this
information is often very dense, and typically points at the symptom of the bug, not its root cause.
We did not include that information in the initial prompt.

RQ3: Is CHATDBG effective at diagnosing and fixing bugs in unmanaged code (C/C++)?

We ran our C/C++ experiments on an x86 Ubuntu 22.04 server. We used Clang and LLDB 17 to
compile and debug, using flags -g -0g -fno-omit-frame-pointer. CHATDBG used OpenAl’s
gpt-4-1106-preview model. Each program was run ten times using queries of the form I am
debugging cpp-peglib. Provide the root cause of this crash, for PEG, followed by a
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Table 5. Bugs in unmanaged C/C++ code, and our criteria for fixing the proximate cause or the root

cause of each (§5.2).

Kyla H. Levin, Nicolas van Kempen, Emery D. Berger, and Stephen N. Freund

Error Fix
Program LoC Type Root Cause Proximate Cause Root Cause

BC [29] 17.0k  Buffer Input from data file printed to a fixed- | Truncate on copy Use dynamic size
overflow size buffer

GZIP [29] 8.2k  Buffer Command line argument unsafely | Truncate on copy Check size &
overflow copied to a fixed-size buffer warn/exit

NCOM [29] 1.9k  Buffer Command line argument unsafely | Truncate on copy Check size &
overflow copied to a fixed-size buffer warn/exit

PEG [1] 147k Null deref- Invalid input produces corrupted data | Check if not null ~ Warn/exit
erence structure

POLY [29] 0.7k Buffer Command line argument is unsafely | Truncate on copy Check size &
overflow copied to a fixed-size buffer warn/exit

TIFF [1] 58.9k Divisionby Combination of command line options | Override option =~ Warn/exit when
Z€ero leads to a division by zero values invalid

YAML1 [1] 87k  Stack over- Long sequences of { in the input leads | Use iterative Guard recursion
flow to deep recursion method depth

YAML2 [1] 87k  Assertion  Specific input causes a peek request | Replace assert Check before
failure for non-existent “next” token peeking

request to include code in the response. Average time (27 seconds) and cost ($0.06 USD) were
comparable to Python.

We manually examined each response to determine if CHATDBG successfully provided an
actionable code fix for the proximate cause of the crash or for the underlying root cause. We used
the criteria outlined in Table 5. While fixing root causes is the ultimate goal, fixing proximate
causes can still be beneficial as fixing crashes enables further debugging steps.

Figure 8 presents CHATDBG's ability to suggest a fix for either the proximate or root cause of the
bug. Generally, CHATDBG is excellent at diagnosing and explaining the reason for the crash, which
in itself may be useful to programmers. For BC, GZIP, NCOM, and POLY, CHATDBG tends to suggest
replacing the strcpy or sprintf call with their respective strncpy and snprintf counterparts to
prevent buffer overflows. While correct, this change truncates the input silently. Validation or other
measures should be added to obtain a robust fix. The root cause in BC is inside code generated
from a YACC file. The clangd language server does not handle this case in a way that would let
CHATDBG answer the LLM’s definition requests properly.

In the case of PEG, CHATDBG correctly identifies which pointer is null but typically suggests
ignoring it instead of failing immediately. This is similar to YAML2, where CHATDBG recommends
replacing the assertion with a check inside a function rather than recommending that the client
check that the function’s preconditions are met prior to the call. CHATDBG has a relatively high
root cause fix rate for YAML1 and TIFF. It often correctly suggests fixes to limit recursion depth
(YAML1) and to validate input parameters (TIFF).

RQ3 Summary: CHATDBG was successful in virtually all of our trials in diagnosing and
explaining the cause of the crash. It was also capable of providing relevant, actionable fixes:
36% of its suggestions addressed the root cause of the bug, while another 55% corrected the
proximate cause.
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Fig. 8. CHATDBG success rate at fixing the proximate or root cause in C/C++ programs (§5.2).
CHATDBG successfully identified and fixed the root cause 36% of the time and the proximate cause an
additional 55% of the time.

5.3 Threats to Validity

This paper evaluates CHATDBG on two suites of code. The primary suite is a collection of un-
published student labs that may not be entirely representative of code written by, for example,
experienced programmers. The second suite consists of real C/C++ applications and bugs drawn
from the BugBench and BugsC++ suites. Unlike the Python suite, the C/C++ source code and the
bug fixes for these programs are available on GitHub, which may lead to data leakage affecting the
C/C++ study if those repositories were part of the training set for the LLMs we used. While the
C/C++ suite consists of real-world applications, most of the errors are memory errors. Other types,
such as assertion failures, concurrency errors, or other logical errors, may lead to different results.

CHATDBG depends on an LLM to analyze and drive exploration of state, and like all systems based
on LLMs today, its performance is affected by prompt engineering. It is possible that CHATDBG’s
prompts are overfit to the specific GPT-4 models we employed; this threat is somewhat mitigated
by the fact that CHATDBG was originally developed using a different model (GPT-3.5-turbo). LLMs
are also inherently stochastic, and it is possible to obtain unusually good results by chance. To
mitigate this threat, our evaluation runs CHATDBG on each test program at least ten times, which
produced stable and repeatable results with only small variation in aggregate.

Our evaluation depends on a manual evaluation of whether CHATDBG’s explanation of a bug and
its proposed fix are satisfactory. We mitigated the risks of subjectivity by using precisely defined
criteria decided upon in advance. Python fixes were deemed successful if the resulting code met the
correctness requirements outlined in the assignment. C/C++ fixes were deemed successful at fixing
the proximate or root cause using the criteria in Table 5. Fixes described in prose were permitted,
provided that the details of all necessary changes to the code were made explicit.

6 Future Work

We see several promising avenues for future work. Incorporating existing fault localization ap-
proaches into CHATDBG, rather than relying solely on the LLM’s ability to explore the program’s
code and state, could potentially increase its effectiveness and efficiency by allowing the LLM to
focus its attention on suspicious files, functions, or lines of source code. Similarly, incorporating
delta debugging [46] could increase the effectiveness of CHATDBG by limiting the amount of input
for an LLM and providing failure-inducing events as guidance. Finally, integrating CHATDBG with
a time-travel debugger [31, 36] would expand its reach to exploring program state over time, letting
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it answer queries that cannot be answered given only the current program state. One challenge
of integrating these more sophisticated techniques will be ensuring that the LLM can effectively
utilize them, which may necessitate fine tuning or additional training on their usage.

7 Conclusion

This paper presents CHATDBG, the first Al-based debugging assistant. Our evaluation shows that
engaging in a debugging dialog with CHATDBG can significantly assist in identifying root causes
of errors and developing correct fixes.
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