
C!"#DBG: Augmenting Debugging with Large Language
Models
KYLA H. LEVIN∗, University of Massachusetts Amherst, USA
NICOLAS VAN KEMPEN∗, University of Massachusetts Amherst, USA
EMERY D. BERGER†, University of Massachusetts Amherst, USA and Amazon Web Services, USA
STEPHEN N. FREUND,Williams College, USA

Debugging is a critical but challenging task for programmers. This paper proposes C!"#DBG, an AI-powered
debugging assistant. C!"#DBG integrates large language models (LLMs) to signi!cantly enhance the capabili-
ties and user-friendliness of conventional debuggers. C!"#DBG lets programmers engage in a collaborative
dialogue with the debugger, allowing them to pose complex questions about program state, perform root
cause analysis for crashes or assertion failures, and explore open-ended queries like ‘why is x null?’. To
handle these queries, C!"#DBG grants the LLM autonomy to take the wheel: it can act as an independent
agent capable of querying and controlling the debugger to navigate through stacks and inspect program state.
It then reports its !ndings and yields back control to the programmer. By leveraging the real-world knowledge
embedded in LLMs, C!"#DBG can diagnose issues identi!able only through the use of domain-speci!c
reasoning. Our C!"#DBG prototype integrates with standard debuggers including LLDB and GDB for native
code and Pdb for Python. Our evaluation across a diverse set of code, including C/C++ code with known bugs
and a suite of Python code including standalone scripts and Jupyter notebooks, demonstrates that C!"#DBG
can successfully analyze root causes, explain bugs, and generate accurate !xes for a wide range of real-world
errors. For the Python programs, a single query led to an actionable bug !x 67% of the time; one additional
follow-up query increased the success rate to 85%. C!"#DBG has seen rapid uptake; it has already been
downloaded more than 75,000 times.

CCS Concepts: • Computing methodologies → Arti!cial intelligence; • Software and its engineering
→ Software testing and debugging.

Additional Key Words and Phrases: Debugging, Arti!cial Intelligence, Software Engineering

ACM Reference Format:
Kyla H. Levin, Nicolas van Kempen, Emery D. Berger, and Stephen N. Freund. 2025. C!"#DBG: Augmenting
Debugging with Large Language Models. Proc. ACM Softw. Eng. 2, FSE, Article FSE085 (July 2025), 22 pages.
https://doi.org/10.1145/3729355

1 Introduction
Debuggers help programmers identify and !x bugs by letting them investigate program state
and navigate program execution. Debuggers for mainstream languages, including GDB [39] and
LLDB [27] (for C, C++, and Rust), JDB (for Java), Pdb (for Python), and the Chrome or Firefox
debuggers (for JavaScript), generally provide the same functionality. In particular, most debuggers
∗Equal contribution.
†Work done at the University of Massachusetts Amherst.

Authors’ Contact Information: Kyla H. Levin, University of Massachusetts Amherst, Amherst, MA, USA, khlevin@cs.
umass.edu; Nicolas van Kempen, University of Massachusetts Amherst, Amherst, MA, USA, nvankempen@cs.umass.edu;
Emery D. Berger, University of Massachusetts Amherst, Amherst, MA, USA and Amazon Web Services, Seattle, WA, USA,
emery@cs.umass.edu; Stephen N. Freund, Williams College, Williamstown, MA, USA, freund@cs.williams.edu.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2994-970X/2025/7-ARTFSE085
https://doi.org/10.1145/3729355

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

HTTPS://ORCID.ORG/0009-0005-2533-7499
HTTPS://ORCID.ORG/0000-0002-1708-0073
HTTPS://ORCID.ORG/0000-0002-3222-3271
HTTPS://ORCID.ORG/0009-0000-6992-199X
https://doi.org/10.1145/3729355
https://orcid.org/0009-0005-2533-7499
https://orcid.org/0000-0002-1708-0073
https://orcid.org/0000-0002-3222-3271
https://orcid.org/0009-0000-6992-199X
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://doi.org/10.1145/3729355
https://www.acm.org/publications/policies/artifact-review-and-badging-current

FSE085:2 Kyla H. Levin, Nicolas van Kempen, Emery D. Berger, and Stephen N. Freund

support observing program execution via tracing and reporting when a program reaches a given
line or function of source code; interrupting execution and returning control to the debugger when
the program reaches a given line or function via breakpoints, when a particular condition is true
via conditional breakpoints, or when a variable changes via watchpoints (a.k.a. data breakpoints);
inspecting local variables, globals, heap objects, and backtraces of the call stack; and resuming
program execution line-by-line (single-step) or at the granularity of function calls.

Debuggers can be helpful, but !nding and !xing software defects remains a deeply challenging
and time-consuming task [7, 20, 47]. Programmers must still reason about program behavior to
ascertain what went wrong. They must formulate and test hypotheses about program execution,
they must read and understand code they may have not written, and they must pore over potentially
voluminous information. Such information includes lengthy executions, large amounts of program
data, and many stack frames that potentially span multiple threads.

This paper introduces the C!"#DBG AI-powered debugger assistant. C!"#DBG integrates into
and signi!cantly extends the functionality of standard debuggers. C!"#DBG builds on the insight
that large language models (LLMs), such as OpenAI’s GPT-4 [34], enable a debugger to leverage
insights and intuition from the vast real-world knowledge embedded in LLMs. This knowledge
enables C!"#DBG to !x classes of issues that depend on logical thinking and domain-speci!c
reasoning beyond the ability to write and debug programs. For example, Figure 2 illustrates the use
of C!"#DBG to debug a program by leveraging a knowledge of statistics that cannot be gleaned
from the program itself.
A debugger integrated with C!"#DBG continues to provide its full range of functionality but

also lets programmers engage in debugging dialogs where they can ask high-level questions like
‘why is x null here?’ or ‘why isn’t this value what I expected?’. The question can be as
simple as ‘why?’ if a program has crashed or failed an assertion. To answer such queries, C!"#DBG
orchestrates a conversation with an LLM. A key feature of C!"#DBG is that it grants autonomy
to the LLM to “take the wheel” and act as an independent agent [10, 42] while answering the
programmer’s queries. Speci!cally, the LLM issues “function calls” [33] to run commands in the
underlying debugger to investigate program state, execute code, or obtain source code. The results
of those calls are sent back to the LLM to use in constructing its response. After answering a query,
control is returned to the programmer, who may then enter additional commands or chat messages.

Our prototype of C!"#DBG integrates into three widely used debuggers: GDB, LLDB, and Pdb.
Our evaluation presents a range of case studies demonstrating thatC!"#DBG improves signi!cantly
on existing debuggers. On a suite of unpublished Python scripts and Jupyter notebooks written by
undergraduate students, one or two queries is su"cient for C!"#DBG to properly diagnose and
!x defects 85% of the time, typically at a cost well under $0.20 USD. C!"#DBG is also e#ective at
identifying causes and providing !xes for a range of real-world bugs in C/C++ code.

This paper makes the following contributions:

• It introduces C!"#DBG, an AI-powered debugger assistant that enables large language
models to “take the wheel” and control the debugger via agentic reasoning.

• It describes the implementation of our C!"#DBG prototype.
• It presents an evaluation of C!"#DBG that demonstrates its signi!cant advantages over
existing debugger functionality.

Our evaluation shows that C!"#DBG is broadly applicable to many domains and programming
languages, and we expect it to be particularly useful for novice programmers, who often lack the
experience to e#ectively use debuggers. C!"#DBG is also useful for experienced programmers,
who can augment debugging sessions with C!"#DBG’s reasoning capabilities in a conversational
and interactive way.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

C!"#DBG: Augmenting Debugging with Large Language Models FSE085:3

Source code for bootstrap.py
1 from datascience import *
2 from ds101 import *
3

4 def make_marble_sample():
5 table = Table().read_table('marble-sample.csv')
6 return table.column('color')
7

8 def proportion_blue(sample):
9 return sample
10

11 def resampled_stats(observed_marbles, num_trials):
12 stats = bootstrap_statistic(observed_marbles,
13 proportion_blue,
14 num_trials)
15 assert len(stats) == num_trials
16 return stats
17

18 observed_marbles = make_marble_sample()
19 stats = resampled_stats(observed_marbles, 5)
20

21 assert np.isclose(np.mean(stats), 0.7)

Fig. 1. An example program containing several bugs (§2). It is supposed to create an array of marble
colors, compute the proportions of blue marbles in resamples of that array, and assert that their mean is
about 0.7, the proportion for the array.

2 Overview
This section illustrates C!"#DBG’s features and ability to assist in debugging the program in
Figure 1. That program is a distillation of real errors encountered by students in an introductory
data science lab. It creates an array observed_marbles representing the colors of marbles (red or
blue) in a sample stored in a !le. It then calls bootstrap_statistic to create same-sized resamples
of that array. That function computes a statistic for each resample and returns an array of those
statistics. In this case, the statistic is proportion_blue, the proportion of blue marbles. Given a
su"ciently large number of trials, the mean of the resamples’ statistics should be close to 0.7, the
proportion of blue marbles in the original sample [6].

The program fails the assertion in resampled_stats, and Figure 2 illustrates a debugging session.
To try to !gure out what went wrong, the user issues the Pdb command p num_trials to view
the value of that variable. Continuing debugging with existing tools would likely involve issuing
additional commands, examining data !les, source code, and examining library documentation.
With C!"#DBG, the user instead starts a dialog with the debugger, asking why doesn’t stats
have 5 elements?While constructing the answer (in blue), the LLM takes the wheel and directly
issues debugger commands (yellow). These include standard Pdb commands and a C!"#DBG-
speci!c info command for accessing the source code and docstrings for any user-written code, as
well as the docstrings for library code (which we assume is correct and not the root cause of errors).

C!"#DBG identi!es and corrects the root cause: proportion_blue incorrectly computes the
desired statistic. When C!"#DBG cannot identify the root cause, it suggests further debugging steps
and control is returned to the user, who may continue the chat, issue further debugger commands,
or both. Figure 3 illustrates this scenario, where a version of bootstrap.py with the corrected
proportion_blue function fails the assertion on line 21.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

FSE085:4 Kyla H. Levin, Nicolas van Kempen, Emery D. Berger, and Stephen N. Freund

$ chatdbg bootstrap.py

Traceback (most recent call last):
File !/python3.11/site-packages/ipdb/__main__.py!, ...
pdb._run(stdlib_pdb._ScriptTarget(mainpyfile))

File !/python3.11/pdb.py!, line 1659, in _run
self.run(target.code)

File !/python3.11/bdb.py!, line 600, in run
exec(cmd, globals, locals)

File !<string>!, line 1, in <module>
File !./bootstrap.py!, line 19, in <module>
stats = resampled_stats(observed_marbles, 5)

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File !./bootstrap.py!, line 15, in resampled_stats
assert len(stats) == num_trials

^^^^^^^^^^^^^^^^^^^^^^^^
AssertionError
Uncaught exception. Entering post mortem debugging
Running 'cont' or 'step' will restart the program

(ChatDBG) p num_trials

5

(ChatDBG) Why doesn’t stats have 5 elements?

(ChatDBG) p len(stats)
150

(ChatDBG) info bootstrap_statistic
bootstrap_statistic(observed_sample, compute_statistic, num_trials)

Creates num_trials resamples of the initial sample. Returns an array of the
provided statistic for those samples.

* observed_sample: the initial sample, as an array.

* compute_statistic: a function that takes a sample as an array and returns
the statistic for that sample.

* num_trials: the number of bootstrap samples to create.

You MUST assume that `bootstrap_statistic` is specified and implemented correctly.

(ChatDBG) p proportion_blue
<function proportion_blue at 0x1050b00e0>

(ChatDBG) info proportion_blue
8 def proportion_blue(sample):
9 return sample

From the information we have, the stats variable in resampled_stats is supposed to have 5 elements, but it actually has 150
elements...

The Python debugger output shows a reference to a variable or function called proportion_blue, which is used as the
compute_statistic parameter for bootstrap_statistic. Upon looking at the proportion_blue function’s definition, it is
found that the function simply returns the input sample without computing a statistical value. This means that for each of the
num_trials (which is 5), bootstrap_statistic is adding the entire sample to the stats array without processing the sample
to obtain a single statistic value...

Recommendation
To fix this issue, the proportion_blue function must be corrected to perform the intended computation of returning the
proportion of blue marbles in the sample:

def proportion_blue(sample):
return np.mean(sample == 'B')

Fig. 2. A debugging session with C!"#DBG (§2). For brevity, we elide repetitive or unimportant parts.
C!"#DBG catches the assertion failure on line 15 and prompts the user to enter commands (bold and
highlighted in gray). Commands issued by C!"#DBG when it takes the wheel are highlighted in yellow ,

and its response is highlighted in blue .

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

C!"#DBG: Augmenting Debugging with Large Language Models FSE085:5

$ chatdbg bootstrap.py

Traceback (most recent call last):
File !./bootstrap.py!, line 21, in <module>
assert np.isclose(np.mean(stats), 0.7)

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
AssertionError
...

(ChatDBG) Why is the mean of stats not close to 0.7?

(ChatDBG) p np.mean(stats)
0.7466666666666667

...

(ChatDBG) info resampled_stats
...

(ChatDBG) info make_marble_sample
....

(ChatDBG) info bootstrap_statistic
...

...

Recommendation
1. Check the CSV file marble-sample.csv to verify the proportion of blue to red marbles and ensure it is close to 70% blue

marbles.
2. Review the implementation of the proportion_blue function...
3. Verify that the proportion_blue function ... is available in the current scope or imported correctly.

(ChatDBG) p proportion_blue(observed_marbles)

0.7

(ChatDBG) That value is correct.

...

(ChatDBG) p stats
array([0.66666667, 0.8 , 0.63333333,

0.76666667, 0.86666667])

At this point, the most straightforward explanation for the error is that the number of trials is not enough to accurately reflect
the expected mean due to random sampling e!ects. Increasing the number of trials would likely result in an average statistic
that is closer to the expected value of 0.7, following the Law of Large Numbers.

Recommendation
Increase the number of bootstrap trials significantly (e.g., from 5 to something like 1000 or more) to reduce the variability of the
mean...

Fig. 3. A debugging session demonstrating how C!"#DBG incorporates real-world knowledge (§2).
A"er correcting proportion_blue in Figure 1, the program fails on line 21 because the mean proportion of
blue marbles in the resamples is not the expected value. C!"#DBG identifies high variance resulting from the
small number of trials as the root cause.

The user asks why the mean of stats is not close to 0.7, and C!"#DBG’s initial response
suggests examining whether 0.7 is the appropriate expected value. To verify this, the user then
computes the proportion of blue marbles with a debugger command and tells C!"#DBG that 0.7
is indeed the correct value. In its follow-up, C!"#DBG points to the low number of trials (!ve)
as the issue. The LLM drew this correct conclusion without seeing any discussion of trial size or
variance in any program state, code, or documentation encountered during the chat. A powerful
aspect of C!"#DBG is its ability to exploit real-world knowledge in its analyses (here, the fact
that bootstrapping depends on large numbers of resamples) without speci!c instruction or user
intervention.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

FSE085:6 Kyla H. Levin, Nicolas van Kempen, Emery D. Berger, and Stephen N. Freund

Table 1. Debugger features and their dates of introduction (§3).Most key features have been around
for decades. By integrating into modern debuggers (GDB, LLDB, and Pdb), C!"#DBG inherits all of their
features while significantly extending them with functionality to explain bugs and their root causes, propose
fixes, and answer arbitrary natural-language queries over program state. (An asterisk or year in italics means
the feature is limited in functionality, performance, or depends on specific hardware support.)

System and Date Sin
gle

Ste
p

Sta
ck
Na
vig
ati
on

Br
ea
kp
oin

ts
(B
Ps
)

Co
nd
iti
on
al
BP
s

So
ur
ce
Le
ve
l

Tr
ac
e

Di
sp
lay

Sta
te

Ev
al.
Co
de

W
atc
hp
oin

ts

Ex
pla
in
Bu
gs

Pr
op
os
e F
ixe
s

Op
en
Qu
eri
es

DDT [19], 1961 ↭ ↭ ↭
EXDAMS [3], 1969 ↭ ↭ ↭ ↭
Mesa [43], 1979 ↭ ↭ ↭ ↭* ↭ ↭ ↭ ↭
Dbx [26], 1981 ↭ ↭ ↭ 1990 ↭ ↭ ↭ ↭ ↭
GDB [39], 1986 ↭ ↭ ↭ ↭ ↭ ↭ ↭ ↭ 1991
Pdb, 1992 ↭ ↭ ↭ ↭ ↭ ↭ ↭ ↭ ↭
LLDB, 2010 ↭ ↭ ↭ ↭ ↭ ↭ ↭ ↭ ↭

C!"#DBG, 2023 ↭ ↭ ↭ ↭ ↭ ↭ ↭ ↭ ↭ ↭ ↭ ↭

3 Related Work
Table 1 presents an overview of previous interactive debuggers, together with their features. The
!rst interactive debugger, DDT, introduced breakpoints, single-stepping, and stack navigation in
1961 [19]. By 1979, the Mesa debugger had most key features of modern debuggers, including
source-level debugging, conditional breakpoints, tracing, and the ability to display run-time state
and evaluate code [43]. Arbitrary conditional breakpoints date back at least to 1990 with Dbx [26].
Watchpoints were introduced by 1991 and have been in GDB since version 3.93.

In other work, Ko and Myers present Whyline, an interactive, trace-based debugger that lets
programmers select from a range of queries and identi!es (via static and dynamic analysis) a
timeline that answers the query [18]. Programmers can only select from those queries presented
by Whyline as options. In contrast, C!"#DBG permits programmers to pose arbitrary queries
that it answers via a dialog with an LLM. Whyline’s use of traces gives it the ability to answer
questions that might not be straightforward to answer with the current program state but limits its
applicability to relatively short-lived executions.
The goal of program slicing, introduced by Weiser in 1981 [41], is to produce a shorter version

of a program limited to the source code that could have led to an error. Program slicing has been
extensively studied; Weiser’s paper has been cited over 5,000 times to date. As Section 4.7 describes,
C!"#DBG performs backwards slicing to collect code spread across code cells to facilitate debugging
of Jupyter notebooks.
Fault localization seeks to identify the likely location of a defect’s root cause. Several prior

studies have investigated the use of machine learning and LLMs for fault localization. Some of the
studied techniques apply machine learning to source code features, coverage data, or other static
code features to predict faulty lines of code, but they do not utilize dynamic state and run-time
information. DeepFL [24], Grace [28] and DeepRL4FL [25] are examples of such systems. Similarly,
LLMAO [44] employs LLMs to provide suspiciousness scores for each line of code in a given
program, but only provides access to the source code. AutoFL [16] also utilizes an LLM and enables
it to statically retrieve source code and coverage information about the program via function

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

C!"#DBG: Augmenting Debugging with Large Language Models FSE085:7

calls. However, the system requires a failing test case as input and does not employ run-time state
information.

C!"#DBG improves upon these systems by providing an LLM with access to run-time program
state and the ability to take control of the underlying debugger. Both features enhance the LLM’s
ability to provide more accurate and informative feedback to the user. We also note that other fault
localization techniques can be used in tandem with C!"#DBG to improve results, as suggested by
Section 5.1’s utilization of backwards slicing to identify code relevant to a bug in Python notebooks
and Section 5.2’s utilization of AddressSanitizer [37] to provide a better starting point for diagnosing
and !xing memory errors in native code.

Automated program repair is another active area of software engineering research [9]. Systems
for automatic program repair attempt to generate source-level program patches that prevent a
program from failing. C!"#DBG performs best-e#ort automated program repair by requesting
that the LLM propose code !xes as part of its response, ultimately letting the programmer drive
code changes using these suggestions. Previous research has shown that automated program repair
hints can provide signi!cant help in the debugging process and suggests that the bene!ts of correct
advice outweigh the risk of deceptive ones [8].

3.1 Concurrent Work
Several approaches developed concurrently with C!"#DBG have also integrated LLMs into auto-
matic program repair or fault localization techniques to enhance the debugging process. Robin [2]
is a chat-based debugging assistant designed to help users diagnose errors more quickly. Both Robin
and C!"#DBG provide a limited program context to the LLM at the beginning of a conversation.
However, Robin has no direct access to any additional context about the program and execution
state; the user must manually retrieve and provide these items. Robin’s functionality is therefore
roughly equivalent to the Enriched Stack con!guration of C!"#DBG, detailed in Section 5.1. As
Figure 6 shows, C!"#DBG achieves a nearly two-fold increase improvement in diagnosing errors
versus the Enriched Stack con!guration. C!"#DBG’s e#ectiveness generally increases further
with targeted questions and follow-up discussions with the user.

AutoCodeRover [48] and SWE-agent [45] are complementary approaches that focus on fault
localization and automatic repair, relying exclusively on issue descriptions and source code. C!"#$
DBG additionally leverages run-time information to identify root causes and propose !xes. Section 5
demonstrates the strength of this approach over relying solely on static information. Both Au-
toCodeRover and SWE-agent perform an evaluation using SWE-bench [15], which was created to
evaluate the e"cacy of such static tools; unfortunately, this benchmark suite is not applicable to
C!"#DBG due to its extensive usage of run-time information.

RepairAgent [4] and AutoSD [17] are tools that employ LLMs in speci!c work$ows that mimic
standard debugging strategies in an attempt to repair pre-identi!ed bugs. While successful in some
settings, both tools rely on the user providing a failing test case and the precise location of the bug.
By contrast, C!"#DBG does not require this information. C!"#DBG also enables a more $exible
work$ow that permits collaboration with the developer in addition to seamless integration into the
standard debugging process.

4 Implementation
4.1 Using C!"#DBG: Preliminaries
C!"#DBG integrates with existing debuggers as either a plug-in or a direct extension. Our primary
focus to date has been an extension to Pdb, which supports both non-interactive Python scripts

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

FSE085:8 Kyla H. Levin, Nicolas van Kempen, Emery D. Berger, and Stephen N. Freund

and interactive sessions in IPython or Jupyter notebooks, and a plug-in for LLDB to support C/C++
code. A subset of features has been ported to GDB and WinDBG.

Con!guration for Python is minimal and limited to the installation of the chatdbg package with
the standard package installer, plus one optional shell script command to add it as an extension to
IPython. C!"#DBG extends either the standard pdb.Pdb debugger or IPython’s implementation of
Pdb, depending on how it is run. Con!guration for LLDB and other C/C++ debuggers is similarly
straightforward. LLDB can be installed through standard package managers if it is not already
present, and theC!"#DBG plug-in is installed via a single shell command. SinceC!"#DBG leverages
OpenAI’s LLMs, the user must also set an environment variable to a valid OpenAI API key within
their system’s con!guration settings.

4.2 Debugging a Target Program
For Python, debugging with C!"#DBG begins by running chatdbg on the target program. No
special preparation of the target is needed; Python’s managed run time ensures that debugging
information and source code is always available. Debugging is supported in IPython interactive
sessions or Jupyter notebooks via the standard command-line $ag --pdb or the Jupyter magic
command %pdb, respectively. Control drops into the debugger when an exception occurs.
For C and C++, debugging begins by running lldb on the target program. The target program

must be an unstripped executable generated with the -g compiler $ag, which ensures the availability
of DWARF debug information that describes the memory layout and maps the program’s machine
code back to the original source code. That information is essential for the e#ective debugging of
unmanaged code.
C!"#DBG also handles native code generated for other languages but may require additional

steps. For example, to debug a Rust target program, the Cargo.toml !le must list C!"#DBG as
a dependency and the main function must be annotated with #[chatdbg::main] to ensure that
error messages are visible to C!"#DBG through a log !le.

4.3 C!"#DBG Architecture Overview
C!"#DBG orchestrates communication between the user, the debugger, and the LLM, as shown
in the architecture diagram in Figure 4. The operations in the command loop pseudocode map
naturally onto debugger APIs and onto LLM APIs supporting completion and function calls [33].
C!"#DBG currently utilizes OpenAI’s API [32] and GPT-4 models. We provide a brief overview of
the C!"#DBG architecture and then elaborate on the most salient technical innovations below.

1→ C!"#DBG dispatches standard commands, such as p num_trials in Figure 2, directly to the
underlying debugger (lines 3-7). It also preserves those commands and their output in the history
variable for later communication to the LLM. 2→ Any other text entered by the user, such as ‘why
doesn’t stats have 5 elements?’, is directed to C!"#DBG, which creates a prompt to send to
the LLM. If this is the start of a chat, C!"#DBG bundles basic instructions, information from the
debugger about the current stack and error, program inputs, history of user commands, and the text
together in an initial prompt (lines 9-12). Otherwise, C!"#DBG bundles only the history since the
last chat step and text (line 14). The M"%&P’()*# function concatenates the prompt components
into a string, respecting any length limits set by the LLM by selectively truncating parts as needed.

3→ C!"#DBG then sends the prompt to the LLM and processes the response stream, which
includes both 4→ requests to run debugger commands (lines 19-22) and 5→ prose for the user (line
23). In Figure 2, C!"#DBG runs four debugging commands, including one to print the length of
the stats array, via this mechanism as the LLM constructs its response. C!"#DBG echoes those
commands and their outputs to the user. Once the full response has been processed, C!"#DBG
returns control to the user. As Section 4.5 discusses, C!"#DBG augments the underlying debuggers

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

C!"#DBG: Augmenting Debugging with Large Language Models FSE085:9

free-form

text

Existing
Debugger

(Pdb, LLDB,…)output

command

free-form text

enriched stack,
error info

prompt

response

command

ChatDBG
Agent

output

standardcommand
①

②
③

④

⑤

LLM

language server
(native) or other

source tools

1→ Standard commands are handled by the existing debugger.
2→ C!"#DBG converts free-form text into a suitable prompt.
3→ C!"#DBG sends the prompt.
4→ The LLM takes the wheel and directly issues commands

to the underlying debugger. This step may involve con-
sulting other tools, such as a language server for native
code.

5→ The LLM responds to the prompt.

1: history = “”
2: loop
3: line = I+*,#()
4: if I-D&.,//&’C())"+0(line) then
5: output = D(C())"+0(line) 1→
6: P’1+#(output)
7: history = history + (line + “→” + output)
8: else
9: if not C!"#I+P’(/’&--() then 2→
10: prompt =M"%&P’()*#(I+-#’,2#1(+-(),
11: E+’12!&0S#"2%(), I+*,#-(),
12: E’’(’(), history, line)
13: else
14: prompt =M"%&P’()*#(history, line)
15: S&+0(prompt) 3→
16: history = “”
17: while R&-*(+-&P&+01+/() do
18: match R&2&13&()
19: case D&.,/(cmd) ↑ 4→
20: output = D(C())"+0(cmd)
21: P’1+# (cmd + “→” + output)
22: S&+0(output)
23: caseM&--"/&(text) ↑ P’1+#(text) 5→

Fig. 4. C!"#DBG architecture and command processing algorithm (§4.3).

with specialized commands for the LLM to use when taking the wheel. For example, the C!"#DBG
variant for native code installs debugger commands that utilize the clangd language server [5, 30]
to retrieve source code corresponding to symbol de!nitions.

4.4 Initial Prompts and Enriched Stack Traces
In addition to including the user’s text, the initial prompt conveys instructions to LLM and the
context surrounding the error. We illustrate the components of the prompt in this section, using the
initial prompt in Figure 5 that was generated for the !rst query in Figure 2 as a running example.

Instructions. The instructions at the top of the prompt ask the LLM to answer questions about
the root cause of the error, to focus on user code, to explain values stored in variables, and to end
each response with either a !x or suggestions for further debugging steps. The last item ensures a
relatively consistent structure for answers that facilitates reading them and evaluating their quality.
Paragraphs 2-4 of the instructions are the take the wheel prompt described in Section 4.5.

Enriched stack trace. C!"#DBG’s success at identifying and !xing errors relies critically on
providing the LLM with su"cient details to reveal the cause of the error. A key source of that
information is the run-time stack. Debuggers provide a way for the user to view the stack trace but
often only show function names, source !le locations, and possibly a couple lines of code for each
stack frame. C!"#DBG provides a more detailed enriched stack trace to the LLM. That stack trace
includes the types and values of variables for each frame, as well as a larger window of at least 10
lines of code. Enriched stack traces also elide frames corresponding to library code to better focus
the LLM on user-written code, which C!"#DBG assumes to be the most likely cause of errors.
In Python, C!"#DBG leverages Pdb’s internal data structures to build enriched stack traces.

When converting values to suitable string representations, C!"#DBG must balance utility with
the size of the string produced. For objects, C!"#DBG calls the object’s __repr__ method if an

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

FSE085:10 Kyla H. Levin, Nicolas van Kempen, Emery D. Berger, and Stephen N. Freund

Instructions:
You are a debugging assistant. You will be given a Python stack trace for an error and answer questions related to the root
cause of the error.

Call the debug function to run Pdb debugger commands on the stopped program. You may call the debug function to run
the following commands: bt, up, down, p expression, list. Call debug to print any variable value or expression that you
believe may contribute to the error.

Call the info function to get the documentation and source code for any variable, function, package, class, method reference,
!eld reference, or dotted reference visible in the current frame. Examples include: n, e.n where e is an expression, and t.n
where t is a type. Unless it is from a common, widely-used library, you MUST call info exactly once on any symbol that is
referenced in code leading up to the error.

Call the provided functions as many times as you would like.

The root cause of any error is likely due to a problem in the source code from the user. Explain why each variable contributing
to the error has been set to the value that it has. Continue with your explanations until you reach the root cause of the error.
Your answer may be as long as necessary.

End your answer with a section titled “Recommendation” that contains one of:
– a !x if you have identi!ed the root cause
– a numbered list of 1-3 suggestions for how to continue debugging if you have not

Enriched Stack Trace:
The program has this stack trace:
[... skipping 4 hidden frame(s)]

./bootstrap.py(19)<module>()
15
16 assert len(stats) == num_trials
17
18 observed_marbles = make_marble_bag()

---> 19 resampled_stats(observed_marbles, 5)

Global variables:
observed_marbles: ndarray = array(['R', 'R', 'R', ..., 'B',

'B', 'B'], dtype='<U1')

> ./bootstrap.py(16)resampled_stats()
14 num_trials)
15

---> 16 assert len(stats) == num_trials
17
18 observed_marbles = make_marble_bag()

Variables in this frame:
num_trials: int = 5
observed_marbles: ndarray = array(['R', 'R', 'R', ...,

'B', 'B', 'B'], dtype='<U1')
stats: ndarray = array(['B', 'R', 'B', ..., 'R', 'B',

'R'], dtype='<U32')

Error:
The program encountered the following error:
AssertionError

The code assert len(stats) == num_trials is correct and must not be changed.

History:
This is the history of some pdb commands I ran and the results:
(ChatDBG) p num_trials
5

User Text:
Why doesn’t stats have 5 elements?

Fig. 5. The initial prompt for the debugging session in Figure 2 (§4.4). For brevity, the enriched stack
includes only five lines of source in each frame, rather than the default of 10.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

C!"#DBG: Augmenting Debugging with Large Language Models FSE085:11

appropriate (non-default) version exists. Otherwise, it iterates over the object’s !elds and recursively
converts their values to strings. Similarly, C!"#DBG recursively converts the values stored in
aggregate structures like lists, arrays, and dictionaries to strings, but limits the number of elements
shown to a small, !xed number. The rest of the elements are abbreviated with an ellipsis (...). This
recursive conversion of values to strings is limited to a depth of three, at which point any remaining
values are again abbreviated with ellipses. This strategy balances the need to provide the LLM with
su"cient information to diagnose the error with the need to avoid overwhelming it with too much
information. In cases with the elided details are important, the LLM can request them via the take
the wheel mechanism.
C!"#DBG follows roughly the same approach in LLDB, utilizing the static types embedded in

the DWARF debugging information to decode the stack. In addition, any pointers are dereferenced
to show the values being referred to as well; null pointers and illegal dereferences are dropped.

Inputs. The initial prompt also includes the target’s command line arguments and standard input
when that information is available from the underlying debugger. These are empty and elided in
Figure 5.

Error. A description of the error causing execution to stop is extracted from the underlying
debugger. When the error is due to an assertion failure, C!"#DBG instructs the LLM to assume
that the assertion is valid as written so that it will look beyond the assertion for the real problem.

History. The initial prompt also includes the history of commands already issued by the user, as
well as their outputs. This builds a more complete context surrounding the user’s query.

4.5 Taking the Wheel
C!"#DBG supports take the wheel debugging via the function call capabilities in OpenAI’s API
and most recent models [33]. This agentic approach [10, 42] lets clients register callback functions
with the LLM for obtaining additional information while constructing a response. The LLM calls
these functions by sending special messages to the client as part of its response stream. The client
receives those messages, computes the requested results, and sends them back to the LLM. The
initial prompt describes how to use the available functions.
For example, C!"#DBG registers a debug(command) function for running a command

in the underlying debugger. The LLM calls debug(!p len(stats)!) through this mecha-
nism in the session from Figure 2. C!"#DBG then runs Pdb’s command processing routine,
onecmd(!p len(stats)!), and captures the output to and send back. C!"#DBG similarly uses
the SBCommandInterpreter.HandleCommand routine in LLVM. In both cases, the command and
output are printed so the user can see these steps.

The LLM has su"cient background knowledge on debuggers and requires no additional training
to navigate up/down the stack, inspect variables and heap data, evaluate expressions, and perform
other typical debugger operations.
Supporting agentic reasoning over run-time program state via function calls is a key technical

innovation of C!"#DBG. Without this capability, there would be no e#ective way to provide the
LLM with a detailed view of relevant program state. A common alternative technique for handling
large amounts of task-speci!c data in LLMs is to employ a retrieval augmented generation (RAG)
model [23], which collects and stores the data in a vectorized database that is then made available
to the model for retrieval. However, that approach seems less useful in this context, as program
state information will be distinct for each debugging session and not easily vectorized.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

FSE085:12 Kyla H. Levin, Nicolas van Kempen, Emery D. Berger, and Stephen N. Freund

Table 2. C!"#DBG command extensions (§4.6). C!"#DBG extends the underlying debuggers with several
new commands to help the LLM navigate through and understand the target’s code. C!"#DBG provides
access to them via the LLM’s function call API.

Command Debugger Output

info symbol Pdb The source code and/or docstring for a symbol referring to any function, method,
!eld, class, or package.

slice symbol Pdb The source code in the backwards slice of the global symbol. Interactive
IPython/Notebook sessions only.

code loc LLDB The source code surrounding loc, where loc has the form filename:lineno.
definition loc symbol LLDB The declaration for the !rst occurrence of symbol at loc, where loc has the

form filename:lineno.

4.6 Navigating the Code
While the LLM can often leverage pre-existing background knowledge of common Python and
C/C++ standard libraries, it will likely have limited-to-no knowledge of any user-de!ned code
or third-party library functions. Trying to include all possibly-relevant source code in the initial
prompt would be infeasible and would prevent C!"#DBG from scaling to larger codebases. Instead,
C!"#DBG extends the underlying debuggers with several new commands designed to help the
LLM navigate through and understand the target’s code. These commands are available to the LLM
via function calls and listed in Table 2.

C!"#DBG augments Pdb with the info command, which prints the docstring for any func-
tion, class, !eld, method, or package. It additionally prints the source code for any user-de!ned
function. The info requests in Figure 2 demonstrate these two cases for proportion_blue and
bootstrap_statistic, respectively. The command is implemented via the standard inspect and
pydoc Python libraries.
The info command is not directly reproducible for unmanaged code in LLVM because there

is no comparable existing debugger support for retrieving the source or documentation for
a symbol. Instead, C!"#DBG adds two other debugging commands to LLDB. The !rst, code,
prints the code surrounding a source location described by a !lename and line number, as in
code polymorph.c:118. The second command, definition, prints the location and source
code for the de!nition corresponding to the !rst occurrence of a symbol on a given line of
code. For example, definition polymorph.c:118 target prints the location and source for
the declaration of target corresponding to its use on that line. The definition implementation
leverages the clangd language server, which supports source code queries via JSON-RPC and
Microsoft’s Language Server Protocol [30].

4.7 Slices for Interactive Python
C!"#DBG supports debugging interactive IPython sessions and Jupyter notebooks. Interactive
sessions lead to many individual code cells that are each evaluated separately. Cells may be evaluated
out-of-order, override de!nitions from earlier cells, and communicate values to other cells through
top-level global variables. Others have noted the challenges of reasoning about program behavior
in this context [11, 38]. C!"#DBG provides an additional slice debugging command to facilitate
that reasoning. The slice command computes the backwards slice for any variable used in the
current cell that was de!ned in previously-executed cells. It returns the code for cells in that slice.
Suppose the code from bootstrap.py in Figure 1 were written in four notebook cells as shown
below:

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

C!"#DBG: Augmenting Debugging with Large Language Models FSE085:13

In[2]: def make_marble_sample(): ...

In[3]: def proportion_blue(sample): ...

In[4]: def resampled_stats(observed_marbles, num_trials):
stats = bootstrap_statistic(observed_marbles,

proportion_blue,
num_trials)

assert len(stats) == num_trials
return stats

In[5]: observed_marbles = make_marble_sample()
stats = resampled_stats(observed_marbles, 5)

After evaluating these cells, slice(observed_samples) returns the source for the cells labeled
In[2] and In[5], and slice(stats) returns the source for all four cells. C!"#DBG uses ipyflow
to compute slices [14, 38].

4.8 Security and Risks
It is possible for the LLM to issue debugging commands containing arbitrary code through the
debug function call provided by C!"#DBG. That code could, for example, delete !les or execute
other malicious actions on the client. C!"#DBG mitigates this risk by sanitizing LLM-generated
debugging commands before running them. For Python, the sanitizer ensures that any functions
called in LLM-provided commands belong to a user-con!gurable whitelist. For native code, code
provenance is harder to track and languages are more permissive, so the sanitizer rejects any
commands calling functions. C!"#DBG supports an --unsafe $ag to disable sanitizing when the
client system is running in an isolated environment that obviates the need for such protections.

It is also possible for the LLM to hallucinate and respond with incorrect or misleading diagnoses
and !xes. C!"#DBG mitigates this risk by not directly applying proposed code !xes or suggestions
to the target code. Instead, C!"#DBG presents them to the user, who may then vet and judge the
quality of the LLM’s responses and decide whether or not to follow suggested changes.

5 Evaluation
We demonstrate C!"#DBG’s capacity to identify the root cause of defects and provide !xes in two
contexts: bugs in relatively small Python programs written by students and bugs in large C/C++
programs. The former have well-de!ned expected behavior that enables us to thoroughly and
systematically assess C!"#DBG. The latter demonstrates its e#ectiveness on unmanaged code when
unusual corner cases trigger crashes. Our evaluation addresses the following research questions:
RQ1: Is C!"#DBG e#ective at diagnosing and !xing bugs in Python? RQ2: Which components of
C!"#DBG contribute to its e#ectiveness? RQ3: Is C!"#DBG e#ective at diagnosing and !xing
bugs in unmanaged code (C/C++)?

5.1 Python
We applied C!"#DBG to all of the bugs in a collection of student labs from two introductory
computer science courses; see Table 3. Bugs c1–c8 are in non-interactive scripts from a programming
class that perform various !le reading and text processing tasks. Bugs s1–s14 are in Jupyter
notebooks [40] from a data science class that manipulate, visualize, and compute over arrays
and tables. Some bugs were apparent to the programs’ authors. Others were identi!ed during
autograding.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

FSE085:14 Kyla H. Levin, Nicolas van Kempen, Emery D. Berger, and Stephen N. Freund

Table 3. Python programs exhibiting a variety of common errors (§5.1). Programs c1–c8 are command
line scripts, and programs s1–s14 are Jupyter notebooks, which utilize two non-standard libraries consisting
of 3,000 lines of code. Semantic errors reflect failed tests expressed as assertions. Crashes reflect unexpected
termination due to any other type of error.

Name LoC Type Reported Exception Root Cause

c1 48 semantic Assertion Error O#-by-one error in an h-index computation
c2 81 crash Name Error Parameter not referenced properly
c3 64 crash Value Error Error in CSV column label leads to improper data parsing
c4 89 crash Index Error A class’s __str__ fails if an object’s internal list is empty
c5 29 crash Index Error Missing one of two base cases in a recursive function
c6 72 crash Name Error Multiple errors related to building list of user-de!ned objects
c7 71 semantic Assertion Error Failure to convert input to lower case before processing
c8 72 semantic Assertion Error Missing test for lowercase words

s1 123 semantic Assertion Error Incorrect drop and rename operations leading to bad data
s2 124 semantic Assertion Error Incorrect max operation on a table
s3 124 semantic Assertion Error Incorrect aggregation function in pivot operation
s4 124 semantic Assertion Error Incorrect aggregation function in group operation
s5 162 semantic Assertion Error Hardcoded table data in wrong order
s6 162 crash Name Error Typo in variable reference
s7 45 semantic Assertion Error Function confuses parameter and global variable
s8 49 semantic Assertion Error Wrong percentile used in con!dence interval construction
s9 112 semantic Assertion Error Wrong percentile used in con!dence interval construction
s10 118 semantic Assertion Error Loops doesn’t append to array correctly
s11 181 crash Value Error Creates a sample without replacement larger than the input
s12 127 crash Value Error Incorrect label when accessing column value for table row
s13 127 crash Value Error Pivot uses wrong columns for row/columns in new table
s14 65 crash Index Error Incorrect computation of random sample under null hypothesis

Unlike many existing bug benchmarks for Python, these programs are unpublished and thus
not in the language model’s training data. In addition, the programs have clear correctness criteria
that lead to objective e#ectiveness metrics in our experiments. The bugs are representative of
commonmistakes because theywere introduced by real humans, rather than synthetically generated.
They range from scoping issues, algorithmic errors, and misuse of library functions to subtle
misunderstanding of domain knowledge. They include both semantic errors leading to failed tests
and crashing errors that terminate execution abruptly. Further, they re$ect two important, widely-
used modalities for Python programming: non-interactive scripts and interactive computational
notebooks. C!"#DBG supports debugging in both settings.

Programs were prepared by removing them from their automatic grading harness and replacing
failed unit tests with assert statements that generate exceptions. We focus our evaluation on
Python and perform an ablation study by progressively enabling C!"#DBG features. We ran each
program ten times under the !ve con!gurations in Table 4: Default Stack includes standard stack
traces, as generated by ipdb [13], with 5 lines of code per frame in the initial prompt, but it does
not support the LLM taking the wheel. Enriched Stack generates enriched stacks with ten lines of
code per frame, and +Take the Wheel additionally permits C!"#DBG to run debugger commands.
These three con!gurations all use why? as the initial user text. +Targeted Question asks a question
speci!c to the failure. For semantic errors, which validate the values stored in variables, these
questions describe what those values should be or what they intend to represent. For crashes, the
questions relate the crash to expected behavior, as in the following; we designed our questions to
be “neutral” and not hint at the root cause.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

C!"#DBG: Augmenting Debugging with Large Language Models FSE085:15

Table 4. Configurations used in the Python experiments (§5.1).

Con!guration Stack Take the Initial Ask a
Trace Wheel Prompt Follow-up

Default Stack standard why?
Enriched Stack enriched why?
+Take the Wheel enriched ↭ why?
+Targeted Question enriched ↭ specialized
+Dialog enriched ↭ specialized ↭

Fig. 6. Overall C!"#DBG success rate for each configuration (§5.1). C!"#DBG innovations and user-
provided context gradually increase e!ectiveness.

c3 (Crash) Why am I not reading the CSV !le correctly?
s11 (Crash) Why am I not able to sample 100 rows?
c1 (Semantic) Why am I not getting 3?
s1 (Semantic) bill_length_mean_by_species should be a table of the mean bill lengths of

each species in our data set. Why isn’t it?
The !nal +Dialog con!guration is the same as +Targeted Question but extends the chat with a
second query. All trials use the same follow up: Continue to explain your reasoning and give me a !x
to make it work as I describe. Context-speci!c follow-ups work better, but we opted for consistency.

C!"#DBG used the gpt-4-1106-previewmodel for these experiments. Under +Targeted Ques-
tion, the !rst prompt and response led to, on average, a chat of about 10,000 tokens (7,500 words),
a cost of about $0.12 USD under OpenAI’s current pricing model [35], and a completion time of
about 25 seconds. Subsequent steps in extended debugging dialogs incurred comparable costs. Time
was highly variable and dominated by the performance of OpenAI’s service. These characteristics
will be di#erent for other platforms and models and, given current trends, we expect signi!cant
reductions in both time and cost as models improve.
RQ1: Is C!"#DBG e"ective at diagnosing and !xing bugs in Python?

Each responsewasmanually examined and deemed a success if it included an accurate explanation
of the error and an actionable !x. That !x could be either code or a prose description in which all
necessary details were made explicit. To avoid bias in this assessment, explicit criteria for each
program was determined prior to examining the responses.

Figure 6 shows the success rate under each con!guration. The simplest con!guration, Default
Stack, provides functionality roughly equivalent to the user copying and pasting the program
stack trace and basic error information into an LLM chat window and requesting a !x. We use this
con!guration as a baseline for evaluating the impact of C!"#DBG’s more advanced con!gurations.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

FSE085:16 Kyla H. Levin, Nicolas van Kempen, Emery D. Berger, and Stephen N. Freund

Fig. 7. Success rate for C!"#DBG for each program and configuration (§5.1). Vertical lines show the
mean.

With all features enabled, C!"#DBG was successful at identifying and !xing bugs in well over half
of the trials. Any time or energy expended by the user manually debugging those cases would be
all but eliminated by using C!"#DBG.

RQ1 Summary: Even with just the simple question why?, C!"#DBG was successful 57% of the
time. With questions specialized to the target’s particular error, that number jumps to 67%, and
with an additional dialog step C!"#DBG succeeded in identifying and !xing the defect in 85%
of the trials.

RQ2: Which components of C!"#DBG contribute to its e"ectiveness?
Figure 7 presents the success rates for each program under each con!guration. The Enriched

Stack plots demonstrate that enriched stacks provide some bene!t, particularly for crashes in
which the stack contains su"cient information to diagnose the problem, but they alone do not
provide much improvement for many semantic errors in which the relevant computation steps
complete before failure. However, enriched stacks coupled with letting the LLM take the wheel led
to signi!cant improvement in the success rate for both crashing and semantic bugs, as shown in
the +Take the Wheel plots.
Using the +Take the Wheel feature, the LLM issues from 0 to 12 debugging commands per

run, most commonly calling the info, slice (for notebooks), and p (print) debugging commands.
While all of these commands provide useful information about execution state and code, the slice
command was critically important for notebooks. Without it, success rates rarely improved when
the LLM took the wheel.
The +Targeted Question con!guration demonstrates the impact of providing even the most

modest details about expected behavior in queries. When the LLM is asked to continue its reasoning

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

C!"#DBG: Augmenting Debugging with Large Language Models FSE085:17

in +Dialog, C!"#DBG’s success rate improves despite the follow-up prompt providing no feedback
on the contents or quality of the !rst response. This phenom indicates that constraints on the
underlying LLM’s response lengths may prevent it from conducting the amount of reasoning
necessary to develop a !x in a single step. The success rates for +Targeted Question and +Dialog
demonstrate the importance of continued dialogs and user input. We expect those features to be
even more important to C!"#DBG’s success when diagnosing bugs in more complex programs.

The LLM also demonstrated its background knowledge with the responses including, for example,
details of Python idioms and libraries, the de!nition of h-index [12], and the implementation and
limitations of various statistical techniques.
Failures were generally due to the LLM not always recognizing or discovering key aspects of

a program’s behavior. We observe that in some cases, enabling additional features in C!"#DBG
decreases its success rate. We attribute this result to the fact that longer and more complex prompts
can occasionally degrade the e#ectiveness of LLMs [22]. In general, the further the distance between
the root cause of a bug and observable e#ect, the more challenging it was for C!"#DBG (and
people [47, p. 243]) to !nd it. In some cases, it was on the right track but did not converge on an
actionable !x. In others, it suggested changes that would introduce other bugs. It also occasionally
made mistakes, such as con$ating proportions and percentages or failing to handle unusual corner
cases. All of these could be mitigated by feedback from the user in subsequent follow-ups.

RQ2 Summary:While all features of C!"#DBG contribute to its success, the technical innova-
tions enabling it to take the wheel are critical. The most sophisticated con!gurations show that
user-provided contextual information about behavior and engaging in multi-step dialogs are
particularly good ways to improve its e#ectiveness.

5.2 C and C++
Programs in unmanaged languages such as C and C++ are vulnerable to memory safety errors.
These memory errors can also hinder the debugging process: the crash may not occur immediately
at the memory violation but instead much later on, and the crash may cause corruption of the stack
and/or heap, making it challenging to recover any useful information.
Table 5 summarizes the programs extracted from the BugBench [29] and BugsC++ [1] suites

used to evaluate C!"#DBG’s e#ectiveness at debugging unmanaged code. Programs used in this
evaluation are all real-world applications with concrete known bugs. The four BugBench programs
were selected as the only ones we could retrieve, build, and reproduce on our system. The BugsC++
suite does not include the original crash-causing inputs. However, it provides links to the original
bug report, CVE identi!er, and/or exploit-!xing patch, from which we manually retrieve crash
reproduction information. We randomly selected and reproduced four bugs from the “memory
error” category.
Some of the programs studied do not crash at run time. We employed AddressSanitizer [37] to

force a crash at the moment a memory violation occurs to trigger those defects. AddressSanitizer is
already capable of reporting some information about the crash when it happens. However, this
information is often very dense, and typically points at the symptom of the bug, not its root cause.
We did not include that information in the initial prompt.
RQ3: Is C!"#DBG e"ective at diagnosing and !xing bugs in unmanaged code (C/C++)?

We ran our C/C++ experiments on an x86 Ubuntu 22.04 server. We used Clang and LLDB 17 to
compile and debug, using $ags -g -Og -fno-omit-frame-pointer. C!"#DBG used OpenAI’s
gpt-4-1106-preview model. Each program was run ten times using queries of the form I am
debugging cpp-peglib. Provide the root cause of this crash, for PEG, followed by a

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

FSE085:18 Kyla H. Levin, Nicolas van Kempen, Emery D. Berger, and Stephen N. Freund

Table 5. Bugs in unmanaged C/C++ code, and our criteria for fixing the proximate cause or the root
cause of each (§5.2).

Error Fix
Program LoC Type Root Cause Proximate Cause Root Cause

BC [29] 17.0k Bu#er
over$ow

Input from data !le printed to a !xed-
size bu#er

Truncate on copy Use dynamic size

GZIP [29] 8.2k Bu#er
over$ow

Command line argument unsafely
copied to a !xed-size bu#er

Truncate on copy Check size &
warn/exit

NCOM [29] 1.9k Bu#er
over$ow

Command line argument unsafely
copied to a !xed-size bu#er

Truncate on copy Check size &
warn/exit

PEG [1] 14.7k Null deref-
erence

Invalid input produces corrupted data
structure

Check if not null Warn/exit

POLY [29] 0.7k Bu#er
over$ow

Command line argument is unsafely
copied to a !xed-size bu#er

Truncate on copy Check size &
warn/exit

TIFF [1] 58.9k Division by
zero

Combination of command line options
leads to a division by zero

Override option
values

Warn/exit when
invalid

YAML1 [1] 8.7k Stack over-
$ow

Long sequences of { in the input leads
to deep recursion

Use iterative
method

Guard recursion
depth

YAML2 [1] 8.7k Assertion
failure

Speci!c input causes a peek request
for non-existent “next” token

Replace assert Check before
peeking

request to include code in the response. Average time (27 seconds) and cost ($0.06 USD) were
comparable to Python.
We manually examined each response to determine if C!"#DBG successfully provided an

actionable code !x for the proximate cause of the crash or for the underlying root cause. We used
the criteria outlined in Table 5. While !xing root causes is the ultimate goal, !xing proximate
causes can still be bene!cial as !xing crashes enables further debugging steps.

Figure 8 presents C!"#DBG’s ability to suggest a !x for either the proximate or root cause of the
bug. Generally, C!"#DBG is excellent at diagnosing and explaining the reason for the crash, which
in itself may be useful to programmers. For BC, GZIP, NCOM, and POLY, C!"#DBG tends to suggest
replacing the strcpy or sprintf call with their respective strncpy and snprintf counterparts to
prevent bu#er over$ows. While correct, this change truncates the input silently. Validation or other
measures should be added to obtain a robust !x. The root cause in BC is inside code generated
from a YACC !le. The clangd language server does not handle this case in a way that would let
C!"#DBG answer the LLM’s definition requests properly.
In the case of PEG, C!"#DBG correctly identi!es which pointer is null but typically suggests

ignoring it instead of failing immediately. This is similar to YAML2, where C!"#DBG recommends
replacing the assertion with a check inside a function rather than recommending that the client
check that the function’s preconditions are met prior to the call. C!"#DBG has a relatively high
root cause !x rate for YAML1 and TIFF. It often correctly suggests !xes to limit recursion depth
(YAML1) and to validate input parameters (TIFF).

RQ3 Summary: C!"#DBG was successful in virtually all of our trials in diagnosing and
explaining the cause of the crash. It was also capable of providing relevant, actionable !xes:
36% of its suggestions addressed the root cause of the bug, while another 55% corrected the
proximate cause.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

C!"#DBG: Augmenting Debugging with Large Language Models FSE085:19

Fig. 8. C!"#DBG success rate at fixing the proximate or root cause in C/C++ programs (§5.2).
C!"#DBG successfully identified and fixed the root cause 36% of the time and the proximate cause an
additional 55% of the time.

5.3 Threats to Validity
This paper evaluates C!"#DBG on two suites of code. The primary suite is a collection of un-
published student labs that may not be entirely representative of code written by, for example,
experienced programmers. The second suite consists of real C/C++ applications and bugs drawn
from the BugBench and BugsC++ suites. Unlike the Python suite, the C/C++ source code and the
bug !xes for these programs are available on GitHub, which may lead to data leakage a#ecting the
C/C++ study if those repositories were part of the training set for the LLMs we used. While the
C/C++ suite consists of real-world applications, most of the errors are memory errors. Other types,
such as assertion failures, concurrency errors, or other logical errors, may lead to di#erent results.

C!"#DBG depends on an LLM to analyze and drive exploration of state, and like all systems based
on LLMs today, its performance is a#ected by prompt engineering. It is possible that C!"#DBG’s
prompts are over!t to the speci!c GPT-4 models we employed; this threat is somewhat mitigated
by the fact that C!"#DBG was originally developed using a di#erent model (GPT-3.5-turbo). LLMs
are also inherently stochastic, and it is possible to obtain unusually good results by chance. To
mitigate this threat, our evaluation runs C!"#DBG on each test program at least ten times, which
produced stable and repeatable results with only small variation in aggregate.

Our evaluation depends on a manual evaluation of whether C!"#DBG’s explanation of a bug and
its proposed !x are satisfactory. We mitigated the risks of subjectivity by using precisely de!ned
criteria decided upon in advance. Python !xes were deemed successful if the resulting code met the
correctness requirements outlined in the assignment. C/C++ !xes were deemed successful at !xing
the proximate or root cause using the criteria in Table 5. Fixes described in prose were permitted,
provided that the details of all necessary changes to the code were made explicit.

6 Future Work
We see several promising avenues for future work. Incorporating existing fault localization ap-
proaches into C!"#DBG, rather than relying solely on the LLM’s ability to explore the program’s
code and state, could potentially increase its e#ectiveness and e"ciency by allowing the LLM to
focus its attention on suspicious !les, functions, or lines of source code. Similarly, incorporating
delta debugging [46] could increase the e#ectiveness of C!"#DBG by limiting the amount of input
for an LLM and providing failure-inducing events as guidance. Finally, integrating C!"#DBG with
a time-travel debugger [31, 36] would expand its reach to exploring program state over time, letting

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

FSE085:20 Kyla H. Levin, Nicolas van Kempen, Emery D. Berger, and Stephen N. Freund

it answer queries that cannot be answered given only the current program state. One challenge
of integrating these more sophisticated techniques will be ensuring that the LLM can e#ectively
utilize them, which may necessitate !ne tuning or additional training on their usage.

7 Conclusion
This paper presents C!"#DBG, the !rst AI-based debugging assistant. Our evaluation shows that
engaging in a debugging dialog with C!"#DBG can signi!cantly assist in identifying root causes
of errors and developing correct !xes.

Acknowledgments
This material is based upon work supported by the National Science Foundation under Grant
No. 2243636. Any opinions, !ndings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily re$ect the views of the National Science Foundation.

Data-Availability Statement
C!"#DBG is available on GitHub at github.com/plasma-umass/ChatDBG. An archived version is
also available on Zenodo [21].

References
[1] Gabin An, Minhyuk Kwon, Kyunghwa Choi, Jooyong Yi, and Shin Yoo. 2023. BugsC++: A Highly Usable Real World

Defect Benchmark for C/C++. In 38th IEEE/ACM International Conference on Automated Software Engineering, ASE
2023, Luxembourg, September 11-15, 2023. IEEE, 2034–2037. doi:10.1109/ASE56229.2023.00208

[2] Yasharth Bajpai, Bhavya Chopra, Param Biyani, Cagri Aslan, Dustin Coleman, Sumit Gulwani, Chris Parnin, Arjun
Radhakrishna, and Gustavo Soares. 2024. Let’s Fix this Together: Conversational Debugging with GitHub Copilot. In
2024 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Liverpool, UK, September 2-6,
2024. IEEE, 1–12. doi:10.1109/VL/HCC60511.2024.00011

[3] Robert M. Balzer. 1969. EXDAMS: Extendable Debugging and Monitoring System. In American Federation of Information
Processing Societies: AFIPS Conference Proceedings: 1969 Spring Joint Computer Conference, Boston, MA, USA, May
14-16, 1969 (AFIPS Conference Proceedings, Vol. 34), Harrison W. Fuller (Ed.). AFIPS Press, Boston, MA, 567–580.
doi:10.1145/1476793.1476881

[4] Islem Bouzenia, Premkumar T. Devanbu, and Michael Pradel. 2024. RepairAgent: An Autonomous, LLM-Based Agent
for Program Repair. CoRR abs/2403.17134 (2024). doi:10.48550/ARXIV.2403.17134 arXiv:2403.17134

[5] LLVM 2025. What is clangd? LLVM. Retrieved Feburary 12, 2025 from https://clangd.llvm.org/
[6] B. Efron. 1979. Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics 7, 1 (1979), 1–26. http:

//www.jstor.org/stable/2958830
[7] Marc Eisenstadt. 1993. Tales of Debugging from The Front Lines. In Empirical Studies of Programmers: Fifth Workshop,

Vol. 86. Ablex Publishing Corporation, Palo Alto, CA.
[8] Hadeel Eladawy, Claire Le Goues, and Yuriy Brun. 2024. Automated Program Repair, What Is It Good For? Not

Absolutely Nothing!. In Proceedings of the 46th IEEE/ACM International Conference on Software Engineering, ICSE 2024,
Lisbon, Portugal, April 14-20, 2024. ACM, New York, NY, USA, 84:1–84:13. doi:10.1145/3597503.3639095

[9] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated Program Repair. Commun. ACM 62, 12
(2019), 56–65. doi:10.1145/3318162

[10] Izzeddin Gur, Hiroki Furuta, Austin V. Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and Aleksandra Faust.
2024. A Real-World WebAgent with Planning, Long Context Understanding, and Program Synthesis. In The Twelfth
International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net.
https://openreview.net/forum?id=9JQtrumvg8

[11] Andrew Head, Fred Hohman, Titus Barik, Steven Mark Drucker, and Robert DeLine. 2019. Managing Messes in
Computational Notebooks. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI
2019, Glasgow, Scotland, UK, May 04-09, 2019, Stephen A. Brewster, Geraldine Fitzpatrick, Anna L. Cox, and Vassilis
Kostakos (Eds.). ACM, New York, NY, USA, 270. doi:10.1145/3290605.3300500

[12] Jorge E. Hirsch. 2005. An index to quantify an individual’s scienti!c research output. Proc. Natl. Acad. Sci. USA 102, 46
(2005), 16569–16572. doi:10.1073/PNAS.0507655102

[13] ipdb 2007. IPython PDB. Retrieved March 16, 2024 from https://github.com/gotcha/ipdb

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

https://github.com/plasma-umass/ChatDBG
https://doi.org/10.1109/ASE56229.2023.00208
https://doi.org/10.1109/VL/HCC60511.2024.00011
https://doi.org/10.1145/1476793.1476881
https://doi.org/10.48550/ARXIV.2403.17134
https://arxiv.org/abs/2403.17134
https://clangd.llvm.org/
http://www.jstor.org/stable/2958830
http://www.jstor.org/stable/2958830
https://doi.org/10.1145/3597503.3639095
https://doi.org/10.1145/3318162
https://openreview.net/forum?id=9JQtrumvg8
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1073/PNAS.0507655102
https://github.com/gotcha/ipdb

C!"#DBG: Augmenting Debugging with Large Language Models FSE085:21

[14] IPy$ow 2020. IPy"ow: A reactive Python kernel for Jupyter notebooks. https://github.com/ipyow/ipyow
[15] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, O!r Press, and Karthik R. Narasimhan. 2024.

SWE-bench: Can Language Models Resolve Real-world Github Issues?. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net. https://openreview.net/forum?
id=VTF8yNQM66

[16] Sungmin Kang, Gabin An, and Shin Yoo. 2024. A Quantitative and Qualitative Evaluation of LLM-Based Explainable
Fault Localization. Proc. ACM Softw. Eng. 1, FSE (2024), 1424–1446. doi:10.1145/3660771

[17] Sungmin Kang, Bei Chen, Shin Yoo, and Jian-Guang Lou. 2025. Explainable automated debugging via large language
model-driven scienti!c debugging. Empir. Softw. Eng. 30, 2 (2025), 45. doi:10.1007/S10664-024-10594-X

[18] Amy J. Ko and Brad A. Myers. 2010. Extracting and Answering Why and Why Not Questions about Java Program
Output. ACM Trans. Softw. Eng. Methodol. 20, 2 (2010), 4:1–4:36. doi:10.1145/1824760.1824761

[19] A. Kotok. 1961. DEC Debugging Tape.
[20] Lucas Layman, Madeline Diep, Meiyappan Nagappan, Janice Singer, Robert DeLine, and Gina Venolia. 2013. Debugging

Revisited: Toward Understanding the Debugging Needs of Contemporary Software Developers. In 2013 ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement, Baltimore, Maryland, USA, October 10-11,
2013. IEEE Computer Society, 383–392. doi:10.1109/ESEM.2013.43

[21] Kyla Levin, Nicolas van Kempen, Emery Berger, and Stephen Freund. 2025. Software Artifact for "ChatDBG: Augmenting
Debugging with Large Language Models". doi:10.5281/zenodo.15185773

[22] Mosh Levy, Alon Jacoby, and Yoav Goldberg. 2024. Same Task, More Tokens: the Impact of Input Length on the
Reasoning Performance of Large Language Models. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, Lun-Wei Ku,
Andre Martins, and Vivek Srikumar (Eds.). Association for Computational Linguistics, 15339–15353. doi:10.18653/V1/
2024.ACL-LONG.818

[23] Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich
Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/
paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html

[24] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. DeepFL: Integrating Multiple Fault Diagnosis Dimensions
for Deep Fault Localization. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2019, Beijing, China, July 15-19, 2019 (Beijing, China), Dongmei Zhang and Anders Møller (Eds.). ACM,
New York, NY, USA, 169–180. doi:10.1145/3293882.3330574

[25] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2021. Fault Localization with Code Coverage Representation Learning.
In 43rd IEEE/ACM International Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE,
661–673. doi:10.1109/ICSE43902.2021.00067

[26] Mark A. Linton. 1990. The Evolution of Dbx. In Proceedings of the Usenix Summer 1990 Technical Conference, Anaheim,
California, USA, June 1990. USENIX Association, Berkeley, CA, 211–220.

[27] LLVM 2010. LLDB Debugger. LLVM. Retrieved February 6, 2024 from https://lldb.llvm.org/
[28] Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang, and Lingming Zhang. 2021. Boosting

Coverage-Based Fault Localization via Graph-Based Representation Learning. In ESEC/FSE ’21: 29th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, Athens, Greece, August
23-28, 2021, Diomidis Spinellis, Georgios Gousios, Marsha Chechik, and Massimiliano Di Penta (Eds.). ACM, New York,
NY, USA, 664–676. doi:10.1145/3468264.3468580

[29] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou. 2005. BugBench: Benchmarks for Evaluating
Bug Detection Tools. https://pages.cs.wisc.edu/~shanlu/paper/63-lu.pdf

[30] Microsoft. 2016. Language Server Protocol. Microsoft. Retrieved September 6, 2024 from https://microsoft.github.io/
language-server-protocol

[31] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll, and Nimrod Partush. 2017. Engineering Record
and Replay for Deployability. In 2017 USENIX Annual Technical Conference, USENIX ATC 2017, Santa Clara, CA, USA,
July 12-14, 2017, Dilma Da Silva and Bryan Ford (Eds.). USENIX Association, 377–389. https://www.usenix.org/
conference/atc17/technical-sessions/presentation/ocallahan

[32] OpenAI. 2020. OpenAI API. OpenAI. Retrieved March 18, 2024 from https://openai.com/index/openai-api/
[33] OpenAI. 2023. Function calling and other API updates. OpenAI. Retrieved February 24, 2024 from https://openai.com/

index/function-calling-and-other-api-updates
[34] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL] https://arxiv.org/abs/2303.08774
[35] OpenAI. 2024. Pricing - OpenAI. OpenAI. Retrieved March 8, 2024 from https://openai.com/pricing

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

https://github.com/ipyflow/ipyflow
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.1145/3660771
https://doi.org/10.1007/S10664-024-10594-X
https://doi.org/10.1145/1824760.1824761
https://doi.org/10.1109/ESEM.2013.43
https://doi.org/10.5281/zenodo.15185773
https://doi.org/10.18653/V1/2024.ACL-LONG.818
https://doi.org/10.18653/V1/2024.ACL-LONG.818
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1109/ICSE43902.2021.00067
https://lldb.llvm.org/
https://doi.org/10.1145/3468264.3468580
https://pages.cs.wisc.edu/~shanlu/paper/63-lu.pdf
https://microsoft.github.io/language-server-protocol
https://microsoft.github.io/language-server-protocol
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ocallahan
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ocallahan
https://openai.com/index/openai-api/
https://openai.com/index/function-calling-and-other-api-updates
https://openai.com/index/function-calling-and-other-api-updates
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://openai.com/pricing

FSE085:22 Kyla H. Levin, Nicolas van Kempen, Emery D. Berger, and Stephen N. Freund

[36] GNU Project. 2009. Reverse Debugging with GDB. Free Software Foundation. Retrieved September 6, 2024 from
https://sourceware.org/gdb/wiki/ReverseDebug

[37] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. 2012. AddressSanitizer: A Fast
Address Sanity Checker. In 2012 USENIX Annual Technical Conference, Boston, MA, USA, June 13-15, 2012, Gernot
Heiser and Wilson C. Hsieh (Eds.). USENIX Association, 309–318. https://www.usenix.org/conference/atc12/technical-
sessions/presentation/serebryany

[38] Shreya Shankar, Stephen Macke, Andrew Chasins, Andrew Head, and Aditya Parameswaran. 2022. Bolt-on, Compact,
and Rapid Program Slicing for Notebooks. Proceedings of the VLDB Endowment 15, 13 (2022), 4038–4047.

[39] Richard Stallman, Roland Pesch, Stan Shebs, et al. 2011. Debugging with GDB. Free Software Foundation, Boston, MA.
[40] Jupyter Team. 2015. Jupyter Notebooks. Jupyter Team. Retrieved March 8, 2024 from https://docs.jupyter.org/en/latest/
[41] Mark D. Weiser. 1981. Program Slicing. In Proceedings of the 5th International Conference on Software Engineering, San

Diego, California, USA, March 9-12, 1981, Seymour Je#rey and Leon G. Stucki (Eds.). IEEE Computer Society, 439–449.
http://dl.acm.org/citation.cfm?id=802557

[42] Michael J. Wooldridge and Nicholas R. Jennings. 1995. Intelligent agents: theory and practice. Knowl. Eng. Rev. 10, 2
(1995), 115–152. doi:10.1017/S0269888900008122

[43] Xerox, Systems Development Department. 1979. Mesa Debugger Documentation. https://www.applefritter.com/
content/mesa-debugger-documentation

[44] Aidan Z. H. Yang, Claire Le Goues, Ruben Martins, and Vincent J. Hellendoorn. 2024. Large Language Models for
Test-Free Fault Localization. In Proceedings of the 46th IEEE/ACM International Conference on Software Engineering,
ICSE 2024, Lisbon, Portugal, April 14-20, 2024. ACM, 17:1–17:12. doi:10.1145/3597503.3623342

[45] John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan, and O!r Press.
2024. SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering. CoRR abs/2405.15793 (2024).
doi:10.48550/ARXIV.2405.15793 arXiv:2405.15793

[46] Andreas Zeller. 1999. Yesterday, My ProgramWorked. Today, It Does Not. Why?. In Software Engineering - ESEC/FSE’99,
7th European Software Engineering Conference, Held Jointly with the 7th ACM SIGSOFT Symposium on the Foundations
of Software Engineering, Toulouse, France, September 1999, Proceedings (Lecture Notes in Computer Science, Vol. 1687),
Oscar Nierstrasz and Michel Lemoine (Eds.). Springer, Berlin, Heidelberg, 253–267. doi:10.1007/3-540-48166-4_16

[47] Andreas Zeller. 2009. Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann.
[48] Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. 2024. AutoCodeRover: Autonomous Program

Improvement. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis
(Vienna, Austria) (ISSTA 2024). Association for Computing Machinery, New York, NY, USA, 1592–1604. doi:10.1145/
3650212.3680384

Received 2024-09-12; accepted 2025-04-01

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE085. Publication date: July 2025.

https://sourceware.org/gdb/wiki/ReverseDebug
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://docs.jupyter.org/en/latest/
http://dl.acm.org/citation.cfm?id=802557
https://doi.org/10.1017/S0269888900008122
https://www.applefritter.com/content/mesa-debugger-documentation
https://www.applefritter.com/content/mesa-debugger-documentation
https://doi.org/10.1145/3597503.3623342
https://doi.org/10.48550/ARXIV.2405.15793
https://arxiv.org/abs/2405.15793
https://doi.org/10.1007/3-540-48166-4_16
https://doi.org/10.1145/3650212.3680384
https://doi.org/10.1145/3650212.3680384

	Abstract
	1 Introduction
	2 Overview
	3 Related Work
	3.1 Concurrent Work

	4 Implementation
	4.1 Using ChatDBG: Preliminaries
	4.2 Debugging a Target Program
	4.3 ChatDBG Architecture Overview
	4.4 Initial Prompts and Enriched Stack Traces
	4.5 Taking the Wheel
	4.6 Navigating the Code
	4.7 Slices for Interactive Python
	4.8 Security and Risks

	5 Evaluation
	5.1 Python
	5.2 C and C++
	5.3 Threats to Validity

	6 Future Work
	7 Conclusion
	Acknowledgments
	References

