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Abstract—A payment channel network is a blockchain-based
overlay mechanism that allows parties to transact more efficiently
than directly using the blockchain. These networks are composed
of payment channels that carry transactions between pairs of
users. Due to its design, a payment channel cannot sustain a
net flow of money in either direction indefinitely. Therefore,
a payment channel network cannot serve transaction requests
arbitrarily over a long period of time. We introduce DEBT
control, a joint routing and flow-control protocol that guides a
payment channel network towards an optimal operating state
for any steady-state demand. In this protocol, each channel
sets a price for routing transactions through it. Transacting
users make flow-control and routing decisions by responding to
these prices. A channel updates its price based on the net flow
of money through it. We develop the protocol by formulating
a network utility maximization problem and solving its dual
through gradient descent. We provide convergence guarantees for
the protocol and also illustrate its behavior through simulations.

Index Terms—Payment channel networks, routing, flow con-
trol, network protocols, dual method

I. INTRODUCTION

Blockchains, pioneered by Bitcoin, are systems that support
digital transactions in a completely decentralized manner.
However, most blockchains have poor transaction throughput,
a fundamental limitation that stems from their decentralized
design (e.g., Bitcoin processes around ten transactions per
second [CDE™16]). This low throughput results in exorbitant
transaction fees and hinders widespread adoption. To be a
viable option in practice, blockchain throughput must scale
significantly. Layer-two blockchain mechanisms are tools that
allow many transactions to take place outside of the underlying
blockchain system, thereby increasing the system’s through-
put. See [GMSR*20] for a comprehensive survey of these
methods. A payment channel network (PCN) is one such layer-
two mechanism that is used in practice. Recent years have
seen considerable research interest on PCNs, with a focus on
improving their security as well as their efficiency. This paper
focuses on their long-term transaction processing efficiency.

As the name suggests, a PCN is a network composed of
multiple payment channels. A payment channel is a special
account that two parties jointly create by depositing some
funds. Once a channel is established, the parties transact by
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exchanging digitally signed messages between themselves,
without recording these transactions on the blockchain. A PCN
consists of many such payment channels operating together,
allowing users who do not share a channel to direct their
transactions through intermediaries. Thus, a PCN facilitates
a much larger volume of transactions for the same amount
of escrowed funds than what would be possible through
standalone payment channels.

Although a payment channel can support indefinitely many
transactions, it imposes some constraints. A steady flow of
transactions through a payment channel in one direction de-
pletes the funds available at the source. In the long term,
a channel can only sustain a balanced flow of transactions;
i.e., the flows of money in each direction are equal. These
balance constraints apply to each channel in a PCN, potentially
limiting the PCN’s ability to meet the transaction demands of
its users. The central problem we address in this work is how
the network can serve the transaction demands it receives to
the best extent possible, while maintaining detailed balanced
flows (balanced flows on each channel).

In this work, we propose the DEBT (DEtailed Balance
Transaction) control protocol, a joint flow-control and routing
protocol for PCNs. The protocol uses channel prices as a
decentralized control mechanism for flows. The prices penalize
flows that increase the degree of imbalance through a channel
and incentivize flows in the opposite direction. Transacting
users calculate the path price (the sum of channel prices along
a path) for different paths between them. By selecting the path
with the minimum path price to execute the transaction, the
users perform routing. In addition, they adjust the transaction
amount as a function of the minimum price, thereby perform-
ing flow-control. Channels update their prices over time based
on the net flow of transactions through them.

Our main contribution is to prove that given an arbitrary
demand and an arbitrary PCN topology, the prices and the
flows under this protocol converge to an optimal value in the
following sense. The flows maximize the total utility of all
users (plus a regularizer term), subject to the detailed balance
condition. Loosely, this translates to the PCN serving as many
transactions as possible over the long run.

We begin this paper by introducing the basic terminology
for payment channels in Section II-A and reviewing the
literature on payment channel networks in Section II-B. With
this background, we describe the main contributions of this
paper in Section III. In Section IV, we present a discrete-time
model of a payment channel network, specifying the order of
events in a time slot, the nature of transaction requests, and
the feasibility constraints imposed by the network. Section



V is devoted to the design of the DEBT control protocol.
The protocol’s convergence follows under some additional
assumptions; this is presented in Section VI. Simulation results
of the protocol on some simple PCNs are shown in Section
VII. These examples illustrate how the protocol performs
routing and flow-control by reacting to prices. We conclude
this paper in Section VIII with a discussion of the implications
of the assumptions we have made in our analysis and the
potential practical impact of our work.

II. BACKGROUND AND RELATED WORK
A. Payment Channels: Basic Principles

The idea of a payment channel was born at least as early as
2013 and has since undergone considerable evolution. We refer
the interested reader to Section 3 of the survey [GMSR*20]
and Chapter 5 of the thesis [Tik20] for a historical survey
of payment channels. Here, we describe the construction and
operation of a payment channel at a level of generality that
encompasses several designs.

a) Construction and Basic Operation: A payment chan-
nel is created by means of a special funding transaction,
with two nodes depositing some money into a new two-node
account (the channel). This funding transaction is recorded on
the blockchain. At the time of creation, both nodes also create
and privately hold a commitment transaction which disburses
the money held in the channel back to their personal accounts.
Once a channel is created between two nodes, they can transact
by exchanging messages between themselves. Each message
is simply a new commitment transaction, i.e., an agreement
between the two nodes to split the escrowed fund in a certain
portion between the two nodes. None of these transactions
are broadcast to the blockchain network. A channel is closed
by recording a commitment transaction on the blockchain that
returns the appropriate balances to the two nodes’ individual
accounts. A payment channel also includes some inbuilt safety
mechanisms by which an honest node can withdraw its funds
even if the other node goes missing or acts maliciously.

b) Channel Capacity and Balances: The total amount
of money escrowed in a channel is called the capacity of
the channel. The amount of money each node owns within
the channel are the balances of the two nodes. While the
capacity remains constant over time, the balances change with
every transaction. The sum of the balances always equals the
capacity. At any given point in time, a channel’s balances
impose a bound on the maximum value of a single transaction
that can be made in either direction. To elaborate, consider a
channel between two nodes A and B, and let their balances
be x4 and zp respectively. Then A cannot pay B more than
x4 and B cannot pay A more than xp amount of money in
a single transaction. Usually, the transaction values through a
payment channel are much smaller than the channel’s capacity.
Therefore, if a channel is balanced, i.e., the balances are
each close to half the capacity, it will be able to execute any
transaction request that might arise from either end.

¢) Flows: Consider a scenario where node A pays node
B ten dollars each day over the channel A — B (e.g., a
customer buying coffee from a cafe every day). This long-
term transaction pattern can be represented as a flow of money

across the channel. More generally, a flow through a channel
represents a long-term transfer of money from one node to
another. We can use the notion of a flow to represent a series
of transactions whose values fluctuate randomly or periodically
around some average value.

The notion of flows sheds some light on the choice of
the term channel capacity, defined above. In the context of
communication networks, this term denotes the maximum
rate of communication that a channel can support, i.e., the
maximum number of bits (or information) that the channel
can carry per unit time. For a payment channel, there is a
similar interpretation; its capacity, i.e., the total escrowed fund,
is proportional to the maximum possible flow rate through
the channel (sum of the flows in each of the two directions).
Indeed, the flow through a channel is maximized if each node
sends its complete balance to the counter-node immediately
after the previous transaction is completed and the resulting
flow rate is equal to the total escrowed fund per time slot.

d) The Balance Condition for Flows: In addition to a
bound on the total flow rate, a payment channel also imposes
a balanced flow constraint, which can be stated as follows.
Without persistent on-chain rebalancing (described below), a
payment channel cannot sustain a nonzero, constant net flow
indefinitely. Suppose, for instance, that on average, A pays
B ten dollars per day and B pays A five dollars per day.
Over time, A’s balance in the channel decreases continuously.
Whatever be the channel’s capacity, eventually A’s balance
gets completely exhausted. If A’s transactions to B are elastic
(i.e., A is willing to tolerate a smaller flow rate than its original
demand), A could wait for B to make some payments to A.
Effectively, the flow rate from A to B drops by half to five
dollars per day. Thus, the channel settles to a state where
it has zero net flow through it. This example illustrates how
a channel naturally enforces the balance constraint on flows
through it.

e) On-Chain Rebalancing: If flows are inelastic, i.e., the
entire demand must be served through the channel, then the
channel can reset its balances via an on-chain transaction.
One option is that A pays B some amount via an on-chain
transaction, with B paying A back the same amount on
the channel. If this amount is half the channel capacity, the
entire operation would rebalance the channel. Alternatively,
the nodes may open a new, perfectly balanced channel between
themselves. In summary, with persistent on-chain rebalancing,
a channel can support a nonzero net flow. However, on-chain
rebalancing is an expensive operation and should be avoided
to the extent possible. Moreover, supporting a nonzero net
flow through a channel with persistent on-chain rebalancing is
equivalent to serving balanced flows on the payment channel
and serving the rest of the demand on the blockchain.

B. Routing in Payment Channel Networks: A Review

Payment channel networks are a set of payment channels
operating in cooperation. The most popular such network is
the Lightning Network for Bitcoin, proposed by [PD16]. At
the time of writing, the network has more than 10, 000 nodes,
40,000 channels, and 5,000 Bitcoin escrowed in the channels



(see Iml.com for live statistics). The Lightning network has
played a central role in the growth of small-scale transactions
via Bitcoin [Riv23]. Alongside the surge in popularity of
the Lightning network, there has been a growing academic
literature on payment channel networks. Various aspects of
payment channel networks have been investigated, such as
their security, privacy, and efficiency [GMSR*20], [PT20].

In a payment channel network, the channel capacities and
the topology of the network are known to all nodes, but the
real-time balances are not. While this lack preserves privacy,
it poses a significant challenge in even the simplest task of
finding a feasible path for a transaction [TWFO20]. (A path
connecting two transacting nodes is said to be feasible if each
channel along the path has sufficient balance to execute the
transaction.) A naive approach for the path discovery problem,
used by the Lightning Network, is the following. One attempts
to transact along the shortest path in the network (which can
be found through the known topology); if the attempt fails,
the faulty edge is removed from the view and again a shortest
path is found. With deeper research into routing strategies for
PCNs, it was soon established that the naive routing strategy
used by the Lightning network is suboptimal.

There are many routing protocols that have been proposed
in the literature. We summarize some of the important findings
of this literature that are related to our work.

o Smaller transactions are more likely to succeed than
larger ones, simply because their feasibility requirements
are lower. Therefore, it is worth splitting a large transac-
tion into multiple smaller components and sending these
along different paths [DSACV18], [SVR+20].

o A PCN'’s throughput can suffer from channel congestion.
For example, if all nodes choose to transact along the
shortest path between them, channels with high centrality
(i.e., with many shortest paths through them) may get
congested; the total demand through them could exceed
their capacity (see discussion in Section II-A). These
channels will be forced to drop transactions because
they do not have the balance to serve them [SVR™20],
[LWZR23].

« Another factor affecting a PCN’s throughput is that chan-
nels can get imbalanced. As mentioned in Section II-A,
a channel through which there is a net flow of money
from one end to another eventually gets imbalanced and
is unable to support further flows in that direction. An
imbalanced channel could potentially stifle out many end-
to-end flows, lowering the PCN’s throughput [LZW20],
[ER21].

o Smart routing can improve a PCN’s throughput by miti-
gating both congestion and imbalance. A routing protocol
can discover paths that are slightly longer than the
shortest path where channels are underutilized (or have
higher capacity), thereby reducing congestion [LWZR23].
Similarly, a routing protocol can also direct transactions
along paths in a manner so as to rebalance channels
[DSACV18], [JRFCMG18], [LZW20], [ER21].

o Using channel prices/fees as a means of routing is an
economically sound and practically viable approach. Each
channel can charge a price that dynamically changes

with the extent of imbalance or congestion it faces.
In particular, a channel can charge different fees for
transactions in the two opposite directions in order to in-
centivize balanced flows. Nodes (users) are likely to make
the rational choice of choosing the cheapest path. This
automatically leads to routing decisions that reduce con-
gestion and channel imbalance [EKK*17], [DSACV18],
[JRFCMG18], [ER21], [VM21], [WYY*24].

o There is a potential privacy concern that such channel
prices can reflect channel balances and thereby leak
sensitive transaction information. This concern can be
offset by reducing the frequency of price updates or
adding some noise to the price (differential privacy style
solutions) [TWFO20], [WYY124].

¢ Choosing the best path by minimizing the transaction fee
over all possible paths in the graph is computationally ex-
pensive [EKK*17], [DSACV18], [CRZ"22]. Repeating
this procedure for every transaction may be infeasible. A
practical approach is for nodes to sporadically establish
a small set of candidate paths among all possible ones
and then optimize the prices only among these paths for
every transaction [ER21].

Next, we discuss the few papers that design PCN routing
protocols with theoretical guarantees: the Spider protocol
[SVRT20], the protocol of [VM21], and Fence [WYYT24].
These protocols share some common features. First, they aim
to reduce congestion and imbalance in PCN channels. Second,
they involve channels signaling congestion or imbalance to
transacting nodes (via prices or delays), who adjust routing
decisions accordingly. Third, their theoretical guarantees stem
from connections to network utility maximization problems.

Spider [SVRT20], inspired by TCP protocols, breaks trans-
actions into packets handled independently and maintains
queues at both ends of each channel. A channel queues a
packet if it lacks balance to forward it immediately, with
large queues signaling congestion/imbalance and leading to
delays. Nodes adjust transaction rates based on these delays,
reducing rates when delays are high. The efficacy of Spi-
der is demonstrated through extensive simulations. Moreover,
[SVR™20] proves that its steady-state flow-rate optimizes a
constrained utility maximization problem with logarithmic
utilities. However, this result is shown only for a specific
network topology and arbitrarily large demand. Moreover,
[SVRT20] does not provide any convergence guarantees.

Inspired by Spider, [VM21] proposes a protocol that also
breaks transactions into packets and maintains queues. How-
ever, it replaces delay-based signaling with explicit congestion
and imbalance prices. Congestion prices are identical in both
directions, while imbalance prices are opposite in sign. The
path price is the sum of these two prices over all channels, and
each packet takes the lowest-price path. The paper analyzes the
protocol under i.i.d. demand and proves that under certain con-
straints on the mean demand, it stabilizes all queues (executes
all transactions) with minimal on-chain rebalancing. The proof
technique involves drawing parallels between the protocol and
the dual to a constrained throughput maximization problem.
However, the results hold only for a circulation demand (see
discussion below).
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Fence [WYY™'24] also uses prices to manage congestion
and imbalance and is based on weighted throughput maximiza-
tion with constraints. Unlike the long-term flow-based models
of [SVRT20] and [VM21], Fence adopts a finite-horizon
approach, leading to a competitive ratio bound for worst-case
demand. However, this result holds only for uni-directional
PCNs, and [WYYT24] shows that no meaningful competitive
ratio exists for bidirectional channels. Like [VM21], Fence
tracks congestion and imbalance but uses an exponential price
function instead of a linear one. These steep prices enable the
competitive-ratio analysis in [WYYT24].

We conclude this section with a short note on the funda-
mental limitations of any payment channel network in serving
demand. Consider a setting where the demand between any
two nodes is steady over time and the demand is small
enough that capacity constraints are easily met (there is
no congestion). The demand is said to be a circulation if
each node sends as much money as it receives [SVRT20].
If this is not the case, i.e., some nodes may send more
than they receive and vice-versa, the demand is said to be
acyclic [SVRT20]. Any demand can be split into a circulation
component and a leftover acyclic component. In [SVRT20],
it is shown empirically that if the demand is a circulation,
a PCN can support the entire demand perpetually without
any on-chain rebalancing. Later, [VM21] analyzes a very
similar protocol and theoretically proves this result. In contrast,
acyclic demands can be executed in full only with persistent
on-chain rebalancing. In summary, a PCN may not always be
able to serve the demand in entirety.

The papers [SVRT20] and [STV'21] also uncover the
phenomenon of deadlocks. A deadlock is a scenario where,
owing to a few channels being imbalanced, a large number
of transactions are rendered infeasible; moreover, they remain
infeasible unless the channel undergoes on-chain rebalancing.
[STV*21] explains that deadlocks may arise when the demand
has an acyclic component. In particular, if a PCN tries to serve
any transaction request as long as it is feasible, channels can
get completely imbalanced, leading to deadlocks. [STV*21]
proposes a method to design the topology of the PCN to reduce
the prevalence of deadlocks. However, it does not propose a
protocol to avoid deadlocks. Preventing deadlocks is important
for a PCN to operate efficiently in the long run.

III. OUR CONTRIBUTION

In this work, we propose a simple routing and flow-
control protocol for PCNs, called DEBT control, with provable
convergence and optimality guarantees. We provide a brief
overview of our protocol’s design and analysis here in order
to distinguish it from prior work. We assume we are given
a payment channel network with an arbitrary topology; this
topology is known and fixed. We are also given a set of
transacting user-pairs who have some steady, elastic demand
between them. Given the network and the demand, we set the
objective of the PCN to maximize the total utility of all users,
subject to the balance constraint imposed by each channel.
The optimal solution to this problem is a set of flows that can
be sustained indefinitely by the PCN without any rebalancing.

We show that under the DEBT Control protocol, the flows in
the network converge to some such optimal solution.

We arrive at the DEBT control protocol using the fol-
lowing methodology, which is inspired by similar works in
the domain of communication networks [KMT98], [LL99],
[SY13], [KY14]. We derive the dual of the aforementioned
network utility maximization problem and show that the dual
is an unconstrained convex optimization problem. We show
that the gradient of the dual can be easily calculated, thus
making it straightforward to use gradient-descent to solve the
dual problem. Next, we show that the gradient-descent method
admits a decentralized network implementation; this forms the
DEBT control protocol. Endowing the Lagrange multipliers
with the interpretation of channel prices gives an intuitive
understanding of the protocol. Crucially, we allow channel
prices to be negative. Using known results of strong duality
(and other standard results in optimization), we show that the
protocol converges to an optimal solution for the dual, and
consequently, to optimal flows for the original problem. Our
theoretical result, as well as the method to obtain it, is novel
in the context of payment channel networks.

Next, we compare our work to the most closely related prior
work [SVRT20], [VM21], [WYY"24]. Firstly, our protocol
is designed from a long-term, or infinite-horizon point of
view. This long-term viewpoint allows us to pose the network
utility maximization problem in terms of flows, as done by
[SVR'20], and focus on the asymptotic convergence of the
protocol to a steady-state solution. In contrast, the work of
[WYY124] takes a short-term, or finite-horizon, viewpoint.
This difference is reflected in the flavor of the results: while
[WYYT24] prove competitive ratio results, thereby giving
guarantees for the worst-case performance over any possible
demand, we prove the convergence of our protocol to the op-
timum flows under steady demands. Our model and result are
also different from [VM21]; it assumes stochastic demands,
under which it proves bounds on the queue lengths, whereas
we assume deterministic demands, and prove convergence of
flows to the optimum value. Finally, our result is more general
than the result of [SVR'20] in two ways. First, we show
that our protocol converges to a steady-state solution, whereas
[SVRT20] does not show any convergence guarantees. Sec-
ond, our optimality guarantees hold for any network topology,
any demand, and a wide class of utility functions, whereas
the guarantees in [SVR'20] hold only for parallel networks,
infinite demand, and logarithmic utility functions.

Our work also highlights the efficacy of price-based flow-
control in preventing deadlocks. As we illustrate in Section
VII-B, our protocol can selectively curb the acyclic component
of the demand while allowing the circulation component of
the demand to flow. This is indeed necessary for the flows to
converge to an optimal steady-state value. It was observed
in [SVR'20] that the Spider protocol is unsuccessful in
preventing all deadlocks. Our analysis offers an explanation for
this observation; we show that using logarithmic utilities does
not allow the protocol to completely stifle deadlock-causing
acyclic demands. See Section VIIIA.c.



IV. A DISCRETE-TIME MODEL OF A PAYMENT CHANNEL
NETWORK

In this section, we present a mathematical model of a
payment channel network. We follow the notation used by
[STVT21]. The network consists of a set of nodes V and
a set of channels E between pairs of nodes. The nodes are
numbered 1,2,...,|V]|. A channel connecting nodes u and v
is denoted (u,v). We use the convention that the lower index
vertex is written first; e.g., in the channel (u,v), u < v. Each
channel has a certain capacity, which refers to the total amount
of money escrowed in the channel. Let ¢, ,, denote the capacity
of channel (u,v) and let ¢ € RY be a vector denoting the
capacities of all the channels in the network. Thus, the tuple
(V, E, c) specifies a weighted, undirected graph. This graph
remains unchanged throughout the period of operation.

A PCN is a dynamical system. In this work, we assume the
system evolves in discrete time steps. The state of the PCN
at any given time is described by the balances in each of the
channels. At any given time ¢, let the balance of node w in
channel (u,v) be z,,[t]. It follows that the balance of v in
the same channel is ¢, , — 2y[t]. Let z[t] € R¥ denote the
vector of balances, also called the state vector. By convention,
x contains the balance of the smaller-indexed node of each
channel; the balance at the opposite end of the channel is
inferred from its capacity. The state vector always satisfies
0 < z[t] < ¢ (the inequalities hold component-wise).

A. The Nature of Transaction Requests

We assume that in each slot, between every source-
destination node-pair, a single transaction request arrives. Let
a; ;[t] denote the monetary value of the transaction request
from source ¢ to destination j in slot ¢. This assumption does
not sacrifice any generality. Indeed, the case where no trans-
action is requested is easily modeled by setting a; ;[t] = 0.
Moreover, multiple transaction requests in a time slot can be
viewed as a single transaction request whose amount equals
the sum of all the individual components. In general, the
requested transaction amounts could vary arbitrarily over time.
For the sake of simplicity, in this work, we focus on the
regime of constant demands, i.e., we assume that a; ;[t] = a; ;
for all time ¢ and all transacting node-pairs (i, 7). The vector
a = (a;j)i,jevxv is called the demand vector. We do not
make any further assumption about a.

A second assumption we make is that the transaction
demand arriving to the payment channel network is elastic. In
other words, node-pairs prefer to have the entire transaction
be served by the PCN, but it is acceptable that the request
is dropped or partially served. This is a realistic assumption
because users have alternate means of transacting, e.g., on the
main blockchain. The choice of the transaction amount, g; ; [t],
in response to the network state, is termed as flow-control.

We model elastic transaction requests by means of a utility
function. We assume that the node-pair (7, ;) gains a utility
of U; j(g;;[t]) upon being served a transaction of amount
¢ij[t] € [0,a;;] by the network. We assume that U; ;(-)
is a concave, differentiable, and nondecreasing function over
[0, a;,;]. We also assume that U; ;(0) = 0 and U] ;(0) < oc.

We assume transaction requests are infinitely divisible, which
means that any fraction of the value a; ;[t] can be served in slot
t with the rest being dropped. We also assume that transactions
are not queued.

B. The Order of Events

We model the PCN as a discrete-time system. To be definite,
we assume that events take place in a fixed order in each time
slot, as described below.

1) Transaction requests arrive to the payment channel net-
work. Each transaction request is composed of a source-
destination node-pair and a monetary value. These trans-
action requests depend on exogenous factors, such as
demand for certain goods and services, and are inde-
pendent of the state in the network.

2) The nodes make flow-control and routing decisions.
That is, for every transaction request, the corresponding
source-destination pair decides what fraction of the
transaction value should be served; this includes the
possibilities of serving the transaction entirely or drop-
ping the transaction entirely. The node pair also decides
which paths of the network should carry the transaction—
we allow for multi-path routing. These decisions are
made on the basis of prices that reflect the network’s
state; the precise details are given in Section V.

3) The payment channel network executes the transaction
requests made by the nodes by moving the requisite
money through the payment channels. After the trans-
actions are served, channel balances are updated. We
assume that the channels themselves never drop any
transactions, i.e., all transaction requests that are passed
on from the nodes to the network are actually served.
The details of how this may be achieved in practice is
described in Section IV-D.

C. Paths and Flows

A path in the PCN is a sequence of channels, with each
one adjacent to the previous one, endowed with a sense of
direction. A path may have cycles, but we assume that it
traverses each channel at most once. Any such path can be
represented by a vector r € {—1,0,1}¥ using the convention
described below:

o letr,, =1 if the path traverses the channel (u,v) in the

direction u — v,

o let r,, = —1 if the path traverses the channel (u,v) in

the direction v — u, and

o let r,, = 0 if the path does not traverse the channel

(u,v) in either direction.

A source-destination pair (4, j) may use any number of paths
in the network for carrying transactions. Denote the k™ path
by p; j1 and the set of such paths by F; ;. Note that a path
from ¢ to j is different from a path from j to i. Let P denote
the set of all paths (P = U; ;P; ;). Let R denote the E x
P routing matrix with entries in {—1,0, 1} constructed using
the convention given above. In R, each column corresponds
to a particular path and each row corresponds to a particular
channel.



With every path in the network, we associate a flow, which
represents the amount of money sent along that path over a
period of time. Let f; ; »[t] denote the amount of money being
sent on path p; ;. in slot {. The amounts of money sent from
node ¢ to node j along all possible paths in slot ¢ is denoted
by fi[t], e, fijlt] = (fignlt] : 1 <k <|P;;]). The total
amount of money sent from i to j in slot ¢ is denoted by ¢; ;[t].
Thus g; ;[t] & Sk fij.1[t]. Finally, let f[t] € RIPI denote the
vector of all the flows in the network in slot £.

D. Feasibility of Flows and State-Change Equations

If the channel balances are arbitrary, it is possible that some
channels are unable to execute the requested flows through
them due to insufficient balance. A set of flows can be served
entirely if and only if there is sufficient balance on each side
of each edge to route all the flows through in that direction
simultaneously. Given a balance vector x[t], a flow vector f|[t]
is feasible if:

RTf[t] < 2[t]; R f[t] <c—z[t]. (1)

Here, RT is the matrix obtained by turning all —1s to Os in
R and R~ is the matrix obtained by turning all 1s to Os and
—1sto 1sin R. Thus, R=RT — R™.

In this work, we make the following two assumptions that
ensure that the flow vector at each time step is always feasible.
Firstly, the channel capacities must be large enough so that if
the channels are evenly balanced, they will be able to serve the
entire demand on any routing scheme. We make this notion
precise as follows. Given any demand vector a, let N denote
the set of transacting node-pairs, i.e., N' = {(i, j) : a; ; > 0}
and let A denote the set of (non-negative) flows satisfying the
demand constraints:

AL{feRPF>0, > fijn<ai; ¥ (i.j) €N
k
2)

We assume that the capacities of the channel are large enough
such that:

sup RTf < ¢/2,

sup R~ f < ¢/2 3)
feA feA

This and other assumptions are discussed in Section VIIL.

Secondly, whenever a channel observes that the requested
flow through it is infeasible, it rebalances itself and then
executes the flow. (By the first assumption, the flow becomes
feasible after this rebalancing operation.) To keep things
simple, we assume that the rebalancing operation takes place
instantaneously. In practice, a rebalancing operation can take
time; however, a channel can preemptively rebalance itself if it
observes that its balances are getting skewed beyond a certain
extent.

With this notation in place, we can write the state-update
equations as follows. First, the channels undergo rebalancing
if necessary. Thus, the intermediate balances are:

5:“71) [t] _ {Cu,v/2

Loy t]

if channel (u,v) rebalances

otherwise

Next, they execute the requested flow. At the end of the slot,
the new balances are:

x[t 4+ 1) = Z[t] — Rf[t]. &)

E. Detailed Balance Flows

The notion of flows as described above is a quantity that
is dynamically evolving in time. In contrast, the notion of
a stationary flow refers to a steady, long-term, exchange of
transactions between a pair of nodes in the PCN. (This is
similar to the usage in Section II-A.) When referring to
stationary flows, we use the notation f (without ¢) to denote
the vector of flow rates over each path. We also use the same
convention to define f; ; and g; ;.

In Section II-A, we discussed the balanced flow constraint
on a payment channel. This constraint applies to every channel
in a payment channel network. A stationary flow vector f is
said to satisfy the detailed balance condition (equivalently,
said to be a detailed balance flow) if Rf = 0. For any flow
vector f, the term (Rf),,. represents the net flow in the
direction w — v along the channel (u,v); a negative value
means that the net flow is in the direction v — u. A detailed
balance flow is such that the amount of money flowing through
each channel is equal in the two opposite directions. Thus,
after a detailed balance flow has been served, the balances on
all the edges remain the same as before (see (5)). Any detailed
balance flow can be sustained in steady-state without any on-
chain rebalancing. Conversely, any flow vector that does not
satisfy the detailed balance condition can only be sustained in
steady-state with persistent on-chain rebalancing.

V. THE DEBT (DETAILED BALANCE TRANSACTIONS)
CONTROL PROTOCOL FOR PCNSs

A. Overview

The model described in the previous section provides a
framework for discussing network protocols for PCNs. In this
section, we present such a protocol which, under any stationary
demand, asymptotically maximizes the total utility of all
transacting node-pairs while avoiding the expensive operation
of periodic on-chain rebalancing. The protocol guides the
transacting node-pairs to make flow-control and routing de-
cisions such that the flows in the network ultimately converge
to a suitable stationary flow f*. On the one hand, f* should
maximize the sum of all node-pairs’ utilities; here, we extend
the notion of utility from individual transactions to transaction
rates. On the other hand, f* must be a detailed balance flow
and should not exceed the requested demand. We call this
protocol the DEBT (DEtailed Balance Transactions) control
protocol.

The key idea of the protocol is to use channel prices as
a mechanism to control flows. To elaborate, channels quote
prices to nodes for routing flows through them. These channel
prices are directional; the price in one direction is always the
negative of the other. The price of a path is the sum of the
prices of the channels along the path. If multiple paths exist
between the same pair of nodes, the protocol recommends
choosing a path with the least price or splits the flow along



multiple competitive paths. The flow-control decisions are
made by comparing the utility gained in having the transaction
served to the cost for serving a transaction along a path, where
the cost is the product of the price and the transaction volume.
A high path price signals the nodes to reduce the flow along the
path, while a low path price provides an incentive to increase
the corresponding flow.

The DEBT control protocol is an iterative one. Initially,
all channel prices are zero; consequently, the path prices are
zero as well. Therefore, all transaction requests are served
and routing choices are made arbitrarily. Over time, channels
adjust their prices based on the net flow through them. A
channel (u,v) increases the price in the direction v — v if
there is a net flow in that direction. This change in the price
dissuades further flow in that direction and encourages flow
in the opposite direction. As the flows converge to a detailed
balance flow, the channel prices begin to converge as well.

Prior to convergence, the flows along each channel may not
be balanced; indeed, without an imbalanced flow, prices would
not change at all. An imbalanced flow causes the channel
balances to change over time. If a channel’s capacity is large
enough, the cumulative net flow of transactions throughout the
transient period never depletes the channel’s balances at either
end. In this case, the channel will never undergo rebalancing.
Else, a channel might occasionally find it infeasible to route
the requested flows due to its skewed balances. Whenever such
an occasion arises, a channel undergoes on-chain rebalancing
and resets its balances. Eventually, no more rebalancing is
required as the flows converge to the flow f* satisfying the
detailed balance condition.

The DEBT control protocol is derived in the following steps:

1) The objective of the protocol is posed as a network
utility maximization problem, which we call the primal
problem. An optimal set of flows is one which max-
imizes the sum of all the node-pair’s utilities, subject
to the constraint that flows satisfy the detailed balance
condition and the flow rates served do not exceed the
desired flow rates.

2) The dual problem corresponding to the primal problem
is derived by introducing Lagrange multipliers for the
detailed balanced constraint. By the theory of strong
duality for convex programs, a solution to the dual
problem provides a solution to the primal one.

3) An iterative gradient-descent algorithm is proposed to
solve the dual problem. The algorithm updates the
Lagrange multipliers (dual variables) in small steps and
the flows (primal variables) are set in response.

4) The above algorithm is shown to have a decentral-
ized implementation, suitable for implementation on a
PCN. The Lagrange multipliers are interpreted as prices
quoted by channels. This decentralized implementation
constitutes the DEBT control protocol.

B. A Network Utility Maximization Problem

To formulate the protocol’s objective in mathematical terms,
we introduce some notation. Let U(f) = >_; syen Uij (i)
denote the total utility of all transacting node-pairs as a

function of a stationary flow f. Define a feasible flow to be any
flow that meets both the demand constraints and the detailed
balance constraints (i.e., the condition Rf = 0).

As we will see later, it will be important in our proofs that
the flows in the network respond smoothly to the prices. For
this reason, we add a quadratic regularizer term, H(f), to the
utility function, where

A |PLJ‘
H(f): Z(Zjean]Z fz]k . (6)

Here, 1; ; is a non-negative scalar term that controls the weight
of the regularizer. One interpretation of the regularizer is that
it is an incentive for splitting the flow among different compet-
itive paths (see Section V-E for details). Define U(f) + H(f)
to be the net utility of a particular flow f.

The protocol’s goal is to find a feasible stationary flow that
maximizes the net utility of the payment channel network.
In mathematical terms, this can be expressed as obtaining a
solution to the following optimization problem:

max U(f)+ H(f)

st. Rf=0

The symbol (P) denotes that the optimization problem pre-
sented above is the primal (or original) problem. Let f* denote
any solution to this problem.

Observe that the set of feasible flows is a compact, convex
set. Moreover, it is nonempty for any problem parameters,
since the empty flow (f = 0) is a feasible flow. Therefore, a
solution to (P) always exists. Also note that (P) is a convex
optimization problem, since both U(f) and H(f) are concave
and the constraint set is convex. Lastly, if all 7; ; are strictly
positive, then the objective function is strongly concave. This
ensures that f* is unique.

P)

C. The Dual Problem

The primal problem (P) is hard to solve because of the
detailed balance constraints. With the aid of Lagrange multi-
pliers, we derive its dual problem that does not explicitly have
these constraints. (See [Ber99] for an exposition on Lagrange
multipliers and duality). Let ), ,, denote the Lagrange multi-
plier for the constraint (Rf), ., = 0; let A € RZ denote the
vector of all such terms. Define the Lagrangian of the problem
(P) by

L(f,X) 2 U(f) + H(f) = ATRf. @)

Using the Lagrangian, we can formulate an equivalent form
of the problem (P) as follows:

A /\len]RfE L{f:A)
_ : T
=max inf, U(f)+H(f) = AN Rf (8)

Observe that (8) is equivalent to (P) because f must be chosen
such that Rf = 0 if (8) is to have a finite value.

The dual of the optimization problem (P) is obtained by
changing the order of minimization and maximization in (8):

L(f.N) = inf DOV, (D)

inf max
AERE feA



where D()), called the dual function, is defined as follows:

D(A) £ maxU(f) + H(f) —M'Rf VA e R (9

For any A, L(f,\) is finite for all f € A, because A is a

bounded set. Therefore, D()) is well-defined for all A € RF,

Observe that the dual function is a convex function of A

[Ber99] and that the dual problem has no constraints. This

implies that the dual problem is easy to solve. In Section VI,
we show how a solution of (D) yields a solution of (P).

D. A Dual Algorithm

The gradient descent method is a classical method to
solve unconstrained convex optimization problems. To use this
method to solve (D), we need to establish conditions under
which D()) is differentiable and also obtain an expression
for the gradient of D()\). Lemma 1 gives us an expression
for the subdifferential of D()). Because D()) is a convex
function, the subdifferential set is nonempty at all points.
D()\) is differentiable precisely at those points where the
subdifferential set has a unique element. The lemma follows
immediately from Danskin’s theorem, also known as the
envelope theorem. (See Appendix B of [Ber99] for the precise
statement and proof of Danskin’s theorem).

Lemma 1. Let D(\) be the function as defined in (9). The
subdifferential set of D(\) is given by

ODN) ={VaL(f,A): fe FN} ={-Rf: f € F(\)}

where F()\) £ argmaxsea L(f,\) is the set of all flow
vectors that maximize the Lagrangian, given \.

In Section VI, we show that as long as the regularizer
coefficient 7; ; is strictly positive for all (i,j) € N, F())
has a unique value for all A € RE. By Lemma 1, D()) is
differentiable everywhere whenever this condition holds.

The gradient descent algorithm to solve the dual problem
is presented below. Initialize the algorithm by setting A\[0] to
be the zero vector. For every ¢ € N, set

1) = arg max L( Al
At + 1] = A[t] + yRft]

(A)

Here, 7 is a strictly positive stepsize parameter in the algorithm
that remains constant for all time. In each iteration ¢, the flows
f[t] are set so as to maximize the Lagrangian, given the current
values of A[t], while the Lagrange multipliers A[t + 1] are
updated in a direction opposite to the gradient of D(A[¢]).
In case there is more than one value of f that maximizes
L(f, M[t]), we can set f[t] to any such value. In this case,
algorithm (A) is equivalent to the subgradient method applied
to D(A). Under appropriate conditions, we expect A[t] to
approach a solution of (D), and consequently, f[¢] to approach
a solution of (P). We defer the convergence analysis of (A) to
Section VI. For now, we explain how (A) can be implemented
as a network protocol in a PCN.

E. Lagrange Multipliers as Prices

The first step towards an intuitive interpretation of (A) is to
observe that the Lagrangian is a sum of terms, each concern-
ing one transacting node-pair. Observe that the Lagrangian
depends on A only through the term RT\ (see (7)). Define
i = RTX Then p is a vector indexed by the paths in the
PCN, such that

ik = Auw — Auw- 10
Hijk Zuevemmk ’ Zvauépi,j,k ’ ( )
Similar to the notation f; ;, define j;j = (ftij1,- -, Mijik)-
Further, define L(f, i) to be

L(fm) 2 Lij(fij, 1), where (11)

(i,5)EN
|Pi ;]

Lij(figottig) 2 Ui(aig) = Y (Figwttign +mis(fign)?)
k=1

Next, observe that in (A), the flows are chosen by solving:

flt] = arg max L(f, Alt]) = L(f, ut]) ;
fea

ult] = RTA[t].

The expression of i( f, ) given in (11) shows that this opti-
mization problem also separates across node-pairs. Therefore,
given i, the flows between each (7, 7) € N can be determined
independently by solving:

filt] = Li (i pigt])

arg max (12)

{fij: 1,520V k, qi;<a;;}

The next step towards interpreting algorithm (A) is to
endow the Lagrange multipliers with some meaning. Let A, ,,
be interpreted as the channel price, i.e., the cost of routing one
unit of flow in the direction © — v through the channel (u, v).
Let the price for routing flows in the opposite direction of the
same channel be —\,, ,,. Then p; ; , can be interpreted as the
path price, i.e., the cost that the node pair (4, j) needs to pay to
send a unit flow along the path p; ; ;. The path price is equal
to the sum of the channel prices of each of the channels in
the path with the appropriate direction (or sign) incorporated,
as shown in (10). Note that the channel prices, and therefore
the path prices, may be negative.

With this interpretation, f; jrfti . is the cost of send-
ing a flow of amount f; ;. along the path p; ;. Thus,
>k fij kit ke is the total cost incurred by the node-pair
(i,7) for splitting the total flow amount g; ; along different
paths. In L; ;(fi j, its,5), this cost is subtracted from the utility
gained by the node-pair (7,j) in executing a transaction of
amount g¢; ; (see (11)). The quadratic term 7); ; Zk(fi,j,k)2’
coming from the regularizer, can be interpreted as a penalty
for concentrating all flows along a single path. Equivalently,
it acts as an incentive to split the total flow along different
paths. This is because for any fixed value of g; ;, the sum
>0 (fijk)? is minimized by splitting ¢; ; equally among all
fi,j,k- Thus, the interpretation of the optimization problem in
(12) is that each node-pair tries to maximize its net utility, i.e.,
the utility of executing a transaction with the cost of execution
subtracted from it. This is a rational decision for the nodes.



F. Flow-Control and Routing Decisions

The previous section establishes that each node-pair can
solve (12) in parallel, independently of each other. We now
show how solving (12) can be interpreted as simultaneously
making routing and flow-control decisions. First, consider the
case when 7); ; is zero. In this case, it is optimal to route the
transaction only along the path with the minimum price; all
other paths from ¢ to j carry zero flow. Let p7 ; [t] denote the
minimum path price. The amount of flow carried by this path,
¢ ;[t], is given by:

i,5[t] = argmax U; j(q) — qu; ;[t]. (13)

q€[0,a; ;]

The choice of the total amount of flow is interpreted as a flow-
control action and the choice of the path to carry the flow is
interpreted as a routing decision.

Now consider the case where the regularizer coefficient 7; ;
is strictly positive. When there is a single path between ¢ and j,
the quadratic regularizer term can be absorbed into the utility
function. Thus, the problem in (12) reduces to (13). When
there are multiple paths from ¢ to j, the solution to (12) can
be expressed in terms of the classical waterfilling scheme. To
illustrate this, we invoke the idea of Lagrange multipliers once
again to deal with the constraints in (12). Let v; ; denote the
Lagrange multiplier for the demand constraint ¢; ; < a, ;. By
the KKT conditions [Ber99], the optimal solution to (12) must
satisfy:

I (U{,j(qm — Vig — ik
1,7, -

+
Y k. (14)
2n; 5 )

The total flow g; ; must also satisfy the demand constraint
(¢;,; < a;;) and the complementary slackness condition:
(gi,j — ai;)vi; = 0. Lastly, each v; ; must be nonnegative.

Interpreting (14) as a waterfilling scheme is easiest when
the utility function is linear and the optimal solution satisfies
g¢i,j < a; ;. In this case, v; ; is equal to zero and Ui”j (gi,5) is
constant; call it U{7j. The term Ui’ﬂ- acts as a price ceiling; any
path with a price larger than this price ceiling does not carry
any flow. The remaining paths carry a flow that is proportional
to the gap between the path price and the price ceiling. Thus,
the path with the least price gets allotted the maximum flow
and the other paths get progressively smaller flows. Paths with
the same price always get allotted the same amount of flow.

Now consider the general case. The method to solve (14)
is based on the following observation: increasing either g; ;
or v; j in (14) tends to decrease the individual flows f; ; 5. If
all the path prices are bigger than U; ;(0), then the optimal
solution is to set all the flows equal to zero. If not, set ¢; ; to
a;j and v; ; = 0 in (14) and check whether the corresponding
flows, f; ; k., add up to a value more than a; ;. If so, keep ¢; ; =
a;,; and increase v; ; to the value such that the corresponding
flows add up exactly to a; ;. If not, keep v; ; = 0 and find
the appropriate value of ¢; ; using a few iterations of binary
search as follows. For any ¢; ; € (0, a; ), check whether the
flows given by (14) add up to less than ¢; ; or not, and adjust
g;,; accordingly. Once g; ; is fixed, the flows on the individual
paths are given by (14).

G. From a Dual Algorithm to the DEBT Control Protocol

We now describe how algorithm (A) can be implemented
in a decentralized fashion in a payment channel network
whose model we presented in Section IV. This decentralized
implementation is the DEBT control protocol for PCNs. At
every slot ¢:

1) The channel prices, A[t], are made publicly available.
Using these prices and the knowledge of the graph
topology, transacting node pairs calculate the prices
along their prospective paths according to (10).

2) The demand arrives to the network. Each transacting
node pair (¢, j) knows its demand a; ; and its path prices
Hi,5,k[t] (from the previous step). Using these, each node
pair calculates the flow f; ;i [t] to be requested along
each path, using the waterfilling scheme (14). In Section
V-F, we noted that each node-pair can perform this
calculation independently.

3) The flow requests are conveyed to the respective chan-
nels. Each channel checks whether the flow requested
through it is feasible or not (whether it has sufficient
balance to execute the flow). If it does, it immediately
executes the flow; if not, it rebalances itself and then
executes the flow. In either case, the flow requests made
at slot ¢ are executed within the same slot. Following
this, the balances of the channels change according to
@-5).

4) Finally, each channel updates its price proportional to
the net flow through it:

Auwlt+1] = Ay o[t] + V(R )uplt] V (u,v) € E

The price updates are based on local information alone;
thus, each channel updates its price independently. In
fact, channels need not know the source or the destina-
tion of the flows that they are serving to calculate prices.

The term A, , tends to increase if the net flow through
the channel (u,v) is in the direction from v — v, and tends
to decrease if the net flow is in the opposite direction. This
change is consistent with the interpretation of X, , as a price
that penalizes or encourages flows in order to maintain detailed
balance. Indeed, a sustained net flow in either direction is
bound to increase the price for any future flow in that direction.
It also decreases the price for any flow in the opposite
direction, thereby encouraging such flows. Note that when a
channel rebalances itself, it does not reset its prices. Thus,
the price of a channel may not exactly reflect its balances;
rather, it is proportional to the net amount of money that a
channel has carried through itself. The prices keep adjusting
in a manner such that eventually, the net flow through each
channel converges to zero. In the following section, we show
that the flows not only converge to a detailed balance flow,
but in fact, they converge to a solution of (P).

VI. CONVERGENCE ANALYSIS

Our first result establishes that the dual problem always has
a (finite) solution, and the optimal flow in response to such a
solution is primal optimal.



Lemma 2. For any instance of the primal problem (P), the
corresponding dual problem (D) has a solution, i.e., there
exists \* € RE such that D(\*) = D* £ infycge D(N).
Further, the set F(\*) = argmaxgc 4 L(f,\*) contains a
solution to (P).

Proof. The lemma follows immediately from Proposition 3.4.2
of [Ber99], which states sufficient conditions for strong duality
to hold. Those conditions are satisfied by our problem because:

o (P) has a solution f* because the set of feasible solutions
is non-empty and compact.

o The constraint set A is a convex polytope and the detailed
balance condition is a linear constraint.

« The objective function U(f)+ H(f) can be extended for
all f € R? in a continuously differentiable manner by
defining each U, ;(-) outside the interval [0,a; ;| to be
appropriate affine functions.

By Proposition 3.4.2(a) of [Ber99], (D) has a solution \*.
Since \* is a minimizer of D()), it must be that 0 € 9D(\*).
By Lemma 1, this implies that there exists f* € F(\*) such
that Rf* = 0, i.e., there exists a feasible f* in F'(A\*). By
Proposition 3.4.2(b), this f* is a solution to (P). O

Our next result is to establish conditions under which the
dual function is smooth. We invoke standard properties of the
Fenchel conjugate of convex functions to prove this result (see
Section 2.7 of [SS12] for a reference).

Assumption 1. 7, ; >n >0V (i,j) € N.

Lemma 3. Under Assumption 1:

o F(\) =argmax;c, L(f,\) is a singleton for all \.
o The dual function is smooth with parameter ||R||Z,/n,
where || - ||op denotes the operator norm of a matrix.

o F()\) is a continuous function of .

Proof. Under Assumption 1, the Lagrangian, L(f, ), is 7-
strongly concave in f. This is because L(f,\) is the sum
of an n—strongly concave function H(f), a concave function
U(f), and a linear function AT Rf. The strong concavity of L
implies the uniqueness of F'(\).

To show the smoothness of D(\) with respect to A, define
D(p) 2 maxsea L(f, —p), where L(f,u) is defined in
(11). By this construction, D(y) is the Fenchel conjugate of
—(H(f) + U(f)). Since —(H(f) + U(f)) is an n-strongly
convex function, D(y) is a 1/n-smooth function of 1 [SS12].
Since D(\) = D(—RT)), it follows that D()) is ||R||2,/n-
smooth function of .

By Lemma 1, VD(\) = RF(X). By definition of smooth-
ness, VD()) is a continuous function of A, which in turn,
implies the continuity of F'(\) with respect to \. O

We now present our main result, which states that with
suitably small stepsizes, the DEBT control protocol converges
to a solution of (P).

Assumption 2. The stepsize of (A) satisfies v < n/||R||2,.

Proposition 1. Under Assumptions 1 and 2:

« DOt - D) < lvi >
o A[t] = A** for some \** € argminycpe D(A) as t —

o f[t] = f* ast — oo, where f* is the unique solution to
(P).

Proof. The first point is a standard result in convex optimiza-
tion, namely gradient descent with a constant stepsize, when
applied to a smooth convex function, leads to the function
value converging to its infimum at a rate of O(1/t) (see
Section 3.2 of [Bubl5]). In the proof of this result, a key
step is to establish that for any A** € argminycge D(N),
[IA[(] = A**|| is a nonincreasing sequence. This, coupled with
the existence of a finite minimizer (Lemma 2), implies the
second point. The third point follows from the previous point
on the convergence of \[t], the continuity of F'(\) with respect
to A (Lemma 3), and the fact that f* = F(\*) is primal
optimal (Lemma 2). ]

VII. SIMULATION RESULTS

In this section, we show simulation results of the DEBT
control protocol (A) on four different instances of a PCN,
illustrating how it performs dynamic routing and flow-control
to ensure optimal flows in the long run.

A. Dynamic Routing Example

Consider a payment channel network with three nodes,
A, B, and C, and three channels, A— B, B—C, and C' — A.
Each of the channels have a capacity of 100 and they are all
initially perfectly balanced. The demand is a circulation with
aa,B = ap,c = ac,A = 10, which can be served entirely
without any on-chain rebalancing. Consider, for example, the
transactions from A to B. There are two possible paths to
route such transactions: a short path directly along the channel
A — B, and a longer path via C. Similarly, the other two
demands also can be served over two possible paths. Observe
that routing transactions along the shortest path at all times is
not sustainable; it skews the channel balances. The transactions
must alternate between the short path and the long path.

Figure 1 illustrates the flows and the prices in this PCN
over time under the DEBT Control protocol. (We only plot
the flows from A to B; the other flows are identical.) Figure
la shows the case where the regularizer coefficient 7 is zero,
while Figure 1b shows the case where 7 = 0.1. The stepsize
~ is set as 0.01 in both Figures la and 1b. In Figure la,
nodes route the entire flow along the cheaper path at all times.
Ties are broken in favor of the shorter path. A flow in one
direction raises prices in that direction, incentivizing nodes to
take the other path in the next step. We see that the protocol
follows a periodic pattern, choosing the shorter path twice
in succession followed by choosing the longer path once. In
Figure 1b, nodes split each transaction along both the paths,
giving more weightage to the path with the lower price. Thus,
adding the regularizer smoothens the flows as a function of
the path prices. This smooth variation allows both the flows
and the prices to converge. Finally, note that in both cases
in Figure 1, the long-term average of the flows satisfies the
detailed balance condition.
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Fig. 1. Dynamic routing ensures perennial operation in a PCN with circulation demand: an illustration of the effect of the DEBT control protocol in the PCN
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B. Flow-Control Example

We now demonstrate the ability of algorithm (A) to perform
flow-control by considering its behavior on a simple PCN
prone to deadlocks. This example is taken from [STV*21].
The PCN has three nodes, A, B, and C, and two channels:
A — B and B — C, with a capacity of 100 each (initially
balanced). The demands are: aa,c = ac,a = ap.a = ap,c =
10. In this example, the demand from A to C' and back form a

circulation and can be sustained forever, whereas the demand
from B to A and C' are DAG demands and therefore cannot
be sustained. Moreover, if the network tries to serve the entire
demand, eventually the balances in the two channels will get
skewed towards A and C, with no balance left at B. In such
a state, all four flows are rendered infeasible (see (1) for the
definition of feasibility), thus creating a deadlock.

Figure 2 shows how algorithm (A) avoids this deadlock by
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curbing the flow from B to A and C via channel prices. Due
to symmetry, we only show the flows and path prices from A
to C' and from B to C. The corresponding quantities from C'
to A and from B to A are identical to these. The stepsize ~y
is chosen to be 0.01. Once again, we show two cases, without
the quadratic regularizer (n = 0) in Figure 2a and with the
regularizer (n = 0.1) in Figure 2b. Further, we choose the
utility function to be U(g) = ¢ for all the flows. Adopting this
utility function means that for any path, if the price is strictly
above 1, the corresponding flow will be zero. In Figure 2a,
we see that with every time step, the path prices from B to
A and B to C keeps increasing linearly and at some point,
they exceed one. At this point, the corresponding flows turn
off, which keeps the prices stable. The channel price in the
A — B direction is negative, and for B — C' in the B — C
direction is positive, which implies the prices from A — C
and C — A add up to zero at all times. Thus, these flows
continue unabated, as desired. The effect of the regularizer
can be seen by comparing Figures 2a and 2b. In the absence
of the regularizer, the flows exhibit a switching behavior as a
function of the price. In contrast, with a regularizer, the flows
vary smoothly as a function of the path price. However, the
asymptotic behavior of the protocol is the same in both cases.

C. Five-Node Network Example

Consider a payment channel network with five nodes
(A,B,C,D, E) and five channels (A-B, B-C, C-D, D-E,
E-A), arranged as a ring. Each of the channels has a capacity
of a hundred. Because of the topology, each pair of nodes has
two possible paths to transact along. The demand matrix is as
follows (source along rows, destination along columns):

SD A B C D E
A 0 0 5 10 11
B 0 0 0 0 0
cC 9 0 0 9 0
D 0 0 0 0 15
E 0 10 11 13 0

Note that the demands are much smaller than the channel ca-
pacities. Each of the transacting node pairs has the same utility

—&— Channel A-B

Channel B-C
—— Channel C-D
—— Channel D-E
—4&— Channel E-A

Reset Instances

T
100
Time

(b)

Behavior of the five node PCN with a stepsize of v = 0.1; (a) shows flows as a function of time; (b) shows the times at which channel resets occur.

function U(f) = 5f. They also share the same regularizer
coefficient n = 1.

We simulate the protocol under two different settings: once
with a small stepsize of v = 0.01 (see Figure 3) and once
with a large stepsize of v = 0.1 (see Figure 4). In each
setting, we plot the total flow between each of the transacting
node pairs (Figures 3a and 4a) as well as the instances of
channel resets (Figures 3b and 4b). The figures illustrate that
when the step size is small, the flows converge to a stationary
point. This behavior is consistent with Proposition 1. However,
the transient period is long (=~ five hundred steps), which
results in a fairly large number of channel resets. In contrast,
when the step size is large, the flows do not converge to a
single point; rather, they oscillate about a particular value. (The
channel prices, not shown, also oscillate around a fixed value.)
However, the protocol reaches a ‘steady state’ much faster;
note the difference in scales of the time axis in the two plots.
Consequently, the number of channel resets are also smaller.
In summary, varying the stepsize allows us to trade-off the
smoothness of flows with the number of channel resets.

In addition, we also demonstrate the performance of the
DEBT control protocol on the same network, but with vari-
able demands in Figure 5. First, we consider a setting with
stochastic demand. The demand between any two nodes is
Poisson distributed with the same mean as in the earlier
simulation, and is independent at each time slot. The flows
shown in Figure 5a are smoothened with a ten-step moving
average filter. In comparison to 3a, the flows have similar,
albeit slightly smaller (average) values. Second, we simulate a
setting with a piecewise constant demand. The initial demand
is the same as that of Figure 3. Midway through the execution,
the demand between every pair of nodes reverses (the source
becomes the destination and vice-versa). The resulting flows
are shown in Figure 5b. The plots illustrate that the protocol
can quickly adapt to changes in the demand.

D. Ten Node Network Example

The simulations in this section are based on the code pro-
vided by [VM21], allowing for a comparison of performance
with the algorithm used there. We make two changes to the
code. First, we change the transaction demand so it is not a



[
&

o
N

A-->C
->D
->E
=>A
->D
->E
->B
-->C
->D

o
o

Total Flow (Smoothened)
mmmogooo>>

t T T T T
0 200 400 600 800 1000
Time

(@)

->C
->D
->E
->A
->D
->E
->B
->C
-> D
->E
->E
->A
->C
->A

144
124

——

T T T T
0 200 400 600 800 1000
Time

(b)

Total Flow

MmMogoowmmMMoOO>>>

Fig. 5. Flows in the five node PCN with time-varying demand; (a) when the demand at each step is independent and Poisson distributed; (b) when the demand

is piece-wise constant, with a sudden change in the middle of the time horizon.

pure circulation as used by [VM21]. Second, we incorporate
our pricing algorithm. We highlight these points below.

The simulations are for random networks with n = 10
nodes. There is a bidirectional edge between any pair of nodes
with probability p = 0.3. Between each pair of nodes, the
K shortest paths are considered. There are 1500 transactions
between every pair of nodes. In the simulation, transaction
requests are considered one at a time. The mean size of
transactions from 4 to j is given by P; ;, and the distribution of
the sizes of transactions from ¢ to j has the Poisson distribution
with mean F; ;. In [VM21], the matrix P was generated
as a sum of 3n independent uniformly distributed random
permutation matrices. This resulted in the demand being a
circulation and the mean transaction size being three. In this
work, we generate P such that E[P,; ;] = 4 if ¢ < j and
E[P,; ;] =2 if i > j. Thus, the transaction size averaged over
all pairs is still 3. Observe that 2/3 of the load is a circulation
and 1/3 is acyclic.

In [VM21], M is the capacity of each link for each
direction, so 2M is the same as the link capacity ¢ in this
paper. The algorithm of [VM21] drops all demand which
would make a balance get larger than M, so it keeps the
backlog in each direction less than or equal to M. Thus, there
is no queuing in the implementation; transactions are either
executed immediately or dropped. In [VM21] for a link (u,v),
if the queue sizes are q(, ,) and g, ) each in [0, M] then
an amount of transaction s = min{q(y,v), ¢(v,u)} could be
locally cleared over the link. Reducing both g, ) and g, v)
by s makes one of them zero. The state (q(u,v);G(v,u)) in
[VM21] is equivalent to the channel having no queueing and
total escrow amount 2M and the balance of escrow fund at u
being v = M — q(u,v) + q(v,u), Where x is the state variable
in this paper.

Our model involves congestion control and focuses on util-
ity maximization with utility functions U; ; such that U; ;(q)
is the utility of routing quantity ¢ from ¢ to j in one time
slot. To focus on the amount of successful transactions and
to take into account the demand a; ; for a transaction from
1 to j we assume that the utility functions are the following:
Ui ;j(¢) = min{a, j,q}7 for all 4,5, where 7 is a positive

constant. If the total path price is p per unit flow then the
payoff for flow 4,5 is maximized by submitting the full
transaction if p < 7 and withholding it otherwise. Thus, 7
becomes a path price threshold.

In order to make a fair comparison with the algorithm
of [VM21], we implement a version of the DEBT control
protocol without rebalancing. For any transaction request, the
first step is to select the path with the smallest path price (sum
of link prices along the path). If the path price exceeds the path
price threshold, the transaction is not routed and prices are
not updated. If the path price is less than the price threshold,
then we check to see if there is sufficient capacity to route
the transaction. If yes, the transaction is routed. If not, we
update the prices as if the transaction was routed (i.e., as per
(A)), but we do not update the balances; we do not count the
transaction as a successful one. The theoretical model of our
paper would force the transaction to be routed by forcing a
complete rebalancing of the channel yielding half the escrow
on each side. The version we implement is equivalent to a
small rebalancing of just enough to carry the transaction.

In summary, the essential difference between the simulated
versions of our algorithm and the algorithm of [VM21] lies
in the way transactions are handled on paths with insuffi-
cient balance but with price lower than the threshold. While
both algorithms drop such transactions, our algorithm updates
prices whereas there is no change of state for the algorithm
of [VM21].

Numerical results are shown in Figs. 6 and 7. In both
Figures, the solid lines show performance of our algorithm vs.
the path price threshold and the dashed lines show the perfor-
mance of the algorithm of [VM21], for M ranging from 5 to
100 and K € {1,2}. Fig. 6 shows the number of transactions
served and Fig. 7 shows the total amount of the successful
transactions. For the smallest values of M, M = 5 and
M = 10 our pricing algorithm yields a significantly inferior
performance. Given that the mean transaction size is 3, these
values of M are considerably smaller than what is expected
in applications. For the larger values of M, M = 20,50,
or M = 100 our algorithm achieves significantly greater
number of successes and larger amounts of transactions. The
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performance of our algorithm is fairly insensitive to the value
of the path price threshold.

The performance for K = 2 is significantly better than for
K = 1 but after that we observed diminishing or negative
gains with increasing K further. We produced figures for K =
3 but they are slightly lower and very close to those for K = 2,
so they are omitted.

VIII. DISCUSSION OF ASSUMPTIONS

This paper makes several assumptions for the sake of clarity
and simplicity. This section discusses the rationale behind
these assumptions and the extent to which these assumptions
hold in practice.

A. Assumptions on the Demand

There are two simplifying assumptions we make about the
demand. First, we assume the demand at any time is relatively
small compared to the channel capacities. Second, we take the
demand to be constant over time. We elaborate upon both these
points below.

a) Small demands: The assumption that demands are
small relative to channel capacities is made precise in (3).
This assumption simplifies two major aspects of our protocol.
First, it largely removes congestion from consideration. In (P),
there is no constraint ensuring that total flow in both directions
stays below capacity—this is always met. Consequently, there
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is no Lagrange multiplier for congestion and no congestion
pricing; only imbalance penalties apply. In contrast, protocols
in [SVRT20], [VM21], [WYYT24] include congestion fees
due to explicit congestion constraints. Second, the bound (3)
ensures that as long as channels remain balanced, the network
can always meet demand, no matter how the demand is routed.
Since channels can rebalance when necessary, they never drop
transactions. This allows prices and flows to adjust as per the
equations in (A), which makes it easier to prove the protocol’s
convergence guarantees. This also preserves the key property
that a channel’s price remains proportional to net money flow
through it.

In practice, payment channel networks are used most of-
ten for micro-payments, for which on-chain transactions are
prohibitively expensive; large transactions typically take place
directly on the blockchain. For example, according to [Riv23],
the average channel capacity is roughly 0.1 BTC (5,000
BTC distributed over 50,000 channels), while the average
transaction amount is less than 0.0004 BTC (44.7k satoshis).
Thus, the small demand assumption is not too unrealistic.
Additionally, the occasional large transaction can be treated as
a sequence of smaller transactions by breaking it into packets
and executing each packet serially (as done by [SVR120]).
Lastly, a good path discovery process that favors large capacity
channels over small capacity ones can help ensure that the
bound in (3) holds.



b) Constant demands: In this work, we assume that any
transacting pair of nodes have a steady transaction demand
between them (see Section IV-A). Making this assumption
is necessary to obtain the kind of guarantees that we have
presented in this paper. Unless the demand is steady, it is
unreasonable to expect that the flows converge to a steady
value. Weaker assumptions on the demand lead to weaker
guarantees. For example, with the more general setting of
stochastic, but i.i.d. demand between any two nodes, [VM21]
shows that the channel queue lengths are bounded in expecta-
tion. If the demand can be arbitrary, then it is very hard to get
any meaningful performance guarantees; [WYY124] shows
that even for a single bidirectional channel, the competitive
ratio is infinite. Indeed, because a PCN is a decentralized
system and decisions must be made based on local information
alone, it is difficult for the network to find the optimal detailed
balance flow at every time step with a time-varying demand.
With a steady demand, the network can discover the optimal
flows in a reasonably short time, as our work shows.

We view the constant demand assumption as an approx-
imation for a more general demand process that could be
piece-wise constant, stochastic, or both (see simulations in
Figure 5). We believe it should be possible to merge ideas
from our work and [VM21] to provide guarantees in a setting
with random demands with arbitrary means. We leave this for
future work. In addition, our work suggests that a reasonable
method of handling stochastic demands is to queue the trans-
action requests at the source node itself. This queuing action
should be viewed in conjunction with flow-control. Indeed,
a temporarily high unidirectional demand would raise prices
for the sender, incentivizing the sender to stop sending the
transactions. If the sender queues the transactions, they can
send them later when prices drop. This form of queuing does
not require any overhaul of the basic PCN infrastructure and
is therefore simpler to implement than per-channel queues as
suggested by [SVRT20] and [VM21].

¢) Bounded derivative of utility functions: We comment
briefly on our assumption that the utility functions satisfy
U} ;(0) < oo and the choice of the regularizer H(f) being
quadratic. Other concave functions could be used for H but
it is important that H has bounded gradient over the set
of possible flow vectors. These properties on the U; ;’s and
H are used for the third bulleted condition in the proof of
Lemma 2 for the application of Proposition 3.4.2 of [Ber99].
In particular, the proof does not go through for logarithmic
utility functions used in [SVR™20] or logarithmic/entropic
regularizers. The price convergence in Proposition 1 doesn’t
hold for such utility functions or regularizers because no
matter how large the price on a path is, the flow that maximizes
the regularized utility will assign a nonzero flow to the path.
So the path price would need to converge to +oo to drive the
flow to zero, which is necessary in some situations to prevent
deadlock, as in Section VII-B based on [STV*21].

B. The Incentive of Channels

The actions of the channels as prescribed by the DEBT
control protocol can be summarized as follows. Channels

adjust their prices in proportion to the net flow through them.
They rebalance themselves whenever necessary and execute
any transaction request that has been made of them. We discuss
both these aspects below.

a) On Prices: In this work, the exclusive role of channel
prices is to ensure that the flows through each channel remains
balanced. In practice, it would be important to include other
components in a channel’s price/fee as well: a congestion price
and an incentive price. The congestion price, as suggested
by [VM21], would depend on the total flow of transactions
through the channel, and would incentivize nodes to balance
the load over different paths. The incentive price, which is
commonly used in practice [Riv23], is necessary to provide
channels with an incentive to serve as an intermediary for
different channels. In practice, we expect both these compo-
nents to be smaller than the imbalance price. Consequently,
we expect the behavior of our protocol to be similar to our
theoretical results even with these additional prices.

We have assumed all channels use the same step size 7y in
updating their prices and feel this is not difficult to enforce in
practice. However, if different channels used sufficiently small
but different step sizes the updates would be quasi-Newton
gradient updates with constant diagonal scaling matrix and
would still achieve global convergence.

A key aspect of our protocol is that channel fees are al-
lowed to be negative. Although the original Lightning network
whitepaper [PD16] suggests that negative channel prices may
be a good solution to promote rebalancing, the idea of negative
prices in not very popular in the literature. To our knowledge,
the only prior work with this feature is [VM21]. Indeed, in
papers such as [ER21] and [WYY™"24], the price function
is explicitly modified such that the channel price is never
negative. The results of our paper show the benefits of negative
prices. For one, in steady state, equal flows in both directions
ensure that a channel doesn’t loose any money (the other price
components mentioned above ensure that the channel will only
gain money). More importantly, negative prices are important
to ensure that the protocol selectively stifles acyclic flows
while allowing circulations to flow. Indeed, in the example
of Section VII-B, the flows between nodes A and C are left
on only because the large positive price over one channel is
canceled by the corresponding negative price over the other
channel, leading to a net zero price.

Lastly, observe that in the DEBT control protocol, the price
charged by a channel does not depend on its capacity. This is a
natural consequence of the price being the Lagrange multiplier
for the net-zero flow constraint, which also does not depend
on the channel capacity. In contrast, in many other works,
the imbalance price is normalized by the channel capacity
[JRECMG18], [LZW20], [WYYT24]; this is shown to work
well in practice. The rationale for such a price structure is
explained well in [WYYT24], where this fee is derived with
the aim of always maintaining some balance (liquidity) at each
end of every channel. This is a reasonable aim if a channel is to
never rebalance itself; the experiments of the aforementioned
papers are conducted in such a regime. In this work, however,
we allow the channels to rebalance themselves a few times
in order to settle on a detailed balance flow. This is because



our focus is on the long-term steady state performance of the
protocol. This difference in perspective also shows up in how
the price depends on the channel imbalance. [LZW20] and
[WYY124] advocate for strictly convex prices whereas this
work and [VM21] propose linear prices.

b) On Rebalancing: Recall that the DEBT control pro-
tocol ensures that the flows in the network converge to a
detailed balance flow, which can be sustained perpetually
without any rebalancing. However, during the transient phase
(before convergence), channels may have to perform on-chain
rebalancing a few times. Since rebalancing is an expensive
operation, it is worthwhile discussing methods by which
channels can reduce the extent of rebalancing. One option for
the channels to reduce the extent of rebalancing is to increase
their capacity; however, this comes at the cost of locking in
more capital. Each channel can decide for itself the optimum
amount of capital to lock in. Another option, which we discuss
in Section VII-C, is for channels to increase the rate y at which
they adjust prices.

Ultimately, whether or not it is beneficial for a channel to
rebalance depends on the time-horizon under consideration.
Our protocol is based on the assumption that the demand
remains steady for a long period of time. If this is indeed
the case, it would be worthwhile for a channel to rebalance
itself as it can make up this cost through the incentive fees
gained from the flow of transactions through it in steady state.
If a channel chooses not to rebalance itself, however, there is
a risk of being trapped in a deadlock, which is suboptimal for
not only the nodes but also the channel.

IX. CONCLUSION

This work presents DEBT control: a protocol for payment
channel networks that uses source routing and flow control
based on channel prices. The protocol is derived by posing
a network utility maximization problem and analyzing its
dual minimization. It is shown that under steady demands,
the protocol guides the network to an optimal, sustainable
point. Simulations show its robustness to demand variations.
The work demonstrates that simple protocols with strong
theoretical guarantees are possible for PCNs.
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