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Abstract 

Spurred by advances in AI-driven modeling and experimental methods, molecular dynamics simulations are 
now acting as a platform to integrate these different approaches. This combination of methods is especially 
useful to understand β-barrel proteins from the molecular level, e.g., identifying specific interactions with 
lipids or small molecules, up to assemblies comprised of hundreds of proteins and thousands of lipids. In 
this minireview, we will discuss recent advances, mainly from the last 5 years, in modeling β-barrel proteins 
and their assemblies. These approaches require specific kinds of modeling and potentially different model 
resolutions that we will first describe in Subheading 1. We will then focus on different aspects of β-barrel 
protein modeling: how different types of molecules can diffuse through β-barrel proteins (Subheading 2); 
how lipids can interact with these proteins (Subheading 3); how β-barrel proteins can interact with 
membrane partners (Subheading 4) or periplasmic extensions and partners (Subheading 5) to form large 
assemblies. 
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AA All-atom 
AI Artificial intelligence 
CG Coarse grained 
CIP Ciprofloxacin 
LOS Lipooligosaccharide 
LPS Lipopolysaccharide 
Lpt Lipopolysaccharide transport 
MD Molecular dynamics 
ML Machine learning 
MSM Markov state model 
NMR Nuclear magnetic resonance 
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OM Outer membrane 
OMP Outer membrane protein 
PG Peptidoglycan 
PNA Peptide nucleic acid 
TASS Temperature accelerated sliced sampling 

1 Introduction 

β-barrel proteins are made of anti-parallel ß-sheets arranged in a 
cylindrical shape with a hydrophilic interior and a hydrophobic 
exterior. This confers interesting biophysical properties to this 
class of proteins, which can be modeled using molecular dynamics 
(MD) simulations at different scales, enabling us to capture and 
explain in particular the capability to span biological membranes 
and interact with protein partners, while allowing the diffusion of 
small molecules through their interior. Several decades of pro-
gresses have culminated in modeling in silico the complexity of 
biological membranes [1–3]. This is especially true for modeling 
bacterial membranes [4–7]. In this minireview, we will showcase 
recent advances, mainly obtained during the last 5 years, in model-
ing β-barrel proteins from understanding local interactions with 
small molecules, surrounding lipids, and protein partners to study-
ing large protein assemblies. We will also show how methodological 
advances have helped to model β-barrel proteins and their interac-
tions with intracellular partners extending the canonical 2D scope 
(i.e., in the membrane plane) to a fully 3D landscape. 

2 Methodological Development to Model β-Barrel Proteins 

Before presenting applications, it is important to first describe the 
methodological context. Methodological advances were driven by 
improvements both in computational power [8–10] and in experi-
mental techniques capable of determining the structure of very 
large membrane protein assemblies [11–14]. It is currently possible 
to model both very large assemblies composed of millions of par-
ticles and very specific interactions between few atoms. To switch 
from one type of modeling to the other, it is often required to adapt 
the resolution of the model to the given size of the system 
[15]. Two widely used resolutions in MD simulations are atomistic 
(or all-atom, AA) and coarse-grained (CG) resolutions. The former 
allows modeling all the atoms and molecular interactions, while the 
latter groups several atoms (typically four heavy atoms, see Notes 1 
and 2) into one bead, which considerably reduces the complexity of 
the model [16]. One of the main force fields (see Notes 1 and 2) 
used in CG-MD simulations is the so-called MARTINI force field



[17]. In comparison with CG-MD simulations, the diversity of the 
force fields for atomistic simulations is more pronounced [18] and 
researchers need to assess which force field is the most suited to 
their needs [19–22]. It is possible to switch from one type of 
resolution to the other using dedicated tools [23–25]. It is worth 
mentioning that artificial intelligence (AI) approaches are now 
clearly impacting the development of force fields for MD simula-
tions [26, 27]. For interested readers who want to get started using 
MD simulations for their research, accessible tutorials and guides 
are available to model lipid membranes [28] and membrane pro-
teins [29, 30]. 
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Before performing the actual MD simulations, it is first neces-
sary to build the simulation system, with all its molecular compo-
nents (proteins, lipids, ligands, ions, and water molecules) properly 
placed. There now exist dedicated tools streamlining the process of 
model creation. One example is CHARMM-GUI Membrane 
Builder, a webserver allowing the creation of a complete membrane 
system both in AA and in CG resolution [31–34]. Notably, 
CHARMM-GUI Membrane Builder supports various lipopolysac-
charide (LPS) models from many different Gram-negative bacteria 
[32]. To model membrane systems with the MARTINI CG force 
field, one can also use a Python script called insane (an acronym for 
INSert membrANE) to model either lipid membranes or mem-
brane protein assemblies [35]. MemProtMD is a database contain-
ing thousands of membrane proteins, extracted from the Protein 
Data Bank (PDB), embedded into a model membrane [36]. Simu-
lations and the subsequent analysis results can be conveniently 
accessed through a web browser, enabling users to explore interac-
tive 3D visualizations of the assembled bilayer, as well as 2D visua-
lizations depicting lipid contact data and membrane protein 
topology. To specifically model outer membrane proteins (OMP) 
from Gram-negative bacteria, Baltoumas and colleagues have 
developed an automated pipeline to insert OMP models into 
LPS-containing membranes [37]. 

Once the calculations for MD simulations are completed using 
one of the various simulation codes [38], one needs to visualize and 
analyze the results. This task has become increasingly difficult due 
to the size and the complexity of the models. Specific tools and 
methodologies are now available to render the visualization and the 
analysis of membrane systems within reach of the majority of 
researchers [28, 39]. 

3 Through the Pore: From Channels to Nanopores 

In bacteria and mitochondria, β-barrel proteins situated in the OM 
constitute the passage point for numerous molecules. MD simula-
tions at AA resolution allow the study of how these molecules can



interact with protein loops and diffuse through the pore. Hereafter, 
we present a selection of recently modeled molecules, ranging from 
few-atom molecules (ions and small compounds) to oligonucleo-
tides and peptides (see Fig. 1). 

314 Anna L. Duncan et al.

Extensive AA-MD simulations were used in combination with a 
Markov state model (MSM) to explore the dynamics of the L3 
internal loop in the E. coli OmpF protein [40]. These simulations 
help to distinguish between open and closed states of OmpF. In this 
latter state, electrophysiology simulations revealed a significant 
reduction of ionic currents. AA-MD simulations were also used to 
study permeation paths of potassium and chloride ions in VDAC 
channels of Saccharomyces cerevisiae [41]. The ion permeation 
properties may be influenced by surrounding OM lipids. Using 
AA-MD simulations, Lee et al. have shown how the outer core 
and O-antigens of LPS may sterically occlude the channel entrance 
and decrease the diffusion constants of ions approaching the 
OccK5 protein (also known as OpdH) from Pseudomonas aerugi-
nosa [42]. MD simulations were also used in combination with 
solid-state NMR to study the permeability of AlkL from Pseudomo-
nas putida, a minimalistic OMP, for hydrophobic molecules such as 
carvone or octane [43]. In this work, the authors proposed the 
release of hydrophobic compounds in the membrane after a diffu-
sion through extracellular loops. Contrary to hydrophilic com-
pounds, here the hydrophobic compounds do not seem to 
traverse the pore. This lateral diffusion model was also proposed 
for the FadL channel of P. putida for the uptake of monoaromatic 
hydrocarbons (MAH) such as benzene or toluene [44]. 

It is possible to transport even larger hydrophilic compounds 
like amino acids through the pore of a β-barrel protein. Samsudin 
and Khalid performed steered MD and umbrella sampling simula-
tions (see Note 3) to determine the permeation pathway of arginine 
through the OprD channel from P. aeruginosa [45]. MD simula-
tions also suggested that the arginine is surrounded by a shell of 
water molecules during the translocation through the pore. The 
binding of the peptide substrate ARRA to E. coli OmpT was 
recently explored by combining AA-MD simulations and umbrella 
sampling [46]. The translocation of even larger peptides like prot-
amine, a 32-amino-acid-long polycationic peptide, through the 
CymA channel from Klebsiella oxytoca has been studied [47]. MD 
simulations were also used to study the interaction of E. coli BtuB 
with a peptide nucleic acid (PNA) covalently linked to vitamin B12 

[48]. PNA is a synthetic DNA analog with a peptide-like backbone 
that can strongly bind to nucleic acids essential for bacterial growth. 
This can thus constitute an interesting antibacterial strategy. The 
transport of vitamin B12 alone through E. coli BtuB was also 
explored by combining steered MD, umbrella sampling, and 
Gaussian force-simulated annealing [49].
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Fig. 1 Subset of small molecules and peptides, presented in Subheading 3, interacting with β-barrel proteins 
studied by multiscale molecular dynamics simulations
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Due to their crucial role in the uptake of nutrients, β-barrel 
proteins are the target of numerous molecules that can potentially 
block this uptake and thereby act as antimicrobial drug candidates. 
MD simulations can give valuable insight into understanding how 
these molecules affect the structures and functions of β-barrel 
proteins. Fluoroquinolones are a class of broad-spectrum antibio-
tics. The permeation of ciprofloxacin (CIP), through OmpF, was 
studied using a temperature-accelerated sliced sampling (TASS) 
approach to characterize the two potential permeation pathways— 
the orientation of CIP inside the pore and its interactions with 
water molecules [50, 51]. The effect of divalent ions on the diffu-
sivity of norfloxacin was investigated by AA-MD simulations and 
tested across several OM channels: OmpF and OmpC from E. coli 
and Omp35 and Omp36 from Enterobacter aerogenes [52]. Enro-
floxacin and CIP permeation pathways across OmpC were also 
explored [53, 54]. Fosfomycin is a small phosphonic acid antibiotic 
discovered in Streptomyces strains. The fosfomycin permeability 
across the E. coli OmpF was investigated by AA-MD simulations 
including free energy and applied field techniques [55]. Fosfomycin 
translocation was also studied by AA-MD simulations for OrpO 
and OrpP from P. aeruginosa [56]. Recently an extensive set of 
AA-MD simulations and free energy calculations were performed 
to better understand how the introduction of a primary amine 
might enhance the permeation of antibiotics through OM channels 
[57]. The amine may enhance permeation by allowing the molecule 
to align its dipole with the electric field inside the porin’s lumen, 
and it also establishes favorable electrostatic interactions with 
charged residues as the molecule moves through the pore. While 
these studies were all performed using AA-MD simulations, the 
recent developments of the MARTINI force field [17], especially 
aimed toward modeling small molecules [58], may allow research-
ers to use this less expensive approach to study antibiotic interac-
tions with β-barrel proteins. Recent work explored how to use 
CG-MD simulations to investigate the interaction of the 
P. aeruginosa OccD3 porin with different carbapenems [59]. 

β-barrel proteins can be also engineered [60] and redesigned to 
serve as synthetic nanopores [61] to create, e.g., biomimetic mem-
branes for water filtration [62] or to sequence nucleic acids [63]  or  
proteins [64, 65]. MD simulations can help to better characterize 
these new molecules and their interactions with different solutes 
[61]. Two main classes of β-barrel proteins were studied using 
multiscale MD simulations: bacterial channels and pore-forming 
toxins (this is elaborated in Subheading 4). In the first category, 
one can cite the investigation of cyclodextrin and ions transport 
through theΔCymA nanopore, a mutant of the protein without the 
15 N-terminal residues, from K. oxytoca [66, 67]. MD simulations 
were also used to probe the stability of de novo design of a β-hairpin 
and its nanopore assembly in a membrane. This assembly formed a



pore allowing the detection of a single polypeptide chain [68]. In 
the second category, the biophysical properties of several nanopores 
based on pore-forming toxin were investigated. The α-hemolysin 
was studied to assess its ability to recognize homopeptides [69] and 
its ionic transport and selectivity [70, 71]. For the aerolysin nano-
pore, translocation of different poly-arginine peptides [72], nucle-
otide discrimination [73], and detection of posttranslational 
modifications [74] were investigated. Ion conductance of both 
bacterial channels and pore-forming toxin nanopores was investi-
gated using steric exclusion model and AA-MD simulations 
[75]. For interested readers, a recent perspective has summarized 
advances in understanding key issues in molecular simulations of 
antibiotic translocation and in the development of nanopore 
sensors [76]. 
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4 β-Barrel Proteins in Their Local Environment 

Lipids play fundamental roles in the folding [77, 78] and stability 
[79] of  β-barrel proteins and in anchoring OMPs within the 
OM. MD simulations are uniquely capable of identifying and asses-
sing specific protein-lipid interactions [80] as well as allowing the 
characterization of lipid binding sites [81]. 

Modeling of bacterial OM lipids has recently seen much prog-
ress, both at the atomistic scale [82, 83] and at CG resolution 
[33, 84, 85], enabling a wealth of new studies, in particular on 
OMP-LPS interactions (see Fig. 2a), which are challenging to study 
experimentally. AA-MD simulations have identified the role of 
calcium in specific OMP-LPS interactions and identified binding 
sites on E. cloacae OmpE36 that were in good agreement with 
those observed in crystal structures [90]. LPS has further been 
shown to have a unique interaction fingerprint with a diverse 
array of E. coli OMPs (OmpA, FhuA, OmpF, EstA, BtuB, and 
OmpX) [91]. Beyond the structural level, recent studies have 
shown that LPS plays a role in regulating OMP function. As an 
example, AA-MD simulations have shown that interactions of LPS 
with OprH affect the structure and dynamics of its extracellular 
loops [92]. As mentioned previously, AA-MD simulations of Occk5 
demonstrated that LPS modulates ion transport through this OMP 
by hindering ion accessibility to the pore [42]. MD simulations in 
tandem with NMR spectroscopy showed that LPS interactions with 
the Ail protein change pathogen membrane properties, which con-
fers enhanced resistance to the plague-causing bacterium Yersinia 
pestis [93]. MD simulations have also been used to uncover how 
LPS interactions with OmpD drive effective immunization with 
this OMP from S. typhimurium but not S. enteritidis, despite only 
the single amino acid difference between the OmpD homologs



[94]. The interactions of surface-exposed loops with lipooligosac-
charide (LOS) in a protein sequence dependent manner may alter 
the binding of antibodies to β-barrel proteins as seen for PorB from 
N. meningitidis [95]. MD simulations coupled with advanced mass 
spectrometry techniques have proposed how LPS is inserted by the 
LPS transport protein LptDE from K. pneumoniae [96] and helped 
to describe the mechanisms of deacylation of LPS by the β-barrel 
protein, LpxR, from S. typhimurium [97]. AA and CG MD simula-
tions illustrated how thermodynamics drives membrane association 
of numerous lipoproteins, including the E. coli BAM complex, 
LptE, and CusC [98]. 

318 Anna L. Duncan et al.

Fig. 2 Illustrative examples of systems presented in Subheadings 3, 4, and 5.  (a) AA modeling of the OmpF 
protein surrounded by LPS [86]. (b) AA model of OM and periplasmic space containing proteins and osmolytes 
[87]. (c) CG modeling of an OMP island measuring 150 nm2 along the membrane plane [88]. OMPs are shown 
in red and are embedded in an outer membrane model containing 100% RaLPS in the outer leaflet, and a 90: 
5:5 ratio of POPE/POPG/cardiolipin in the inner leaflet. The RaLPS core region is shown in cyan, RaLPS 
phosphates are shown in yellow, and RaLPS acyl chains are shown in white. POPE, POPG, and cardiolipin 
lipids are shown in green, white, and pink, respectively. (d) AA modeling of the AcrAB-TolC multidrug efflux 
pump spanning the whole cell envelope [89] from the inner membrane (IM) through the peptidoglycan (PG) and 
up to the outer membrane (OM)
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Multiscale simulations have also been used to show how other 
lipids affect β-barrel protein function. For instance, phosphatidyl-
ethanolamine of the mitochondrial OM influences the anion selec-
tivity of VDAC and thereby regulates its function [99], while 
CG-MD simulations highlighted how ceramide lipids can bind to 
VDAC2 to trigger mitochondrial apoptosis, thus acting as a tumor-
suppressing lipid [100]. Integrating MD and Brownian dynamics 
and electric field simulations with biochemical data has resulted in 
the ability to model protein complexes, such as the complex formed 
by the mitochondrial VDAC1 and hexokinase II, which would have 
been extremely challenging to achieve solely by experimental 
means, due to the interaction of hexokinase II with the membrane 
[101]. Phosphatidylglycerol binding to OmpF is sensitive to pH, 
and MD simulations mimicking different pH levels uncovered lipid 
interaction patterns suggesting that the lipid interactions attenuate 
E. coli OmpF channel closure [102]. 

5 Biogenesis and Large Assemblies of β-Barrel Proteins 

β-barrel proteins are composed of a cylindrical arrangement of 
antiparallel β-sheets with hydrophobic residues tending to face the 
barrel’s exterior. This structure allows specific features and con-
straints in term of protein folding, biogenesis, and interactions 
with membrane protein partners. Recently, de novo design was 
applied to engineer custom β-barrel proteins [103]. Multiscale 
(AA and CG) MD simulations are especially useful to gain insights 
into the biogenesis of these proteins, their folding, and the forma-
tion of larger membrane protein assemblies. 

The biogenesis of OMPs in Gram-negative bacteria is mediated 
by the β-barrel assembly machinery (BAM) composed of five com-
ponents called Bam A–E  [104, 105]. The opening of BamA releas-
ing newly folded β-barrel proteins into the OM, called lateral 
gating, was studied by AA-MD simulations [106]. Membrane thin-
ning and distortion near this BamA’s lateral gate were observed in 
simulations [107, 108]. The conformational plasticity of BAM was 
explored by Cryo-EM and MD simulations [109]. This study 
demonstrated that plasticity of the barrel domain of BamA is essen-
tial for the function of BAM. The BamA plasticity was also studied 
in the context of its interaction with its substrate EspP by Cryo-EM 
[110] and MD simulations [111] allowing a better characterization 
of the sequential conformational dynamics of BAM during the late 
stages of OMP assembly. Due to its central role of OMP biogenesis, 
BamA has been a target for the development of novel antibiotics. 
One of them, dynobactin A, identified by computational 
approaches, specifically targets lateral gating [112]. This BamA-
antibiotic interaction was recently investigated by MD simulations 
[113]. Recently, a combination of cryo-electron microscopy, X-ray



crystallography, native mass spectroscopy, in vivo experiments, and 
MD simulations was also used to decipher the association of Dar-
obactin with BamA [114]. 
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After the incorporation into the OM, β-barrel proteins can 
form large molecular assemblies with restricted diffusion, 
so-called islands [115]. CG-MD simulations suggested that island 
formation was driven by protein-protein interactions 
[115, 116]. Due to limitations of this CG modeling to depict 
realistic diffusion of LPS, these initial CG-MD simulations were 
performed without LPS molecules. Recently, however, these mod-
els were further extended to take into account the role of LPS in 
mediating protein-protein interactions [88] (see Fig. 2c). These 
large supramolecular assemblies of membrane proteins and lipids 
may affect the rigidity of the membrane as seen by CG-MD 
simulations [117]. Assemblies of other types of proteins, such as 
pore-forming proteins [118, 119], may even drastically affect the 
membrane organization. While individual pore-forming proteins 
are soluble, the assembly of multiple copies of these proteins at 
the membrane may lead to the formation of a large β-barrel pore. 
Assembly, interactions with lipids, and membrane pore formation 
by pore-forming proteins were investigated using both AA- and 
CG-MD simulations. Pneumolysin prepore interaction with lipids 
and intermediate steps leading to a complete pore were investigated 
by multiscale simulations [120]. Using a similar multiscale 
approach, the creation of a pore by gasdermin proteins has also 
been characterized [121–123]. 

6 Beyond the Membrane Plane 

β-barrel proteins can also extend outside the membrane plane both 
via intra- and extracellular domains and interactions with protein 
partners [124, 125]. Here we will focus our attention on periplas-
mic domains. These may modulate β-barrel proteins functions, help 
transferring substrates, or favor interactions with other layers of the 
bacterial envelope such as the PG. The BamA subunit contains a 
large periplasmic domain composed of five globular polypeptide 
transport-associated (POTRA) motifs linked in tandem and num-
bered 1–5 from the N-terminal end [126]. Atomistic MD simula-
tions have proposed a model of POTRA interacting with the 
phospholipids not only via hydrogen bonds but also via hydropho-
bic interactions engaged with tryptophan residues [127]. These 
interactions may favor different POTRA structural configurations 
by drifting at the membrane surface. Some of these conformations 
may be compatible with binding to BamB and BamD. CryoEM and 
AA-MD simulations of the BAM machinery (containing BamA 
+POTRA and BamB-E) in a reconstituted nanodiscs revealed mem-
brane deformations [108]. The lipopolysaccharide transport (Lpt)



machinery transfers LPS molecules into the OM [128]. The release 
of LPS molecules may also occur via a lateral gating mechanism as 
seen for BamA (see Subheading 4). AA-MD simulations have sug-
gested that the periplasmic domain of LptDE is highly dynamic 
[129] and that the LPS substrate helps the opening of the lateral 
gate [96, 129]. 
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The Khalid lab has used AA-MD simulations to study how the 
dimerization of OmpA protein through its cytoplasmic C-terminal 
domain may maintain a distance between the PG layer and the OM 
hence limiting the PG distortion [130]. AA-MD simulations also 
suggested that OmpA interactions with the PG layer are facilitated 
by tripartite contacts between Braun’s lipoprotein, the PG layer, 
and the OmpA C-terminal domain [131]. The crowded OM and 
periplasm were also modeled using AA-MD simulations to study 
the travel of the antibiotic polymyxin B1 through the periplasm 
[87]. These simulations revealed that polymyxin B1 forms both 
transient and long-lived interactions with proteins, osmolytes, 
lipids of the OM, and the cell wall and is rarely uncomplexed 
when in the periplasm (see Fig. 2b). 

Recent works have also started modeling how trans-envelope 
processes, such as mechanical stress sensing and metabolite efflux, 
are coordinated across the three envelope layers of Gram-negative 
bacterial cells, i.e., IM PG OM [89, 132] (see Fig. 2d). 

7 Conclusion 

With their β-barrel core, β-barrel proteins may be seen as less 
flexible than other types of proteins [133, 134]. However, based 
on recent advances coupling multiscale MD simulations with other 
experimental approaches, it is now clear that their intrinsic flexibil-
ity coupled to their diffusion in the membrane and their interac-
tions with membrane peripheral partners play an important role in 
their function. 

Here, we have given an overview of recent advances in MD 
simulations to decipher β-barrel protein dynamics at different 
scales: from the flexibility of extracellular loops and their interac-
tions with lipids and small molecules to large assemblies of proteins 
and diffusion of molecules in different regions of the cell envelope. 
We are now moving toward very large and complex models to 
create digital twins of the bacterial cell envelope to develop new 
antibiotics or membranes composed of nanopores to design new 
biotechnological tools. 

With recent advances in AI and experiments integrated to MD 
simulations, it will become increasingly feasible to model very 
complex biophysical mechanisms involving β-barrel proteins and 
shed new lights onto their function.
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8 Notes 

1. The term “force field” refers to a set of potential energy terms 
and specific implementation details, including parameter 
values, to calculate intra- and inter-molecular forces between 
atoms and particles (for CG systems, see below) [38]. Different 
force fields are optimized for specific types of molecules such as 
proteins [135], lipids [136] or DNA [137]. Thus, it is impor-
tant to use the most appropriate force field for a given molecu-
lar system. 

2. The goal of coarse grained (CG) mapping is to provide accel-
erated calculations by reducing the effective number of parti-
cles and using longer time scales, compared to AA resolution. 
In general, CG mapping requires a bottom-up strategy [138] 
by grouping several atoms together into a single bead and by 
assigning their overall chemical features (polarity, hydrophobi-
city, charge) and center of mass to that bead. For the MAR-
TINI force field, the CG mapping originally consisted of 
grouping typically four heavy atoms (i.e., not including the 
hydrogen atoms) into one bead. With the development of the 
third version of MARTINI [139], it is now possible to select 
smaller bead types representing two to three atoms. Numerous 
tools exist that streamline CG mapping, such as PyCGTOOL 
[140], Auto-MARTINI [141], Swarm-CG [142, 143], 
CGCompiler [144], or MAD [145]. Recently, the use of 
machine learning (ML) has helped to automatically design 
new CG models for proteins [27, 146, 147]. 

3. The two approaches known as steered molecular dynamics 
(SMD) simulations and umbrella sampling (US) belong to 
the enhanced sampling methods category that allow sampling 
of larger portions of the configuration space of complex sys-
tems in a given amount of simulation time [148]. Steered 
molecular dynamics emulates atomic force microscopy experi-
ments by introducing a fictitious 3D particle moving at con-
stant velocity and connected to a molecule by a harmonic 
spring. It is often used to study folding/unfolding of proteins 
or ligand binding [149, 150]. Umbrella sampling allows explo-
ration of one specific path by biasing the simulation along one 
(or more-dimensional) reaction coordinate to calculate energy 
barriers between different states [151].
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terhalter M (2020) Dynamic interaction of 
fluoroquinolones with magnesium ions mon-
itored using bacterial outer membrane nano-
pores. Chem Sci 11:10344–10353. https:// 
doi.org/10.1039/d0sc03486j 

53. Prajapati JD, Solano CJF, Winterhalter M, 
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(2022) Permeation of fosfomycin through 
the phosphate-specific channels OprP and 
OprO of Pseudomonas aeruginosa. J Phys 
Chem B 126:1388–1403. https://doi.org/ 
10.1021/acs.jpcb.1c08696 

57. Haloi N, Vasan AK, Geddes EJ et al (2021) 
Rationalizing the generation of broad spec-
trum antibiotics with the addition of a positive 
charge. Chem Sci 12:15028–15044. https:// 
doi.org/10.1039/d1sc04445a

https://doi.org/10.1002/jcc.25823
https://doi.org/10.1002/jcc.25823
https://doi.org/10.33011/livecoms.3.1.1483
https://doi.org/10.33011/livecoms.3.1.1483
https://doi.org/10.3389/fbinf.2023.1149744
https://doi.org/10.3389/fbinf.2023.1149744
https://doi.org/10.1073/pnas.2117009119
https://doi.org/10.1073/pnas.2117009119
https://doi.org/10.1016/j.bbabio.2018.01.008
https://doi.org/10.1016/j.bbabio.2018.01.008
https://doi.org/10.1021/acs.jpcb.8b07109
https://doi.org/10.1073/pnas.2002598117
https://doi.org/10.1073/pnas.2002598117
https://doi.org/10.1038/s41467-020-20126-y
https://doi.org/10.1038/s41467-020-20126-y
https://doi.org/10.1021/acs.jpcb.9b00063
https://doi.org/10.1021/acs.jpcb.9b00063
https://doi.org/10.3390/catal13020214
https://doi.org/10.1002/anie.202016943
https://doi.org/10.1002/anie.202016943
https://doi.org/10.1016/j.bpj.2021.01.004
https://doi.org/10.1016/j.bpj.2021.01.004
https://doi.org/10.1371/journal.pcbi.1008024
https://doi.org/10.1371/journal.pcbi.1008024
https://doi.org/10.1021/acs.jctc.1c00369
https://doi.org/10.1021/acs.jctc.1c00369
https://doi.org/10.1021/acs.jcim.2c01108
https://doi.org/10.1021/acs.jcim.2c01108
https://doi.org/10.1039/d0sc03486j
https://doi.org/10.1039/d0sc03486j
https://doi.org/10.1021/acs.jpcb.7b12568
https://doi.org/10.1021/acs.jpcb.7b12568
https://doi.org/10.1021/acs.jctc.7b00467
https://doi.org/10.1021/acs.jctc.7b00467
https://doi.org/10.1016/j.bpj.2018.12.002
https://doi.org/10.1016/j.bpj.2018.12.002
https://doi.org/10.1021/acs.jpcb.1c08696
https://doi.org/10.1021/acs.jpcb.1c08696
https://doi.org/10.1039/d1sc04445a
https://doi.org/10.1039/d1sc04445a


326 Anna L. Duncan et al.

58. Alessandri R, Barnoud J, Gertsen AS et al 
(2022) Martini 3 coarse-grained force field: 
small molecules. Adv Theory Simul 5: 
2100391. https://doi.org/10.1002/adts. 
202100391 

59. Dai Y, Ma H, Wu M et al (2021) Develop-
ment of the computational antibiotic screen-
ing platform (CLASP) to aid in the discovery 
of new antibiotics. Soft Matter 17:2725– 
2736 .  h t t p s : //do i . o r g/10 . 1 039/  
d0sm02035d 

60. Kim DE, Jensen DR, Feldman D et al (2023) 
De novo design of small beta barrel proteins. 
Proc Natl Acad Sci 120:e2207974120. 
h t t p s : //  d o i . o r g / 1  0 . 1 0 7  3 / p n a s .  
2207974120 

61. Chowdhury R, Ren T, Shankla M et al (2018) 
PoreDesigner for tuning solute selectivity in a 
robust and highly permeable outer membrane 
pore. Nat Commun 9:3661. https://doi. 
org/10.1038/s41467-018-06097-1 

62. Tu Y-M, Song W, Ren T et al (2020) Rapid 
fabrication of precise high-throughput filters 
from membrane protein nanosheets. Nat 
Mater 19:347–354. https://doi.org/10. 
1038/s41563-019-0577-z 

63. Ayub M, Stoddart D, Bayley H (2015) 
Nucleobase recognition by truncated 
α-hemolysin pores. ACS Nano 9:7895– 
7903. https://doi.org/10.1021/nn5060317 

64. Wei X, Penkauskas T, Reiner JE et al (2023) 
Engineering biological nanopore approaches 
toward protein sequencing. ACS Nano 17: 
16369–16395. https://doi.org/10.1021/ 
acsnano.3c05628 

65. Asandei A, Muccio GD, Schiopu I et al 
(2020) Nanopore-based protein sequencing 
using biopores: current achievements and 
open challenges. Small Methods 4:1900595. 
https://doi.org/10.1002/smtd.201900595 

66. Prajapati JD, Kleinekathöfer U (2020) 
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Schager AE et al (2020) Outer membrane 
protein size and LPS O-antigen define protec-
tive antibody targeting to the Salmonella sur-
face. Nat Commun 11:851. https://doi.org/ 
10.1038/s41467-020-14655-9 

95. Matthias KA, Strader MB, Nawar HF et al 
(2017) Heterogeneity in non-epitope loop 
sequence and outer membrane protein com-
plexes alters antibody binding to the major 
porin protein PorB in serogroup B Neisseria 
meningitidis. Mol Microbiol 105:934–953. 
https://doi.org/10.1111/mmi.13747 

96. Fiorentino F, Sauer JB, Qiu X et al (2021) 
Dynamics of an LPS translocon induced by 
substrate and an antimicrobial peptide. Nat 
Chem Biol 17:187–195. https://doi.org/ 
10.1038/s41589-020-00694-2 

97. Saunders GM, Macdonald HEB, Essex JW, 
Khalid S (2018) Prediction of the closed con-
formation and insights into the mechanism of 
the membrane enzyme LpxR. Biophys J 115: 
1445–1456. https://doi.org/10.1016/j.bpj. 
2018.09.002 

98. Rao S, Bates GT, Matthews CR et al (2020) 
Characterizing membrane association and 
periplasmic transfer of bacterial lipoproteins 
through molecular dynamics simulations. 
Structure 28:475–487.e3. https://doi.org/ 
10.1016/j.str.2020.01.012 

99. Liefferinge FV, Krammer E-M, Sengupta D, 
Prévost M (2019) Lipid composition and salt 
concentration as regulatory factors of the 
anion selectivity of VDAC studied by coarse-
grained molecular dynamics simulations. 
Chem Phys Lipids 220:66–76. https://doi. 
org/10.1016/j.chemphyslip.2018.11.002

https://doi.org/10.1021/jacs.0c09412
https://doi.org/10.1021/acscentsci.8b00143
https://doi.org/10.1021/acscentsci.8b00143
https://doi.org/10.1126/sciadv.abh2217
https://doi.org/10.1126/sciadv.abh2217
https://doi.org/10.1021/acs.jpcb.1c07332
https://doi.org/10.1021/acs.jpcb.1c07332
https://doi.org/10.1021/acs.jcim.3c00072
https://doi.org/10.1021/acs.jpcb.8b12168
https://doi.org/10.1021/acs.jpcb.8b12168
https://doi.org/10.1021/acs.jctc.3c00471
https://doi.org/10.1021/acs.jctc.3c00471
https://doi.org/10.1016/j.bpj.2016.01.002
https://doi.org/10.1016/j.bpj.2016.01.002
https://doi.org/10.1016/j.str.2021.01.009
https://doi.org/10.1016/j.str.2021.01.009
https://doi.org/10.1126/sciadv.adc9566
https://doi.org/10.1126/sciadv.adc9566
https://doi.org/10.1016/j.bpj.2021.08.016
https://doi.org/10.1016/j.bpj.2021.08.016
https://doi.org/10.1021/acs.jpcb.9b03669
https://doi.org/10.1021/acs.jpcb.9b03669
https://doi.org/10.1021/acs.jctc.8b01059
https://doi.org/10.1021/acs.jctc.8b01059
https://doi.org/10.1016/j.bpj.2016.12.006
https://doi.org/10.1016/j.bpj.2016.12.006
https://doi.org/10.1111/mmi.14530
https://doi.org/10.1111/mmi.14530
https://doi.org/10.1038/s41467-020-14655-9
https://doi.org/10.1038/s41467-020-14655-9
https://doi.org/10.1111/mmi.13747
https://doi.org/10.1038/s41589-020-00694-2
https://doi.org/10.1038/s41589-020-00694-2
https://doi.org/10.1016/j.bpj.2018.09.002
https://doi.org/10.1016/j.bpj.2018.09.002
https://doi.org/10.1016/j.str.2020.01.012
https://doi.org/10.1016/j.str.2020.01.012
https://doi.org/10.1016/j.chemphyslip.2018.11.002
https://doi.org/10.1016/j.chemphyslip.2018.11.002


328 Anna L. Duncan et al.

100. Dadsena S, Bockelmann S, Mina JGM et al 
(2019) Ceramides bind VDAC2 to trigger 
mitochondrial apoptosis. Nat Commun 10: 
1832. https://doi.org/10.1038/s41467-
019-09654-4 

101. Haloi N, Wen P-C, Cheng Q et al (2021) 
Structural basis of complex formation 
between mitochondrial anion channel 
VDAC1 and hexokinase-II. Commun Biol 4: 
667. https://doi.org/10.1038/s42003-
021-02205-y 

102. Liko I, Degiacomi MT, Lee S et al (2018) 
Lipid binding attenuates channel closure of 
the outer membrane protein OmpF. Proc 
Natl Acad Sci 115:6691–6696. https://doi. 
org/10.1073/pnas.1721152115 

103. Vorobieva AA, White P, Liang B et al (2021) 
De novo design of transmembrane β barrels. 
Science 371:eabc8182. https://doi.org/10. 
1126/science.abc8182 

104. Wu R, Stephenson R, Gichaba A, Noinaj N 
(2020) The big BAM theory: an open and 
closed case? Biochim Biophys Acta Biomembr 
1862:183062. https://doi.org/10.1016/j. 
bbamem.2019.183062 

105. Noinaj N, Gumbart JC, Buchanan SK (2017) 
The β-barrel assembly machinery in motion. 
Nat Rev Microbiol 15:197–204. https://doi. 
org/10.1038/nrmicro.2016.191 

106. Lundquist K, Bakelar J, Noinaj N, Gumbart 
JC (2018) C-terminal kink formation is 
required for lateral gating in BamA. Proc 
Natl Acad Sci 115:E7942–E7949. https:// 
doi.org/10.1073/pnas.1722530115 

107. Liu J, Gumbart JC (2020) Membrane thin-
ning and lateral gating are consistent features 
of BamA across multiple species. PLoS Com-
put Biol 16:e1008355. https://doi.org/10. 
1371/journal.pcbi.1008355 

108. Iadanza MG, Schiffrin B, White P et al (2020) 
Distortion of the bilayer and dynamics of the 
BAM complex in lipid nanodiscs. Commun 
Biol 3:766. https://doi.org/10.1038/ 
s42003-020-01419-w 

109. Wu R, Bakelar JW, Lundquist K et al (2021) 
Plasticity within the barrel domain of BamA 
mediates a hybrid-barrel mechanism by BAM. 
Nat Commun 12:7131. https://doi.org/10. 
1038/s41467-021-27449-4 

110. Shen C, Chang S, Luo Q et al (2023) Struc-
tural basis of BAM-mediated outer membrane 
β-barrel protein assembly. Nature 617:185– 
193. https://doi.org/10.1038/s41586-
023-05988-8 

111. Kuo KM, Ryoo D, Lundquist K, Gumbart JC 
(2022) Modeling intermediates of BamA 
folding an outer membrane protein. Biophys 

J 121:3242–3252. https://doi.org/10. 
1016/j.bpj.2022.07.027 

112. Miller RD, Iinishi A, Modaresi SM et al 
(2022) Computational identification of a sys-
temic antibiotic for Gram-negative bacteria. 
Nat Microbiol 7:1661–1672. https://doi. 
org/10.1038/s41564-022-01227-4 

113. Kuo KM, Liu J, Pavlova A, Gumbart JC 
(2023) Drug binding to BamA targets its 
lateral gate. J Phys Chem B 127:7509–7517. 
https://doi.org/10.1021/acs.jpcb.3c04501 

114. Kaur H, Jakob RP, Marzinek JK et al (2021) 
The antibiotic darobactin mimics a β-strand 
to inhibit outer membrane insertase. Nature 
593:125–129. https://doi.org/10.1038/ 
s41586-021-03455-w 

115. Rassam P, Copeland NA, Birkholz O et al 
(2015) Supramolecular assemblies underpin 
turnover of outer membrane proteins in bac-
teria. Nature 523:333–336. https://doi.org/ 
10.1038/nature14461 

116. Chavent M, Duncan AL, Rassam P et al 
(2018) How nanoscale protein interactions 
determine the mesoscale dynamic organisa-
tion of bacterial outer membrane proteins. 
Nat Commun 9:2846. https://doi.org/10. 
1038/s41467-018-05255-9 
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