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Abstract—Due to the different privacy and local model quality
requirements for each participant, federated learning (FL) is
vulnerable to membership inference attacks. To solve this issue,
we propose a risk-aware reinforcement learning (RL)-based
personalized differentially private FL framework. This framework
uses local model accuracy and privacy loss as the constraints
to satisfy the user’s personalized requirements. By designing a
multi-agent RL, this framework optimizes perturbation policy
including perturbation mechanisms and parameters (such as
privacy budget and probabilistic relaxation). The goal of each
participant is to improve global accuracy and reduce privacy
loss, attack success rate, and short-term risk value. Firstly,
the framework designs a two-level hierarchical policy selection
module to choose the perturbation policy to accelerate learning
speed. Secondly, our proposed framework designs a punishment
function to evaluate short-term risk and an R-network to estimate
long-term risk, which guarantees safe exploration. Thirdly, this
framework formulates an improved Boltzmann policy distribution
to increase the impact of risk, thus avoiding risky policies that
may cause severe privacy leakage or local task failure. We also
analyze the convergence performance and provide privacy analysis
for both Gaussian and Laplace mechanisms. Experimental results
based on the MNIST dataset demonstrate the effectiveness of our
framework compared with benchmarks.

Index Terms—Federated learning, local differential privacy,
personalized privacy, reinforcement learning, safe exploration.

I. INTRODUCTION

Due to the challenges of data growth and model training
requirements, federated learning (FL) significantly speeds up
training efficiency. This technique utilizes local and parallel
computing with user privacy protection to facilitate collabora-
tive model training across diverse organizations and devices [1],
[2], [3]. Nevertheless, each participant has different demands
for privacy and local model quality due to the variant local task
types [4], [S]. For example, some of the vehicular participants
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focus on task execution quality such as objective detection
accuracy, while others prefer protecting user privacy. In this
case, each participant has personalized privacy and local
model quality requirements. However, this issue makes the
transmission process of local model parameters vulnerable
to membership inference attacks. The attacker can wiretap
the transmission status to infer that the underlying transmitted
parameters come from which participants [6]. Existing methods
mainly apply homomorphic encryption [7] or secure multi-
party computation [8] to defend against membership inference
attacks. For example, a privacy-preserving FL framework in
[7] utilizes symmetric homomorphic encryption to ensure
training confidentiality. However, this method induces high
computational overhead due to the complex encryption and
decryption operations.

Local differential privacy (LDP) techniques such as Laplace
and Gaussian mechanisms have emerged as a promising
solution for FL to protect user privacy [9]-[11]. Specifically,
users add noise to perturb their local model parameters and then
upload the perturbed parameters to the central server. In this
way, the attacker cannot obtain the actual model parameters of
users [12]. For example, the FL-enabled mobile system in [13]
uses a fixed privacy budget to perturb local model parameters
with noise sampled from Laplace distribution. On the other
hand, a communication constraint-aware FL system proposed
in [14] perturbs local models with a given Gaussian privacy
budget and probabilistic relaxation. However, the privacy and
the utility in the FL process are highly dependent on the adopted
perturbation mechanisms and the corresponding privacy budget
and probabilistic relaxation.

Therefore, reinforcement learning (RL) has been applied to
choose the privacy budget for recommendation systems [15]
and perturbation angle for indoor location protection [16]. For
instance, a deep RL-based location privacy protection scheme
was proposed in [16] to improve location protection and quality
of service. This method applies a dueling double deep Q-
network and asynchronous advantage actor-critic algorithms to
optimize privacy budget and angles. By applying the Boltzmann
policy distribution adopted in [17], the scheme also considers
risky explorations that cause server location privacy leakage.
The challenges of LDP-based FL can be summarized as follows:

« How to balance user privacy and utility in the personalized
FL process should be investigated, to adaptively optimize
user perturbation mechanisms and parameters.

o Without considering the joint impact of local model accu-
racy and user-specific privacy requirements, existing RL-
based privacy protection schemes are prone to exploring
risky policies.



o Most RL-based privacy protection schemes focus on the
individual observation of each user, thus suffering from
slow learning speed.

To solve the challenges, this paper proposes a risk-aware
RL-based personalized differentially private FL framework
(named RARL-PDPFL) against membership inference attacks.
This framework enables mobile devices with personalized
requirements to perturb their local model parameters following
an LDP guarantee before uploading them to the central server.
By designing a risk-aware RL algorithm for mobile devices, this
framework jointly optimizes perturbation mechanism, privacy
budget, and probabilistic relaxation to satisfy requirements of
user-specific privacy and local model accuracy.

The designed risk-aware RL algorithm applies a hierarchical
structure and observation-sharing mechanism to accelerate
learning speed. More specifically, the hierarchical structure
divides the perturbation policy into two sub-policies (i.e., the
perturbation mechanism and parameters) to compress the action
set, thus facilitating learning speed compared with [16] and [17].
Specifically, the first level in the hierarchical structure chooses
the perturbation mechanism, and the second level selects the
privacy budget and probabilistic relaxation to facilitate learning.
This algorithm designs an observation-sharing mechanism for
each user to extract the historical performance of neighboring
users, to improve perturbation policy optimization efficiency.

Our RARL-PDPFL explores users’ local model accuracy
and privacy loss as the basis to avoid risky policies that
cannot satisfy personalized user requirements. Different from
the scheme in [16], our scheme uses a punishment function
and an R-network to estimate both the short-term and long-
term risks to reduce dangerous explorations. An improved
Boltzmann policy distribution is designed to balance safe
exploration and exploitation, which considers the impact of
reward and risk on the selection of perturbation mechanisms
and parameters. To our knowledge, our proposed framework is
the first work that uses user-specific privacy and local model
accuracy requirements in the design of RL to resist membership
inference attacks.

We provide the convergence analysis of our framework and
prove that our scheme satisfies the LDP guarantee under both
Laplace and Gaussian mechanisms. Experiments are executed
on the MNIST dataset, with results showing that our framework
outperforms the benchmarks SFAC in [13] and Privatized
FedPaq in [14]. Further, we provide an ablation study to verify
the effectiveness of our proposed hierarchical policy selection
module, punishment function, and R-network.

The main contributions of this work are summarized as
follows:

o We propose a personalized differentially private FL frame-
work to choose the perturbation policy for mobile devices
against membership inference attacks. This framework
innovatively uses privacy loss and local model accuracy
as the criteria to satisfy the personalized user requirements.

e We design a multi-agent risk-aware RL algorithm to
improve training accuracy and reduce user privacy loss.
The designed algorithm avoids exploring risky policies
that cannot satisfy user-specific requirements by evaluating
both short-term and long-term risks. This algorithm also

uses a hierarchical structure and observation sharing
among mobile devices to accelerate learning speed.

o To verify the effectiveness of our framework, we prove
that our framework has convergence performance and
satisfies the LDP guarantee for both Gaussian and Laplace
mechanisms. We also provide a comparison with three
benchmarks via dynamic and personalized performance,
the impact of participants, and the ablation study.

The rest of this paper is organized as follows. We provide
the preliminaries in Section II and the system model in Section
III. A risk-aware RL-based personalized differentially private
FL framework is introduced in Section IV. Theoretical analysis
is provided in Section V and experimental results are discussed
in Section VI. We provide an overview of related works in
Section VII, followed by the summary and future work in
Section VIIL.

II. PRELIMINARIES

In this section, we provide preliminaries for local differential
privacy, risk-aware reinforcement learning, and hierarchical
reinforcement learning.

A. Local Differential Privacy for Federated Learning

According to [18], (5§k),5§k))-LDP provides a rigorous
privacy notion for the local model parameters in the FL
training process. Specifically, the privacy budget sgk) € (0,1]
indicates the similarities between the original parameters and
the perturbed parameters. On the other hand, the probabilistic
relaxation 55“ € (0, 1] represents the probability that the LDP
has been violated. In the FL training process, LDP helps mobile
device ¢ (with 1 < ¢ < N) perturb local model parameters wfk)
with M d1mens1on9 by using Laplace or Gaussian mechanisms
denoted by M (w!).

Definition 1: ((5(k) 6(k)) LDP [19]). By applying a per-
turbation mechanism M(+) in local model parameters w; ",
mobile device ¢ can achieve (e, (k) 5 ) -LDP if the perturbed

parameters w( ) satisfy:
Pr [M ( (k)) w(k)]
< exp ( ) Pr [./\/l (wj(»k)) " (k)} + 5(k) €))

According to [20] and [21], the Gaussian mechanism is
suitable for large-scale datasets but does not satisfy a strict
LDP guarantee with a lighter tail than the Laplace mechanism.
On the contrary, the Laplace mechanism strictly satisfies the
LDP guarantee but may affect the data utility.

B. Risk-Aware Reinforcement Learning

Compared with typical RL algorithms, risk-aware RL ex-
plores policies such as perturbation parameters in a constrained
Markov decision process (CMDP) with security constraints.
Specifically, CMDP consists of the state space, action set,
reward, punishment, and transition probability. For mobile
device 1 < ¢ < N, the corresponding CMDP is modeled as a
tuple M(S;, A;, rl(k), Lbz(k), P), where



e S, is the state space including all the possible states.

o A, is the action set consisting of all the available policies.

. rz(k) is the reward obtained from the environment if mobile
device 7 executes action agk) at state s( ),

. @bgk) is the punishment function that indicates the short-
term risk of chosen action agk) evaluated by the constraint
metrics such as privacy loss and local model accuracy.

e P(S; x A; x S;) € [0,1] represents the transition

probability from s(k) to s(kH) after performing a( ),

C. Hierarchical Reinforcement Learning

As an extension of RL, hierarchical RL compresses large-
scale action sets to accelerate the learning speed and considers
the policy selection priority in the learning process [17]. For
example, the selection priority of the perturbation mechanism
is higher than that of perturbation parameters. Taking a two-
level hierarchical structure as an example, an agent divides the
original action set AZ- into two sub-action set AM and Ai,g.
In this case, the agent uses the first level to choose the first
sub-policy agﬁ) € Azl which is used as the basis to select

the second sub-policy al(-g) S Ai72 with the second level. Due
to the FL system involving a large number of participants,
hierarchical RL can be used to facilitate the optimization of

perturbation policies.

III. SYSTEM MODEL
A. Network Model

As shown in Fig. 1, we consider an FL system that consists
of a central server and N mobile devices without sufficient
computing resources. At time slot k& € [1, K], each mobile
device executes tasks with local model parameters wl(k). To
avoid privacy leakage, mobile device ¢ decides how to perturb
its model parameters w(k) including perturbation mechanism

(k) € {0,1} and parameters :c( ) = [e; (k) 5@)] Specifically,
( ) = 0 represents that mobile device ¢ applies the Gaussian
mechanlsm and chooses the Laplace mechanism otherwise. Let
[u£2]1<m<M and [yf@l]1<m<M be the Gaussian and Laplace

noise vector, respectively, where uz( 721 follows a Gaussian
(k)

distribution g(-) and y;, follows a Laplace distribution
g(+). Thus, mobile device i perturbs its parameters to obtain
perturbed model parameters ng) with Gaussian or Laplace

noise via
. . {ugk” ,  Gaussian noise
R Rtk N
{yi m]1< <n’ aplace noise.

According to [22], privacy budget 5( ) and probabilistic

relaxation 6 (k) are used to evaluate the perturbation noise scale
(k) . After obtaining the perturbed parameters w(k)
deV1ce 7 sends w( ) to the central server. As a metric to evaluate

the privacy protection level, the privacy loss Q( ) is evaluated
via

mobile

T(k) — min T(k)
(k) ' 1<ksk (k)
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Fig. 1: Illustration of the system model, where N mobile
devices perturb their local model parameters to participate in
the global aggregation.

By applying the FedAvg method as proposed in [23], the
server gathers the perturbed local parameters of the N mobile
devices to aggregate a global model via

(k+1)

w NZ%)

The global model parameters w(() 1 are distributed to the N
mobile devices.

Each mobile device uses the global model parameters wékH)
to update its local model parameters w( +1) ,with 1 <i<N.
For example, mobile device ¢ has a dataset with |D;| pairs of
training and test data, in which p; ; represents the j-th testing
data and ¢; ; is the training data. The goal of mobile device 4
is minimizing the loss function given by

“

D]
1
w§k+1) - wékJrl) Vv (k+1) "D | Zfz (pz,g>%,ja (k+1))
&)
where fi(p;.;,qijiw") represents the prediction error of
testing data p; ; under global model parameters wék). In this

case, the error of local model wgk) for mobile device 7 can be
modeled as
28]

7(k
lz() ‘,Dlz.fz(p?j»%ja ())

and the local model accuracy equals one minus the prediction
error, i.e., p( ) =1-0W

3

6)

B. Attack Model

In this work, an attacker performs membership inference
attacks to capture the transmitted local model parameters.
Specifically, it can obtain information such as gradients, change
of hyper-parameters, and training times of the local model [24].
By analyzing the obtained information, the attacker can infer
whether a specific piece of data (e.g., person, videos, or photos)
belongs to the local dataset of a specific mobile device. What’s
worse, the attacker can even identify the source mobile device
of the obtained local model parameters. This type of attack
severely degrades the privacy of FL systems.

At time slot k, the attacker injects into the FL systems by
launching malicious software, code, or scripts to monitor the
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Fig. 2: Illustration of risk-aware RL-based personalized differentially private FL framework, with 1 < < N.

transmitted &fk) and wék), with 1 < ¢ < N. To balance the

attack overhead and profit, the attacker can apply an RL model
such as deep Q-network or soft Actor-Critic to change its
attack probability £(*) that indicates the attack frequency on
N mobile devices within a time slot. More specifically, the
attacker estimates the previous attack success rate and measures
its attack energy consumption in the last time slot, which are
used to formulate its state. The attacker aims to increase its
attack success rate denoted by ¢(*) among the N participated
mobile devices and save attack overhead. Similar to [25], attack
success rate ¢(*) is estimated every time slot, which depends on
the number of mobile devices, attack probability, and privacy
loss given by
DY

(k) — ¢(k) &i=1>i
o) = g0 =t ™

C. Problem Formulation

In the FL system, each mobile device has personalized
requirements of privacy and local model accuracy due to the
different types and importance of their underlying local tasks.
For example, mobile device ¢ has privacy loss requirement
smaller than @ and local model accuracy constraint larger than
pi» with 1 < ¢ < N. Thus, mobile device i formulates its
goal as an optimization function based global model accuracy
denoted by pék), local model accuracy pgk), privacy loss (i(k)
and attack success rate d)(k), ie.,

(k—1) (k) (k) (k—1)
max E[of 7 + o™ — ¢ — gt
at®e40,1},6% €(0,1],67 €(0,1] 0

(3

st. 1<i<N,p™ >p, ™ <.
IV. RISK-AWARE RL-BASED PERSONALIZED
DIFFERENTIALLY PRIVATE FLL FRAMEWORK
We design a personalized differentially private FL framework
with a risk-aware RL algorithm named RARL-PDPFL to
optimize the perturbation mechanism and parameters. The
framework explores the privacy loss and the accuracy of local

models to satisfy the personalized requirements of each mobile
device. As shown in Fig. 2, this framework includes the global
model aggregation and local task execution, parameter perturba-
tion, and perturbation policy selection module. By designing a
multi-agent RL algorithm, this framework formulates a CMDP
for each mobile device. This framework uses a two-level
hierarchical perturbation policy selection module to accelerate
learning efficiency. Further, a risk-aware policy distribution
that relies on both short-term and long-term risks is used to
avoid exploring potentially dangerous perturbation policies.

A. Constrained Markov Decision Process

This framework formulates the personalized differentially
private FL process as a CMDP, with details introduced as
follows.

State Space: Mobile device ¢ (with 1 <4 < NN) estimates

. (k—1) (k—1)
privacy loss (; and local model accuracy p, , and
obtains global model accuracy pék_l) from the central server.
By analyzing the number of received spam or advertising times,
and the shared information of other devices and the server,
mobile device i estimates attack success rate ¢(*~1). This
framework enables each mobile device to share observations
to reduce unnecessary random exploration. By exploiting the
shared observations of the rest N — 1 mobile devices, mobile
device ¢ builds its state as

(k) _ | (k=1) [ (k—1) ~(k=1) [ (k=1) 4
S, |:p0 ad) aCz ) [P] :|1§j§N:| S SZ. (9)

Particularly, mobile device ¢ extracts the shared observations
from the other devices and the previous pgk_z) to formulate
its state, if mobile device j does not share its local mode
accuracy pék_l), with 1 < i # j < N. Due to the usage of a
hierarchical structure, our proposed algorithm can accelerate
the learning speed even if one or more devices do not share
their local model accuracy.

Action set: Each mobile device determines its perturbation

policy to add noise to its local parameters. Taking mobile
device ¢ as an example, perturbation policy al(.k) = [al(.fc1 ,xl(-k)] €

A; includes perturbation mechanism a%) with two available



choices, and perturbation parameters xgk). Specifically, the
. . . (k) .
perturbation parameters contain privacy budget ¢, having
;1 levels and probabilistic relaxation 61-(}“) having 2, o levels.
Thus, A; has 2Q; 1€); o available perturbation policies.
Reward: After executing the chosen perturbation policy a( ),

mobile device i perturbs wl(k) with mechanism a,(lkl, privacy
(%) (k)

budget 6( ) and probabilistic relaxation 0, to obtain @,
Based on the prediction results of local tasks, mobile device &
estimates local model accuracy pZ(-k) via Eq. (6) and privacy loss
CZ-(k) via Eq. (3). This scheme uses the reward rl(k) to represent
the immediate profit obtained from the environment after
performing the chosen perturbation policy, which is composed
of the model accuracy, privacy loss, and attack success rate.
The reward is evaluated via

(k) (k—1)

Ty = Po —uzp*Y.

sz

Punishment function: Each mobile device uses the person-
alized local model accuracy and privacy loss requirements as
security constraints to measure the risk of a chosen perturbation
policy. To make a trade-off between privacy protection and
training accuracy, mobile device i can tolerate a maximum
privacy loss bounded by @ and a minimum local model
accuracy bounded by p;. This scheme designs a punishment
function (i.e., the risk value) to evaluate whether the chosen
perturbation policy satisfies the user-specific privacy and local
model quality requirements. The risk value wgk) is calculated
based on an indicator function I(-) in terms of privacy loss
and local model accuracy, i.e.,

o =1(p" < p) +e (M >G). a

where v, parameterizes the importance of privacy and training
performance for risk formulation.

This framework modifies reward rgk) with risk value ¢§’“>
and weight v5 as the short-term reward, to avoid the immediate
dangerous exploration. The modified reward fgk) is calculated

by

+ v pZ (10)

Different from [26], this algorithm uses the modified reward
f‘fk) to update both the perturbation policy distribution and
weights of Q-networks.

B. Two-Level Hierarchical Policy Selection Module

As illustrated in Fig. 3, our designed two-level hierarchical
module consists of two Q-networks that estimate long-term
expected reward (also called Q-values), and two R-networks
that estimate long-term risk (i.e., R-values). With state sgk)
that has IV + 3 dimensions as the input, the first level is used
to select perturbation mechanism al(-k1 with 2 dimensions. The

(k)

second level chooses perturbation parameters x; * with state

Ek) and a( ) as the input, in which the output have €2; 1§2; o
dimenswns

In first-level, Q-network 1 using weights Ol(ﬁ) has an input
layer with size of NV + 3, a hidden layer with f; ; neurons, and

k k
an output layer that outputs two Q-values Qi,l(sl( ) 0571)).

Similarly, R-network 1 with weights cpz(-fcl) involves the same

network architecture as Q-network 1, which outputs two
R-values R; (s Ek),~;<p§_lcl)). In second-level, Q-network 2

with Welghts 0Z 2) uses state s(k) and chosen perturbation

mechanism a from first-level as input. The corresponding
input layer has N + 4 neurons, hidden layer involves f; o
neurons, and output layer outputs €2; 1£2; o number of Q-values
Qi72(s§k), agﬁ), “ 05’;)) By using a same network architecture

as Q-network 2, R-network 2 involving weights <p£k2) outputs

;1€ 2 number of R-values R; 5 (s ( Ek),ag 1), ,Lpgz)

C. Risk-Aware Policy Distribution

This framework designs a risk-aware policy distribution to
help each mobile device enable safety during the learning
process. More specifically, the long-term expected reward in
both the two levels is updated with fl(k) using the Bellman
iteration equation, and the corresponding long-term risk is
updated with wfk). A learning rate «; € (0,1] in the
Bellman iteration function balances the importance of the future
reward/risk in the learning process. Taking the first level as an
example, the long-term expected reward and risk are updated
with

—(1—a;)Q;4 (sgk)’ az(',kl)3 agﬁ))

K (k k

Qi1 (sg )’ag,l);ez(,l))

+ «; ( plk )Jrarg max Q7,1 ( (k+1),a ,05’?)) , (13)
a*€{0,1} ’

R (5, o 00) (1= a) Ry (5.5 %)

+a (w(k)Jrarg min R, ( 1) o ,gaf’“))>.(14)
a*€{0,1}

This framework formulates the policy distribution (i.e.,
the probability to choose perturbation mechanism a§ﬁ> or

parameters ac,t(-k)) via Eq. (15). In this case, our framework
increases the impact of risk on the perturbation policy selection,
thus reducing risky explorations compared with [17].

D. Network Update

Similar to [27], this framework applies Adam as the gradient
descent algorithm in the experience replay technique. Compared
with the stochastic gradient descent algorithm, the Adam
algorithm uses a running average of the first and second
moment for the gradient to update the network weights with
fewer iterations, which is more efficient for large-scale FL
systems. Specifically, mobile device ¢ saves the current state,
chosen perturbation policy, short-term reward, and risk value
to formulate an exg)erlence sequence into a replay buffer D,
ie, D« DU {s A(k),w }+. By randomly sampling

’771

Z experiences from replay buffer © as

B = {sgh(n)) , al(ﬁ(”))7 7;Z(h("))7 1Z)z(h(")) hen<z, (16)

mobile device i updates the networks, where h(n) follows
a uniform distribution U(1, k) that relies on the built replay
buffer. The goal is to minimize the loss of Q-network and
R-network of each level, i.e., the difference between estimated
Q/R-values and target values.
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Thus, the update of weights for Q-network 1 by minimizing
the loss function is given by

L1 (0@) 1 ZZ: [( F(a(n) _
%, i1

n:l

= min

Q. (szqhw))’ g (), é)
U :

2
0;,1)) ] . an

where ;1 is a discount factor and 6, is the weights of
target Q-network 1. Similarly, the update of the weights for
R-network 1 is given by

y Qi 15

+7i,1 max Q (,(h(n”l)
ae{o,1

z
5 ®Y _ oo L () _ . (B (h(n). 4
Lia (‘Pz 1) = ngn Z Zl [(1/11 Ri1 (si y i1 :‘P)
2
47,1 min Riq (s ( (h("H‘l),al 1595 1)) :| , (18)
a;,1€{0,1}

where ¢, is the weights of target R-network 1. The update
of weights for Q-network 2 and R-network 2 are similar to
Egs. (17) and (18), respectively.

According to [17], the computational complexity of the pro-
posed RARL-PDPFL is given by O(Zi]\; Z\/k3Q; 19 2(N+
Q;19Q;,2)), which highly depends on the number of mobile
devices and learning samples. Our RARL-PDPFL method is
summarized in Algorithm 1.

V. THEORETICAL ANALYSIS

In this section, we analyze the convergence performance and
prove that our scheme satisfies the LDP guarantee under both
Gaussian and Laplace mechanisms.

A. Convergence Analysis

By Eq. (5), mobile device ¢ has loss of local model given
by

Similarly, the loss of the global model denoted by Fj (w(()k))

is given by
1N
B () = - 3R (),
i=1

Assumption 1: Fy(-) is assumed to satisfy the Polyak-
Lojasiew1cz inequality with positive parameter d and
1
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Algorithm 1 Risk-aware RL-based personalized differentially
private FL algorithm

1:

2:
3:
4:
5:

6:

26:

Initialize N K, Z, &, o, ¢, = g,
0(0 0) 0)}
{ LT 1<j<2,1<i<N
for k=1,2,--- /K do
for:=1,2,--- ,N do
Download global model parameters w(()k)
Obtain [p§k_1)] from N — 1 mobile devices
1<j#i<N
Formulate state si(k) via Eq. (9)
Input s(k) to the first-level
Obtain Q; ; ( i ), ;02( 1)) and R; ; ( Ek), ,gofkl))
Choose perturbation mechanism a;kl) via Eq. (15)
Input s(k) and a(kl) into the second-level
Second level outputs Q; 5 (sz(-k), al(-ﬁ), = BEZ)) and
K (k k
Ri,2 ( E )7 51)7 7()05 2))
Choose perturbation parameters :cl(-k) via Eq. (15)
Perform local task to obtain wi(k)
Perturb local model parameters as a:§’“> via Eq. (2)
Upload GJ(k) to the central sever
Evaluate p( ) via Eq. (6)
Compute privacy loss CZ-(k) via Eq. (3)
Estimate attack success rate ¢(*) via Eq. (7)
Compute immediate reward 7’5 ) via Eq. (10)
Compute short-term risk @Z)z(k) via Eq. (11)
Modify reward 7{*) via Eq (12)
D DU {s(k) (k) Al ¢(k)}
Sample Z experiences from replay buffer ©
Update network weights via Eqs. (17) and (18)
end for
end for

Theorem 1: Our proposed RARL-PDPFL has convergence

performance given by
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Proof 1: If mobile device ¢ chooses perturbs local model

paramet

ol

ers with Gaussian noise at time slot k, we have

M max {‘ wgk) — Wt
1<i#j<N
< — . (25)
min ¢g;
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If mobile device ¢ chooses Laplace mechanism, we have
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Let n;

(k

i ) denote noise vector, which equals to [ugkglhgmg M

with Gaussian mechanism while is [ygli)lhgmg am with Laplace
mechanism. Thus, we have
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Thus, according to [28] and Eq. (27), we have
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Fig. 4: Decomposition of Gaussian noise vector [ug’mhgmg M-

Thus, we can obtain Eq. (24).

Remark 1: After K time slots, the difference or gap between
the training global model w(()K) and the optimal model wg
is lower than a bound, which relies on the Lipschitz smooth
coefficient GG, number of mobile devices N, and dimensions
of local model parameters (i.e., M). According to Eq. (5), the
optimal local model parameters is given by

D;
1||

Irl fi (pig Gigi wg) -
|Dil
K3 j:1

In this case, the optimal global model accuracy pf; and local
model accuracy p; are calculated by

= wj - (29)

ph=1-F(w5), (30)
|D;|
p;‘k: ‘Dlzfl Dij,4qi,5; @ ) 1<i<N. (31)

B. Privacy Analysis

As shown in Fig. 4, the Gaussian noise vector [ug’rmlgmg M
can be decomposed into a linear combination of M unit vectors
[bi,m]lgmgM as

]
’ lgmgM

+ <1<
st Vet N (o, (agk>)2) (6 0) =0,

Theorem 2: For mobile device ¢, our proposed framework
satisfies (e, 5 )-LDP guarantee, where ¢ and J are upper
bounds of privacy budget and probabilistic relaxation after K
time slots.

Proof 2: By Eq. (32), if mobile device ¢ chooses the Gaussian
mechanism, for V1 < k < K, we have
2
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By Eq. (1) and [20], for 1 < i # j < N, we have
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By Eq. (1), we have
Pr [./\/l (wf“) = G)Z(k)] < exp (eegk)) Pr [M (w](.k)) = GJE’C)] + 5Ek).

According to Eq. (1) and [21], if mobile device ¢ chooses
Laplace mechanism, for V1 < k < K, we have
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TABLE I: Parameters of hierarchical policy selection module for each mobile device

Networks Input size | Hidden neurons | Output size | Activation | Size of replay buffer | Sampling size | Learning rate
Q/R-network 1 6 32 2
Q/R-network 2 7 3 9 ReLU 5000 16 0.0001
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1
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Thus, by Egs. (40) and (41), we can that our proposed RARL-
PDPFL satisfies ({;, 0;)-LDP guarantee with both Gaussian
and Laplace mechanisms.

Remark 2: V1 < k < K, if the sum of privacy budget 5§k)
and that of probabilistic relaxation 5§k) are smaller than &
and J; respectively, each mobile device applies our proposed
RARL-PDPFL method can satisfy LDP guarantee under both

Gaussian and Laplace mechanisms.

VI. EXPERIMENTS RESULTS
A. Experiments Settings

Experiments were performed based on Pytorch 1.12.1 and
GPU NVIDIA GeForce RTX 4060, including a central server
and three mobile devices, and a membership inference attacker.
According to [30], privacy protection can be divided into three
types, (i.e., low, middle, and high levels). The correspondin
requirements are given by: 1) Low level with privacy loss Ci(k
ranging from 15% to 18%; 2) Middle level with 2% < CZ-(k) <
15%; 3) High level with (i(k) < 2%. In the experiments, the
three mobile devices have to satisfy privacy protection levels
from low to high, i.e., mobile device 1 has the lowest level,
and mobile device 3 has the highest level requirements.

Standard MNIST dataset! is used in the experiments, which
consists of 60000 training data and 10000 testing data for
handwritten digit recognition. The local model uses a convolu-
tional neural network with two convolutional layers and two
fully connected layers and uses a rectified linear unit (ReLu)
function to activate the model. In the experiments, mobile
devices sample 469 training data and 500 testing data to train
the local model parameters, with the Adam algorithm and 1
local epoch. The privacy budget is chosen from 0.1 to 0.5 and
the probabilistic relaxation is set from e~3 to e~ 1.

All three mobile devices have the same parameter settings
for their Q/R networks, with the learning parameters illustrated
in Table I. Specifically, the input size of Q/R-network 1 equals
the dimensions of the state. Both the second Q-network and
R-network have an input size of 7. In the experiments, ReLU is
used as the activation function in our proposed RARL-PDPFL,

Ihttp://yann.lecun.com/exdb/mnist/

as it can overcome the vanishing gradient problem resulting
from differential operations and increase the nonlinearity to
accelerate the learning speed. Besides, Q-network 1 outputs two
Q-values, and Q-network 2 outputs Q-values with 9 dimensions,
which equals the number of available perturbation policies.
The attacker uses a deep Q-network to determine its attack
probability from a set of [0.1,0.9], which is quantified into
three available levels. The random exploration rate e linearly
decreases from 0.1 to 10~* within 200 time slots, with each
time slot decreasing by 4.9 x 10~

To verify the effectiveness of our framework, SFAC in [13],
Privatized FedPaq in [14] and SHRL in [17] are chosen as
benchmarks, with details showing as follows:

o SFAC in [13] uses the Laplace mechanism to perturb local
model parameters with a fixed privacy budget of 0.5.

o Privatized FedPaq in [14] adds Gaussian noise to local
models for each of the three mobile devices using a fixed
privacy budget of 0.5 and probabilistic relaxation of e~

e SHRL in [17] can be applied to help FL optimize the
perturbation mechanism and parameters with a typical
Boltzmann policy distribution.

B. Personalized and Dynamic Performance

The privacy protection and training performance averaged
over 50 time slots after convergence is shown in Table II. The
results show that our scheme enables each mobile device to
satisfy its privacy requirements as well as achieves a 97.58%
global accuracy. That is because RARL-PDPFL uses privacy
loss and local model accuracy as the basis to avoid risky
policies that cannot satisfy user-specific privacy requirements.

As shown in Fig. 5, the privacy loss, attack success rate,
and risk decrease with time while the global model accuracy
increases with time. For example, our RARL-PDPFL decreases
the privacy loss to 1.73%, attack success rate to 1.70%o and risk
to 0.67, and improves the global model accuracy to 97.30% af-
ter 200 time slots. Besides, our scheme outperforms benchmarks
SFAC in [13], Privatized FedPaq in [14] and SHRL in [17] with
lower privacy loss, attack success rate, and risk, and higher
global model accuracy. For instance, RARL-PDPFL reduces
95.82% privacy loss and 96.77% attack success rate, increases
10.80% accuracy, and decreases 97.60% risk compared with
Privatized FedPaq [14]. The performance gain results from the
joint optimization of perturbation mechanism and parameters as
well as the consideration of risk-aware method in the learning
process. Further, the proposed framework has 87.40% lower
privacy loss, 96.24% lower attack success rate, 8.52% higher
global model accuracy, and 3.30% less risk than SHRL [17].
The reason is that our scheme considers both short-term and
long-term risks to reduce dangerous explorations and improves
the impact of risks on the policy distribution formulation.
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TABLE II: Performances of RARL-PDPFL based on user-personalized privacy requirements of three mobile devices

Metrics . . . .
Device ID Privacy loss (%) | Privacy requirements guarantee | Accuracy (%) | Convergence time slot
1 12.00 v
2 3.90 v 97.58 34
3 1.00 v
h—— k—h—4A y S 4 4 2 A
40 —— SFAC[13] 5
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Fig. 5: Privacy and training performance averaged over 3
episodes with three mobile devices based on the MNIST
dataset.

C. Impact of FParticipated Mobile Devices

The impact of participated device numbers on privacy and
training performance is shown in Fig. 6, in which the privacy
loss requirements of low, middle, and high levels are 10%, 20%,
and 70% proportions among the total number of mobile devices.
The privacy loss and attack success rate almost decrease with
the number of participated mobile devices, while the risk and
global model accuracy increase with it. Our scheme is more
robust than the three baselines, as the number of participated
mobile devices changes from 3 to 20. On the other hand, the
risk of our scheme slightly increases the number of participated
mobile devices. The corresponding performance gain of our
scheme is larger than 96.78%, 96.71%, and 85.19% compared
with SFAC, Privatized FedPaq, and SHRL respectively for
3 ~ 20 mobile devices.

D. Ablation Study

We also perform a series of ablation experiments to evaluate
the performance of our designed punishment function, R-
network, and hierarchical structure, as shown in Table III.
The results show that our designed punishment function can
guide mobile devices to avoid immediate risky policies, thus
reducing privacy loss, attack success rate, and risk. Besides, the

Fig. 6: Average performance under 3 ~ 20 participated mobile
devices on MNIST dataset.

designed R-network estimates the long-term risk to formulate
perturbation policy distribution, thus guiding each mobile
device to explore the optimal policies quickly. Further, our
designed two-level hierarchical structure takes the policy
selection priority into account to accelerate convergence speed
and thus further improve privacy protection performance.

VII. RELATED WORK

Recently, blockchain, homomorphic encryption, secure ag-
gregation, and trust formulation methods are used in FL to resist
membership inference attacks [31]-[34]. For example, an elude
secure aggregation method is proposed in [31], which proves
that FL is vulnerable to attacks due to incorrect usage of secure
aggregation. The blockchain-enabled FL privacy protection
scheme presented in [33] designs a verification mechanism
to help a central server select the honest participating clients.
Further, a detection and aggregation algorithm is designed for
FL [34], in which the penultimate layer representations are
used to improve the defense performance, and the discrepancies
are extracted to update the trust values.

Differential privacy has been applied to help enhance the
privacy of FL [28], [35]-[39]. For instance, a Gaussian
mechanism-based FL privacy protection framework proposed
in [28] proposes a random participant scheduling method
to improve privacy level. To solve the vulnerability of the



TABLE III: Performance of ablation study with three mobile devices

Algorithms Metrics Accuracy (%) | Privacy loss (%) | Attack success rate (%c¢) | Risk | Convergence time slot
RARL-PDPFL 97.36 1.76 1.78 0.47 34
RARL-PDPFL w/o punishment function 97.28 7.90 8.23 6.37 50
RARL-PDPFL w/o R-network 97.27 6.50 6.91 5.17 137
RARL-PDPFL w/o hierarchical structure 97.14 4.33 5.01 5.03 43
stochastic gradient descent algorithm in FL, an LDP-enabled REFERENCES

FL framework is proposed in [38]. The framework perturbs
local model parameters with Gaussian noise to make a trade-
off among user privacy loss, global model accuracy, and
transmission rate. A fine-grained differentially private FL
scheme is then presented in [39], which uses the importance
of fully connected layers to allocate Laplace noise for higher
protection level and training accuracy.

The choice of perturbation policy including privacy budget
and probabilistic relaxation is highly related to privacy and
training performance of FL framework [15], [40]-[42]. For
example, a Gaussian DP-based FL framework in [42] applies a
gradient-boosting decision tree to update the local model and
changes the privacy budget based on user contributions. To
further improve the privacy level, the deep RL-based privacy-
aware scheme in [15] applies deep Q-network to choose the
privacy budget to reduce the privacy loss against inference
attackers. The privacy-preserving FL framework designed in
[40] proposes an adaptive privacy decomposition mechanism
to dynamically decay the Gaussian noise to resist gradient
leakage attacks.

VIII. SUMMARY AND FUTURE WORK

In this paper, we have proposed a risk-aware RL-based
personalized differentially private FL framework to satisfy user-
specific requirements against membership inference attacks.
This framework designs a two-level hierarchical structure to
jointly optimize the perturbation mechanism, privacy budget,
and probabilistic relaxation. A punishment function has been
used to avoid immediate dangerous policies. Further, we have
designed an R-network to estimate the long-term risk of each
chosen perturbation policy, and a policy distribution to increase
the impact of both short-term and long-term risks. We also
have analyzed the convergence performance of our framework
and proved that our framework satisfies the LDP guarantee.
Experimental results based on the MNIST datasets show that
our proposed framework outperforms three benchmarks. For
example, our scheme has 7.96% higher global model accuracy,
96.22% lower privacy loss, and 97.52% less risk than the
benchmark SFAC in [13] at time slot 200.

In the future, we will further consider the mobility of mobile
devices in the design of model parameters transmission. We
plan to apply the proposed framework in unmanned aerial
vehicles or the Internet of Vehicles that perform objective
detection local tasks. Another efficient mechanism is to combine
the age of information with LDP techniques, which can
potentially save unnecessary interactions among mobile devices
and thus further protect user privacy.
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