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Abstract—Due to the different privacy and local model quality
requirements for each participant, federated learning (FL) is
vulnerable to membership inference attacks. To solve this issue,
we propose a risk-aware reinforcement learning (RL)-based
personalized differentially private FL framework. This framework
uses local model accuracy and privacy loss as the constraints
to satisfy the user’s personalized requirements. By designing a
multi-agent RL, this framework optimizes perturbation policy
including perturbation mechanisms and parameters (such as
privacy budget and probabilistic relaxation). The goal of each
participant is to improve global accuracy and reduce privacy
loss, attack success rate, and short-term risk value. Firstly,
the framework designs a two-level hierarchical policy selection
module to choose the perturbation policy to accelerate learning
speed. Secondly, our proposed framework designs a punishment
function to evaluate short-term risk and an R-network to estimate
long-term risk, which guarantees safe exploration. Thirdly, this
framework formulates an improved Boltzmann policy distribution
to increase the impact of risk, thus avoiding risky policies that
may cause severe privacy leakage or local task failure. We also
analyze the convergence performance and provide privacy analysis
for both Gaussian and Laplace mechanisms. Experimental results
based on the MNIST dataset demonstrate the effectiveness of our
framework compared with benchmarks.

Index Terms—Federated learning, local differential privacy,
personalized privacy, reinforcement learning, safe exploration.

I. INTRODUCTION

Due to the challenges of data growth and model training

requirements, federated learning (FL) significantly speeds up

training efficiency. This technique utilizes local and parallel

computing with user privacy protection to facilitate collabora-

tive model training across diverse organizations and devices [1],

[2], [3]. Nevertheless, each participant has different demands

for privacy and local model quality due to the variant local task

types [4], [5]. For example, some of the vehicular participants
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focus on task execution quality such as objective detection

accuracy, while others prefer protecting user privacy. In this

case, each participant has personalized privacy and local

model quality requirements. However, this issue makes the

transmission process of local model parameters vulnerable

to membership inference attacks. The attacker can wiretap

the transmission status to infer that the underlying transmitted

parameters come from which participants [6]. Existing methods

mainly apply homomorphic encryption [7] or secure multi-

party computation [8] to defend against membership inference

attacks. For example, a privacy-preserving FL framework in

[7] utilizes symmetric homomorphic encryption to ensure

training confidentiality. However, this method induces high

computational overhead due to the complex encryption and

decryption operations.

Local differential privacy (LDP) techniques such as Laplace

and Gaussian mechanisms have emerged as a promising

solution for FL to protect user privacy [9]–[11]. Specifically,

users add noise to perturb their local model parameters and then

upload the perturbed parameters to the central server. In this

way, the attacker cannot obtain the actual model parameters of

users [12]. For example, the FL-enabled mobile system in [13]

uses a fixed privacy budget to perturb local model parameters

with noise sampled from Laplace distribution. On the other

hand, a communication constraint-aware FL system proposed

in [14] perturbs local models with a given Gaussian privacy

budget and probabilistic relaxation. However, the privacy and

the utility in the FL process are highly dependent on the adopted

perturbation mechanisms and the corresponding privacy budget

and probabilistic relaxation.

Therefore, reinforcement learning (RL) has been applied to

choose the privacy budget for recommendation systems [15]

and perturbation angle for indoor location protection [16]. For

instance, a deep RL-based location privacy protection scheme

was proposed in [16] to improve location protection and quality

of service. This method applies a dueling double deep Q-

network and asynchronous advantage actor-critic algorithms to

optimize privacy budget and angles. By applying the Boltzmann

policy distribution adopted in [17], the scheme also considers

risky explorations that cause server location privacy leakage.

The challenges of LDP-based FL can be summarized as follows:

• How to balance user privacy and utility in the personalized

FL process should be investigated, to adaptively optimize

user perturbation mechanisms and parameters.

• Without considering the joint impact of local model accu-

racy and user-specific privacy requirements, existing RL-

based privacy protection schemes are prone to exploring

risky policies.
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• Most RL-based privacy protection schemes focus on the

individual observation of each user, thus suffering from

slow learning speed.

To solve the challenges, this paper proposes a risk-aware

RL-based personalized differentially private FL framework

(named RARL-PDPFL) against membership inference attacks.

This framework enables mobile devices with personalized

requirements to perturb their local model parameters following

an LDP guarantee before uploading them to the central server.

By designing a risk-aware RL algorithm for mobile devices, this

framework jointly optimizes perturbation mechanism, privacy

budget, and probabilistic relaxation to satisfy requirements of

user-specific privacy and local model accuracy.

The designed risk-aware RL algorithm applies a hierarchical

structure and observation-sharing mechanism to accelerate

learning speed. More specifically, the hierarchical structure

divides the perturbation policy into two sub-policies (i.e., the

perturbation mechanism and parameters) to compress the action

set, thus facilitating learning speed compared with [16] and [17].

Specifically, the first level in the hierarchical structure chooses

the perturbation mechanism, and the second level selects the

privacy budget and probabilistic relaxation to facilitate learning.

This algorithm designs an observation-sharing mechanism for

each user to extract the historical performance of neighboring

users, to improve perturbation policy optimization efficiency.

Our RARL-PDPFL explores users’ local model accuracy

and privacy loss as the basis to avoid risky policies that

cannot satisfy personalized user requirements. Different from

the scheme in [16], our scheme uses a punishment function

and an R-network to estimate both the short-term and long-

term risks to reduce dangerous explorations. An improved

Boltzmann policy distribution is designed to balance safe

exploration and exploitation, which considers the impact of

reward and risk on the selection of perturbation mechanisms

and parameters. To our knowledge, our proposed framework is

the first work that uses user-specific privacy and local model

accuracy requirements in the design of RL to resist membership

inference attacks.

We provide the convergence analysis of our framework and

prove that our scheme satisfies the LDP guarantee under both

Laplace and Gaussian mechanisms. Experiments are executed

on the MNIST dataset, with results showing that our framework

outperforms the benchmarks SFAC in [13] and Privatized

FedPaq in [14]. Further, we provide an ablation study to verify

the effectiveness of our proposed hierarchical policy selection

module, punishment function, and R-network.

The main contributions of this work are summarized as

follows:

• We propose a personalized differentially private FL frame-

work to choose the perturbation policy for mobile devices

against membership inference attacks. This framework

innovatively uses privacy loss and local model accuracy

as the criteria to satisfy the personalized user requirements.

• We design a multi-agent risk-aware RL algorithm to

improve training accuracy and reduce user privacy loss.

The designed algorithm avoids exploring risky policies

that cannot satisfy user-specific requirements by evaluating

both short-term and long-term risks. This algorithm also

uses a hierarchical structure and observation sharing

among mobile devices to accelerate learning speed.

• To verify the effectiveness of our framework, we prove

that our framework has convergence performance and

satisfies the LDP guarantee for both Gaussian and Laplace

mechanisms. We also provide a comparison with three

benchmarks via dynamic and personalized performance,

the impact of participants, and the ablation study.

The rest of this paper is organized as follows. We provide

the preliminaries in Section II and the system model in Section

III. A risk-aware RL-based personalized differentially private

FL framework is introduced in Section IV. Theoretical analysis

is provided in Section V and experimental results are discussed

in Section VI. We provide an overview of related works in

Section VII, followed by the summary and future work in

Section VIII.

II. PRELIMINARIES

In this section, we provide preliminaries for local differential

privacy, risk-aware reinforcement learning, and hierarchical

reinforcement learning.

A. Local Differential Privacy for Federated Learning

According to [18], (ε
(k)
i , δ

(k)
i )-LDP provides a rigorous

privacy notion for the local model parameters in the FL

training process. Specifically, the privacy budget ε
(k)
i ∈ (0, 1]

indicates the similarities between the original parameters and

the perturbed parameters. On the other hand, the probabilistic

relaxation δ
(k)
i ∈ (0, 1] represents the probability that the LDP

has been violated. In the FL training process, LDP helps mobile

device i (with 1 ≤ i ≤ N ) perturb local model parameters ω
(k)
i

with M dimensions by using Laplace or Gaussian mechanisms

denoted by M(ω
(k)
i ).

Definition 1: ((ε
(k)
i ,δ

(k)
i )-LDP [19]). By applying a per-

turbation mechanism M(·) in local model parameters ω
(k)
i ,

mobile device i can achieve (ε
(k)
i , δ

(k)
i )-LDP if the perturbed

parameters ω̃
(k)
i satisfy:

Pr
[

M
(

ω
(k)
i

)

= ω̃
(k)
i

]

≤ exp
(

ε
(k)
i

)

Pr
[

M
(

ω
(k)
j

)

= ω̃
(k)
i

]

+ δ
(k)
i . (1)

According to [20] and [21], the Gaussian mechanism is

suitable for large-scale datasets but does not satisfy a strict

LDP guarantee with a lighter tail than the Laplace mechanism.

On the contrary, the Laplace mechanism strictly satisfies the

LDP guarantee but may affect the data utility.

B. Risk-Aware Reinforcement Learning

Compared with typical RL algorithms, risk-aware RL ex-

plores policies such as perturbation parameters in a constrained

Markov decision process (CMDP) with security constraints.

Specifically, CMDP consists of the state space, action set,

reward, punishment, and transition probability. For mobile

device 1 ≤ i ≤ N , the corresponding CMDP is modeled as a

tuple M⟨Si,Ai, r
(k)
i , ψ

(k)
i ,P⟩, where
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• Si is the state space including all the possible states.

• Ai is the action set consisting of all the available policies.

• r
(k)
i is the reward obtained from the environment if mobile

device i executes action a
(k)
i at state s

(k)
i .

• ψ
(k)
i is the punishment function that indicates the short-

term risk of chosen action a
(k)
i evaluated by the constraint

metrics such as privacy loss and local model accuracy.

• P(Si × Ai × Si) ∈ [0, 1] represents the transition

probability from s
(k)
i to s

(k+1)
i after performing a

(k)
i .

C. Hierarchical Reinforcement Learning

As an extension of RL, hierarchical RL compresses large-

scale action sets to accelerate the learning speed and considers

the policy selection priority in the learning process [17]. For

example, the selection priority of the perturbation mechanism

is higher than that of perturbation parameters. Taking a two-

level hierarchical structure as an example, an agent divides the

original action set Âi into two sub-action set Âi,1 and Âi,2.

In this case, the agent uses the first level to choose the first

sub-policy a
(k)
i,1 ∈ Âi,1, which is used as the basis to select

the second sub-policy a
(k)
i,2 ∈ Âi,2 with the second level. Due

to the FL system involving a large number of participants,

hierarchical RL can be used to facilitate the optimization of

perturbation policies.

III. SYSTEM MODEL

A. Network Model

As shown in Fig. 1, we consider an FL system that consists

of a central server and N mobile devices without sufficient

computing resources. At time slot k ∈ [1,K], each mobile

device executes tasks with local model parameters ω
(k)
i . To

avoid privacy leakage, mobile device i decides how to perturb

its model parameters ω
(k)
i , including perturbation mechanism

a
(k)
i,1 ∈ {0, 1} and parameters x

(k)
i = [ε

(k)
i , δ

(k)
i ]. Specifically,

a
(k)
i,1 = 0 represents that mobile device i applies the Gaussian

mechanism and chooses the Laplace mechanism otherwise. Let

[u
(k)
i,m]1≤m≤M and [y

(k)
i,m]1≤m≤M be the Gaussian and Laplace

noise vector, respectively, where u
(k)
i,m follows a Gaussian

distribution g(·) and y
(k)
i,m follows a Laplace distribution

ḡ(·). Thus, mobile device i perturbs its parameters to obtain

perturbed model parameters ω̃
(k)
i with Gaussian or Laplace

noise via

ω̃
(k)
i = ω

(k)
i +







[

u
(k)
i,m

]

1≤m≤M
, Gaussian noise

[

y
(k)
i,m

]

1≤m≤M
, Laplace noise.

(2)

According to [22], privacy budget ε
(k)
i and probabilistic

relaxation δ
(k)
i are used to evaluate the perturbation noise scale

τ
(k)
i . After obtaining the perturbed parameters ω̃

(k)
i , mobile

device i sends ω̃
(k)
i to the central server. As a metric to evaluate

the privacy protection level, the privacy loss ζ
(k)
i is evaluated

via

ζ
(k)
i =






1−

τ
(k)
i − min

1≤k≤K
τ
(k)
i

max
1≤k≤K

τ
(k)
i − min

1≤k≤K
τ
(k)
i






ε
(k)
i . (3)

⑤ ③ (
1)0
k


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Fig. 1: Illustration of the system model, where N mobile

devices perturb their local model parameters to participate in

the global aggregation.

By applying the FedAvg method as proposed in [23], the

server gathers the perturbed local parameters of the N mobile

devices to aggregate a global model via

ω
(k+1)
0 =

1

N

N
∑

i=1

ω̃
(k)
i . (4)

The global model parameters ω
(k+1)
0 are distributed to the N

mobile devices.

Each mobile device uses the global model parameters ω
(k+1)
0

to update its local model parameters ω
(k+1)
i , with 1 ≤ i ≤ N .

For example, mobile device i has a dataset with |Di| pairs of

training and test data, in which pi,j represents the j-th testing

data and qi,j is the training data. The goal of mobile device i

is minimizing the loss function given by

ω
(k+1)
i = ω

(k+1)
0 −∇

ω
(k+1)
0

1

|Di|

|Di|
∑

j=1

fi

(

pi,j , qi,j ;ω
(k+1)
0

)

(5)

where fi(pi,j , qi,j ;ω
(k)
0 ) represents the prediction error of

testing data pi,j under global model parameters ω
(k)
0 . In this

case, the error of local model ω
(k)
i for mobile device i can be

modeled as

l̃
(k)
i =

1

|Di|

|Di|
∑

j=1

fi

(

pi,j , qi,j ;ω
(k)
i

)

(6)

and the local model accuracy equals one minus the prediction

error, i.e., ρ
(k)
i = 1− l̃

(k)
i .

B. Attack Model

In this work, an attacker performs membership inference

attacks to capture the transmitted local model parameters.

Specifically, it can obtain information such as gradients, change

of hyper-parameters, and training times of the local model [24].

By analyzing the obtained information, the attacker can infer

whether a specific piece of data (e.g., person, videos, or photos)

belongs to the local dataset of a specific mobile device. What’s

worse, the attacker can even identify the source mobile device

of the obtained local model parameters. This type of attack

severely degrades the privacy of FL systems.

At time slot k, the attacker injects into the FL systems by

launching malicious software, code, or scripts to monitor the
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Fig. 2: Illustration of risk-aware RL-based personalized differentially private FL framework, with 1 ≤ i ≤ N .

transmitted ω̃
(k)
i and ω

(k)
0 , with 1 ≤ i ≤ N . To balance the

attack overhead and profit, the attacker can apply an RL model

such as deep Q-network or soft Actor-Critic to change its

attack probability ξ(k) that indicates the attack frequency on

N mobile devices within a time slot. More specifically, the

attacker estimates the previous attack success rate and measures

its attack energy consumption in the last time slot, which are

used to formulate its state. The attacker aims to increase its

attack success rate denoted by ϕ(k) among the N participated

mobile devices and save attack overhead. Similar to [25], attack

success rate ϕ(k) is estimated every time slot, which depends on

the number of mobile devices, attack probability, and privacy

loss given by

ϕ(k) = ξ(k)
∑N

i=1 ζ
(k)
i

N
. (7)

C. Problem Formulation

In the FL system, each mobile device has personalized

requirements of privacy and local model accuracy due to the

different types and importance of their underlying local tasks.

For example, mobile device i has privacy loss requirement

smaller than ζ̂i and local model accuracy constraint larger than

ρ̂i, with 1 ≤ i ≤ N . Thus, mobile device i formulates its

goal as an optimization function based global model accuracy

denoted by ρ
(k)
0 , local model accuracy ρ

(k)
i , privacy loss ζ

(k)
i

and attack success rate ϕ(k), i.e.,

max
a
(k)
i ∈{0,1},ε

(k)
i ∈(0,1],δ

(k)
i ∈(0,1]

E

[

ρ
(k−1)
0 + ρ

(k)
i − ζ

(k)
i − ϕ(k−1)

]

(8)

s.t. 1 ≤ i ≤ N, ρ
(k)
i ≥ ρ̂i, ζ

(k)
i ≤ ζ̂i.

IV. RISK-AWARE RL-BASED PERSONALIZED

DIFFERENTIALLY PRIVATE FL FRAMEWORK

We design a personalized differentially private FL framework

with a risk-aware RL algorithm named RARL-PDPFL to

optimize the perturbation mechanism and parameters. The

framework explores the privacy loss and the accuracy of local

models to satisfy the personalized requirements of each mobile

device. As shown in Fig. 2, this framework includes the global

model aggregation and local task execution, parameter perturba-

tion, and perturbation policy selection module. By designing a

multi-agent RL algorithm, this framework formulates a CMDP

for each mobile device. This framework uses a two-level

hierarchical perturbation policy selection module to accelerate

learning efficiency. Further, a risk-aware policy distribution

that relies on both short-term and long-term risks is used to

avoid exploring potentially dangerous perturbation policies.

A. Constrained Markov Decision Process

This framework formulates the personalized differentially

private FL process as a CMDP, with details introduced as

follows.

State Space: Mobile device i (with 1 ≤ i ≤ N ) estimates

privacy loss ζ
(k−1)
i and local model accuracy ρ

(k−1)
i , and

obtains global model accuracy ρ
(k−1)
0 from the central server.

By analyzing the number of received spam or advertising times,

and the shared information of other devices and the server,

mobile device i estimates attack success rate ϕ(k−1). This

framework enables each mobile device to share observations

to reduce unnecessary random exploration. By exploiting the

shared observations of the rest N − 1 mobile devices, mobile

device i builds its state as

s
(k)
i =

[

ρ
(k−1)
0 , ϕ(k−1), ζ

(k−1)
i ,

[

ρ
(k−1)
j

]

1≤j≤N

]

∈ Si. (9)

Particularly, mobile device i extracts the shared observations

from the other devices and the previous ρ
(k−2)
j to formulate

its state, if mobile device j does not share its local mode

accuracy ρ
(k−1)
j , with 1 ≤ i ̸= j ≤ N . Due to the usage of a

hierarchical structure, our proposed algorithm can accelerate

the learning speed even if one or more devices do not share

their local model accuracy.

Action set: Each mobile device determines its perturbation

policy to add noise to its local parameters. Taking mobile

device i as an example, perturbation policy a
(k)
i = [a

(k)
i,1 , x

(k)
i ] ∈

Ai includes perturbation mechanism a
(k)
i,1 with two available
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choices, and perturbation parameters x
(k)
i . Specifically, the

perturbation parameters contain privacy budget ε
(k)
i having

Ωi,1 levels and probabilistic relaxation δ
(k)
i having Ωi,2 levels.

Thus, Ai has 2Ωi,1Ωi,2 available perturbation policies.

Reward: After executing the chosen perturbation policy a
(k)
i ,

mobile device i perturbs ω
(k)
i with mechanism a

(k)
i,1 , privacy

budget ε
(k)
i and probabilistic relaxation δ

(k)
i to obtain ω̃

(k)
i .

Based on the prediction results of local tasks, mobile device i

estimates local model accuracy ρ
(k)
i via Eq. (6) and privacy loss

ζ
(k)
i via Eq. (3). This scheme uses the reward r

(k)
i to represent

the immediate profit obtained from the environment after

performing the chosen perturbation policy, which is composed

of the model accuracy, privacy loss, and attack success rate.

The reward is evaluated via

r
(k)
i = ρ

(k−1)
0 + v1ρ

(k)
i − v2ζ

(k)
i − v3ϕ

(k−1). (10)

Punishment function: Each mobile device uses the person-

alized local model accuracy and privacy loss requirements as

security constraints to measure the risk of a chosen perturbation

policy. To make a trade-off between privacy protection and

training accuracy, mobile device i can tolerate a maximum

privacy loss bounded by ζ̂i and a minimum local model

accuracy bounded by ρ̂i. This scheme designs a punishment

function (i.e., the risk value) to evaluate whether the chosen

perturbation policy satisfies the user-specific privacy and local

model quality requirements. The risk value ψ
(k)
i is calculated

based on an indicator function I(·) in terms of privacy loss

and local model accuracy, i.e.,

ψ
(k)
i = I

(

ρ
(k)
i < ρ̂i

)

+ v4I
(

ζ
(k)
i > ζ̂i

)

, (11)

where v4 parameterizes the importance of privacy and training

performance for risk formulation.

This framework modifies reward r
(k)
i with risk value ψ

(k)
i

and weight v5 as the short-term reward, to avoid the immediate

dangerous exploration. The modified reward r̂
(k)
i is calculated

by

r̂
(k)
i = r

(k)
i − v5ψ

(k)
i . (12)

Different from [26], this algorithm uses the modified reward

r̂
(k)
i to update both the perturbation policy distribution and

weights of Q-networks.

B. Two-Level Hierarchical Policy Selection Module

As illustrated in Fig. 3, our designed two-level hierarchical

module consists of two Q-networks that estimate long-term

expected reward (also called Q-values), and two R-networks

that estimate long-term risk (i.e., R-values). With state s
(k)
i

that has N + 3 dimensions as the input, the first level is used

to select perturbation mechanism a
(k)
i,1 with 2 dimensions. The

second level chooses perturbation parameters x
(k)
i with state

s
(k)
i and a

(k)
i,1 as the input, in which the output have Ωi,1Ωi,2

dimensions.

In first-level, Q-network 1 using weights θ
(k)
i,1 has an input

layer with size of N +3, a hidden layer with fi,1 neurons, and

an output layer that outputs two Q-values Qi,1(s
(k)
i , ·;θ

(k)
i,1 ).

Similarly, R-network 1 with weights φ
(k)
i,1 involves the same

network architecture as Q-network 1, which outputs two

R-values Ri,1(s
(k)
i , ·;φ

(k)
i,1 ). In second-level, Q-network 2

with weights θ
(k)
i,2 uses state s

(k)
i and chosen perturbation

mechanism a
(k)
i,1 from first-level as input. The corresponding

input layer has N + 4 neurons, hidden layer involves fi,2
neurons, and output layer outputs Ωi,1Ωi,2 number of Q-values

Qi,2(s
(k)
i , a

(k)
i,1 , ·;θ

(k)
i,2 ). By using a same network architecture

as Q-network 2, R-network 2 involving weights φ
(k)
i,2 outputs

Ωi,1Ωi,2 number of R-values Ri,2

(

s
(k)
i , a

(k)
i,1 , ·;φ

(k)
i,2

)

.

C. Risk-Aware Policy Distribution

This framework designs a risk-aware policy distribution to

help each mobile device enable safety during the learning

process. More specifically, the long-term expected reward in

both the two levels is updated with r̂
(k)
i using the Bellman

iteration equation, and the corresponding long-term risk is

updated with ψ
(k)
i . A learning rate αi ∈ (0, 1] in the

Bellman iteration function balances the importance of the future

reward/risk in the learning process. Taking the first level as an

example, the long-term expected reward and risk are updated

with

Qi,1

(

s
(k)
i , a

(k)
i,1 ;θ

(k)
i,1

)

← (1− αi)Qi,1

(

s
(k)
i , a

(k)
i,1 ;θ

(k)
i,1

)

+ αi

(

r̂
(k)
i + arg max

a∗∈{0,1}
Qi,1

(

s
(k+1)
i , a∗;θ

(k)
i,1

)

)

, (13)

Ri,1

(

s
(k)
i , a

(k)
i,1 ;φ

(k)
i,1

)

← (1− αi)Ri,1

(

s
(k)
i , a

(k)
i,1 ;φ

(k)
i,1

)

+ αi

(

ψ
(k)
i + arg min

a∗∈{0,1}
Ri,1

(

s
(k+1)
i , a∗;φ

(k)
i,1

)

)

. (14)

This framework formulates the policy distribution (i.e.,

the probability to choose perturbation mechanism a
(k)
i,1 or

parameters x
(k)
i ) via Eq. (15). In this case, our framework

increases the impact of risk on the perturbation policy selection,

thus reducing risky explorations compared with [17].

D. Network Update

Similar to [27], this framework applies Adam as the gradient

descent algorithm in the experience replay technique. Compared

with the stochastic gradient descent algorithm, the Adam

algorithm uses a running average of the first and second

moment for the gradient to update the network weights with

fewer iterations, which is more efficient for large-scale FL

systems. Specifically, mobile device i saves the current state,

chosen perturbation policy, short-term reward, and risk value

to formulate an experience sequence into a replay buffer D,

i.e., D← D ∪ {s
(k)
i , a

(k)
i , r̂

(k)
i , ψ

(k)
i }. By randomly sampling

Z experiences from replay buffer D as

B = {s
(h(n))
i , a

(h(n))
i , r̂

(h(n))
i , ψ

(h(n))
i }1≤n≤Z , (16)

mobile device i updates the networks, where h(n) follows

a uniform distribution U(1, k) that relies on the built replay

buffer. The goal is to minimize the loss of Q-network and

R-network of each level, i.e., the difference between estimated

Q/R-values and target values.
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Fig. 3: Flowchart of the risk-aware RL-based perturbation policy selection for mobile device i, with 1 ≤ i ≤ N .

πi,j

(

s
(k)
i ,a∗;θ

(k)
i,j ,φ

(k)
i,j

)

=



























exp
(

Qi,1

(

s
(k)
i ,a

(k)
i,1 ;θ

(k)
i,1

)

−Ri,1

(

s
(k)
i ,a

(k)
i,1 ;φ

(k)
i,1

))

∑

âi,1∈{0,1} exp
(

Qi,1

(

s
(k)
i ,âi,1;θ

(k)
i,1

)

−Ri,1

(

s
(k)
i ,âi,1;φ

(k)
i,1

)) , if j = 1,a∗ = a
(k)
i,1

exp
(

Qi,2

(

s
(k)
i ,a

(k)
i ;θ

(k)
i,2

)

−Ri,2

(

s
(k)
i ,a

(k)
i ;φ

(k)
i,2

))

∑

â∈Ai,2
exp

(

Qi,2

(

s
(k)
i ,â;θ

(k)
i,2

)

−Ri,2

(

s
(k)
i ,â;φ

(k)
i,2

)) , if j = 2,a∗ = a
(k)
i .

(15)

Thus, the update of weights for Q-network 1 by minimizing
the loss function is given by

Li,1

(

θ
(k)
i,1

)

= min
θ̂

1

Z

Z
∑

n=1

[(

r̂
(h(n))
i − Qi,1

(

s
(h(n))
i , a

(h(n))
i,1 ; θ̂

)

+γi,1 max
â∈{0,1}

Qi,1

(

s
(h(n)+1)
i , âi,1;θ

−
i,1

)

)2
]

, (17)

where γi,1 is a discount factor and θ−
i,1 is the weights of

target Q-network 1. Similarly, the update of the weights for
R-network 1 is given by

L̄i,1

(

φ
(k)
i,1

)

= min
φ̂

1

Z

Z
∑

n=1

[(

ψ
(h(n))
i − Ri,1

(

s
(h(n))
i , a

(h(n))
i,1 ; φ̂

)

+γi,1 min
âi,1∈{0,1}

Ri,1

(

s
(h(n)+1)
i , âi,1;φ

−
i,1

)

)2
]

, (18)

where φ−
i,1 is the weights of target R-network 1. The update

of weights for Q-network 2 and R-network 2 are similar to

Eqs. (17) and (18), respectively.

According to [17], the computational complexity of the pro-

posed RARL-PDPFL is given by O(
∑N

i=1 Z
√

k3Ωi,1Ωi,2(N+
Ωi,1Ωi,2)), which highly depends on the number of mobile

devices and learning samples. Our RARL-PDPFL method is

summarized in Algorithm 1.

V. THEORETICAL ANALYSIS

In this section, we analyze the convergence performance and

prove that our scheme satisfies the LDP guarantee under both

Gaussian and Laplace mechanisms.

A. Convergence Analysis

By Eq. (5), mobile device i has loss of local model given

by

Fi

(

ω
(k)
i

)

≜
1

|Di|

|Di|
∑

j=1

fi

(

pi,j , qi,j ;ω
(k)
0

)

, 1 ≤ i ≤ N. (19)

Similarly, the loss of the global model denoted by F0(ω
(k)
0 )

is given by

F0

(

ω
(k)
0

)

=
1

N

N
∑

i=1

Fi

(

ω̃
(k)
i

)

. (20)

Assumption 1: F0(·) is assumed to satisfy the Polyak-

Lojasiewicz inequality with positive parameter d and

(∥∇F (ω
(k)
0 )∥2)

2 ≤ β, i.e.,

E

[

F0

(

ω
(k)
0

)

− F0 (ω
∗
0)
]

≤
1

2d

(∥

∥

∥∇F0

(

ω
(k)
0

)∥

∥

∥

2

)2

. (21)

Assumption 2: Fi(·), 1 ≤ i ≤ N is satisfying G-Lipschitz

smooth, and we have

Fi

(

ω
(k+1)
i

)

≤ Fi

(

ω
(k)
i

)

+∇Fi

(

ω
(k)
i

)⊤ (

ω
(k+1)
i − ω

(k)
i

)

(22)

+
G

2

(∥

∥

∥ω
(k+1)
i − ω

(k)
i

∥

∥

∥

2

)2

, 1 ≤ i ≤ N.

Assumption 3: For ∀ω
(k)
i and ω

(k)
0 , we have

E

[

(∥

∥

∥∇Fi

(

ω
(k)
i

)∥

∥

∥

2

)2
]

≤
(∥

∥

∥∇F0

(

ω
(k)
0

)∥

∥

∥

2

)2

B2. (23)
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Algorithm 1 Risk-aware RL-based personalized differentially

private FL algorithm

1: Initialize N , K, Z, ω
(0)
0 , ρ

(0)
0 , ϕ(0), D = ∅,

{

θ
(0)
i,j ,φ

(0)
i,j , ρ

(0)
i , ζ

(0)
i

}

1≤j≤2,1≤i≤N

2: for k = 1, 2, · · · ,K do

3: for i = 1, 2, · · · , N do

4: Download global model parameters ω
(k)
0

5: Obtain
[

ρ
(k−1)
j

]

1≤j ̸=i≤N
from N −1 mobile devices

6: Formulate state s
(k)
i via Eq. (9)

7: Input s
(k)
i to the first-level

8: Obtain Qi,1

(

s
(k)
i , ·;θ

(k)
i,1

)

and Ri,1

(

s
(k)
i , ·;φ

(k)
i,1

)

9: Choose perturbation mechanism a
(k)
i,1 via Eq. (15)

10: Input s
(k)
i and a

(k)
i,1 into the second-level

11: Second level outputs Qi,2

(

s
(k)
i , a

(k)
i,1 , ·;θ

(k)
i,2

)

and

Ri,2

(

s
(k)
i , a

(k)
i,1 , ·;φ

(k)
i,2

)

12: Choose perturbation parameters x
(k)
i via Eq. (15)

13: Perform local task to obtain ω
(k)
i

14: Perturb local model parameters as ω̃
(k)
i via Eq. (2)

15: Upload ω̃
(k)
i to the central sever

16: Evaluate ρ
(k)
i via Eq. (6)

17: Compute privacy loss ζ
(k)
i via Eq. (3)

18: Estimate attack success rate ϕ(k) via Eq. (7)

19: Compute immediate reward r
(k)
i via Eq. (10)

20: Compute short-term risk ψ
(k)
i via Eq. (11)

21: Modify reward r̂
(k)
i via Eq. (12)

22: D← D ∪
{

s
(k)
i , a

(k)
i , r̂

(k)
i , ψ

(k)
i

}

23: Sample Z experiences from replay buffer D

24: Update network weights via Eqs. (17) and (18)

25: end for

26: end for

Theorem 1: Our proposed RARL-PDPFL has convergence
performance given by

E

[

F0

(

ω
(K)
0

)

− F0 (ω
∗
0)
]

≤
(

1 + 2d

(

− 1

µ
+

BG

µ (µ+ d)

+
GB2

2(µ+ d)2

))K

E

[

F0

(

ω
(0)
0

)

− F0 (ω
∗
0)
]

+
1

N

N
∑

i=1

(

β

µ

+
GBβ

µ+ d
+
G

2

)

(

1 + 2d
(

− 1
µ
+ BG

µ(µ+d)
+ GB2

2(µ+d)2

))K

− 1

2d
(

− 1
µ
+ BG

µ(µ+d)
+ GB2

2(µ+d)2

)

max































M max
1≤i ̸=j≤N

{∥

∥

∥ω
(K)
i − ω

(K)
j

∥

∥

∥

2

}

√

√

√

√2 ln

(

1.25

min
δ̂i∈(0,1]

δ̂i

)

min
ε̂i∈(0,1]

ε̂i
,

2M







max
1≤i ̸=j≤N

{∥

∥

∥ω
(K)
i − ω

(K)
j

∥

∥

∥

1

}

min
ε̂i∈(0,1]

ε̂i







2














. (24)

Proof 1: If mobile device i chooses perturbs local model

parameters with Gaussian noise at time slot k, we have

E

[∥

∥

∥

∥

[

u
(k)
i,m

]

1≤m≤M

∥

∥

∥

∥

2

]

≤ E

[

(∥

∥

∥

∥

[

u
(k)
i,m

]

1≤m≤M

∥

∥

∥

∥

2

)2
]

≤ E

[

M
∑

m=1

(

u
(k)
i,m

)2
]

=M
(

σ
(k)
i

)2

≤

M max
1≤i ̸=j≤N

{∥

∥

∥ω
(k)
i − ω

(k)
j

∥

∥

∥

2

}

√

√

√

√2 ln

(

1.25
min

δ̂i∈(0,1]
δ̂i

)

min
ε̂i∈(0,1]

ε̂i
. (25)

If mobile device i chooses Laplace mechanism, we have

E

[∥

∥

∥

∥

[

y
(k)
i,m

]

1≤m≤M

∥

∥

∥

∥

2

]

≤ E

[

(∥

∥

∥

∥

[

y
(k)
i,m

]

1≤m≤M

∥

∥

∥

∥

2

)2
]

≤ 2M







max
1≤i ̸=j≤N

{∥

∥

∥
ω

(k)
i − ω

(k)
j

∥

∥

∥

1

}

min
ε̂i∈(0,1]

ε̂i







2

. (26)

Let η
(k)
i denote noise vector, which equals to [u

(k)
i,m]1≤m≤M

with Gaussian mechanism while is [y
(k)
i,m]1≤m≤M with Laplace

mechanism. Thus, we have

E

[∥

∥

∥η
(k)
i

∥

∥

∥

2

]

≤ max















2M







max
1≤i ̸=j≤N

{∥

∥

∥ω
(k)
i − ω

(k)
j

∥

∥

∥

1

}

min
ε̂i∈(0,1]

ε̂i







2

,

M max
1≤i ̸=j≤N

{∥

∥

∥ω
(k)
i − ω

(k)
j

∥

∥

∥

2

}

√

√

√

√2 ln

(

1.25

min
δ̂i∈(0,1]

δ̂i

)

min
ε̂i∈(0,1]

ε̂i































. (27)

Thus, according to [28] and Eq. (27), we have

E

[

F0

(

ω
(k)
0

)

− F0 (ω
∗
0)
]

≤

(

1 + 2d

(

−
1

µ
+

BG

µ (µ+ d)

+
GB2

2(µ+ d)2

))

E

[

F0

(

ω
(k−1)
0

)

− F0 (ω
∗
0)
]

+

(

β

µ

+
GBβ

µ+ d
+
G

2

)

(

1

N

N
∑

i=1

max































M max
1≤i ̸=j≤N

{∥

∥

∥
ω

(k)
i − ω

(k)
j

∥

∥

∥

2

}

√

√

√

√2 ln

(

1.25
min

δ̂i∈(0,1]
δ̂i

)

min
ε̂i∈(0,1]

ε̂i
,

2M







max
1≤i ̸=j≤N

{∥

∥

∥ω
(k)
i − ω

(k)
j

∥

∥

∥

1

}

min
ε̂i∈(0,1]

ε̂i







2






















. (28)
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Fig. 4: Decomposition of Gaussian noise vector [u
(k)
i,m]1≤m≤M .

Thus, we can obtain Eq. (24).

Remark 1: After K time slots, the difference or gap between

the training global model ω
(K)
0 and the optimal model ω∗

0

is lower than a bound, which relies on the Lipschitz smooth

coefficient G, number of mobile devices N , and dimensions

of local model parameters (i.e., M ). According to Eq. (5), the

optimal local model parameters is given by

ω∗
i = ω∗

0 −
1

|Di|

|Di|
∑

j=1

fi (pi,j , qi,j ;ω
∗
0) . (29)

In this case, the optimal global model accuracy ρ∗0 and local

model accuracy ρ∗i are calculated by

ρ∗0 = 1− F (ω∗
0) , (30)

ρ∗i = 1−
1

|Di|

|Di|
∑

j=1

fi (pi,j , qi,j ;ω
∗
i ) , 1 ≤ i ≤ N. (31)

B. Privacy Analysis

As shown in Fig. 4, the Gaussian noise vector [u
(k)
i,m]1≤m≤M

can be decomposed into a linear combination of M unit vectors

[bi,m]1≤m≤M as
[

u
(k)
i,m

]

1≤m≤M
= κ

(k)
i,1 b

(k)
i,1 + · · ·+ κ

(k)
i,Mb

(k)
i,M , 1 ≤ i ≤ N

s.t. ∀κ
(k)
i,m ∼ N

(

0,
(

σ
(k)
i

)2
)

,
〈

b
(k)
i,m, b

(k)
i,m̄

〉

= 0. (32)

Theorem 2: For mobile device i, our proposed framework

satisfies (ε∗0, δ
∗
0)-LDP guarantee, where ε∗0 and δ∗0 are upper

bounds of privacy budget and probabilistic relaxation after K

time slots.
Proof 2: By Eq. (32), if mobile device i chooses the Gaussian

mechanism, for ∀1 ≤ k ≤ K, we have

(∥

∥

∥

∥

[

u
(k)
i,m

]

1≤m≤M

∥

∥

∥

∥

2

)2

=
(

κ
(k)
i,1

)2

+

(∥

∥

∥

∥

∥

M
∑

m=1

κ
(k)
i,m+1b

(k)
i,m+1

∥

∥

∥

∥

∥

2

)2

,

(33)

(∥

∥

∥

∥

ω
(k)
i − ω
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By Eq. (1) and [20], for 1 ≤ i ̸= j ≤ N , we have
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Thus, we have
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According to [29], we have
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According to [20], we have
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Thus, we have
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By Eq. (1), we have
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According to Eq. (1) and [21], if mobile device i chooses
Laplace mechanism, for ∀1 ≤ k ≤ K, we have
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TABLE I: Parameters of hierarchical policy selection module for each mobile device

Networks Input size Hidden neurons Output size Activation Size of replay buffer Sampling size Learning rate

Q/R-network 1 6 32 2
ReLU 5000 16 0.0001

Q/R-network 2 7 32 9
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Thus, by Eqs. (40) and (41), we can that our proposed RARL-

PDPFL satisfies (ε∗0, δ
∗
0)-LDP guarantee with both Gaussian

and Laplace mechanisms.

Remark 2: ∀1 ≤ k ≤ K, if the sum of privacy budget ε
(k)
i

and that of probabilistic relaxation δ
(k)
i are smaller than ε∗0

and δ∗0 respectively, each mobile device applies our proposed

RARL-PDPFL method can satisfy LDP guarantee under both

Gaussian and Laplace mechanisms.

VI. EXPERIMENTS RESULTS

A. Experiments Settings

Experiments were performed based on Pytorch 1.12.1 and

GPU NVIDIA GeForce RTX 4060, including a central server

and three mobile devices, and a membership inference attacker.

According to [30], privacy protection can be divided into three

types, (i.e., low, middle, and high levels). The corresponding

requirements are given by: 1) Low level with privacy loss ζ
(k)
i

ranging from 15% to 18%; 2) Middle level with 2% < ζ
(k)
i ≤

15%; 3) High level with ζ
(k)
i ≤ 2%. In the experiments, the

three mobile devices have to satisfy privacy protection levels

from low to high, i.e., mobile device 1 has the lowest level,

and mobile device 3 has the highest level requirements.

Standard MNIST dataset1 is used in the experiments, which

consists of 60000 training data and 10000 testing data for

handwritten digit recognition. The local model uses a convolu-

tional neural network with two convolutional layers and two

fully connected layers and uses a rectified linear unit (ReLu)

function to activate the model. In the experiments, mobile

devices sample 469 training data and 500 testing data to train

the local model parameters, with the Adam algorithm and 1

local epoch. The privacy budget is chosen from 0.1 to 0.5 and

the probabilistic relaxation is set from e−3 to e−1.

All three mobile devices have the same parameter settings

for their Q/R networks, with the learning parameters illustrated

in Table I. Specifically, the input size of Q/R-network 1 equals

the dimensions of the state. Both the second Q-network and

R-network have an input size of 7. In the experiments, ReLU is

used as the activation function in our proposed RARL-PDPFL,

1http://yann.lecun.com/exdb/mnist/

as it can overcome the vanishing gradient problem resulting

from differential operations and increase the nonlinearity to

accelerate the learning speed. Besides, Q-network 1 outputs two

Q-values, and Q-network 2 outputs Q-values with 9 dimensions,

which equals the number of available perturbation policies.

The attacker uses a deep Q-network to determine its attack

probability from a set of [0.1, 0.9], which is quantified into

three available levels. The random exploration rate ϵ linearly

decreases from 0.1 to 10−4 within 200 time slots, with each

time slot decreasing by 4.9× 10−4.

To verify the effectiveness of our framework, SFAC in [13],

Privatized FedPaq in [14] and SHRL in [17] are chosen as

benchmarks, with details showing as follows:

• SFAC in [13] uses the Laplace mechanism to perturb local

model parameters with a fixed privacy budget of 0.5.

• Privatized FedPaq in [14] adds Gaussian noise to local

models for each of the three mobile devices using a fixed

privacy budget of 0.5 and probabilistic relaxation of e−1.

• SHRL in [17] can be applied to help FL optimize the

perturbation mechanism and parameters with a typical

Boltzmann policy distribution.

B. Personalized and Dynamic Performance

The privacy protection and training performance averaged

over 50 time slots after convergence is shown in Table II. The

results show that our scheme enables each mobile device to

satisfy its privacy requirements as well as achieves a 97.58%
global accuracy. That is because RARL-PDPFL uses privacy

loss and local model accuracy as the basis to avoid risky

policies that cannot satisfy user-specific privacy requirements.

As shown in Fig. 5, the privacy loss, attack success rate,

and risk decrease with time while the global model accuracy

increases with time. For example, our RARL-PDPFL decreases

the privacy loss to 1.73%, attack success rate to 1.70‰ and risk

to 0.67, and improves the global model accuracy to 97.30% af-

ter 200 time slots. Besides, our scheme outperforms benchmarks

SFAC in [13], Privatized FedPaq in [14] and SHRL in [17] with

lower privacy loss, attack success rate, and risk, and higher

global model accuracy. For instance, RARL-PDPFL reduces

95.82% privacy loss and 96.77% attack success rate, increases

10.80% accuracy, and decreases 97.60% risk compared with

Privatized FedPaq [14]. The performance gain results from the

joint optimization of perturbation mechanism and parameters as

well as the consideration of risk-aware method in the learning

process. Further, the proposed framework has 87.40% lower

privacy loss, 96.24% lower attack success rate, 8.52% higher

global model accuracy, and 3.30% less risk than SHRL [17].

The reason is that our scheme considers both short-term and

long-term risks to reduce dangerous explorations and improves

the impact of risks on the policy distribution formulation.
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TABLE II: Performances of RARL-PDPFL based on user-personalized privacy requirements of three mobile devices

Device ID
Metrics

Privacy loss (%) Privacy requirements guarantee Accuracy (%) Convergence time slot

1 12.00 ✓

97.58 342 3.90 ✓

3 1.00 ✓
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Fig. 5: Privacy and training performance averaged over 3
episodes with three mobile devices based on the MNIST

dataset.

C. Impact of Participated Mobile Devices

The impact of participated device numbers on privacy and

training performance is shown in Fig. 6, in which the privacy

loss requirements of low, middle, and high levels are 10%, 20%,

and 70% proportions among the total number of mobile devices.

The privacy loss and attack success rate almost decrease with

the number of participated mobile devices, while the risk and

global model accuracy increase with it. Our scheme is more

robust than the three baselines, as the number of participated

mobile devices changes from 3 to 20. On the other hand, the

risk of our scheme slightly increases the number of participated

mobile devices. The corresponding performance gain of our

scheme is larger than 96.78%, 96.71%, and 85.19% compared

with SFAC, Privatized FedPaq, and SHRL respectively for

3 ∼ 20 mobile devices.

D. Ablation Study

We also perform a series of ablation experiments to evaluate

the performance of our designed punishment function, R-

network, and hierarchical structure, as shown in Table III.

The results show that our designed punishment function can

guide mobile devices to avoid immediate risky policies, thus

reducing privacy loss, attack success rate, and risk. Besides, the
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Fig. 6: Average performance under 3 ∼ 20 participated mobile

devices on MNIST dataset.

designed R-network estimates the long-term risk to formulate

perturbation policy distribution, thus guiding each mobile

device to explore the optimal policies quickly. Further, our

designed two-level hierarchical structure takes the policy

selection priority into account to accelerate convergence speed

and thus further improve privacy protection performance.

VII. RELATED WORK

Recently, blockchain, homomorphic encryption, secure ag-

gregation, and trust formulation methods are used in FL to resist

membership inference attacks [31]–[34]. For example, an elude

secure aggregation method is proposed in [31], which proves

that FL is vulnerable to attacks due to incorrect usage of secure

aggregation. The blockchain-enabled FL privacy protection

scheme presented in [33] designs a verification mechanism

to help a central server select the honest participating clients.

Further, a detection and aggregation algorithm is designed for

FL [34], in which the penultimate layer representations are

used to improve the defense performance, and the discrepancies

are extracted to update the trust values.

Differential privacy has been applied to help enhance the

privacy of FL [28], [35]–[39]. For instance, a Gaussian

mechanism-based FL privacy protection framework proposed

in [28] proposes a random participant scheduling method

to improve privacy level. To solve the vulnerability of the
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TABLE III: Performance of ablation study with three mobile devices

Algorithms
Metrics

Accuracy (%) Privacy loss (%) Attack success rate (‰) Risk Convergence time slot

RARL-PDPFL 97.36 1.76 1.78 0.47 34
RARL-PDPFL w/o punishment function 97.28 7.90 8.23 6.37 50

RARL-PDPFL w/o R-network 97.27 6.50 6.91 5.17 137

RARL-PDPFL w/o hierarchical structure 97.14 4.33 5.01 5.03 43

stochastic gradient descent algorithm in FL, an LDP-enabled

FL framework is proposed in [38]. The framework perturbs

local model parameters with Gaussian noise to make a trade-

off among user privacy loss, global model accuracy, and

transmission rate. A fine-grained differentially private FL

scheme is then presented in [39], which uses the importance

of fully connected layers to allocate Laplace noise for higher

protection level and training accuracy.

The choice of perturbation policy including privacy budget

and probabilistic relaxation is highly related to privacy and

training performance of FL framework [15], [40]–[42]. For

example, a Gaussian DP-based FL framework in [42] applies a

gradient-boosting decision tree to update the local model and

changes the privacy budget based on user contributions. To

further improve the privacy level, the deep RL-based privacy-

aware scheme in [15] applies deep Q-network to choose the

privacy budget to reduce the privacy loss against inference

attackers. The privacy-preserving FL framework designed in

[40] proposes an adaptive privacy decomposition mechanism

to dynamically decay the Gaussian noise to resist gradient

leakage attacks.

VIII. SUMMARY AND FUTURE WORK

In this paper, we have proposed a risk-aware RL-based

personalized differentially private FL framework to satisfy user-

specific requirements against membership inference attacks.

This framework designs a two-level hierarchical structure to

jointly optimize the perturbation mechanism, privacy budget,

and probabilistic relaxation. A punishment function has been

used to avoid immediate dangerous policies. Further, we have

designed an R-network to estimate the long-term risk of each

chosen perturbation policy, and a policy distribution to increase

the impact of both short-term and long-term risks. We also

have analyzed the convergence performance of our framework

and proved that our framework satisfies the LDP guarantee.

Experimental results based on the MNIST datasets show that

our proposed framework outperforms three benchmarks. For

example, our scheme has 7.96% higher global model accuracy,

96.22% lower privacy loss, and 97.52% less risk than the

benchmark SFAC in [13] at time slot 200.

In the future, we will further consider the mobility of mobile

devices in the design of model parameters transmission. We

plan to apply the proposed framework in unmanned aerial

vehicles or the Internet of Vehicles that perform objective

detection local tasks. Another efficient mechanism is to combine

the age of information with LDP techniques, which can

potentially save unnecessary interactions among mobile devices

and thus further protect user privacy.
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