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Direct Learning of Neuronal Firing Representations
for Long-Term Motor Intent Predictions

Long Meng and Xiaogang Hu , Senior Member, IEEE

Abstract—Accurate hand movement prediction plays a pivotal1

role in advancing robotic control technologies. Neuronal firing2

signals, as the driving representation of motor intentions, offer a3

physiologically meaningful approach to decode motor commands.4

These representations are typically extracted using blind source5

separation techniques. However, the high computational intensity6

of these methods limits practical applications. Therefore, we7

directly learned neuronal firing representations from surface8

electromyogram (sEMG) signals via an efficient deep forest (DF)9

framework. Specifically, we first obtained populational neuronal10

firing rate signals as the ground truth. The DF model was trained11

to map sEMG signals directly to populational neuronal firing12

rate. To enable robust and continuous finger force predictions,13

we evaluated the DF framework on data obtained across multiple14

sessions, with an average session interval of 6.58 days. Our results15

revealed that the DF framework accurately maps sEMG ampli-16

tudes to neuronal firing representations, achieving comparable17

accuracy to source-separation-based method with significantly18

reduced computational time. The developed DF model also19

outperformed neural network models and other decision-tree-20

based ensemble methods. Furthermore, despite utilizing the same21

input features, the DF framework significantly outperformed the22

sEMG-amplitude approach, showcasing its capacity to capture23

complex neural drive information for more accurate finger24

force predictions. Moreover, the robustness test against noise25

interference revealed that the DF framework maintained stable26

performance under different noise levels. These findings highlight27

the potential of DF framework as an efficient solution for real-28

time robotic control applications.29

Impact Statement—Accurate interpretation of motor intention30

from sEMG is essential for the control of advanced prosthetic31

and robotic hands, but current signal separation pipelines remain32

too slow for routine use. Because motor commands are conveyed33

by collective firings of motoneurons, we instead adopt direct34

learning of neuronal firing representations using a lightweight35
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deep forest model. This approach preserves the neural detail 36

of blind source separation while cutting computation time by 37

about 80%. Despite the efficiency gain, the model achieved 38

decoding accuracy comparable to current blind source separation 39

methods tested on data in week-long intervals under varying 40

noise levels. This direct learning technique supports accurate 41

control of prosthetic or exoskeletal hands for long-term use. The 42

demonstrated real-time efficiency and robustness also lay the 43

foundation for future applications in dexterous robotic control. 44

Index Terms—Deep forest, deep learning, finger force predic- 45

tion, neural decoding, surface electromyogram. 46

I. INTRODUCTION 47

H
UMAN hands are among the most dexterous body parts, 48

capable of performing intricate and precise movements 49

essential for daily functioning [1]. In recent years, significant 50

progress in robotics has led to the development of advanced 51

prosthetic and exoskeletal hands, enabling the separate actua- 52

tion of each finger and joint [2], [3]. Alongside mechatronic 53

device advancements, the development of accurate and effi- 54

cient neural decoding approaches is essential to facilitate intu- 55

itive robotic control, promoting their potential applications in 56

human–machine interactions [4], [5], remote surgery [6], [7], 57

and assisting individuals with physical disabilities in regaining 58

functional independence [8], [9]. 59

Hand movements are generally controlled by neural com- 60

mands from the brain that travel through spinal pathways to 61

motoneurons [10]. These neurons activate the innervated mus- 62

cles, producing the desired movements. Surface electromyo- 63

gram (sEMG), a noninvasive method for capturing neuromus- 64

cular activity, is widely used for decoding motor intentions [11], 65

[12]. The introduction of flexible high-density sEMG (HD- 66

sEMG) electrode arrays has further improved spatial resolution 67

of sEMG signals, enabling accurate capture of detailed muscle 68

activation patterns [13]. 69

One approach to recognizing hand movements has been the 70

classification of a limited number of predefined gestures [14], 71

[15], [16]. However, the practical usage of this approach is lim- 72

ited by its inability to handle smooth transitions between ges- 73

tures or adapt to new gestures. Alternatively, regression-based 74

approaches, such as proportional direct control, are promising 75

for mapping macroscopic or microscopic sEMG features to the 76

desired motor output in a continuous way. The macroscopic 77

features, such as sEMG amplitude, are commonly derived from 78

global sEMG signals and have been extensively used in myo- 79

electric control applications [17], [18]. However, macroscopic 80
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sEMG features often suffer from an inaccurate representation81

of the underlying neural drive due to various factors, including82

superimposition of action potentials, crosstalk from neighbor-83

ing compartments, and motion artifacts [15], [19]. Such inaccu-84

rate representations result in prediction errors, thereby limiting85

their practical applications. Recently, research has shown the86

possibility to extract microscopic features [20]. For example,87

motoneuron discharge trains are extracted from HD-sEMG sig-88

nals via blind source separation (BSS) techniques for detailed89

and accurate analysis of neuromuscular activity [20], [21], [22].90

Then, the population neural firing rate is calculated as a repre-91

sentation of the neural drive signal of finger muscles, thereby92

addressing limitations of macroscopic features and improving93

motor intention decoding accuracy [23], [24]. Because BSS-94

based decomposition typically requires substantial computa-95

tional time, an effective strategy is to compute the separa-96

tion matrix using BSS-based decomposition during the training97

phase, and then apply it to sEMG decomposition in the testing98

phase [25]. Although promising, the computational demand of99

such technique is high. Accordingly, there is an urgent need100

for an approach to directly learn neuronal firing representations101

from sEMG signals.102

Convolutional neural network (CNN)-based and long short-103

term memory (LSTM)-based deep neural network models have104

demonstrated strong capabilities in modeling complex nonlin-105

ear input–output relations, suitable for neural decoding tasks106

[15]. For example, A CNN-LSTM-based framework has been107

used to estimate joint trajectories from sEMG signals, enabling108

position control in cable-driven exoskeletons [26]. Other deep109

learning architectures, including temporal convolutional net-110

works and CNN with squeeze-and-excitation modules (CNN-111

SE) have also been used for real-time motor intent decoding112

for prosthetic control [27]. Similarly, CNN-, CNN-LSTM-, and113

CNN-gated recurrent unit (GRU)-based models have been im-114

plemented for elbow force estimation [28], demonstrating supe-115

rior performance over traditional regression methods. However,116

several factors need to be considered before their implemen-117

tation. The performance of most deep learning frameworks is118

sensitive to hyperparameter selection [29]. Improper parameter119

configurations can result in poor convergence, overfitting, or120

underfitting, thereby degrading prediction performance. Addi-121

tionally, deeper models with higher complexity can capture122

more intricate input–output relations but require larger training123

datasets to mitigate overfitting risks [30]. This hinders their124

application in data-constrained settings, whereas the DF model125

offers a lightweight, hyperparameter-insensitive alternative that126

performs well even with small datasets and limited computa-127

tional resources.128

Another critical challenge hindering widespread adoption129

lies in the model adaptability to long-term usage scenarios [15].130

In the training phase, models may overly rely on random, time-131

sensitive patterns that do not persist over time. For example,132

noise with a specific power level affecting a subset of electrodes133

can dominate the learning process [13]. While these patterns134

may enhance short-term performance, they fail to capture the135

stable feature representations of sEMG signals, degrading long-136

term model performance.137

As an alternative deep learning framework, deep forest (DF) 138

[31] is a decision tree-based architecture that processes inputs 139

layer by layer through ensembles of decision trees, forming a 140

hierarchical structure [13]. In each layer, multiple forest models 141

(e.g., random forests) produce probabilistic outputs, which are 142

fused with the original features for subsequent layers. This 143

adaptive cascade approach enables deep feature extraction with- 144

out compromising performance on limited training data. DF 145

can also reduce overfitting by stopping layer expansion once 146

model performance converges. Additionally, a key advantage of 147

deep forest is its robustness to hyperparameter selection [31], 148

making it less sensitive to model tuning compared with tra- 149

ditional neural-network-based deep learning frameworks, and 150

potentially beneficial for cross-session generalization, where 151

data distributions vary across days. 152

In this study, we pioneered the direct learning of neural firing 153

representations for long-term continuous finger force predic- 154

tions across multiple days, using an efficient deep forest model. 155

Specifically, to evaluate model performance over time, we col- 156

lected HD-sEMG signals in three separate sessions, while sub- 157

jects performed single- and multifinger force tasks. The DF de- 158

coding models were built using data from one session and tested 159

on the two remaining sessions. In the training phase, a two-stage 160

BSS-based decomposition approach [32] was applied to extract 161

populational neuronal firing signals. These representations were 162

used as outputs for deep forest models, with sEMG amplitude 163

[root mean square (rms)] features serving as inputs. Then, cross- 164

session neural firing representations were learned from rms 165

features using the trained deep forest models. Lastly, the de- 166

coded representations were mapped to finger forces using linear 167

regressions. Our results demonstrated that the DF model could 168

achieve better prediction accuracy than conventional neural- 169

network-based models and comparable prediction accuracy to 170

the BSS-based decoding approach, and that DF can achieve 171

a significantly reduced computational time, underscoring the 172

feasibility of directly learning neural firing representations in 173

an efficient way. The contributions of our study are as follows. 174

1) First application of the deep forest model to directly learn 175

neuronal firing representations from sEMG signals. 176

2) Consistently high computational efficiency that addresses 177

the computational limitations of BSS-based neural decod- 178

ing approaches, while achieving comparable decoding 179

performance and maintaining robustness under varying 180

noise levels. 181

3) Validation of the learned neuronal firing representations 182

through continuous finger force predictions across multi- 183

ple days, demonstrating their physiological relevance and 184

practical utility. The DF-based framework further outper- 185

formed amplitude-based methods, deep neural network 186

architectures, and other ensemble models. 187

II. MATERIALS 188

A. Subject Information 189

Eight subjects participated in this experiment, including five 190

males and three females. All participants were neurologically 191

intact, with ages ranging from 21 to 35. Before participation, 192
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Fig. 1. Overview of the research framework and experimental setup.

subjects signed a consent form acknowledging that they had193

fully understood the experimental procedures, purposes, their194

rights, and potential risks. This experiment was reviewed and195

approved by the Institutional Review Board of the Pennsylvania196

State University.197

B. Data Acquisition198

1) Force Measurement: As shown in Fig. 1, three fingers199

(index, middle, and ring fingers) were attached to separate200

miniature load cells (SM-200N, Interface) for individual force201

measurements, sampled at a rate of 1000 Hz. Before each ses-202

sion, we measured the maximum voluntary contraction (MVC)203

of each finger flexion. Then, subjects performed two types of204

tasks (single- and multifinger tasks) in a random order. In the205

single-finger tasks, subjects flexed only one finger following206

a pseudorandom force pattern (Fig. 1) under the instruction207

to avoid coactivation of other fingers. Three repetitions were208

performed for each involved finger, resulting in a total of nine209

(three trials/finger × three fingers) single-finger trials. In the210

multifinger tasks, subjects concurrently flexed the three fingers,211

following the same pseudorandom force pattern, with three212

multifinger trials performed in total. Therefore, a total of 12213

trials were performed for each session. Each trial lasted 80 s,214

and each subject participated in three sessions with an average215

intersession interval of 6.58 days, enabling the assessment of216

long-term decoding performance. The pseudorandom force tra-217

jectory, as illustrated in Fig. 1, consisted of trapezoidal forces218

ranging from 0% to 50% MVC, ramped with varying durations219

and amplitudes to introduce unpredictability in force patterns.220

The 50% MVC was chosen as the upper limit because it aligns221

with the force levels required for most daily activities while222

minimizing the risk of fatigue.223

2) sEMG Data Acquisition and Preprocessing: For sEMG224

data acquisition, we first cleaned the skin over the flexor dig-225

itorum superficialis (FDS) and extensor digitorum communis226

(EDC) of the forearm to reduce skin-electrode impedance.227

Then, two 8 × 16 (128-channel) electrode arrays were placed228

on the FDS and EDC, respectively, by palpating the skin around229

these muscles. Each electrode array featured electrodes with a230

diameter of 3 mm and an interelectrode distance of 10 mm.231

During the experiment, sEMG signals were sampled at a rate232

of 2048 Hz, amplified with a gain of 1000 and a pass band of 233

10–900 Hz via EMG-USB2+ system (OT Bioelettronica, 234

Torino, Italy). The collected sEMG data were preprocessed 235

using a sEMG-specific interference removal approach [33] to 236

eliminate motion artifacts. 237

III. METHODS 238

A. Source Separation-Based Neural Decoding Approach 239

To derive training labels and comparing the performance of 240

DF and BSS-based decoders, we applied and further customized 241

a previously developed a source-separation-based neural decod- 242

ing approach [32], in order to extract populational neuron firing 243

signals as finger force-driven neural firing representations. This 244

neural decoding approach included two key steps: 1) initial 245

motor unit (MU) extraction; and 2) MU pool refinement. In our 246

study, we extracted neuronal firing representations separately 247

for sEMG collected from FDS and EDC. Afterward, we eval- 248

uated their contributions and combined their effects on finger 249

force predictions. 250

1) Initial MU Extraction: Based on our preliminary exper- 251

iment, we divided each 80-s trial from the training dataset of 252

finger l (l ∈ {index, middle, ring}) into four 20-s segments 253

for the initial MU extraction. Specifically, we employed a BBS 254

approach, the fast independent component analysis (FastICA) 255

algorithm [34], for the 128-channel 20-s sEMG decomposition. 256

FastICA was selected as the baseline decomposition method 257

because it has been widely validated in sEMG decomposition 258

studies for its high decomposition accuracy and fast computa- 259

tional convergence, and serves as one of the most commonly 260

used BSS methods for extracting motoneuron discharge infor- 261

mation from high-density sEMG [23], [35], [36]. To increase 262

the observations, we first conducted channel extensions by du- 263

plicating the original 128 channels by a factor of 9. The nine sets 264

of duplicated data were incrementally delayed by one to nine 265

samples. To remove the correlation between observations, we 266

whitened the extended signals. Then, we applied the FastICA 267

algorithm to obtain the MU source signals and correspond- 268

ing separation vectors. The parameter settings were consistent 269

with a previous study [25]. For example, we employed the 270

contrast function G (x) = (1/3)x3 to accelerate convergence. 271

The number of decomposed MUs was set to 200. K-means++ 272

was applied for binary clustering of discharging events. After 273

the sEMG decomposition, the MU quality was evaluated using 274

the silhouette (SIL) value. MUs with SIL lower than 0.5 were 275

removed from further analysis. In addition, duplicated MUs 276

were identified when more than 80% of their spike trains were 277

synchronized within a ±2.5 ms time window [25], and the MU 278

with the higher SIL was retained. Then, we concatenated the 279

separation vectors from all 20-s sEMG segmentation to obtain 280

the raw MU pool and separation matrix for finger l (B1,l). 281

2) MU Pool Refinement: To obtain the MU pool specific to 282

the finger l, we refined the raw MU pool by quantifying the cor- 283

relation [coefficient of determination (R2)] between the firing 284

rate of each MU and finger forces. Specifically, we employed 285

the initial separation matrix to decompose all the single-finger 286

trials and calculated corresponding spike trains. The spike trains 287
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were then segmented using a sliding window of 0.5 s and a288

sliding step of 0.125 s. The spikes within each segment were289

summed and concatenated to form a time course of firing rates.290

The time series of firing rate was smoothed by a Kalman filter291

to address sporadic, large-amplitude, and isolated fluctuations.292

Based on previous studies [23], [24], the parameters of observa-293

tion matrix, observation covariance, system matrix and system294

covariance were set to 1, 0.5, 1, and 0.1, respectively. For each295

MU, we calculated the R2 of its smoothed firing rate with the296

force of activated fingers. If the average R2 for finger l was297

the highest, we retained this MU. The separation vectors of all298

retained MUs formed the refined separation matrix (B2,l).299

3) Neural Firing Signal Extraction: To derive the neuronal300

firing representation as our learning target, we applied B2,l301

to decompose trials corresponding to finger l. Similarly, we302

extracted the time courses of firing rates for all retained MUs.303

These firing rate time courses were then averaged and smoothed304

using a Kalman filter, resulting in the neuronal firing represen-305

tations used for subsequent analyses.306

4) Performance Evaluation: Considering that neuronal fir-307

ing representations were generally linear to the target finger308

forces [32], we evaluated the extraction performance of the309

neuronal firing representation via the reconstruction accuracy310

of the target finger forces. Specifically, we employed a bivariate311

linear regression analysis to combine the neuronal firing repre-312

sentations obtained from FDS (Df,l) and EDC (Df,l) for the313

force prediction of finger l as314

Forcel = alDf,l + blDe,l + cl (1)

where Forcel represents the predicted force of finger l; al and315

bl represent the coefficients of Df,l and De,l, respectively. cl316

represents the intercept.317

The predicted forces were compared with the recorded318

ground truth values and evaluated using two widely-used met-319

rics, the coefficient of determination (R2) and root mean square320

error (RMSE), which were presented in the form of mean321

± standard error. The definitions of R2 and RMSE were as322

follows:323

R2 = 1−

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi −

−

y)2
(2)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2 (3)

where n is the total number of observations; yi is the measured324

force for the ith observation; ŷi is the predicted force for the325

ith observation;
−

y is the average value of measured force, cal-326

culated as
−

y = (1/n)
∑n

i=1
yi.327

B. Deep Forest Framework328

For the training procedure of the DF model, we first seg-329

mented the sEMG signals using a sliding window of 0.5 s with330

a step size of 0.125 s. For each segment, we extracted the rms331

values from all channels as the input feature vector, as rms has332

Fig. 2. Deep forest framework. RF and C-RF denote random forest and
completely random forest, respectively.

been widely used in muscle force prediction due to its robust- 333

ness and computational efficiency [37]. The target outputs were 334

the neural firing signals derived from the decomposition. 335

The DF framework (Fig. 2) is a multilayer cascade of forest 336

ensemble modules, each consisting of one random forest (RF) 337

and one completely random forest (C-RF). Each forest produces 338

class distributions at its leaf nodes, which are averaged across 339

trees and concatenated to form the module output. These out- 340

puts are then concatenated with the original input features to 341

form an augmented feature vector, which is passed to the next 342

layer. This feature augmentation strategy allows the model to 343

progressively enrich the representation and capture higher-order 344

interactions. 345

The model was trained in a greedy, layer-wise manner. For 346

each layer, the RF and C-RF were trained using the current 347

input feature vector, while parameters from previous layers 348

were kept fixed to stabilize the learning process. New layers 349

were added sequentially, and training was terminated once the 350

reduction in regression error between two successive layers was 351

below a predefined threshold (10−5 in this study), indicating 352

convergence. Each forest contained 100 trees, and two ensemble 353

modules (i.e., two RF + two C-RF) were used per layer [13]. All 354

other hyperparameters followed the default settings introduced 355

in [31]. 356

C. CNN Models 357

We also compared the DF framework with efficient neural 358

network-based models. CNN models were selected because of 359

their proven ability to learn hierarchical spatial features from 360

biomedical signals and their strong performance in prior sEMG 361

decoding tasks [38], [39], [40]. Specifically, we implemented 362

two CNN frameworks (Fig. 3) for comparison: 1-D CNN and 363

2-D CNN. For the 128-channel sEMG data, we directly fed 364

the 0.5-s sEMG signal (X1−D ∈ R
Nc×NP ) into the 1-D CNN 365

to extract features, where Nc = 128 denotes the number of 366

sEMG channels and NP = 0.5 s× 2048 Hz = 1024 denotes the 367

number of data points. To investigate the effects of the spatial 368

information on the prediction of neuronal firing signals, we 369

constructed the 2-D CNN using the rms feature map as the input 370

(X2−D ∈ R
1×Nc×NR ), where NC ×NR = 8× 16 denotes the 371

shape of the rms feature map. The rms values were extracted 372

from each segmented 0.5-s sEMG signal. Given the relatively 373
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Fig. 3. CNN frameworks. Conv denotes convolutional layer; FC denotes
fully connected layer.

small training dataset, we employed lightweight CNN frame-374

works to prevent overfitting issues. Both CNN frameworks used375

a modular architecture with convolutional layers, followed by376

Leaky ReLU activations and max-pooling operations (kernel377

size = 2, stride = 2). To achieve optimal results, we systemat-378

ically explored various combinations of layer numbers (N ∈379

{1, 2, 3}) and kernel sizes ({3,5,7}). The CNN performance380

on the validation dataset revealed that a single CNN module381

(i.e., N = 1) with a kernel of three achieved the best balance382

between prediction accuracy and computational efficiency. The383

model training was conducted using a batch size of 64 and384

a learning rate of 0.001, optimized with the Adam algorithm385

[41]. The maximum number of iterations was set to 300 for the386

training process. The mean squared error (MSE) loss function,387

augmented with L2 regularization (weight decay of 10−4), en-388

sured stable training and generalization. A fully connected layer389

with 64 units aggregated extracted features for final predictions.390

Twenty percent of the training data was reserved as the valida-391

tion dataset. An early stopping strategy was applied. Namely,392

the training process was stopped if the validation loss did not393

decrease for ten consecutive epochs. The model achieving the394

lowest validation loss was used for subsequent analyses.395

D. CNN-LSTM Model396

To leverage the proven capability of LSTM networks in cap-397

turing long-range temporal dependencies, we extended the opti-398

mal CNN architecture by integrating it with LSTM to construct399

a CNN-LSTM model (Fig. 4). This hybrid architecture was400

selected due to its effectiveness in modeling sequential sEMG401

patterns, where CNN extracted local spatial features and LSTM402

captured their progression over time. Specifically, the input data403

type and the configuration of the CNN modules (including the404

number of layers and kernel size) were the same as those of the405

better CNN model (1-D or 2-D CNN). The input data type and406

the configuration of the CNN modules (including the number of407

layers and kernel size) were the same as those of the better CNN408

model (1-D or 2-D CNN). In this model, the 0.5-s sEMG signal409

was further divided into five nonoverlapping 0.1-s segments,410

which were then processed by each CNN module. The LSTM411

layer, with a single layer of 64 hidden units [15], processed412

the sequential feature vectors to model temporal dependencies413

across the five 0.1-s segments. This structure allowed the LSTM414

to retain memory over longer temporal sequences, capturing415

the dynamic patterns of the input. The LSTM employed three416

gating mechanisms—forget gate, input gate, and output gate—417

to manage information flow effectively and mitigate the van-418

ishing gradient problem, ensuring robust learning of temporal419

relations. The hidden state output from the LSTM layer was420

Fig. 4. CNN-LSTM framework.

Fig. 5. CNN-SE framework. ⊗ denotes channel-wise multiplication.

passed to an FC layer with 64 units, mapping the features to 421

a single output neuron for the prediction of neuronal firing 422

signals. 423

E. CNN-SE Model 424

Motivated by recent work on attention-based CNN for motor 425

intent decoding [27], we tailored the CNN-SE architecture for 426

our task. These mechanisms aimed to adaptively recalibrate 427

channel-wise feature responses by explicitly modeling interde- 428

pendencies between channels, thereby enhancing the network 429

sensitivity to informative patterns in the sEMG input. To ensure 430

a fair comparison, we preserved the original network structure 431

and parameters to the maximum extent. As shown in Fig. 5, 432

the CNN-SE model consisted of four sequential Conv-SE mod- 433

ules, each comprising a 1-D convolutional layer (with kernel 434

sizes of 20, 5, 3, and 3, respectively), batch normalization, 435

ReLU activation, spatial dropout (dropout rate = 0.1), and max 436

pooling (kernel sizes: 5, 3, and 2 for the last three modules). 437

Each convolutional layer had 64 output channels. A SE block 438

was appended to each Conv-SE module to recalibrate feature 439

responses by adaptively weighting the channel-wise activations 440

through a squeeze (global average pooling) and excitation (two 441

fully connected layers with ReLU and sigmoid activations) 442

operation. After passing through the CNN-SE stack, the output 443

feature vector was processed by two feedforward neural net- 444

work (FFNN) modules. Each FFNN module consisted of a fully 445

connected layer with 128 units, a ReLU activation function, and 446

dropout. This was followed by a final fully connected layer to 447

predict the populational neural firing signal. 448
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TABLE I
OPTIMAL HYPERPARAMETERS AND SEARCH RANGES FOR TREE-BASED ENSEMBLE MODELS

XGBoost LightGBM CatBoost

Max tree depth: 5 (3,5,7) Max tree depth: 7 (3,5,7) Max tree depth: 7 (3,5,7)
Learning rate: 0.05 (0.01, 0.05, 0.1) Learning rate: Learning rate: 0.1 (0.01, 0.05, 0.1)
Number of trees: 500 (100, 300, 500) 0.1 (0.01, 0.05, 0.1) Number of boosting iterations: 500 (100, 300, 500)
Row sampling ratio: 0.6 (0.6, 0.8, 1) Number of trees: L2 regularization for leaf scores: 123 (0.001, 0.1, 1)
Column sampling ratio by node: 0.6 (0.6, 0.8, 1.0) 500 (100, 300, 500) Threshold for one-hot encoding: 5 (5, 10, 20)
L2 regularization term on weights: 0.001 (0.001, 0.1, 1) Maximum leaf nodes:

31 (31, 63, 127)

Note: Value before the parentheses indicates the selected optimal parameter, while the values inside the parentheses represent the grid search
range explored during model tuning

F. Tree-Based Ensemble Models449

To provide a fair and comprehensive evaluation, we included450

three widely used tree-based ensemble methods in our compar-451

ison: extreme gradient boosting (XGBoost) [42], light gradient452

boosting machine (LightGBM) [43], and categorical boosting453

(CatBoost) [44]. To ensure consistency across methods, the454

input features and output targets for these models were kept455

identical to those used in the DF framework.456

XGBoost is an optimized implementation of gradient boost-457

ing that constructs trees in a level-wise manner and employs458

second-order derivatives for more accurate loss approxima-459

tion. Its regularization mechanisms help prevent overfitting and460

improve generalization. XGBoost has shown excellent perfor-461

mance in a variety of sEMG-based decoding studies [45], [46],462

including force and joint angle predictions, due to its ability to463

capture complex nonlinear relations while maintaining compu-464

tational efficiency.465

LightGBM is a gradient boosting framework that introduces466

two major innovations: gradient-based one-side sampling and467

exclusive feature bundling. These improvements enable faster468

training and lower memory usage. Unlike the level-wise tree469

growth in XGBoost, LightGBM grows leaf-wise trees with470

depth constraints, which allows for deeper and more specialized471

tree structures. LightGBM has been implemented in decoding472

applications for its speed and accuracy, especially on large473

datasets [47], [48].474

CatBoost is a gradient boosting algorithm that is particularly475

suited for datasets with categorical features. It introduces or-476

dered boosting and symmetric trees to reduce overfitting and477

improve stability. It has been applied recently in biosignal de-478

coding [47] and gait prediction tasks [49]. While categorical479

encoding is less relevant for our continuous sEMG features, the480

robustness and regularization strategies of CatBoost still make481

it a competitive choice.482

To ensure rigorous evaluation, we conducted a grid search483

for the key hyperparameters of each method using the training484

dataset and selected the best-performing model based on the485

RMSE on the validation dataset. The optimal hyperparameter486

settings and their respective search ranges are summarized in487

Table I. For each method, the values in parentheses represent488

the grid search range, while the values preceding them indicate489

the selected optimal parameters.490

G. sEMG-Amplitude-Based Force Predictions 491

In addition, we also compared the DF and BSS (FastICA) 492

decoding approaches with the commonly used sEMG ampli- 493

tude approach. This method was included as a representative 494

traditional baseline method because muscle activation levels 495

are generally proportional to sEMG amplitude (rms), and rms- 496

based features have been frequently adopted in intent predic- 497

tion studies [50], [51], [52]. Specifically, the sEMG data were 498

segmented using the same sliding window strategy as the DF 499

approach. For each segment, we calculated the average rms 500

of sEMG data from FDS (Af,l) and EDC (Ae,l), respectively. 501

Then, the force of finger l was predicted using a bivariate linear 502

regression model 503

Forcel = alAf,l + blAe,l + cl (4)

where al and bl represent the coefficients of Af,l and Ae,l, 504

respectively. cl represents the intercept. 505

H. Validation Protocols 506

In this study, two validation protocols were explored, namely, 507

within-session and cross-session protocols. 508

1) Within-Session Protocol: All the training, validation, and 509

testing data came from the same recording session. For finger 510

l (l ∈ {index, middle, ring}), there were three single-finger 511

trials and three multifinger trials. We divided the data into three 512

sets, each of which had a single-finger trial and a multifinger 513

trial. The three sets alternated as the testing dataset, while the 514

remaining two sets were combined and randomly divided into 515

training and validation datasets with an 8:2 ratio. The average 516

results across the testing datasets were then calculated and 517

reported. 518

2) Cross-Session Protocol: To evaluate long-term model 519

performance, we employed a leave-one-session-out validation 520

protocol. Specifically, data from one session were randomly 521

divided into training and validation datasets with an 8:2 ratio. 522

The remaining two sessions were used as the testing dataset to 523

assess the generalizability of the model across different days. 524

This procedure was repeated three times, with each session 525

taking turns as the data source for training and validation. 526

The reported performance metrics represent the average results 527

obtained from the three testing sessions. 528
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I. Evaluation of Robustness to Background Noise529

Given signal variations in everyday settings, it is crucial to530

ensure the model performance under various external inter-531

ference, such as different background noise. For experiments532

conducted in the lab, data quality can be controlled to minimize533

interference. To simulate unpredictable noise that may arise534

during actual usage, we tested the model performance against535

various levels of background noise added to the signals. Specif-536

ically, Gaussian noise was introduced to the testing dataset at537

different signal-to-noise ratio (SNR) levels, i.e., 10, 12.5, 15,538

17.5, and 20 dB. For each defined SNR level, noise was added539

individually to all sEMG channels, ensuring that the signal in540

each channel adhered to the specified SNR constraints.541

J. Statistical Analysis542

In this study, repeated-measures analysis of variance (RM543

ANOVA) and paired t-tests were carried out when the compared544

groups satisfied the requirements for parametric analysis: 1)545

normality (assessed via the Shapiro–Wilk test); and 2) spheric-546

ity (evaluated via Mauchly’s test for three or more groups).547

If requirements were not satisfied, we employed the Friedman548

test and Wilcoxon signed-rank test for nonparametric analysis.549

For multiple comparisons, the Holm–Bonferroni correction was550

applied, and only the adjusted p-values were reported. The551

significance level was set to 0.05.552

IV. RESULTS553

A. Comparisons With Deep Learning Techniques554

For both the within-session and cross-session validations, the555

2-D CNN models achieved better results than the 1-D CNN556

models. Therefore, features from the 2-D CNN were used as557

input data for the LSTM layer in the CNN-LSTM model. As558

shown in Fig. 6, the DF model achieved the best performance559

for both validation protocols. Specifically, under the within-560

session validation protocol, the DF can achieve the highest R2
561

of 0.85 ± 0.015 and the lowest RMSE of 5.47% ± 0.35%MVC.562

Statistical analyses revealed that the DF model demonstrated a563

significantly higher R2 compared with the other four models564

(all p < 0.05). In addition, the DF model achieved a signifi-565

cantly lower RMSE compared with the 1-D CNN and CNN-566

LSTM models (both p < 0.05). Similarly, the DF model can567

achieve the best cross-day performance, with a R2 of 0.75 ±568

0.029 and a RMSE of 6.72% ± 0.32%MVC. Statistical analyses569

demonstrated that the DF model significantly outperformed the570

1-D CNN model and the CNN-SE model in both R2 and RMSE571

(both p < 0.05).572

B. Comparisons With Tree-Based Ensemble Methods573

As shown in Fig. 7, the DF framework consistently achieved574

superior performance for both within-session and cross-session575

evaluations. In the within-session validation protocol, one-way576

RM ANOVA revealed a significant effect of method on pre-577

diction performance in the terms of R2 [F (3, 21) = 17.43,578

p < 0.001, Fig. 7(a)] and RMSE [F (3, 21) = 18.55, p <579

(a) (b)

(c) (d)

Fig. 6. Comparisons with deep learning techniques. (a) and (b) Present
R2 and RMSE values for within-session finger force predictions, respec-
tively. (c) and (d) Present R2 and RMSE values for cross-session finger
force predictions, respectively. Error bars represent standard errors. ∗denotes
0.01 < p < 0.05, ∗∗denotes 0.001 < p < 0.01, ∗∗∗denotes p < 0.001.

(a) (b)

(c) (d)

Fig. 7. Comparisons with different tree-based techniques. (a) and (b) Present
R2 and RMSE values for within-session finger force predictions, respectively.
(c) and (d) Present R2 and RMSE values for cross-session finger force
predictions, respectively. Error bars represent standard errors. ∗denotes 0.01
< p < 0.05, ∗∗denotes 0.001 < p < 0.01, ∗∗∗denotes p < 0.001.

0.001, Fig. 7(b)]. Further pair-wise comparisons indicated that 580

the DF model achieved significantly higher R2 values com- 581

pared to XGBoost, LightGBM, and CatBoost (all p < 0.01). 582

Similarly, DF yielded a significantly lower RMSE than the 583

three ensemble approaches (all p < 0.05). In the cross-session 584

validation protocol, one-way RM ANOVA also revealed a sig- 585

nificant effect of method on decoding performance in terms 586

of R2 [F (3, 21) = 11.08, p < 0.001, Fig. 7(c)] and RMSE 587

[F (3, 21) = 12.14, p < 0.001, Fig. 7(d)]. Posthoc pairwise 588

comparisons showed that the DF model significantly outper- 589

formed XGBoost, LightGBM, and CatBoost, achieving higher 590

R2 values and lower RMSE scores (all p < 0.05). 591
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(a)

(b)

(c)

(e) (f)

(d)

Fig. 8. Within-session finger force predictions using the DF, FastICA, and
sEMG-amplitude (amp) approaches. (a) and (b) Present a representative pre-
dicted index finger force under the single- and multifinger tasks, respectively.
(c) and (d) Show the finger force prediction evaluation in R2 and RMSE,
respectively. Dots of the same color indicate results from the same individual
subjects. (e) and (f) Detail the performance of finger force predictions under
the single- and multifinger tasks in R2 and RMSE, respectively. Error bars
represent the standard errors. ∗denotes 0.01 < p < 0.05, ∗∗denotes 0.001 <

p < 0.01, ∗∗∗denotes p < 0.001.

C. Comparisons With FastICA and sEMG-Amplitude592

Techniques593

Since our learning targets (neuronal firing representations)594

were sourced from the FastICA-based approach, we conducted595

a direct comparison with the FastICA method and the sEMG-596

amplitude approach for finger force predictions.597

1) Within-Session Finger Force Predictions: Fig. 8(a) and598

(b) shows the representative predicted finger forces of the index599

finger under the single- and multifinger tasks, respectively. In600

both scenarios, the DF and FastICA approaches can accurately601

predict the measured finger forces. In contrast, the forces of the602

sEMG-amplitude approach deviated from the measured finger603

forces.604

As shown in Fig. 8(c) and (d), the DF, FastICA, and sEMG-605

amplitude achieved a R2 of 0.85 ± 0.015, 0.84 ± 0.015, and606

0.76 ± 0.022, respectively. Correspondingly, the RMSE values607

were 5.47% ± 0.35%MVC (DF), 5.59% ± 0.33%MVC (Fas-608

tICA), and 6.52% ± 0.38%MVC (Amp), respectively. Statis-609

tical analyses revealed that both the DF and FastICA signifi-610

cantly outperformed the sEMG-amplitude approach in R2 and611

(a)

(b)

(c)

(e) (f)

(d)

Fig. 9. Cross-session finger force predictions using the DF, FastICA, and
sEMG-amplitude (amp) approaches. (a) and (b) Present a representative pre-
dicted index finger force under the single- and multifinger tasks, respectively.
(c) and (d) Show the finger force prediction evaluation in R2 and RMSE,
respectively. Dots of the same color indicate results from the same individual
subjects. (e) and (f) Detail the performance of finger force predictions under
the single- and multifinger tasks in R2 and RMSE, respectively. Error bars
represent the standard errors. ∗denotes 0.01 < p < 0.05, ∗∗denotes 0.001 <

p < 0.01, ∗∗∗denotes p < 0.001.

RMSE (all p < 0.05). No significant differences were detected 612

between the DF and FastICA approaches in R2 and RMSE. 613

Figs. 8(e) and 9(f) further presented the finger force predic- 614

tion performances under the single- and multifinger tasks. For 615

the single-finger tasks, DF and FastICA models significantly 616

outperformed the sEMG-amplitude approach in both R2 and 617

RMSE (all p < 0.001). For the multifinger tasks, no significant 618

differences among the three approaches were detected in either 619

R2 or RMSE. 620

2) Cross-Session Finger Force Predictions: In the cross- 621

session validation protocol, the DF and FastICA can also accu- 622

rately predict the measured finger forces under both single- and 623

multifinger tasks, as evidenced by the representative predicted 624

finger forces of the index finger in Fig. 9(a) and (b). In contrast, 625

the predicted force of the sEMG-amplitude approach showed 626

large deviations from the measured finger forces, indicating 627

poor generalizability in the cross-session context. 628

As shown in Fig. 9(c) and (d), compared with the sEMG- 629

amplitude approach, the DF and FastICA can achieve a higher 630

R2 and a lower RMSE. Furthermore, statistical analyses 631

demonstrated that the R2 achieved by the DF (0.75 ± 0.029) 632
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(a) (b)

(c) (d)

Fig. 10. Evaluation of finger force prediction performance under different
noise levels. (a) and (b) Present R2 and RMSE values for within-session finger
force predictions, respectively. (c) and (d) Present R2 and RMSE values for
cross-session finger force predictions, respectively. Hollow circles represent
the average result for each subject, with lines connecting the average results
of each method across varying noise levels. The positions of each method are
slightly offset at different noise levels for better visualization.

and FastICA (0.77 ± 0.024) were significantly higher than that633

of the sEMG-amplitude approach (0.67 ± 0.033). Similarly, the634

RMSE achieved by the DF (6.72% ± 0.32%MVC) and FastICA635

(6.58% ± 0.28%MVC) were significantly lower than that of the636

sEMG-amplitude approach (7.83%± 0.54%MVC). In addition,637

we further analyzed the finger force performance for the single-638

and multifinger tasks. As shown in Fig. 9(e) and (f), the DF can639

achieve significantly better results than the sEMG-amplitude640

approach in both R2 and RMSE (all p < 0.05).641

D. Robustness to Noise642

Fig. 10(a) and (b) presents the within-session finger force643

prediction performance for testing data with different SNRs.644

The DF and FastICA approaches exhibited consistent finger645

force prediction performance under different noise levels. In646

contrast, the sEMG-amplitude approach showed declines in647

prediction performance with decreasing SNR (especially from648

15 to 10 dB), as reflected by the decreasing R2 in Fig. 10(a) and649

increasing RMSE in Fig. 10(b). Similar to the within-session650

performance, the DF and FastICA achieved relatively stable651

cross-session performance under different SNR levels, as shown652

in Fig. 10(c) and (d). However, the sEMG-amplitude approach653

demonstrated a notable degradation in cross-session perfor-654

mance with decreasing SNR. Statistical analyses revealed that655

both DF and FastICA significantly outperformed the sEMG-656

amplitude approach under each SNR level (all p < 0.01).657

E. Computational Efficiency Evaluation658

Considering the importance of computational efficiency in659

ensuring real-time performance, we evaluated the processing660

times of different methods on the testing dataset. Pseudoreal-661

time testing was conducted by sequentially feeding data seg-662

ments into the algorithm, simulating the buffer behavior of663

a real-time data acquisition system. All evaluations were664

conducted on an AMD Ryzen 7 6800H @ 3.2 GHz, with665

TABLE II
COMPUTATIONAL TIME OF FORCE

PREDICTION (MS)

Within Session Cross Session
DF 19.94 ± 1.45 18.54 ± 0.99

FastICA 77.44 ± 9.67 113.04 ± 11.96
Amp 1.66 ± 0.01 1.71 ± 0.02

MATLAB R2023a (The MathWorks Inc., USA) serving as 666

the implementation platform. The within-session and cross- 667

session computational times for each method are summarized in 668

Table II. As expected, the sEMG-amplitude method required 669

the least computational time under both validation protocols. 670

Compared with the FastICA approach, the DF model demon- 671

strated significantly improved computational efficiency, with 672

processing times reduced by approximately 75% for within- 673

session testing and over 80% for cross-session testing. Statis- 674

tical analyses revealed that the DF model took significantly 675

less computational time than the FastICA model under both 676

validation protocols (both p < 0.01). 677

V. DISCUSSION 678

In this study, we aimed to directly learn the neuronal firing 679

information from sEMG signals, instead of employing BSS- 680

based techniques, with the goal of enhancing computational 681

efficiency while maintaining decoding accuracy. Specifically, 682

we first obtained the neuronal firing representation (popula- 683

tional firing rate signal) from the FastICA approach as the 684

learning target signals (i.e., training labels). Then, we directly 685

learned the targets from sEMG signals via the DF model. We 686

found that the DF model consistently outperformed other neu- 687

ral network based deep learning models. Compared with the 688

FastICA approach, this new approach could accurately capture 689

the underlying neural drive information encoded in the sEMG 690

signals, as evidenced by the same level of finger force prediction 691

performance but with significantly less computational time. The 692

DF model demonstrated stable cross-session performance and 693

robust performance at various SNR levels, highlighting its po- 694

tential for long-term utility in different signal quality conditions 695

without the need of model retraining. 696

Compared with commonly used deep learning techniques, 697

the DF model outperformed them in both within-session and 698

cross-session validation protocols, revealing that the layer-by- 699

layer processing mechanism can effectively accommodate non- 700

differentiable modules (forest-based modules) for learning neu- 701

ronal firing representations. In addition, unlike gradient-based 702

deep networks that rely heavily on large-scale labeled datasets 703

and complex backpropagation training, the DF model employs 704

ensemble learning structures that eliminate the need for differ- 705

entiability and reduce dependency on extensive hyperparameter 706

tuning. This design not only simplifies the training process but 707

also enhances robustness in data-limited scenarios, making it 708

suitable for neural decoding applications with limited data and 709

computational resources [53], [54]. 710

The consistently better performance of the DF model over 711

XGBoost, LightGBM, and CatBoost highlights its suitability 712

for decoding neural firing information from sEMG. Unlike 713

conventional boosting methods that rely on shallow ensembles, 714
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DF employs a layer-wise cascade structure with feature aug-715

mentation, enabling progressive learning and rich feature rep-716

resentations. This hierarchical design is particularly effective717

in capturing the complex and variable patterns in neural-drive718

signals. Moreover, the integration of both random forests and719

completely random forests in each layer enhances model diver-720

sity and robustness, contributing to its superior generalization721

across sessions. While tree-based boosting methods required722

extensive parameter tuning, DF achieved better results with723

fewer adjustments, reflecting its stability and adaptability.724

Although the inputs of the sEMG-amplitude approach and725

the DF model were the same, the DF model significantly outper-726

formed the sEMG-amplitude approach under both the within-727

session and cross-session validation protocols. The inaccu-728

rate finger force predictions via the sEMG-amplitude approach729

could be attributed to its inherent limitations. Considering phys-730

iological factors, the muscle compartments of different fingers731

are spatially close and partially overlap when viewed from the732

skin surface. Correspondingly, muscle crosstalk occurs due to733

the overlapping activation of adjacent muscles, making it diffi-734

cult to isolate signals corresponding to individual finger move-735

ments, thus degrading the finger force prediction performance.736

Additionally, the recorded sEMG signals can be interfered with737

motion artifacts introduced during muscle activities, compro-738

mising their quality and reliability. In long-term (cross-session)739

scenarios, the performance of the sEMG-amplitude approach740

further deteriorated. This decline was due to the nonstationary741

nature of sEMG signals, which could be affected by several742

factors including variations in electrode placement, changes in743

skin impedance, and different background noise [15]. These744

factors introduced inconsistencies in the recorded signals, mak-745

ing it difficult to establish a stable mapping between the sEMG746

amplitudes and the intended finger forces.747

In contrast, the DF approach demonstrated superior per-748

formance in both within-session and cross-session scenarios,749

which is attributed to its reliance on neural firing representa-750

tions for the interpretation of finger forces. Specifically, the751

ground-truth neural firing signals came from binary motoneu-752

ron discharge events. These binary discharge events were less753

affected by variations in sEMG signals, resulting in consis-754

tent neural firing signals. To obtain neural firing events, two755

distinct clusters were identified for each source signal during756

the sEMG decomposition process. The cluster with higher am-757

plitude represented MU discharge events, while the baseline758

noise cluster was excluded from further analyses. This effective759

noise removal not only reduced interference but also enhanced760

robustness under varying noise conditions. In addition, the MU761

refinement procedure ensured that the ground-truth neural firing762

signals were specific to individual fingers, thus eliminating the763

influence of muscle crosstalk and enhancing the accuracy of764

force predictions.765

The comparable performance between the DF and FastICA766

revealed the effective learning of neuronal firing representations767

via the DF model. By leveraging its hierarchical structure,768

the DF model could capture stable and robust neuronal fir-769

ing representations for the interpretation of finger movements.770

In addition, unlike FastICA which relied on computationally771

intensive decomposition of sEMG signals to extract motoneu- 772

ron discharge events, the DF model directly mapped sEMG 773

amplitude features to neuronal firing representations. This ap- 774

proach ensured that the decoding accuracy remains high and 775

that the computational time remained consistent across all con- 776

ditions for the DF model, making it highly suitable for real-time 777

applications. 778

Although we have demonstrated the feasibility of directly 779

learning neuronal firing representations from sEMG signals 780

using the DF model, further validations could be conducted to 781

confirm its broader applicability and robustness. First, we only 782

evaluated the extraction of neuronal firing representations in 783

the context of finger force predictions. In the future, we plan 784

to extend the approach to other hand motor tasks, such as joint 785

kinematic prediction. Second, while this study demonstrated the 786

robustness of the DF model across sessions and noise levels, it 787

did not consider scenarios involving muscle fatigue, which can 788

be validated in future work. 789

VI. CONCLUSION 790

We evaluated the direct learning of neuronal firing represen- 791

tations from sEMG signals using the DF model. The DF model 792

achieved comparable accuracy to FastICA-based approaches in 793

predicting dexterous finger forces while significantly reducing 794

computational time. Moreover, the model demonstrated robust 795

performance in both within-session and cross-session evalua- 796

tions and remained stable under varying signal noise levels. 797

This underscores its suitability for real-time applications where 798

efficiency and consistency are crucial. The efficient nature of the 799

DF model further enhanced its practicality, providing insights 800

into its processes. These results underline the potential of the 801

direct learning approach as a reliable tool for neural decoding 802

in real-world scenarios. 803
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