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Direct Learning of Neuronal Firing Representations
for Long-Term Motor Intent Predictions

Long Meng

Abstract—Accurate hand movement prediction plays a pivotal
role in advancing robotic control technologies. Neuronal firing
signals, as the driving representation of motor intentions, offer a
physiologically meaningful approach to decode motor commands.
These representations are typically extracted using blind source
separation techniques. However, the high computational intensity
of these methods limits practical applications. Therefore, we
directly learned neuronal firing representations from surface
electromyogram (SEMG) signals via an efficient deep forest (DF)
framework. Specifically, we first obtained populational neuronal
firing rate signals as the ground truth. The DF model was trained
to map sEMG signals directly to populational neuronal firing
rate. To enable robust and continuous finger force predictions,
we evaluated the DF framework on data obtained across multiple
sessions, with an average session interval of 6.58 days. Our results
revealed that the DF framework accurately maps sEMG ampli-
tudes to neuronal firing representations, achieving comparable
accuracy to source-separation-based method with significantly
reduced computational time. The developed DF model also
outperformed neural network models and other decision-tree-
based ensemble methods. Furthermore, despite utilizing the same
input features, the DF framework significantly outperformed the
sEMG-amplitude approach, showcasing its capacity to capture
complex neural drive information for more accurate finger
force predictions. Moreover, the robustness test against noise
interference revealed that the DF framework maintained stable
performance under different noise levels. These findings highlight
the potential of DF framework as an efficient solution for real-
time robotic control applications.

Impact Statement—Accurate interpretation of motor intention
from sEMG is essential for the control of advanced prosthetic
and robotic hands, but current signal separation pipelines remain
too slow for routine use. Because motor commands are conveyed
by collective firings of motoneurons, we instead adopt direct
learning of neuronal firing representations using a lightweight
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deep forest model. This approach preserves the neural detail
of blind source separation while cutting computation time by
about 80%. Despite the efficiency gain, the model achieved
decoding accuracy comparable to current blind source separation
methods tested on data in week-long intervals under varying
noise levels. This direct learning technique supports accurate
control of prosthetic or exoskeletal hands for long-term use. The
demonstrated real-time efficiency and robustness also lay the
foundation for future applications in dexterous robotic control.

Index Terms—Deep forest, deep learning, finger force predic-
tion, neural decoding, surface electromyogram.

1. INTRODUCTION

UMAN hands are among the most dexterous body parts,

capable of performing intricate and precise movements
essential for daily functioning [1]. In recent years, significant
progress in robotics has led to the development of advanced
prosthetic and exoskeletal hands, enabling the separate actua-
tion of each finger and joint [2], [3]. Alongside mechatronic
device advancements, the development of accurate and effi-
cient neural decoding approaches is essential to facilitate intu-
itive robotic control, promoting their potential applications in
human-machine interactions [4], [5], remote surgery [6], [7],
and assisting individuals with physical disabilities in regaining
functional independence [8], [9].

Hand movements are generally controlled by neural com-
mands from the brain that travel through spinal pathways to
motoneurons [10]. These neurons activate the innervated mus-
cles, producing the desired movements. Surface electromyo-
gram (SEMG), a noninvasive method for capturing neuromus-
cular activity, is widely used for decoding motor intentions [11],
[12]. The introduction of flexible high-density SEMG (HD-
sEMG) electrode arrays has further improved spatial resolution
of SEMG signals, enabling accurate capture of detailed muscle
activation patterns [13].

One approach to recognizing hand movements has been the
classification of a limited number of predefined gestures [14],
[15], [16]. However, the practical usage of this approach is lim-
ited by its inability to handle smooth transitions between ges-
tures or adapt to new gestures. Alternatively, regression-based
approaches, such as proportional direct control, are promising
for mapping macroscopic or microscopic SEMG features to the
desired motor output in a continuous way. The macroscopic
features, such as sSEMG amplitude, are commonly derived from
global sSEMG signals and have been extensively used in myo-
electric control applications [17], [18]. However, macroscopic
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sEMG features often suffer from an inaccurate representation
of the underlying neural drive due to various factors, including
superimposition of action potentials, crosstalk from neighbor-
ing compartments, and motion artifacts [15], [19]. Such inaccu-
rate representations result in prediction errors, thereby limiting
their practical applications. Recently, research has shown the
possibility to extract microscopic features [20]. For example,
motoneuron discharge trains are extracted from HD-sEMG sig-
nals via blind source separation (BSS) techniques for detailed
and accurate analysis of neuromuscular activity [20], [21], [22].
Then, the population neural firing rate is calculated as a repre-
sentation of the neural drive signal of finger muscles, thereby
addressing limitations of macroscopic features and improving
motor intention decoding accuracy [23], [24]. Because BSS-
based decomposition typically requires substantial computa-
tional time, an effective strategy is to compute the separa-
tion matrix using BSS-based decomposition during the training
phase, and then apply it to sSEMG decomposition in the testing
phase [25]. Although promising, the computational demand of
such technique is high. Accordingly, there is an urgent need
for an approach to directly learn neuronal firing representations
from sEMG signals.

Convolutional neural network (CNN)-based and long short-
term memory (LSTM)-based deep neural network models have
demonstrated strong capabilities in modeling complex nonlin-
ear input—output relations, suitable for neural decoding tasks
[15]. For example, A CNN-LSTM-based framework has been
used to estimate joint trajectories from sEMG signals, enabling
position control in cable-driven exoskeletons [26]. Other deep
learning architectures, including temporal convolutional net-
works and CNN with squeeze-and-excitation modules (CNN-
SE) have also been used for real-time motor intent decoding
for prosthetic control [27]. Similarly, CNN-, CNN-LSTM-, and
CNN-gated recurrent unit (GRU)-based models have been im-
plemented for elbow force estimation [28], demonstrating supe-
rior performance over traditional regression methods. However,
several factors need to be considered before their implemen-
tation. The performance of most deep learning frameworks is
sensitive to hyperparameter selection [29]. Improper parameter
configurations can result in poor convergence, overfitting, or
underfitting, thereby degrading prediction performance. Addi-
tionally, deeper models with higher complexity can capture
more intricate input—output relations but require larger training
datasets to mitigate overfitting risks [30]. This hinders their
application in data-constrained settings, whereas the DF model
offers a lightweight, hyperparameter-insensitive alternative that
performs well even with small datasets and limited computa-
tional resources.

Another critical challenge hindering widespread adoption
lies in the model adaptability to long-term usage scenarios [15].
In the training phase, models may overly rely on random, time-
sensitive patterns that do not persist over time. For example,
noise with a specific power level affecting a subset of electrodes
can dominate the learning process [13]. While these patterns
may enhance short-term performance, they fail to capture the
stable feature representations of SEMG signals, degrading long-
term model performance.
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As an alternative deep learning framework, deep forest (DF)
[31] is a decision tree-based architecture that processes inputs
layer by layer through ensembles of decision trees, forming a
hierarchical structure [13]. In each layer, multiple forest models
(e.g., random forests) produce probabilistic outputs, which are
fused with the original features for subsequent layers. This
adaptive cascade approach enables deep feature extraction with-
out compromising performance on limited training data. DF
can also reduce overfitting by stopping layer expansion once
model performance converges. Additionally, a key advantage of
deep forest is its robustness to hyperparameter selection [31],
making it less sensitive to model tuning compared with tra-
ditional neural-network-based deep learning frameworks, and
potentially beneficial for cross-session generalization, where
data distributions vary across days.

In this study, we pioneered the direct learning of neural firing
representations for long-term continuous finger force predic-
tions across multiple days, using an efficient deep forest model.
Specifically, to evaluate model performance over time, we col-
lected HD-sEMG signals in three separate sessions, while sub-
jects performed single- and multifinger force tasks. The DF de-
coding models were built using data from one session and tested
on the two remaining sessions. In the training phase, a two-stage
BSS-based decomposition approach [32] was applied to extract
populational neuronal firing signals. These representations were
used as outputs for deep forest models, with SEMG amplitude
[root mean square (rms)] features serving as inputs. Then, cross-
session neural firing representations were learned from rms
features using the trained deep forest models. Lastly, the de-
coded representations were mapped to finger forces using linear
regressions. Our results demonstrated that the DF model could
achieve better prediction accuracy than conventional neural-
network-based models and comparable prediction accuracy to
the BSS-based decoding approach, and that DF can achieve
a significantly reduced computational time, underscoring the
feasibility of directly learning neural firing representations in
an efficient way. The contributions of our study are as follows.

1) First application of the deep forest model to directly learn
neuronal firing representations from SEMG signals.

2) Consistently high computational efficiency that addresses
the computational limitations of BSS-based neural decod-
ing approaches, while achieving comparable decoding
performance and maintaining robustness under varying
noise levels.

3) Validation of the learned neuronal firing representations
through continuous finger force predictions across multi-
ple days, demonstrating their physiological relevance and
practical utility. The DF-based framework further outper-
formed amplitude-based methods, deep neural network
architectures, and other ensemble models.

II. MATERIALS

A. Subject Information

Eight subjects participated in this experiment, including five
males and three females. All participants were neurologically
intact, with ages ranging from 21 to 35. Before participation,
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Fig. 1. Overview of the research framework and experimental setup.

subjects signed a consent form acknowledging that they had
fully understood the experimental procedures, purposes, their
rights, and potential risks. This experiment was reviewed and
approved by the Institutional Review Board of the Pennsylvania
State University.

B. Data Acquisition

1) Force Measurement: As shown in Fig. 1, three fingers
(index, middle, and ring fingers) were attached to separate
miniature load cells (SM-200N, Interface) for individual force
measurements, sampled at a rate of 1000 Hz. Before each ses-
sion, we measured the maximum voluntary contraction (MVC)
of each finger flexion. Then, subjects performed two types of
tasks (single- and multifinger tasks) in a random order. In the
single-finger tasks, subjects flexed only one finger following
a pseudorandom force pattern (Fig. 1) under the instruction
to avoid coactivation of other fingers. Three repetitions were
performed for each involved finger, resulting in a total of nine
(three trials/finger x three fingers) single-finger trials. In the
multifinger tasks, subjects concurrently flexed the three fingers,
following the same pseudorandom force pattern, with three
multifinger trials performed in total. Therefore, a total of 12
trials were performed for each session. Each trial lasted 80 s,
and each subject participated in three sessions with an average
intersession interval of 6.58 days, enabling the assessment of
long-term decoding performance. The pseudorandom force tra-
jectory, as illustrated in Fig. 1, consisted of trapezoidal forces
ranging from 0% to 50% MVC, ramped with varying durations
and amplitudes to introduce unpredictability in force patterns.
The 50% MVC was chosen as the upper limit because it aligns
with the force levels required for most daily activities while
minimizing the risk of fatigue.

2) sEMG Data Acquisition and Preprocessing: For sSEMG
data acquisition, we first cleaned the skin over the flexor dig-
itorum superficialis (FDS) and extensor digitorum communis
(EDC) of the forearm to reduce skin-electrode impedance.
Then, two 8 x 16 (128-channel) electrode arrays were placed
on the FDS and EDC, respectively, by palpating the skin around
these muscles. Each electrode array featured electrodes with a
diameter of 3 mm and an interelectrode distance of 10 mm.
During the experiment, SEMG signals were sampled at a rate

of 2048 Hz, amplified with a gain of 1000 and a pass band of
10-900 Hz via EMG-USB2+ system (OT Bioelettronica,
Torino, Italy). The collected SEMG data were preprocessed
using a SEMG-specific interference removal approach [33] to
eliminate motion artifacts.

III. METHODS

A. Source Separation-Based Neural Decoding Approach

To derive training labels and comparing the performance of
DF and BSS-based decoders, we applied and further customized
a previously developed a source-separation-based neural decod-
ing approach [32], in order to extract populational neuron firing
signals as finger force-driven neural firing representations. This
neural decoding approach included two key steps: 1) initial
motor unit (MU) extraction; and 2) MU pool refinement. In our
study, we extracted neuronal firing representations separately
for SEMG collected from FDS and EDC. Afterward, we eval-
uated their contributions and combined their effects on finger
force predictions.

1) Initial MU Extraction: Based on our preliminary exper-
iment, we divided each 80-s trial from the training dataset of
finger [ (I € {index, middle, ring}) into four 20-s segments
for the initial MU extraction. Specifically, we employed a BBS
approach, the fast independent component analysis (FastICA)
algorithm [34], for the 128-channel 20-s SEMG decomposition.
FastICA was selected as the baseline decomposition method
because it has been widely validated in SEMG decomposition
studies for its high decomposition accuracy and fast computa-
tional convergence, and serves as one of the most commonly
used BSS methods for extracting motoneuron discharge infor-
mation from high-density SEMG [23], [35], [36]. To increase
the observations, we first conducted channel extensions by du-
plicating the original 128 channels by a factor of 9. The nine sets
of duplicated data were incrementally delayed by one to nine
samples. To remove the correlation between observations, we
whitened the extended signals. Then, we applied the FastICA
algorithm to obtain the MU source signals and correspond-
ing separation vectors. The parameter settings were consistent
with a previous study [25]. For example, we employed the
contrast function G (z) = (1/3)z? to accelerate convergence.
The number of decomposed MUs was set to 200. K-means++
was applied for binary clustering of discharging events. After
the SEMG decomposition, the MU quality was evaluated using
the silhouette (SIL) value. MUs with SIL lower than 0.5 were
removed from further analysis. In addition, duplicated MUs
were identified when more than 80% of their spike trains were
synchronized within a £2.5 ms time window [25], and the MU
with the higher SIL was retained. Then, we concatenated the
separation vectors from all 20-s SEMG segmentation to obtain
the raw MU pool and separation matrix for finger [ (B ).

2) MU Pool Refinement: To obtain the MU pool specific to
the finger [, we refined the raw MU pool by quantifying the cor-
relation [coefficient of determination (R?)] between the firing
rate of each MU and finger forces. Specifically, we employed
the initial separation matrix to decompose all the single-finger
trials and calculated corresponding spike trains. The spike trains
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were then segmented using a sliding window of 0.5 s and a
sliding step of 0.125 s. The spikes within each segment were
summed and concatenated to form a time course of firing rates.
The time series of firing rate was smoothed by a Kalman filter
to address sporadic, large-amplitude, and isolated fluctuations.
Based on previous studies [23], [24], the parameters of observa-
tion matrix, observation covariance, system matrix and system
covariance were set to 1, 0.5, 1, and 0.1, respectively. For each
MU, we calculated the R? of its smoothed firing rate with the
force of activated fingers. If the average R? for finger | was
the highest, we retained this MU. The separation vectors of all
retained MUs formed the refined separation matrix (B3 ).

3) Neural Firing Signal Extraction: To derive the neuronal
firing representation as our learning target, we applied Bs;
to decompose trials corresponding to finger /. Similarly, we
extracted the time courses of firing rates for all retained MUs.
These firing rate time courses were then averaged and smoothed
using a Kalman filter, resulting in the neuronal firing represen-
tations used for subsequent analyses.

4) Performance Evaluation: Considering that neuronal fir-
ing representations were generally linear to the target finger
forces [32], we evaluated the extraction performance of the
neuronal firing representation via the reconstruction accuracy
of the target finger forces. Specifically, we employed a bivariate
linear regression analysis to combine the neuronal firing repre-
sentations obtained from FDS (D ;) and EDC (D) for the
force prediction of finger [ as

Force; = alDfJ -+ lee,l “+ ¢ (1)
where Force; represents the predicted force of finger /; a; and
b; represent the coefficients of Dy; and D, ;, respectively. ¢;
represents the intercept.

The predicted forces were compared with the recorded
ground truth values and evaluated using two widely-used met-
rics, the coefficient of determination (122) and root mean square
error (RMSE), which were presented in the form of mean
+ standard error. The definitions of R? and RMSE were as
follows:

@)

3)

where n is the total number of observations; y; is the measured
force for the ¢th observation; y; is the predicted force for the

ith observation; ¥ is the average value of measured force, cal-
culated as y = (1/n) >, ;.

B. Deep Forest Framework

For the training procedure of the DF model, we first seg-
mented the SEMG signals using a sliding window of 0.5 s with
a step size of 0.125 s. For each segment, we extracted the rms
values from all channels as the input feature vector, as rms has
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Fig. 2. Deep forest framework. RF and C-RF denote random forest and

completely random forest, respectively.

been widely used in muscle force prediction due to its robust-
ness and computational efficiency [37]. The target outputs were
the neural firing signals derived from the decomposition.

The DF framework (Fig. 2) is a multilayer cascade of forest
ensemble modules, each consisting of one random forest (RF)
and one completely random forest (C-RF). Each forest produces
class distributions at its leaf nodes, which are averaged across
trees and concatenated to form the module output. These out-
puts are then concatenated with the original input features to
form an augmented feature vector, which is passed to the next
layer. This feature augmentation strategy allows the model to
progressively enrich the representation and capture higher-order
interactions.

The model was trained in a greedy, layer-wise manner. For
each layer, the RF and C-RF were trained using the current
input feature vector, while parameters from previous layers
were kept fixed to stabilize the learning process. New layers
were added sequentially, and training was terminated once the
reduction in regression error between two successive layers was
below a predefined threshold (10> in this study), indicating
convergence. Each forest contained 100 trees, and two ensemble
modules (i.e., two RF + two C-RF) were used per layer [13]. All
other hyperparameters followed the default settings introduced
in [31].

C. CNN Models

We also compared the DF framework with efficient neural
network-based models. CNN models were selected because of
their proven ability to learn hierarchical spatial features from
biomedical signals and their strong performance in prior SEMG
decoding tasks [38], [39], [40]. Specifically, we implemented
two CNN frameworks (Fig. 3) for comparison: 1-D CNN and
2-D CNN. For the 128-channel sSEMG data, we directly fed
the 0.5-s SEMG signal (X;_p € RY<XNr) into the 1-D CNN
to extract features, where N, = 128 denotes the number of
SEMG channels and Np = 0.5 s x 2048 Hz = 1024 denotes the
number of data points. To investigate the effects of the spatial
information on the prediction of neuronal firing signals, we
constructed the 2-D CNN using the rms feature map as the input
(Xg_p € RIXNeXNr) ‘where No x Nrp =8 x 16 denotes the
shape of the rms feature map. The rms values were extracted
from each segmented 0.5-s SEMG signal. Given the relatively
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Raw sEMG data RMS feature map

il

Data source

CNN modules

Fig. 3.  CNN frameworks. Conv denotes convolutional layer; FC denotes
fully connected layer.

small training dataset, we employed lightweight CNN frame-
works to prevent overfitting issues. Both CNN frameworks used
a modular architecture with convolutional layers, followed by
Leaky ReLU activations and max-pooling operations (kernel
size = 2, stride = 2). To achieve optimal results, we systemat-
ically explored various combinations of layer numbers (N €
{1,2,3}) and kernel sizes ({3,5,7}). The CNN performance
on the validation dataset revealed that a single CNN module
(i.e., N = 1) with a kernel of three achieved the best balance
between prediction accuracy and computational efficiency. The
model training was conducted using a batch size of 64 and
a learning rate of 0.001, optimized with the Adam algorithm
[41]. The maximum number of iterations was set to 300 for the
training process. The mean squared error (MSE) loss function,
augmented with L2 regularization (weight decay of 10~%), en-
sured stable training and generalization. A fully connected layer
with 64 units aggregated extracted features for final predictions.
Twenty percent of the training data was reserved as the valida-
tion dataset. An early stopping strategy was applied. Namely,
the training process was stopped if the validation loss did not
decrease for ten consecutive epochs. The model achieving the
lowest validation loss was used for subsequent analyses.

D. CNN-LSTM Model

To leverage the proven capability of LSTM networks in cap-
turing long-range temporal dependencies, we extended the opti-
mal CNN architecture by integrating it with LSTM to construct
a CNN-LSTM model (Fig. 4). This hybrid architecture was
selected due to its effectiveness in modeling sequential SEMG
patterns, where CNN extracted local spatial features and LSTM
captured their progression over time. Specifically, the input data
type and the configuration of the CNN modules (including the
number of layers and kernel size) were the same as those of the
better CNN model (1-D or 2-D CNN). The input data type and
the configuration of the CNN modules (including the number of
layers and kernel size) were the same as those of the better CNN
model (1-D or 2-D CNN). In this model, the 0.5-s SEMG signal
was further divided into five nonoverlapping 0.1-s segments,
which were then processed by each CNN module. The LSTM
layer, with a single layer of 64 hidden units [15], processed
the sequential feature vectors to model temporal dependencies
across the five 0.1-s segments. This structure allowed the LSTM
to retain memory over longer temporal sequences, capturing
the dynamic patterns of the input. The LSTM employed three
gating mechanisms—forget gate, input gate, and output gate—
to manage information flow effectively and mitigate the van-
ishing gradient problem, ensuring robust learning of temporal
relations. The hidden state output from the LSTM layer was

CNN
modules

CNN
modules

Fig. 4. CNN-LSTM framework.

CNN-SE modules (x 4)

Fig. 5. CNN-SE framework. @ denotes channel-wise multiplication.

passed to an FC layer with 64 units, mapping the features to
a single output neuron for the prediction of neuronal firing
signals.

E. CNN-SE Model

Motivated by recent work on attention-based CNN for motor
intent decoding [27], we tailored the CNN-SE architecture for
our task. These mechanisms aimed to adaptively recalibrate
channel-wise feature responses by explicitly modeling interde-
pendencies between channels, thereby enhancing the network
sensitivity to informative patterns in the SEMG input. To ensure
a fair comparison, we preserved the original network structure
and parameters to the maximum extent. As shown in Fig. 5,
the CNN-SE model consisted of four sequential Conv-SE mod-
ules, each comprising a 1-D convolutional layer (with kernel
sizes of 20, 5, 3, and 3, respectively), batch normalization,
ReLU activation, spatial dropout (dropout rate = 0.1), and max
pooling (kernel sizes: 5, 3, and 2 for the last three modules).
Each convolutional layer had 64 output channels. A SE block
was appended to each Conv-SE module to recalibrate feature
responses by adaptively weighting the channel-wise activations
through a squeeze (global average pooling) and excitation (two
fully connected layers with ReLU and sigmoid activations)
operation. After passing through the CNN-SE stack, the output
feature vector was processed by two feedforward neural net-
work (FFNN) modules. Each FFNN module consisted of a fully
connected layer with 128 units, a ReLU activation function, and
dropout. This was followed by a final fully connected layer to
predict the populational neural firing signal.
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TABLE 1
OPTIMAL HYPERPARAMETERS AND SEARCH RANGES FOR TREE-BASED ENSEMBLE MODELS

XGBoost LightGBM

CatBoost

Max tree depth: 5 (3,5,7)

Learning rate: 0.05 (0.01, 0.05, 0.1)

Number of trees: 500 (100, 300, 500)

Row sampling ratio: 0.6 (0.6, 0.8, 1)

Column sampling ratio by node: 0.6 (0.6, 0.8, 1.0)

L2 regularization term on weights: 0.001 (0.001, 0.1, 1)

Max tree depth: 7 (3,5,7)
Learning rate:

0.1 (0.01, 0.05, 0.1)
Number of trees:

500 (100, 300, 500)
Maximum leaf nodes:

Max tree depth: 7 (3,5,7)

Learning rate: 0.1 (0.01, 0.05, 0.1)

Number of boosting iterations: 500 (100, 300, 500)
L2 regularization for leaf scores: 123 (0.001, 0.1, 1)
Threshold for one-hot encoding: 5 (5, 10, 20)

31 (31, 63, 127)

Note: Value before the parentheses indicates the selected optimal parameter, while the values inside the parentheses represent the grid search

range explored during model tuning

F. Tree-Based Ensemble Models

To provide a fair and comprehensive evaluation, we included
three widely used tree-based ensemble methods in our compar-
ison: extreme gradient boosting (XGBoost) [42], light gradient
boosting machine (LightGBM) [43], and categorical boosting
(CatBoost) [44]. To ensure consistency across methods, the
input features and output targets for these models were kept
identical to those used in the DF framework.

XGBoost is an optimized implementation of gradient boost-
ing that constructs trees in a level-wise manner and employs
second-order derivatives for more accurate loss approxima-
tion. Its regularization mechanisms help prevent overfitting and
improve generalization. XGBoost has shown excellent perfor-
mance in a variety of SEMG-based decoding studies [45], [46],
including force and joint angle predictions, due to its ability to
capture complex nonlinear relations while maintaining compu-
tational efficiency.

LightGBM is a gradient boosting framework that introduces
two major innovations: gradient-based one-side sampling and
exclusive feature bundling. These improvements enable faster
training and lower memory usage. Unlike the level-wise tree
growth in XGBoost, LightGBM grows leaf-wise trees with
depth constraints, which allows for deeper and more specialized
tree structures. LightGBM has been implemented in decoding
applications for its speed and accuracy, especially on large
datasets [47], [48].

CatBoost is a gradient boosting algorithm that is particularly
suited for datasets with categorical features. It introduces or-
dered boosting and symmetric trees to reduce overfitting and
improve stability. It has been applied recently in biosignal de-
coding [47] and gait prediction tasks [49]. While categorical
encoding is less relevant for our continuous SEMG features, the
robustness and regularization strategies of CatBoost still make
it a competitive choice.

To ensure rigorous evaluation, we conducted a grid search
for the key hyperparameters of each method using the training
dataset and selected the best-performing model based on the
RMSE on the validation dataset. The optimal hyperparameter
settings and their respective search ranges are summarized in
Table I. For each method, the values in parentheses represent
the grid search range, while the values preceding them indicate
the selected optimal parameters.

G. sEMG-Amplitude-Based Force Predictions

In addition, we also compared the DF and BSS (FastICA)
decoding approaches with the commonly used sSEMG ampli-
tude approach. This method was included as a representative
traditional baseline method because muscle activation levels
are generally proportional to sSEMG amplitude (rms), and rms-
based features have been frequently adopted in intent predic-
tion studies [50], [51], [52]. Specifically, the sEMG data were
segmented using the same sliding window strategy as the DF
approach. For each segment, we calculated the average rms
of SEMG data from FDS (A¢,;) and EDC (A, ), respectively.
Then, the force of finger [ was predicted using a bivariate linear
regression model

Force; = aj Ay +bjAc ) + ¢ “)

where a; and b; represent the coefficients of Ay; and A.,
respectively. ¢; represents the intercept.

H. Validation Protocols

In this study, two validation protocols were explored, namely,
within-session and cross-session protocols.

1) Within-Session Protocol: All the training, validation, and
testing data came from the same recording session. For finger
I (I € {index, middle, ring}), there were three single-finger
trials and three multifinger trials. We divided the data into three
sets, each of which had a single-finger trial and a multifinger
trial. The three sets alternated as the testing dataset, while the
remaining two sets were combined and randomly divided into
training and validation datasets with an 8:2 ratio. The average
results across the testing datasets were then calculated and
reported.

2) Cross-Session Protocol: To evaluate long-term model
performance, we employed a leave-one-session-out validation
protocol. Specifically, data from one session were randomly
divided into training and validation datasets with an 8:2 ratio.
The remaining two sessions were used as the testing dataset to
assess the generalizability of the model across different days.
This procedure was repeated three times, with each session
taking turns as the data source for training and validation.
The reported performance metrics represent the average results
obtained from the three testing sessions.
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1. Evaluation of Robustness to Background Noise

Given signal variations in everyday settings, it is crucial to
ensure the model performance under various external inter-
ference, such as different background noise. For experiments
conducted in the lab, data quality can be controlled to minimize
interference. To simulate unpredictable noise that may arise
during actual usage, we tested the model performance against
various levels of background noise added to the signals. Specif-
ically, Gaussian noise was introduced to the testing dataset at
different signal-to-noise ratio (SNR) levels, i.e., 10, 12.5, 15,
17.5, and 20 dB. For each defined SNR level, noise was added
individually to all SEMG channels, ensuring that the signal in
each channel adhered to the specified SNR constraints.

J. Statistical Analysis

In this study, repeated-measures analysis of variance (RM
ANOVA) and paired t-tests were carried out when the compared
groups satisfied the requirements for parametric analysis: 1)
normality (assessed via the Shapiro—Wilk test); and 2) spheric-
ity (evaluated via Mauchly’s test for three or more groups).
If requirements were not satisfied, we employed the Friedman
test and Wilcoxon signed-rank test for nonparametric analysis.
For multiple comparisons, the Holm—Bonferroni correction was
applied, and only the adjusted p-values were reported. The
significance level was set to 0.05.

IV. RESULTS
A. Comparisons With Deep Learning Techniques

For both the within-session and cross-session validations, the
2-D CNN models achieved better results than the 1-D CNN
models. Therefore, features from the 2-D CNN were used as
input data for the LSTM layer in the CNN-LSTM model. As
shown in Fig. 6, the DF model achieved the best performance
for both validation protocols. Specifically, under the within-
session validation protocol, the DF can achieve the highest R?
of 0.85 £ 0.015 and the lowest RMSE of 5.47% + 0.35%MVC.
Statistical analyses revealed that the DF model demonstrated a
significantly higher R? compared with the other four models
(all p < 0.05). In addition, the DF model achieved a signifi-
cantly lower RMSE compared with the 1-D CNN and CNN-
LSTM models (both p < 0.05). Similarly, the DF model can
achieve the best cross-day performance, with a R? of 0.75 +
0.029 and a RMSE of 6.72% 4 0.32%MVC. Statistical analyses
demonstrated that the DF model significantly outperformed the
1-D CNN model and the CNN-SE model in both R? and RMSE
(both p < 0.05).

B. Comparisons With Tree-Based Ensemble Methods

As shown in Fig. 7, the DF framework consistently achieved
superior performance for both within-session and cross-session
evaluations. In the within-session validation protocol, one-way
RM ANOVA revealed a significant effect of method on pre-
diction performance in the terms of R? [F(3,21) = 17.43,
p < 0.001, Fig. 7(a)] and RMSE [F(3,21) = 18.55, p <
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Fig. 6. Comparisons with deep learning techniques. (a) and (b) Present

R? and RMSE values for within-session finger force predictions, respec-
tively. (c) and (d) Present R?2 and RMSE values for cross-session finger
force predictions, respectively. Error bars represent standard errors. *denotes
0.01 < p < 0.05, **denotes 0.001 < p < 0.01, ***denotes p < 0.001.
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Fig. 7. Comparisons with different tree-based techniques. (a) and (b) Present

R? and RMSE values for within-session finger force predictions, respectively.
(c) and (d) Present R? and RMSE values for cross-session finger force
predictions, respectively. Error bars represent standard errors. *denotes 0.01
< p < 0.05, **denotes 0.001 < p < 0.01, ***denotes p < 0.001.

0.001, Fig. 7(b)]. Further pair-wise comparisons indicated that
the DF model achieved significantly higher R? values com-
pared to XGBoost, LightGBM, and CatBoost (all p < 0.01).
Similarly, DF yielded a significantly lower RMSE than the
three ensemble approaches (all p < 0.05). In the cross-session
validation protocol, one-way RM ANOVA also revealed a sig-
nificant effect of method on decoding performance in terms
of R? [F(3,21) = 11.08, p < 0.001, Fig. 7(c)] and RMSE
[F(3,21) = 12.14, p < 0.001, Fig. 7(d)]. Posthoc pairwise
comparisons showed that the DF model significantly outper-
formed XGBoost, LightGBM, and CatBoost, achieving higher
R? values and lower RMSE scores (all p < 0.05).
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Fig. 8.  Within-session finger force predictions using the DF, FastICA, and

sEMG-amplitude (amp) approaches. (a) and (b) Present a representative pre-
dicted index finger force under the single- and multifinger tasks, respectively.
(c) and (d) Show the finger force prediction evaluation in R? and RMSE,
respectively. Dots of the same color indicate results from the same individual
subjects. (e) and (f) Detail the performance of finger force predictions under
the single- and multifinger tasks in R2 and RMSE, respectively. Error bars
represent the standard errors. *denotes 0.01 < p < 0.05, **denotes 0.001 <
p < 0.01, ***denotes p < 0.001.

C. Comparisons With FastICA and sEMG-Amplitude
Techniques

Since our learning targets (neuronal firing representations)
were sourced from the FastICA-based approach, we conducted
a direct comparison with the FastICA method and the SEMG-
amplitude approach for finger force predictions.

1) Within-Session Finger Force Predictions: Fig. 8(a) and
(b) shows the representative predicted finger forces of the index
finger under the single- and multifinger tasks, respectively. In
both scenarios, the DF and FastICA approaches can accurately
predict the measured finger forces. In contrast, the forces of the
sEMG-amplitude approach deviated from the measured finger
forces.

As shown in Fig. 8(c) and (d), the DF, FastICA, and sEMG-
amplitude achieved a R? of 0.85 + 0.015, 0.84 4+ 0.015, and
0.76 £ 0.022, respectively. Correspondingly, the RMSE values
were 5.47% + 0.35%MVC (DF), 5.59% =+ 0.33%MVC (Fas-
tICA), and 6.52% + 0.38%MVC (Amp), respectively. Statis-
tical analyses revealed that both the DF and FastICA signifi-
cantly outperformed the SEMG-amplitude approach in R? and
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Fig. 9. Cross-session finger force predictions using the DF, FastICA, and

SEMG-amplitude (amp) approaches. (a) and (b) Present a representative pre-
dicted index finger force under the single- and multifinger tasks, respectively.
(c) and (d) Show the finger force prediction evaluation in R2? and RMSE,
respectively. Dots of the same color indicate results from the same individual
subjects. (e) and (f) Detail the performance of finger force predictions under
the single- and multifinger tasks in R2 and RMSE, respectively. Error bars
represent the standard errors. *denotes 0.01 < p < 0.05, **denotes 0.001 <
p < 0.01, ***denotes p < 0.001.

RMSE (all p < 0.05). No significant differences were detected
between the DF and FastICA approaches in R? and RMSE.
Figs. 8(e) and 9(f) further presented the finger force predic-
tion performances under the single- and multifinger tasks. For
the single-finger tasks, DF and FastICA models significantly
outperformed the SEMG-amplitude approach in both R? and
RMSE (all p < 0.001). For the multifinger tasks, no significant
differences among the three approaches were detected in either
R? or RMSE.

2) Cross-Session Finger Force Predictions: In the cross-
session validation protocol, the DF and FastICA can also accu-
rately predict the measured finger forces under both single- and
multifinger tasks, as evidenced by the representative predicted
finger forces of the index finger in Fig. 9(a) and (b). In contrast,
the predicted force of the sSEMG-amplitude approach showed
large deviations from the measured finger forces, indicating
poor generalizability in the cross-session context.

As shown in Fig. 9(c) and (d), compared with the SEMG-
amplitude approach, the DF and FastICA can achieve a higher
R? and a lower RMSE. Furthermore, statistical analyses
demonstrated that the R? achieved by the DF (0.75 & 0.029)
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Fig. 10. Evaluation of finger force prediction performance under different
noise levels. (a) and (b) Present R? and RMSE values for within-session finger
force predictions, respectively. (c) and (d) Present R? and RMSE values for
cross-session finger force predictions, respectively. Hollow circles represent
the average result for each subject, with lines connecting the average results
of each method across varying noise levels. The positions of each method are
slightly offset at different noise levels for better visualization.

and FastICA (0.77 4 0.024) were significantly higher than that
of the SEMG-amplitude approach (0.67 = 0.033). Similarly, the
RMSE achieved by the DF (6.72% + 0.32%MVC) and FastICA
(6.58% =+ 0.28%MVC) were significantly lower than that of the
sEMG-amplitude approach (7.83% =+ 0.54%MVC). In addition,
we further analyzed the finger force performance for the single-
and multifinger tasks. As shown in Fig. 9(e) and (f), the DF can
achieve significantly better results than the sSEMG-amplitude
approach in both R? and RMSE (all p < 0.05).

D. Robustness to Noise

Fig. 10(a) and (b) presents the within-session finger force
prediction performance for testing data with different SNRs.
The DF and FastICA approaches exhibited consistent finger
force prediction performance under different noise levels. In
contrast, the sSEMG-amplitude approach showed declines in
prediction performance with decreasing SNR (especially from
15 to 10 dB), as reflected by the decreasing R? in Fig. 10(a) and
increasing RMSE in Fig. 10(b). Similar to the within-session
performance, the DF and FastICA achieved relatively stable
cross-session performance under different SNR levels, as shown
in Fig. 10(c) and (d). However, the sSEMG-amplitude approach
demonstrated a notable degradation in cross-session perfor-
mance with decreasing SNR. Statistical analyses revealed that
both DF and FastICA significantly outperformed the sEMG-
amplitude approach under each SNR level (all p < 0.01).

E. Computational Efficiency Evaluation

Considering the importance of computational efficiency in
ensuring real-time performance, we evaluated the processing
times of different methods on the testing dataset. Pseudoreal-
time testing was conducted by sequentially feeding data seg-
ments into the algorithm, simulating the buffer behavior of
a real-time data acquisition system. All evaluations were
conducted on an AMD Ryzen 7 6800H @ 3.2 GHz, with

TABLE II
COMPUTATIONAL TIME OF FORCE
PREDICTION (MS)

Within Session Cross Session

DF 19.94 + 1.45 18.54 + 0.99
FastICA  77.44 £ 9.67 113.04 + 11.96
Amp 1.66 £+ 0.01 1.71 £ 0.02

MATLAB R2023a (The MathWorks Inc., USA) serving as
the implementation platform. The within-session and cross-
session computational times for each method are summarized in
Table II. As expected, the SEMG-amplitude method required
the least computational time under both validation protocols.
Compared with the FastICA approach, the DF model demon-
strated significantly improved computational efficiency, with
processing times reduced by approximately 75% for within-
session testing and over 80% for cross-session testing. Statis-
tical analyses revealed that the DF model took significantly
less computational time than the FastiCA model under both
validation protocols (both p < 0.01).

V. DISCUSSION

In this study, we aimed to directly learn the neuronal firing
information from sEMG signals, instead of employing BSS-
based techniques, with the goal of enhancing computational
efficiency while maintaining decoding accuracy. Specifically,
we first obtained the neuronal firing representation (popula-
tional firing rate signal) from the FastICA approach as the
learning target signals (i.e., training labels). Then, we directly
learned the targets from SEMG signals via the DF model. We
found that the DF model consistently outperformed other neu-
ral network based deep learning models. Compared with the
FastICA approach, this new approach could accurately capture
the underlying neural drive information encoded in the SEMG
signals, as evidenced by the same level of finger force prediction
performance but with significantly less computational time. The
DF model demonstrated stable cross-session performance and
robust performance at various SNR levels, highlighting its po-
tential for long-term utility in different signal quality conditions
without the need of model retraining.

Compared with commonly used deep learning techniques,
the DF model outperformed them in both within-session and
cross-session validation protocols, revealing that the layer-by-
layer processing mechanism can effectively accommodate non-
differentiable modules (forest-based modules) for learning neu-
ronal firing representations. In addition, unlike gradient-based
deep networks that rely heavily on large-scale labeled datasets
and complex backpropagation training, the DF model employs
ensemble learning structures that eliminate the need for differ-
entiability and reduce dependency on extensive hyperparameter
tuning. This design not only simplifies the training process but
also enhances robustness in data-limited scenarios, making it
suitable for neural decoding applications with limited data and
computational resources [53], [54].

The consistently better performance of the DF model over
XGBoost, LightGBM, and CatBoost highlights its suitability
for decoding neural firing information from SEMG. Unlike
conventional boosting methods that rely on shallow ensembles,
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DF employs a layer-wise cascade structure with feature aug-
mentation, enabling progressive learning and rich feature rep-
resentations. This hierarchical design is particularly effective
in capturing the complex and variable patterns in neural-drive
signals. Moreover, the integration of both random forests and
completely random forests in each layer enhances model diver-
sity and robustness, contributing to its superior generalization
across sessions. While tree-based boosting methods required
extensive parameter tuning, DF achieved better results with
fewer adjustments, reflecting its stability and adaptability.

Although the inputs of the sSEMG-amplitude approach and
the DF model were the same, the DF model significantly outper-
formed the SEMG-amplitude approach under both the within-
session and cross-session validation protocols. The inaccu-
rate finger force predictions via the SEMG-amplitude approach
could be attributed to its inherent limitations. Considering phys-
iological factors, the muscle compartments of different fingers
are spatially close and partially overlap when viewed from the
skin surface. Correspondingly, muscle crosstalk occurs due to
the overlapping activation of adjacent muscles, making it diffi-
cult to isolate signals corresponding to individual finger move-
ments, thus degrading the finger force prediction performance.
Additionally, the recorded sSEMG signals can be interfered with
motion artifacts introduced during muscle activities, compro-
mising their quality and reliability. In long-term (cross-session)
scenarios, the performance of the SEMG-amplitude approach
further deteriorated. This decline was due to the nonstationary
nature of SEMG signals, which could be affected by several
factors including variations in electrode placement, changes in
skin impedance, and different background noise [15]. These
factors introduced inconsistencies in the recorded signals, mak-
ing it difficult to establish a stable mapping between the SEMG
amplitudes and the intended finger forces.

In contrast, the DF approach demonstrated superior per-
formance in both within-session and cross-session scenarios,
which is attributed to its reliance on neural firing representa-
tions for the interpretation of finger forces. Specifically, the
ground-truth neural firing signals came from binary motoneu-
ron discharge events. These binary discharge events were less
affected by variations in SEMG signals, resulting in consis-
tent neural firing signals. To obtain neural firing events, two
distinct clusters were identified for each source signal during
the SEMG decomposition process. The cluster with higher am-
plitude represented MU discharge events, while the baseline
noise cluster was excluded from further analyses. This effective
noise removal not only reduced interference but also enhanced
robustness under varying noise conditions. In addition, the MU
refinement procedure ensured that the ground-truth neural firing
signals were specific to individual fingers, thus eliminating the
influence of muscle crosstalk and enhancing the accuracy of
force predictions.

The comparable performance between the DF and FastICA
revealed the effective learning of neuronal firing representations
via the DF model. By leveraging its hierarchical structure,
the DF model could capture stable and robust neuronal fir-
ing representations for the interpretation of finger movements.
In addition, unlike FastICA which relied on computationally
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intensive decomposition of SEMG signals to extract motoneu-
ron discharge events, the DF model directly mapped sSEMG
amplitude features to neuronal firing representations. This ap-
proach ensured that the decoding accuracy remains high and
that the computational time remained consistent across all con-
ditions for the DF model, making it highly suitable for real-time
applications.

Although we have demonstrated the feasibility of directly
learning neuronal firing representations from sEMG signals
using the DF model, further validations could be conducted to
confirm its broader applicability and robustness. First, we only
evaluated the extraction of neuronal firing representations in
the context of finger force predictions. In the future, we plan
to extend the approach to other hand motor tasks, such as joint
kinematic prediction. Second, while this study demonstrated the
robustness of the DF model across sessions and noise levels, it
did not consider scenarios involving muscle fatigue, which can
be validated in future work.

VI. CONCLUSION

We evaluated the direct learning of neuronal firing represen-
tations from sEMG signals using the DF model. The DF model
achieved comparable accuracy to FastICA-based approaches in
predicting dexterous finger forces while significantly reducing
computational time. Moreover, the model demonstrated robust
performance in both within-session and cross-session evalua-
tions and remained stable under varying signal noise levels.
This underscores its suitability for real-time applications where
efficiency and consistency are crucial. The efficient nature of the
DF model further enhanced its practicality, providing insights
into its processes. These results underline the potential of the
direct learning approach as a reliable tool for neural decoding
in real-world scenarios.
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