

Direct Learning of Neuronal Firing Representations for Long-Term Motor Intent Predictions

Long Meng and Xiaogang Hu , Senior Member, IEEE

Abstract—Accurate hand movement prediction plays a pivotal role in advancing robotic control technologies. Neuronal firing signals, as the driving representation of motor intentions, offer a physiologically meaningful approach to decode motor commands. These representations are typically extracted using blind source separation techniques. However, the high computational intensity of these methods limits practical applications. Therefore, we directly learned neuronal firing representations from surface electromyogram (sEMG) signals via an efficient deep forest (DF) framework. Specifically, we first obtained populational neuronal firing rate signals as the ground truth. The DF model was trained to map sEMG signals directly to populational neuronal firing rate. To enable robust and continuous finger force predictions, we evaluated the DF framework on data obtained across multiple sessions, with an average session interval of 6.58 days. Our results revealed that the DF framework accurately maps sEMG amplitudes to neuronal firing representations, achieving comparable accuracy to source-separation-based method with significantly reduced computational time. The developed DF model also outperformed neural network models and other decision-tree-based ensemble methods. Furthermore, despite utilizing the same input features, the DF framework significantly outperformed the sEMG-amplitude approach, showcasing its capacity to capture complex neural drive information for more accurate finger force predictions. Moreover, the robustness test against noise interference revealed that the DF framework maintained stable performance under different noise levels. These findings highlight the potential of DF framework as an efficient solution for real-time robotic control applications.

Impact Statement—Accurate interpretation of motor intention from sEMG is essential for the control of advanced prosthetic and robotic hands, but current signal separation pipelines remain too slow for routine use. Because motor commands are conveyed by collective firings of motoneurons, we instead adopt direct learning of neuronal firing representations using a lightweight

deep forest model. This approach preserves the neural detail of blind source separation while cutting computation time by about 80%. Despite the efficiency gain, the model achieved decoding accuracy comparable to current blind source separation methods tested on data in week-long intervals under varying noise levels. This direct learning technique supports accurate control of prosthetic or exoskeletal hands for long-term use. The demonstrated real-time efficiency and robustness also lay the foundation for future applications in dexterous robotic control.

Index Terms—Deep forest, deep learning, finger force prediction, neural decoding, surface electromyogram.

I. INTRODUCTION

HUMAN hands are among the most dexterous body parts, capable of performing intricate and precise movements essential for daily functioning [1]. In recent years, significant progress in robotics has led to the development of advanced prosthetic and exoskeletal hands, enabling the separate actuation of each finger and joint [2], [3]. Alongside mechatronic device advancements, the development of accurate and efficient neural decoding approaches is essential to facilitate intuitive robotic control, promoting their potential applications in human–machine interactions [4], [5], remote surgery [6], [7], and assisting individuals with physical disabilities in regaining functional independence [8], [9].

Hand movements are generally controlled by neural commands from the brain that travel through spinal pathways to motoneurons [10]. These neurons activate the innervated muscles, producing the desired movements. Surface electromyogram (sEMG), a noninvasive method for capturing neuromuscular activity, is widely used for decoding motor intentions [11], [12]. The introduction of flexible high-density sEMG (HD-sEMG) electrode arrays has further improved spatial resolution of sEMG signals, enabling accurate capture of detailed muscle activation patterns [13].

One approach to recognizing hand movements has been the classification of a limited number of predefined gestures [14], [15], [16]. However, the practical usage of this approach is limited by its inability to handle smooth transitions between gestures or adapt to new gestures. Alternatively, regression-based approaches, such as proportional direct control, are promising for mapping macroscopic or microscopic sEMG features to the desired motor output in a continuous way. The macroscopic features, such as sEMG amplitude, are commonly derived from global sEMG signals and have been extensively used in myoelectric control applications [17], [18]. However, macroscopic

Received 5 May 2025; revised 2 July 2025; accepted 6 August 2025. This work was supported in part by the National Science Foundation under Grant CBET-2246162, Grant IIS-2330862, and Grant IIS-2319139 and in part by the Department of Defense under Grant W81XWH2110185. This article was recommended for publication by Associate Editor Yucheng Dong upon evaluation of the reviewers' comments. (Corresponding author: Xiaogang Hu.)

Long Meng is with the Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802 USA (e-mail: lmm7405@psu.edu).

Xiaogang Hu is with the Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802 USA, and also with the Departments of Kinesiology, and Physical Medicine & Rehabilitation, the Huck Institutes of the Life Sciences, and the Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802 USA (e-mail: xxh120@psu.edu).

Digital Object Identifier 10.1109/TAI.2025.3597271

81 sEMG features often suffer from an inaccurate representation
 82 of the underlying neural drive due to various factors, including
 83 superimposition of action potentials, crosstalk from neighbor-
 84 ing compartments, and motion artifacts [15], [19]. Such inaccu-
 85 rate representations result in prediction errors, thereby limiting
 86 their practical applications. Recently, research has shown the
 87 possibility to extract microscopic features [20]. For example,
 88 motoneuron discharge trains are extracted from HD-sEMG sig-
 89 nals via blind source separation (BSS) techniques for detailed
 90 and accurate analysis of neuromuscular activity [20], [21], [22].
 91 Then, the population neural firing rate is calculated as a repre-
 92 sentation of the neural drive signal of finger muscles, thereby
 93 addressing limitations of macroscopic features and improving
 94 motor intention decoding accuracy [23], [24]. Because BSS-
 95 based decomposition typically requires substantial computa-
 96 tional time, an effective strategy is to compute the separa-
 97 tion matrix using BSS-based decomposition during the training
 98 phase, and then apply it to sEMG decomposition in the testing
 99 phase [25]. Although promising, the computational demand of
 100 such technique is high. Accordingly, there is an urgent need
 101 for an approach to directly learn neuronal firing representations
 102 from sEMG signals.

103 Convolutional neural network (CNN)-based and long short-
 104 term memory (LSTM)-based deep neural network models have
 105 demonstrated strong capabilities in modeling complex nonlin-
 106 ear input–output relations, suitable for neural decoding tasks
 107 [15]. For example, A CNN-LSTM-based framework has been
 108 used to estimate joint trajectories from sEMG signals, enabling
 109 position control in cable-driven exoskeletons [26]. Other deep
 110 learning architectures, including temporal convolutional net-
 111 works and CNN with squeeze-and-excitation modules (CNN-
 112 SE) have also been used for real-time motor intent decoding
 113 for prosthetic control [27]. Similarly, CNN-, CNN-LSTM-, and
 114 CNN-gated recurrent unit (GRU)-based models have been im-
 115 plemented for elbow force estimation [28], demonstrating su-
 116 perior performance over traditional regression methods. However,
 117 several factors need to be considered before their implemen-
 118 tation. The performance of most deep learning frameworks is
 119 sensitive to hyperparameter selection [29]. Improper parameter
 120 configurations can result in poor convergence, overfitting, or
 121 underfitting, thereby degrading prediction performance. Addi-
 122 tionally, deeper models with higher complexity can capture
 123 more intricate input–output relations but require larger training
 124 datasets to mitigate overfitting risks [30]. This hinders their
 125 application in data-constrained settings, whereas the DF model
 126 offers a lightweight, hyperparameter-insensitive alternative that
 127 performs well even with small datasets and limited computa-
 128 tional resources.

129 Another critical challenge hindering widespread adoption
 130 lies in the model adaptability to long-term usage scenarios [15].
 131 In the training phase, models may overly rely on random, time-
 132 sensitive patterns that do not persist over time. For example,
 133 noise with a specific power level affecting a subset of electrodes
 134 can dominate the learning process [13]. While these patterns
 135 may enhance short-term performance, they fail to capture the
 136 stable feature representations of sEMG signals, degrading long-
 137 term model performance.

138 As an alternative deep learning framework, deep forest (DF)
 139 [31] is a decision tree-based architecture that processes inputs
 140 layer by layer through ensembles of decision trees, forming a
 141 hierarchical structure [13]. In each layer, multiple forest models
 142 (e.g., random forests) produce probabilistic outputs, which are
 143 fused with the original features for subsequent layers. This
 144 adaptive cascade approach enables deep feature extraction with-
 145 out compromising performance on limited training data. DF
 146 can also reduce overfitting by stopping layer expansion once
 147 model performance converges. Additionally, a key advantage of
 148 deep forest is its robustness to hyperparameter selection [31],
 149 making it less sensitive to model tuning compared with tra-
 150 ditional neural-network-based deep learning frameworks, and
 151 potentially beneficial for cross-session generalization, where
 152 data distributions vary across days.

153 In this study, we pioneered the direct learning of neural firing
 154 representations for long-term continuous finger force predic-
 155 tions across multiple days, using an efficient deep forest model.
 156 Specifically, to evaluate model performance over time, we col-
 157 lected HD-sEMG signals in three separate sessions, while sub-
 158 jects performed single- and multifinger force tasks. The DF de-
 159 coding models were built using data from one session and tested
 160 on the two remaining sessions. In the training phase, a two-stage
 161 BSS-based decomposition approach [32] was applied to extract
 162 populational neuronal firing signals. These representations were
 163 used as outputs for deep forest models, with sEMG amplitude
 164 [root mean square (rms)] features serving as inputs. Then, cross-
 165 session neural firing representations were learned from rms
 166 features using the trained deep forest models. Lastly, the de-
 167 coded representations were mapped to finger forces using linear
 168 regressions. Our results demonstrated that the DF model could
 169 achieve better prediction accuracy than conventional neural-
 170 network-based models and comparable prediction accuracy to
 171 the BSS-based decoding approach, and that DF can achieve
 172 a significantly reduced computational time, underscoring the
 173 feasibility of directly learning neural firing representations in
 174 an efficient way. The contributions of our study are as follows.

- 1) First application of the deep forest model to directly learn
 175 neuronal firing representations from sEMG signals.
- 2) Consistently high computational efficiency that addresses
 177 the computational limitations of BSS-based neural decod-
 178 ing approaches, while achieving comparable decoding
 179 performance and maintaining robustness under varying
 180 noise levels.
- 3) Validation of the learned neuronal firing representations
 182 through continuous finger force predictions across multi-
 183 ple days, demonstrating their physiological relevance and
 184 practical utility. The DF-based framework further outper-
 185 formed amplitude-based methods, deep neural network
 186 architectures, and other ensemble models.

II. MATERIALS

A. Subject Information

189 Eight subjects participated in this experiment, including five
 190 males and three females. All participants were neurologically
 191 intact, with ages ranging from 21 to 35. Before participation,
 192

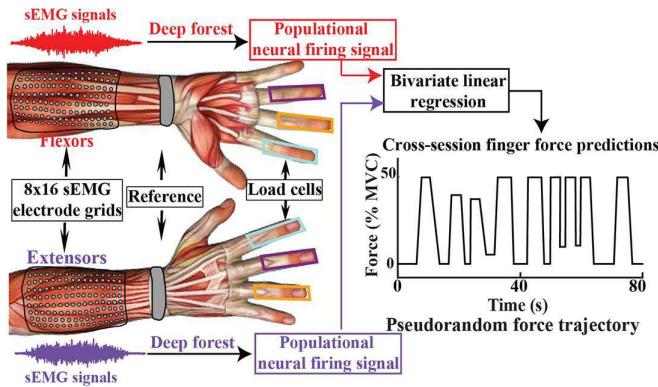


Fig. 1. Overview of the research framework and experimental setup.

193 subjects signed a consent form acknowledging that they had
 194 fully understood the experimental procedures, purposes, their
 195 rights, and potential risks. This experiment was reviewed and
 196 approved by the Institutional Review Board of the Pennsylvania
 197 State University.

198 B. Data Acquisition

199 1) *Force Measurement*: As shown in Fig. 1, three fingers
 200 (index, middle, and ring fingers) were attached to separate
 201 miniature load cells (SM-200N, Interface) for individual force
 202 measurements, sampled at a rate of 1000 Hz. Before each ses-
 203 sion, we measured the maximum voluntary contraction (MVC)
 204 of each finger flexion. Then, subjects performed two types of
 205 tasks (single- and multifinger tasks) in a random order. In the
 206 single-finger tasks, subjects flexed only one finger following
 207 a pseudorandom force pattern (Fig. 1) under the instruction
 208 to avoid coactivation of other fingers. Three repetitions were
 209 performed for each involved finger, resulting in a total of nine
 210 (three trials/finger \times three fingers) single-finger trials. In the
 211 multifinger tasks, subjects concurrently flexed the three fingers,
 212 following the same pseudorandom force pattern, with three
 213 multifinger trials performed in total. Therefore, a total of 12
 214 trials were performed for each session. Each trial lasted 80 s,
 215 and each subject participated in three sessions with an average
 216 intersession interval of 6.58 days, enabling the assessment of
 217 long-term decoding performance. The pseudorandom force tra-
 218 jectory, as illustrated in Fig. 1, consisted of trapezoidal forces
 219 ranging from 0% to 50% MVC, ramped with varying durations
 220 and amplitudes to introduce unpredictability in force patterns.
 221 The 50% MVC was chosen as the upper limit because it aligns
 222 with the force levels required for most daily activities while
 223 minimizing the risk of fatigue.

224 2) *sEMG Data Acquisition and Preprocessing*: For sEMG
 225 data acquisition, we first cleaned the skin over the flexor digi-
 226 torum superficialis (FDS) and extensor digitorum communis
 227 (EDC) of the forearm to reduce skin-electrode impedance.
 228 Then, two 8×16 (128-channel) electrode arrays were placed
 229 on the FDS and EDC, respectively, by palpating the skin around
 230 these muscles. Each electrode array featured electrodes with a
 231 diameter of 3 mm and an interelectrode distance of 10 mm.
 232 During the experiment, sEMG signals were sampled at a rate

of 2048 Hz, amplified with a gain of 1000 and a pass band of
 233 10–900 Hz via EMG-USB2+ system (OT Bioelettronica,
 234 Torino, Italy). The collected sEMG data were preprocessed
 235 using a sEMG-specific interference removal approach [33] to
 236 eliminate motion artifacts.
 237

238 III. METHODS

239 A. Source Separation-Based Neural Decoding Approach

240 To derive training labels and comparing the performance of
 241 DF and BSS-based decoders, we applied and further customized
 242 a previously developed a source-separation-based neural decod-
 243 ing approach [32], in order to extract populational neuron firing
 244 signals as finger force-driven neural firing representations. This
 245 neural decoding approach included two key steps: 1) initial
 246 motor unit (MU) extraction; and 2) MU pool refinement. In our
 247 study, we extracted neuronal firing representations separately
 248 for sEMG collected from FDS and EDC. Afterward, we eval-
 249 uated their contributions and combined their effects on finger
 250 force predictions.

251 1) *Initial MU Extraction*: Based on our preliminary exper-
 252 iment, we divided each 80-s trial from the training dataset of
 253 finger l ($l \in \{\text{index, middle, ring}\}$) into four 20-s segments
 254 for the initial MU extraction. Specifically, we employed a BBS
 255 approach, the fast independent component analysis (FastICA)
 256 algorithm [34], for the 128-channel 20-s sEMG decomposition.
 257 FastICA was selected as the baseline decomposition method
 258 because it has been widely validated in sEMG decomposition
 259 studies for its high decomposition accuracy and fast computa-
 260 tional convergence, and serves as one of the most commonly
 261 used BSS methods for extracting motoneuron discharge infor-
 262 mation from high-density sEMG [23], [35], [36]. To increase
 263 the observations, we first conducted channel extensions by du-
 264 plicating the original 128 channels by a factor of 9. The nine sets
 265 of duplicated data were incrementally delayed by one to nine
 266 samples. To remove the correlation between observations, we
 267 whitened the extended signals. Then, we applied the FastICA
 268 algorithm to obtain the MU source signals and correspond-
 269 ing separation vectors. The parameter settings were consistent
 270 with a previous study [25]. For example, we employed the
 271 contrast function $G(x) = (1/3)x^3$ to accelerate convergence.
 272 The number of decomposed MUs was set to 200. K-means++
 273 was applied for binary clustering of discharging events. After
 274 the sEMG decomposition, the MU quality was evaluated using
 275 the silhouette (SIL) value. MUs with SIL lower than 0.5 were
 276 removed from further analysis. In addition, duplicated MUs
 277 were identified when more than 80% of their spike trains were
 278 synchronized within a ± 2.5 ms time window [25], and the MU
 279 with the higher SIL was retained. Then, we concatenated the
 280 separation vectors from all 20-s sEMG segmentation to obtain
 281 the raw MU pool and separation matrix for finger l ($B_{1,l}$).

282 2) *MU Pool Refinement*: To obtain the MU pool specific to
 283 the finger l , we refined the raw MU pool by quantifying the cor-
 284 relation [coefficient of determination (R^2)] between the firing
 285 rate of each MU and finger forces. Specifically, we employed
 286 the initial separation matrix to decompose all the single-finger
 287 trials and calculated corresponding spike trains. The spike trains

were then segmented using a sliding window of 0.5 s and a sliding step of 0.125 s. The spikes within each segment were summed and concatenated to form a time course of firing rates. The time series of firing rate was smoothed by a Kalman filter to address sporadic, large-amplitude, and isolated fluctuations. Based on previous studies [23], [24], the parameters of observation matrix, observation covariance, system matrix and system covariance were set to 1, 0.5, 1, and 0.1, respectively. For each MU, we calculated the R^2 of its smoothed firing rate with the force of activated fingers. If the average R^2 for finger l was the highest, we retained this MU. The separation vectors of all retained MUs formed the refined separation matrix ($B_{2,l}$).

3) *Neural Firing Signal Extraction*: To derive the neuronal firing representation as our learning target, we applied $B_{2,l}$ to decompose trials corresponding to finger l . Similarly, we extracted the time courses of firing rates for all retained MUs. These firing rate time courses were then averaged and smoothed using a Kalman filter, resulting in the neuronal firing representations used for subsequent analyses.

4) *Performance Evaluation*: Considering that neuronal firing representations were generally linear to the target finger forces [32], we evaluated the extraction performance of the neuronal firing representation via the reconstruction accuracy of the target finger forces. Specifically, we employed a bivariate linear regression analysis to combine the neuronal firing representations obtained from FDS ($\mathbf{D}_{f,l}$) and EDC ($\mathbf{D}_{e,l}$) for the force prediction of finger l as

$$\text{Force}_l = a_l \mathbf{D}_{f,l} + b_l \mathbf{D}_{e,l} + c_l \quad (1)$$

where Force_l represents the predicted force of finger l ; a_l and b_l represent the coefficients of $\mathbf{D}_{f,l}$ and $\mathbf{D}_{e,l}$, respectively. c_l represents the intercept.

The predicted forces were compared with the recorded ground truth values and evaluated using two widely-used metrics, the coefficient of determination (R^2) and root mean square error (RMSE), which were presented in the form of mean \pm standard error. The definitions of R^2 and RMSE were as follows:

$$R^2 = 1 - \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - \bar{y})^2} \quad (2)$$

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2} \quad (3)$$

where n is the total number of observations; y_i is the measured force for the i th observation; \hat{y}_i is the predicted force for the i th observation; \bar{y} is the average value of measured force, calculated as $\bar{y} = (1/n) \sum_{i=1}^n y_i$.

B. Deep Forest Framework

For the training procedure of the DF model, we first segmented the sEMG signals using a sliding window of 0.5 s with a step size of 0.125 s. For each segment, we extracted the rms values from all channels as the input feature vector, as rms has

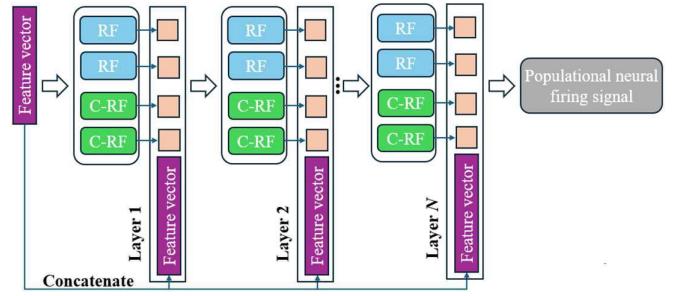


Fig. 2. Deep forest framework. RF and C-RF denote random forest and completely random forest, respectively.

been widely used in muscle force prediction due to its robustness and computational efficiency [37]. The target outputs were the neural firing signals derived from the decomposition.

The DF framework (Fig. 2) is a multilayer cascade of forest ensemble modules, each consisting of one random forest (RF) and one completely random forest (C-RF). Each forest produces class distributions at its leaf nodes, which are averaged across trees and concatenated to form the module output. These outputs are then concatenated with the original input features to form an augmented feature vector, which is passed to the next layer. This feature augmentation strategy allows the model to progressively enrich the representation and capture higher-order interactions.

The model was trained in a greedy, layer-wise manner. For each layer, the RF and C-RF were trained using the current input feature vector, while parameters from previous layers were kept fixed to stabilize the learning process. New layers were added sequentially, and training was terminated once the reduction in regression error between two successive layers was below a predefined threshold (10^{-5} in this study), indicating convergence. Each forest contained 100 trees, and two ensemble modules (i.e., two RF + two C-RF) were used per layer [13]. All other hyperparameters followed the default settings introduced in [31].

C. CNN Models

We also compared the DF framework with efficient neural network-based models. CNN models were selected because of their proven ability to learn hierarchical spatial features from biomedical signals and their strong performance in prior sEMG decoding tasks [38], [39], [40]. Specifically, we implemented two CNN frameworks (Fig. 3) for comparison: 1-D CNN and 2-D CNN. For the 128-channel sEMG data, we directly fed the 0.5-s sEMG signal ($\mathbf{X}_{1-D} \in \mathbb{R}^{N_c \times N_P}$) into the 1-D CNN to extract features, where $N_c = 128$ denotes the number of sEMG channels and $N_P = 0.5 \text{ s} \times 2048 \text{ Hz} = 1024$ denotes the number of data points. To investigate the effects of the spatial information on the prediction of neuronal firing signals, we constructed the 2-D CNN using the rms feature map as the input ($\mathbf{X}_{2-D} \in \mathbb{R}^{1 \times N_c \times N_R}$), where $N_c \times N_R = 8 \times 16$ denotes the shape of the rms feature map. The rms values were extracted from each segmented 0.5-s sEMG signal. Given the relatively

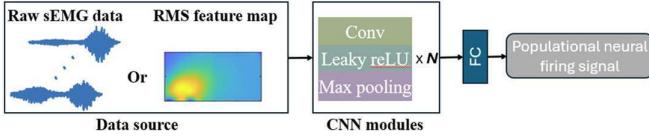


Fig. 3. CNN frameworks. Conv denotes convolutional layer; FC denotes fully connected layer.

374 small training dataset, we employed lightweight CNN frame-
 375 works to prevent overfitting issues. Both CNN frameworks used
 376 a modular architecture with convolutional layers, followed by
 377 Leaky ReLU activations and max-pooling operations (kernel
 378 size = 2, stride = 2). To achieve optimal results, we system-
 379 atically explored various combinations of layer numbers ($N \in$
 380 $\{1, 2, 3\}$) and kernel sizes ($\{3, 5, 7\}$). The CNN performance
 381 on the validation dataset revealed that a single CNN module
 382 (i.e., $N = 1$) with a kernel of three achieved the best balance
 383 between prediction accuracy and computational efficiency. The
 384 model training was conducted using a batch size of 64 and
 385 a learning rate of 0.001, optimized with the Adam algorithm
 386 [41]. The maximum number of iterations was set to 300 for the
 387 training process. The mean squared error (MSE) loss function,
 388 augmented with L2 regularization (weight decay of 10^{-4}), en-
 389 sured stable training and generalization. A fully connected layer
 390 with 64 units aggregated extracted features for final predictions.
 391 Twenty percent of the training data was reserved as the valida-
 392 tion dataset. An early stopping strategy was applied. Namely,
 393 the training process was stopped if the validation loss did not
 394 decrease for ten consecutive epochs. The model achieving the
 395 lowest validation loss was used for subsequent analyses.

396 D. CNN-LSTM Model

397 To leverage the proven capability of LSTM networks in cap-
 398 turing long-range temporal dependencies, we extended the opti-
 399 mal CNN architecture by integrating it with LSTM to construct
 400 a CNN-LSTM model (Fig. 4). This hybrid architecture was
 401 selected due to its effectiveness in modeling sequential sEMG
 402 patterns, where CNN extracted local spatial features and LSTM
 403 captured their progression over time. Specifically, the input data
 404 type and the configuration of the CNN modules (including the
 405 number of layers and kernel size) were the same as those of the
 406 better CNN model (1-D or 2-D CNN). The input data type and
 407 the configuration of the CNN modules (including the number of
 408 layers and kernel size) were the same as those of the better CNN
 409 model (1-D or 2-D CNN). In this model, the 0.5-s sEMG signal
 410 was further divided into five nonoverlapping 0.1-s segments,
 411 which were then processed by each CNN module. The LSTM
 412 layer, with a single layer of 64 hidden units [15], processed
 413 the sequential feature vectors to model temporal dependencies
 414 across the five 0.1-s segments. This structure allowed the LSTM
 415 to retain memory over longer temporal sequences, capturing
 416 the dynamic patterns of the input. The LSTM employed three
 417 gating mechanisms—forget gate, input gate, and output gate—
 418 to manage information flow effectively and mitigate the van-
 419 ishing gradient problem, ensuring robust learning of temporal
 420 relations. The hidden state output from the LSTM layer was

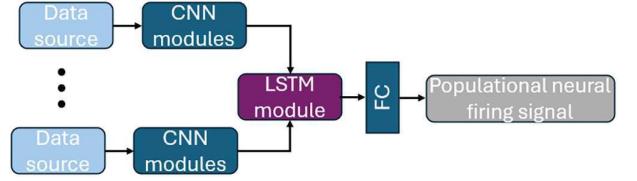


Fig. 4. CNN-LSTM framework.

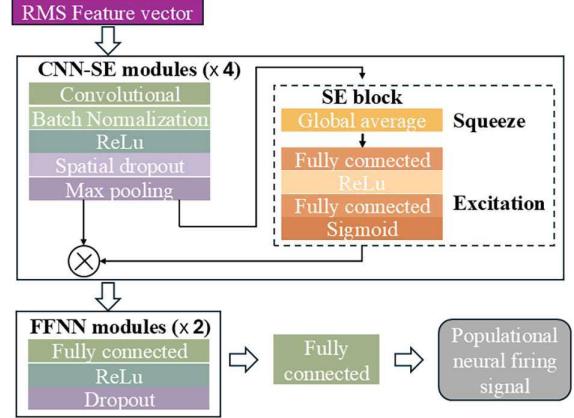


Fig. 5. CNN-SE framework. \otimes denotes channel-wise multiplication.

421 passed to an FC layer with 64 units, mapping the features to
 422 a single output neuron for the prediction of neuronal firing
 423 signals.

424 E. CNN-SE Model

425 Motivated by recent work on attention-based CNN for motor
 426 intent decoding [27], we tailored the CNN-SE architecture for
 427 our task. These mechanisms aimed to adaptively recalibrate
 428 channel-wise feature responses by explicitly modeling interde-
 429 pendencies between channels, thereby enhancing the network
 430 sensitivity to informative patterns in the sEMG input. To ensure
 431 a fair comparison, we preserved the original network structure
 432 and parameters to the maximum extent. As shown in Fig. 5,
 433 the CNN-SE model consisted of four sequential Conv-SE mod-
 434 ules, each comprising a 1-D convolutional layer (with kernel
 435 sizes of 20, 5, 3, and 3, respectively), batch normalization,
 436 ReLU activation, spatial dropout (dropout rate = 0.1), and max
 437 pooling (kernel sizes: 5, 3, and 2 for the last three modules).
 438 Each convolutional layer had 64 output channels. A SE block
 439 was appended to each Conv-SE module to recalibrate feature
 440 responses by adaptively weighting the channel-wise activations
 441 through a squeeze (global average pooling) and excitation (two
 442 fully connected layers with ReLU and sigmoid activations)
 443 operation. After passing through the CNN-SE stack, the output
 444 feature vector was processed by two feedforward neural net-
 445 work (FFNN) modules. Each FFNN module consisted of a fully
 446 connected layer with 128 units, a ReLU activation function, and
 447 dropout. This was followed by a final fully connected layer to
 448 predict the populational neural firing signal.

TABLE I
OPTIMAL HYPERPARAMETERS AND SEARCH RANGES FOR TREE-BASED ENSEMBLE MODELS

XGBoost	LightGBM	CatBoost
Max tree depth: 5 (3,5,7)	Max tree depth: 7 (3,5,7)	Max tree depth: 7 (3,5,7)
Learning rate: 0.05 (0.01, 0.05, 0.1)	Learning rate: 0.1 (0.01, 0.05, 0.1)	Learning rate: 0.1 (0.01, 0.05, 0.1)
Number of trees: 500 (100, 300, 500)	Number of trees: 500 (100, 300, 500)	Number of boosting iterations: 500 (100, 300, 500)
Row sampling ratio: 0.6 (0.6, 0.8, 1)	Number of trees: 500 (100, 300, 500)	L2 regularization for leaf scores: 123 (0.001, 0.1, 1)
Column sampling ratio by node: 0.6 (0.6, 0.8, 1.0)	Maximum leaf nodes: 31 (31, 63, 127)	Threshold for one-hot encoding: 5 (5, 10, 20)
L2 regularization term on weights: 0.001 (0.001, 0.1, 1)		

Note: Value before the parentheses indicates the selected optimal parameter, while the values inside the parentheses represent the grid search range explored during model tuning

449 F. Tree-Based Ensemble Models

450 To provide a fair and comprehensive evaluation, we included
451 three widely used tree-based ensemble methods in our comparison:
452 extreme gradient boosting (XGBoost) [42], light gradient
453 boosting machine (LightGBM) [43], and categorical boosting
454 (CatBoost) [44]. To ensure consistency across methods, the
455 input features and output targets for these models were kept
456 identical to those used in the DF framework.

457 XGBoost is an optimized implementation of gradient boosting
458 that constructs trees in a level-wise manner and employs
459 second-order derivatives for more accurate loss approximation.
460 Its regularization mechanisms help prevent overfitting and
461 improve generalization. XGBoost has shown excellent performance
462 in a variety of sEMG-based decoding studies [45], [46],
463 including force and joint angle predictions, due to its ability to
464 capture complex nonlinear relations while maintaining computational
465 efficiency.

466 LightGBM is a gradient boosting framework that introduces
467 two major innovations: gradient-based one-side sampling and
468 exclusive feature bundling. These improvements enable faster
469 training and lower memory usage. Unlike the level-wise tree
470 growth in XGBoost, LightGBM grows leaf-wise trees with
471 depth constraints, which allows for deeper and more specialized
472 tree structures. LightGBM has been implemented in decoding
473 applications for its speed and accuracy, especially on large
474 datasets [47], [48].

475 CatBoost is a gradient boosting algorithm that is particularly
476 suited for datasets with categorical features. It introduces ordered
477 boosting and symmetric trees to reduce overfitting and
478 improve stability. It has been applied recently in biosignal decoding
479 [47] and gait prediction tasks [49]. While categorical
480 encoding is less relevant for our continuous sEMG features, the
481 robustness and regularization strategies of CatBoost still make
482 it a competitive choice.

483 To ensure rigorous evaluation, we conducted a grid search
484 for the key hyperparameters of each method using the training
485 dataset and selected the best-performing model based on the
486 RMSE on the validation dataset. The optimal hyperparameter
487 settings and their respective search ranges are summarized in
488 Table I. For each method, the values in parentheses represent
489 the grid search range, while the values preceding them indicate
490 the selected optimal parameters.

491 G. sEMG-Amplitude-Based Force Predictions

492 In addition, we also compared the DF and BSS (FastICA) 492
493 decoding approaches with the commonly used sEMG amplitude 493
494 approach. This method was included as a representative 494
495 traditional baseline method because muscle activation levels 495
496 are generally proportional to sEMG amplitude (rms), and rms- 496
497 based features have been frequently adopted in intent prediction 497
498 studies [50], [51], [52]. Specifically, the sEMG data were 498
499 segmented using the same sliding window strategy as the DF 499
500 approach. For each segment, we calculated the average rms 500
501 of sEMG data from FDS ($A_{f,l}$) and EDC ($A_{e,l}$), respectively. 501
502 Then, the force of finger l was predicted using a bivariate linear 502
503 regression model

$$499 \text{Force}_l = a_l A_{f,l} + b_l A_{e,l} + c_l \quad (4)$$

504 where a_l and b_l represent the coefficients of $A_{f,l}$ and $A_{e,l}$, 504
505 respectively. c_l represents the intercept.

506 H. Validation Protocols

507 In this study, two validation protocols were explored, namely, 507
508 within-session and cross-session protocols.

509 *1) Within-Session Protocol:* All the training, validation, and 509
510 testing data came from the same recording session. For finger 510
511 l ($l \in \{\text{index, middle, ring}\}$), there were three single-finger 511
512 trials and three multifinger trials. We divided the data into three 512
513 sets, each of which had a single-finger trial and a multifinger 513
514 trial. The three sets alternated as the testing dataset, while the 514
515 remaining two sets were combined and randomly divided into 515
516 training and validation datasets with an 8:2 ratio. The average 516
517 results across the testing datasets were then calculated and 517
518 reported.

519 *2) Cross-Session Protocol:* To evaluate long-term model 519
520 performance, we employed a leave-one-session-out validation 520
521 protocol. Specifically, data from one session were randomly 521
522 divided into training and validation datasets with an 8:2 ratio. 522
523 The remaining two sessions were used as the testing dataset to 523
524 assess the generalizability of the model across different days. 524
525 This procedure was repeated three times, with each session 525
526 taking turns as the data source for training and validation. 526
527 The reported performance metrics represent the average results 527
528 obtained from the three testing sessions.

529 I. Evaluation of Robustness to Background Noise

530 Given signal variations in everyday settings, it is crucial to
 531 ensure the model performance under various external inter-
 532 ference, such as different background noise. For experiments
 533 conducted in the lab, data quality can be controlled to minimize
 534 interference. To simulate unpredictable noise that may arise
 535 during actual usage, we tested the model performance against
 536 various levels of background noise added to the signals. Specif-
 537 ically, Gaussian noise was introduced to the testing dataset at
 538 different signal-to-noise ratio (SNR) levels, i.e., 10, 12.5, 15,
 539 17.5, and 20 dB. For each defined SNR level, noise was added
 540 individually to all sEMG channels, ensuring that the signal in
 541 each channel adhered to the specified SNR constraints.

542 J. Statistical Analysis

543 In this study, repeated-measures analysis of variance (RM
 544 ANOVA) and paired t-tests were carried out when the compared
 545 groups satisfied the requirements for parametric analysis: 1)
 546 normality (assessed via the Shapiro–Wilk test); and 2) spheric-
 547 ity (evaluated via Mauchly’s test for three or more groups).
 548 If requirements were not satisfied, we employed the Friedman
 549 test and Wilcoxon signed-rank test for nonparametric analysis.
 550 For multiple comparisons, the Holm–Bonferroni correction was
 551 applied, and only the adjusted p -values were reported. The
 552 significance level was set to 0.05.

IV. RESULTS

554 A. Comparisons With Deep Learning Techniques

555 For both the within-session and cross-session validations, the
 556 2-D CNN models achieved better results than the 1-D CNN
 557 models. Therefore, features from the 2-D CNN were used as
 558 input data for the LSTM layer in the CNN-LSTM model. As
 559 shown in Fig. 6, the DF model achieved the best performance
 560 for both validation protocols. Specifically, under the within-
 561 session validation protocol, the DF can achieve the highest R^2
 562 of 0.85 ± 0.015 and the lowest RMSE of $5.47\% \pm 0.35\%MVC$.
 563 Statistical analyses revealed that the DF model demonstrated a
 564 significantly higher R^2 compared with the other four models
 565 (all $p < 0.05$). In addition, the DF model achieved a signifi-
 566 cantly lower RMSE compared with the 1-D CNN and CNN-
 567 LSTM models (both $p < 0.05$). Similarly, the DF model can
 568 achieve the best cross-day performance, with a R^2 of $0.75 \pm$
 569 0.029 and a RMSE of $6.72\% \pm 0.32\%MVC$. Statistical analyses
 570 demonstrated that the DF model significantly outperformed the
 571 1-D CNN model and the CNN-SE model in both R^2 and RMSE
 572 (both $p < 0.05$).

573 B. Comparisons With Tree-Based Ensemble Methods

574 As shown in Fig. 7, the DF framework consistently achieved
 575 superior performance for both within-session and cross-session
 576 evaluations. In the within-session validation protocol, one-way
 577 RM ANOVA revealed a significant effect of method on pre-
 578 diction performance in the terms of R^2 [$F(3, 21) = 17.43$,
 579 $p < 0.001$, Fig. 7(a)] and RMSE [$F(3, 21) = 18.55$, $p <$

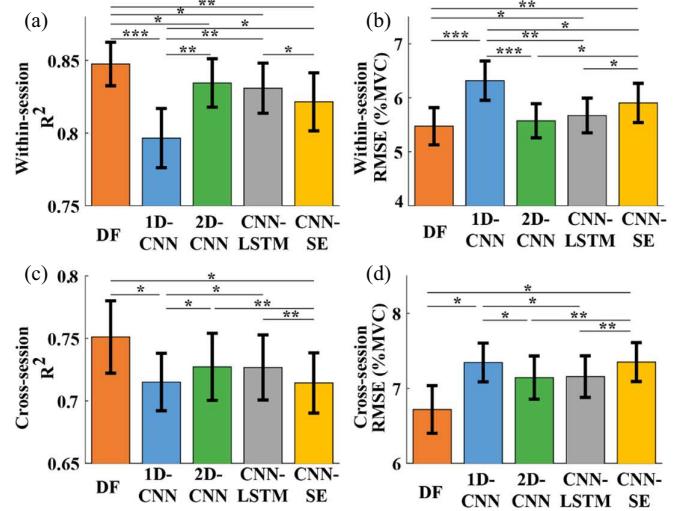


Fig. 6. Comparisons with deep learning techniques. (a) and (b) Present R^2 and RMSE values for within-session finger force predictions, respectively. (c) and (d) Present R^2 and RMSE values for cross-session finger force predictions, respectively. Error bars represent standard errors. *denotes $0.01 < p < 0.05$, **denotes $0.001 < p < 0.01$, ***denotes $p < 0.001$.

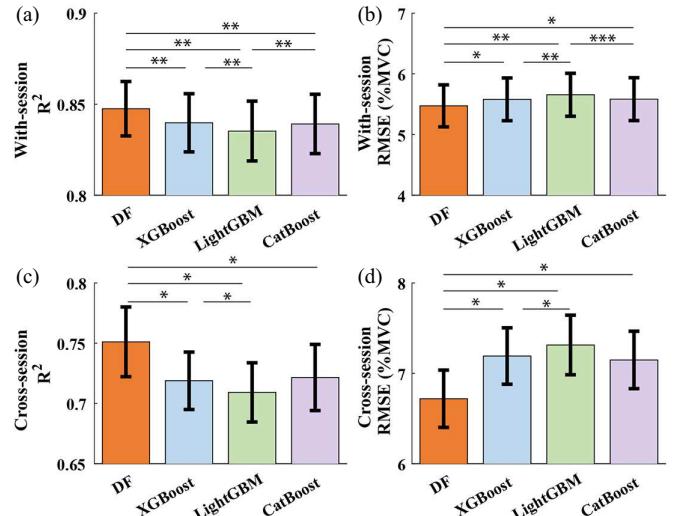


Fig. 7. Comparisons with different tree-based techniques. (a) and (b) Present R^2 and RMSE values for within-session finger force predictions, respectively. (c) and (d) Present R^2 and RMSE values for cross-session finger force predictions, respectively. Error bars represent standard errors. *denotes $0.01 < p < 0.05$, **denotes $0.001 < p < 0.01$, ***denotes $p < 0.001$.

580 0.001, Fig. 7(b)]. Further pair-wise comparisons indicated that
 581 the DF model achieved significantly higher R^2 values com-
 582 pared to XGBoost, LightGBM, and CatBoost (all $p < 0.01$).
 583 Similarly, DF yielded a significantly lower RMSE than the
 584 three ensemble approaches (all $p < 0.05$). In the cross-session
 585 validation protocol, one-way RM ANOVA also revealed a sig-
 586 nificant effect of method on decoding performance in terms
 587 of R^2 [$F(3, 21) = 11.08$, $p < 0.001$, Fig. 7(c)] and RMSE
 588 [$F(3, 21) = 12.14$, $p < 0.001$, Fig. 7(d)]. Posthoc pairwise
 589 comparisons showed that the DF model significantly outper-
 590 formed XGBoost, LightGBM, and CatBoost, achieving higher
 591 R^2 values and lower RMSE scores (all $p < 0.05$).

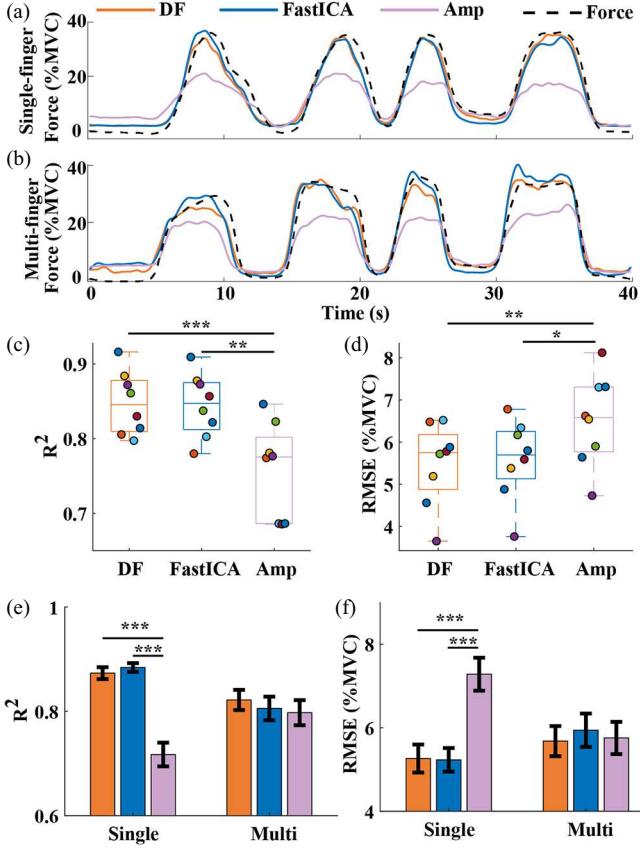


Fig. 8. Within-session finger force predictions using the DF, FastICA, and sEMG-amplitude (amp) approaches. (a) and (b) Present a representative predicted index finger force under the single- and multifinger tasks, respectively. (c) and (d) Show the finger force prediction evaluation in R^2 and RMSE, respectively. Dots of the same color indicate results from the same individual subjects. (e) and (f) Detail the performance of finger force predictions under the single- and multifinger tasks in R^2 and RMSE, respectively. Error bars represent the standard errors. *denotes $0.01 < p < 0.05$, **denotes $0.001 < p < 0.01$, ***denotes $p < 0.001$.

592 C. Comparisons With FastICA and sEMG-Amplitude 593 Techniques

594 Since our learning targets (neuronal firing representations)
595 were sourced from the FastICA-based approach, we conducted
596 a direct comparison with the FastICA method and the sEMG-
597 amplitude approach for finger force predictions.

598 1) *Within-Session Finger Force Predictions*: Fig. 8(a) and
599 (b) shows the representative predicted finger forces of the index
600 finger under the single- and multifinger tasks, respectively. In
601 both scenarios, the DF and FastICA approaches can accurately
602 predict the measured finger forces. In contrast, the forces of the
603 sEMG-amplitude approach deviated from the measured finger
604 forces.

605 As shown in Fig. 8(c) and (d), the DF, FastICA, and sEMG-
606 amplitude achieved a R^2 of 0.85 ± 0.015 , 0.84 ± 0.015 , and
607 0.76 ± 0.022 , respectively. Correspondingly, the RMSE values
608 were $5.47\% \pm 0.35\%MVC$ (DF), $5.59\% \pm 0.33\%MVC$ (Fast-
609 ICA), and $6.52\% \pm 0.38\%MVC$ (Amp), respectively. Statistical
610 analyses revealed that both the DF and FastICA signifi-
611 cantly outperformed the sEMG-amplitude approach in R^2 and

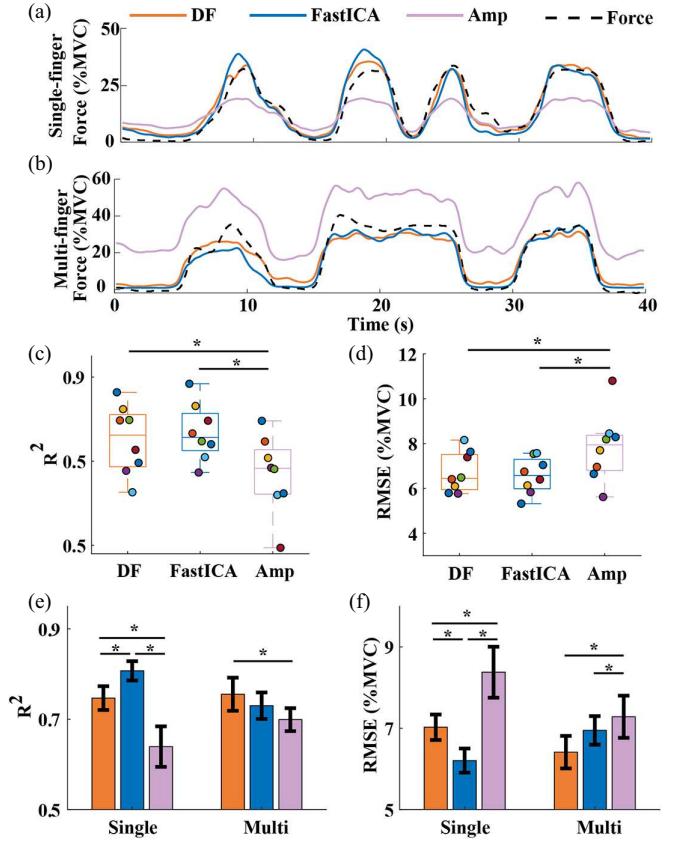


Fig. 9. Cross-session finger force predictions using the DF, FastICA, and sEMG-amplitude (amp) approaches. (a) and (b) Present a representative predicted index finger force under the single- and multifinger tasks, respectively. (c) and (d) Show the finger force prediction evaluation in R^2 and RMSE, respectively. Dots of the same color indicate results from the same individual subjects. (e) and (f) Detail the performance of finger force predictions under the single- and multifinger tasks in R^2 and RMSE, respectively. Error bars represent the standard errors. *denotes $0.01 < p < 0.05$, **denotes $0.001 < p < 0.01$, ***denotes $p < 0.001$.

612 RMSE (all $p < 0.05$). No significant differences were detected
613 between the DF and FastICA approaches in R^2 and RMSE.
614 Figs. 8(e) and 9(f) further presented the finger force predic-
615 tion performances under the single- and multifinger tasks. For
616 the single-finger tasks, DF and FastICA models significantly
617 outperformed the sEMG-amplitude approach in both R^2 and
618 RMSE (all $p < 0.001$). For the multifinger tasks, no significant
619 differences among the three approaches were detected in either
620 R^2 or RMSE.

621 2) *Cross-Session Finger Force Predictions*: In the cross-
622 session validation protocol, the DF and FastICA can also accu-
623 rately predict the measured finger forces under both single- and
624 multifinger tasks, as evidenced by the representative predicted
625 finger forces of the index finger in Fig. 9(a) and (b). In contrast,
626 the predicted force of the sEMG-amplitude approach showed
627 large deviations from the measured finger forces, indicating
628 poor generalizability in the cross-session context.

629 As shown in Fig. 9(c) and (d), compared with the sEMG-
630 amplitude approach, the DF and FastICA can achieve a higher
631 R^2 and a lower RMSE. Furthermore, statistical analyses
632 demonstrated that the R^2 achieved by the DF (0.75 ± 0.029)

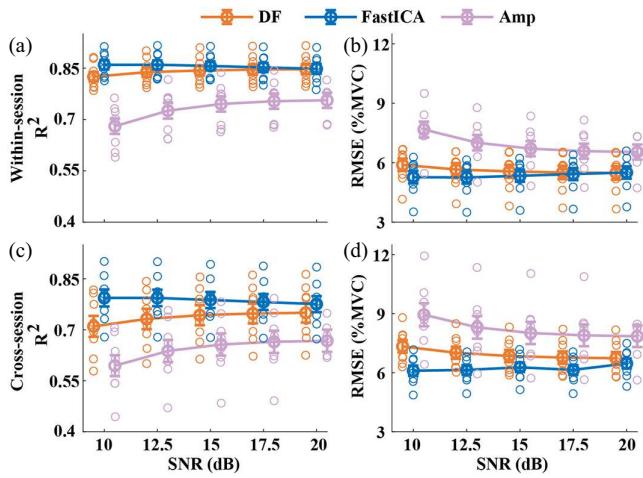


Fig. 10. Evaluation of finger force prediction performance under different noise levels. (a) and (b) Present R^2 and RMSE values for within-session finger force predictions, respectively. (c) and (d) Present R^2 and RMSE values for cross-session finger force predictions, respectively. Hollow circles represent the average result for each subject, with lines connecting the average results of each method across varying noise levels. The positions of each method are slightly offset at different noise levels for better visualization.

and FastICA (0.77 ± 0.024) were significantly higher than that of the sEMG-amplitude approach (0.67 ± 0.033). Similarly, the RMSE achieved by the DF ($6.72\% \pm 0.32\%$ MVC) and FastICA ($6.58\% \pm 0.28\%$ MVC) were significantly lower than that of the sEMG-amplitude approach ($7.83\% \pm 0.54\%$ MVC). In addition, we further analyzed the finger force performance for the single- and multifinger tasks. As shown in Fig. 9(e) and (f), the DF can achieve significantly better results than the sEMG-amplitude approach in both R^2 and RMSE (all $p < 0.05$).

D. Robustness to Noise

Fig. 10(a) and (b) presents the within-session finger force prediction performance for testing data with different SNRs. The DF and FastICA approaches exhibited consistent finger force prediction performance under different noise levels. In contrast, the sEMG-amplitude approach showed declines in prediction performance with decreasing SNR (especially from 15 to 10 dB), as reflected by the decreasing R^2 in Fig. 10(a) and increasing RMSE in Fig. 10(b). Similar to the within-session performance, the DF and FastICA achieved relatively stable cross-session performance under different SNR levels, as shown in Fig. 10(c) and (d). However, the sEMG-amplitude approach demonstrated a notable degradation in cross-session performance with decreasing SNR. Statistical analyses revealed that both DF and FastICA significantly outperformed the sEMG-amplitude approach under each SNR level (all $p < 0.01$).

E. Computational Efficiency Evaluation

Considering the importance of computational efficiency in ensuring real-time performance, we evaluated the processing times of different methods on the testing dataset. Pseudoreal-time testing was conducted by sequentially feeding data segments into the algorithm, simulating the buffer behavior of a real-time data acquisition system. All evaluations were conducted on an AMD Ryzen 7 6800H @ 3.2 GHz, with

TABLE II
COMPUTATIONAL TIME OF FORCE
PREDICTION (MS)

	Within Session	Cross Session
DF	19.94 ± 1.45	18.54 ± 0.99
FastICA	77.44 ± 9.67	113.04 ± 11.96
Amp	1.66 ± 0.01	1.71 ± 0.02

MATLAB R2023a (The MathWorks Inc., USA) serving as the implementation platform. The within-session and cross-session computational times for each method are summarized in Table II. As expected, the sEMG-amplitude method required the least computational time under both validation protocols. Compared with the FastICA approach, the DF model demonstrated significantly improved computational efficiency, with processing times reduced by approximately 75% for within-session testing and over 80% for cross-session testing. Statistical analyses revealed that the DF model took significantly less computational time than the FastICA model under both validation protocols (both $p < 0.01$).

V. DISCUSSION

In this study, we aimed to directly learn the neuronal firing information from sEMG signals, instead of employing BSS-based techniques, with the goal of enhancing computational efficiency while maintaining decoding accuracy. Specifically, we first obtained the neuronal firing representation (population firing rate signal) from the FastICA approach as the learning target signals (i.e., training labels). Then, we directly learned the targets from sEMG signals via the DF model. We found that the DF model consistently outperformed other neural network based deep learning models. Compared with the FastICA approach, this new approach could accurately capture the underlying neural drive information encoded in the sEMG signals, as evidenced by the same level of finger force prediction performance but with significantly less computational time. The DF model demonstrated stable cross-session performance and robust performance at various SNR levels, highlighting its potential for long-term utility in different signal quality conditions without the need of model retraining.

Compared with commonly used deep learning techniques, the DF model outperformed them in both within-session and cross-session validation protocols, revealing that the layer-by-layer processing mechanism can effectively accommodate non-differentiable modules (forest-based modules) for learning neuronal firing representations. In addition, unlike gradient-based deep networks that rely heavily on large-scale labeled datasets and complex backpropagation training, the DF model employs ensemble learning structures that eliminate the need for differentiability and reduce dependency on extensive hyperparameter tuning. This design not only simplifies the training process but also enhances robustness in data-limited scenarios, making it suitable for neural decoding applications with limited data and computational resources [53], [54].

The consistently better performance of the DF model over XGBoost, LightGBM, and CatBoost highlights its suitability for decoding neural firing information from sEMG. Unlike conventional boosting methods that rely on shallow ensembles,

715 DF employs a layer-wise cascade structure with feature augmentation, enabling progressive learning and rich feature representations. This hierarchical design is particularly effective
 716 in capturing the complex and variable patterns in neural-drive
 717 signals. Moreover, the integration of both random forests and
 718 completely random forests in each layer enhances model diversity and robustness, contributing to its superior generalization
 719 across sessions. While tree-based boosting methods required
 720 extensive parameter tuning, DF achieved better results with
 721 fewer adjustments, reflecting its stability and adaptability.

722 Although the inputs of the sEMG-amplitude approach and
 723 the DF model were the same, the DF model significantly outperformed the sEMG-amplitude approach under both the within-
 724 session and cross-session validation protocols. The inaccurate
 725 finger force predictions via the sEMG-amplitude approach could be attributed to its inherent limitations. Considering phys-
 726 iological factors, the muscle compartments of different fingers
 727 are spatially close and partially overlap when viewed from the
 728 skin surface. Correspondingly, muscle crosstalk occurs due to
 729 the overlapping activation of adjacent muscles, making it difficult
 730 to isolate signals corresponding to individual finger move-
 731 ments, thus degrading the finger force prediction performance.
 732 Additionally, the recorded sEMG signals can be interfered with
 733 motion artifacts introduced during muscle activities, compro-
 734 mising their quality and reliability. In long-term (cross-session)
 735 scenarios, the performance of the sEMG-amplitude approach
 736 further deteriorated. This decline was due to the nonstationary
 737 nature of sEMG signals, which could be affected by several
 738 factors including variations in electrode placement, changes in
 739 skin impedance, and different background noise [15]. These
 740 factors introduced inconsistencies in the recorded signals, mak-
 741 ing it difficult to establish a stable mapping between the sEMG
 742 amplitudes and the intended finger forces.

743 In contrast, the DF approach demonstrated superior per-
 744 formance in both within-session and cross-session scenarios,
 745 which is attributed to its reliance on neural firing representa-
 746 tions for the interpretation of finger forces. Specifically, the
 747 ground-truth neural firing signals came from binary motoneu-
 748 ron discharge events. These binary discharge events were less
 749 affected by variations in sEMG signals, resulting in consist-
 750 ent neural firing signals. To obtain neural firing events, two
 751 distinct clusters were identified for each source signal during
 752 the sEMG decomposition process. The cluster with higher am-
 753 plitude represented MU discharge events, while the baseline
 754 noise cluster was excluded from further analyses. This effective
 755 noise removal not only reduced interference but also enhanced
 756 robustness under varying noise conditions. In addition, the MU
 757 refinement procedure ensured that the ground-truth neural firing
 758 signals were specific to individual fingers, thus eliminating the
 759 influence of muscle crosstalk and enhancing the accuracy of
 760 force predictions.

761 The comparable performance between the DF and FastICA
 762 revealed the effective learning of neuronal firing representations
 763 via the DF model. By leveraging its hierarchical structure,
 764 the DF model could capture stable and robust neuronal fir-
 765 ing representations for the interpretation of finger movements.
 766 In addition, unlike FastICA which relied on computationally

767 intensive decomposition of sEMG signals to extract motoneu-
 768 ron discharge events, the DF model directly mapped sEMG
 769 amplitude features to neuronal firing representations. This ap-
 770 proach ensured that the decoding accuracy remains high and
 771 that the computational time remained consistent across all con-
 772 ditions for the DF model, making it highly suitable for real-time
 773 applications.

774 Although we have demonstrated the feasibility of directly
 775 learning neuronal firing representations from sEMG signals
 776 using the DF model, further validations could be conducted to
 777 confirm its broader applicability and robustness. First, we only
 778 evaluated the extraction of neuronal firing representations in
 779 the context of finger force predictions. In the future, we plan
 780 to extend the approach to other hand motor tasks, such as joint
 781 kinematic prediction. Second, while this study demonstrated the
 782 robustness of the DF model across sessions and noise levels, it
 783 did not consider scenarios involving muscle fatigue, which can
 784 be validated in future work.

VI. CONCLUSION

785 We evaluated the direct learning of neuronal firing represen-
 786 tations from sEMG signals using the DF model. The DF model
 787 achieved comparable accuracy to FastICA-based approaches in
 788 predicting dexterous finger forces while significantly reducing
 789 computational time. Moreover, the model demonstrated robust
 790 performance in both within-session and cross-session evalua-
 791 tions and remained stable under varying signal noise levels.
 792 This underscores its suitability for real-time applications where
 793 efficiency and consistency are crucial. The efficient nature of the
 794 DF model further enhanced its practicality, providing insights
 795 into its processes. These results underline the potential of the
 796 direct learning approach as a reliable tool for neural decoding
 797 in real-world scenarios.

REFERENCES

- [1] A. R. Slobinov and S. J. Bensmaia, "The neural mechanisms of manual dexterity," *Nat. Rev. Neurosci.*, vol. 22, no. 12, pp. 741–757, 2021.
- [2] K. J. Jyothish and S. Mishra, "A survey on robotic prosthetics: Neuroprosthetics, soft actuators, and control strategies," *ACM Comput. Surv.*, vol. 56, no. 8, pp. 1–44, Aug. 2024.
- [3] S. Funabashi et al., "Tactile transfer learning and object recognition with a multifingered hand using morphology specific convolutional neural networks," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 35, no. 6, pp. 7587–7601, Jun. 2024.
- [4] C. Zeng, S. Li, Z. Chen, C. Yang, F. Sun, and J. Zhang, "Multifingered robot hand compliant manipulation based on vision-based demonstration and adaptive force control," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 34, no. 9, pp. 5452–5463, Sep. 2022.
- [5] H. Su, W. Qi, Z. Li, Z. Chen, G. Ferrigno, and E. De Momi, "Deep neural network approach in EMG-based force estimation for human-robot interaction," *IEEE Trans. Artif. Intell.*, vol. 2, no. 5, pp. 404–412, May 2021.
- [6] R. Liu, J. Wandeto, F. Nageotte, P. Zanne, M. De Mathelin, and B. Dresp-Langley, "Spatiotemporal modeling of grip forces captures proficiency in manual robot control," *Bioengineering*, vol. 10, no. 1, 2023, Art. no. 59.
- [7] B. van Amsterdam, M. J. Clarkson, and D. Stoyanov, "Gesture recognition in robotic surgery: A review," *IEEE Trans. Biomed. Eng.*, vol. 68, no. 6, pp. 2021–2035, Jun. 2021.
- [8] C. D. Nistor-Cseppento et al., "The outcomes of robotic rehabilitation assisted devices following spinal cord injury and the prevention of secondary associated complications," *Medicina (Kaunas)*, vol. 58, no. 10, 2022, Art. no. 1447.

833 [9] S. Khalid, F. Alnajjar, M. Gochoo, A. Renawi, and S. Shimoda, "Robotic
834 assistive and rehabilitation devices leading to motor recovery in upper
835 limb: A systematic review," *Disabil. Rehabil. Assist. Technol.*, vol. 18,
836 no. 5, pp. 658–672, Jul. 2023.

837 [10] K.-S. Hong, N. Aziz, and U. Ghafoor, "Motor-commands decoding using
838 peripheral nerve signals: A review," *J. Neural Eng.*, vol. 15, no. 3, 2018,
839 Art. no. 031004.

840 [11] S. Ma et al., "Conditional generative models for simulation of EMG
841 during naturalistic movements," *IEEE Trans. Neural Netw. Learn. Syst.*,
842 vol. 36, no. 5, pp. 9224–9237, May 2025.

843 [12] Y. Guo et al., "sEMG-based inter-session hand gesture recognition via
844 domain adaptation with locality preserving and maximum margin," *Int.
845 J. Neural Syst.*, vol. 34, no. 3, pp. 2450010–2450010, 2024.

846 [13] X. Jiang, K. Nazarpour, and C. Dai, "Explainable and robust deep forests
847 for EMG-force modeling," *IEEE J. Biomed. Health Inform.*, vol. 27, no.
848 6, pp. 2841–2852, Jun. 2023.

849 [14] D. W. O. Antillon, C. R. Walker, S. Rosset, and I. A. Anderson, "Glove-
850 based hand gesture recognition for diver communication," *IEEE Trans.
851 Neural Netw. Learn. Syst.*, vol. 34, no. 12, pp. 9874–9886, Dec. 2022.

852 [15] L. Meng et al., "User-tailored hand gesture recognition system for
853 wearable prosthesis and armband based on surface electromyogram,"
854 *IEEE Trans. Instrum. Meas.*, vol. 71, pp. 1–16, 2022.

855 [16] Z. Wang et al., "Optimization of inter-subject sEMG-based hand gesture
856 recognition tasks using unsupervised domain adaptation techniques,"
857 *Biomed. Signal Process. Control*, vol. 92, 2024, Art. no. 106086.

858 [17] Z. Wang, L. Meng, Z. Wang, and W. Chen, "sEMG-based multi-DoF
859 finger force modeling for user-tailored wearable prosthesis and armband
860 applications," in *Proc. IEEE 20th Int. Conf. Body Sensor Netw. (BSN)*.
861 Piscataway, NJ, USA: IEEE Press, 2024, pp. 1–4.

862 [18] L. Meng and X. Hu, "Unsupervised neural decoding for concurrent and
863 continuous multi-finger force prediction," *Comput. Biol. Med.*, vol. 173,
864 2024, Art. no. 108384.

865 [19] S. Wang, H. Tang, B. Wang, and J. Mo, "A novel approach to detecting
866 muscle fatigue based on sEMG by using neural architecture search
867 framework," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 34, no. 8, pp.
868 4932–4943, Aug. 2021.

869 [20] D. Farina et al., "Man/machine interface based on the discharge timings
870 of spinal motor neurons after targeted muscle reinnervation," *Nat.
871 Biomed. Eng.*, vol. 1, no. 2, 2017, Art. no. 2.

872 [21] L. Meng et al., "Evaluation of decomposition parameters for high-
873 density surface electromyogram using fast independent component anal-
874 ysis algorithm," *Biomed. Signal Process. Control*, vol. 75, 2022, Art. no.
875 103615.

876 [22] T. Ma and X. Hu, "Adaptive motor unit decomposition using a cross-
877 validation-based update policy," *Comput. Biol. Med.*, vol. 193, 2025,
878 Art. no. 110479.

879 [23] L. Meng and X. Hu, "Robust and lightweight decoder for unsupervised
880 multi-finger force predictions towards the internet of medical things-
881 based applications," *IEEE Internet Things J.*, vol. 12, no. 9, pp. 12547–
882 12561, Sep. 2024.

883 [24] L. Meng and X. Hu, "Unsupervised neural decoding to predict dexterous
884 multi-finger flexion and extension forces," *IEEE J. Biomed. Health
885 Inform.*, vol. 29, no. 3, pp. 1959–1969, Mar. 2025.

886 [25] Y. Zheng and X. Hu, "Concurrent estimation of finger flexion and
887 extension forces using motoneuron discharge information," *IEEE Trans.
888 Biomed. Eng.*, vol. 68, no. 5, May 2021, Art. no. 5.

889 [26] P. Sedighi, X. Li, and M. Tavakoli, "EMG-based intention detection
890 using deep learning for shared control in upper-limb assistive exoskele-
891 tons," *IEEE Robot. Autom. Lett.*, vol. 9, no. 1, pp. 41–48, Jan. 2024.

892 [27] J. Zbinden, J. Molin, and M. Ortiz-Catalan, "Deep learning for enhanced
893 prosthetic control: Real-time motor intent decoding for simultaneous
894 control of artificial limbs," *IEEE Trans. Neural Syst. Rehabil. Eng.*, vol.
895 32, pp. 1177–1186, 2024.

896 [28] A. Wahid, K. Ullah, S. Irfan Ullah, M. Amin, S. Almutairi, and M.
897 Abohashrhr, "sEMG-based upper limb elbow force estimation using
898 CNN, CNN-LSTM, and CNN-GRU models," *IEEE Access*, vol. 12, pp.
899 128979–128991, 2024.

900 [29] M. Abdar et al., "A review of uncertainty quantification in deep learning:
901 Techniques, applications and challenges," *Inf. Fusion*, vol. 76, pp. 243–
902 297, 2021.

903 [30] M. H. Rafiee, L. V. Gauthier, H. Adeli, and D. Takabi, "Self-supervised
904 learning for electroencephalography," *IEEE Trans. Neural Netw. Learn.
905 Syst.*, vol. 35, no. 2, pp. 1457–1471, Feb. 2022.

906 [31] Z.-H. Zhou and J. Feng, "Deep forest," *Natl. Sci. Rev.*, vol. 6, no. 1, pp.
907 74–86, 2019.

[32] Y. Zheng and X. Hu, "Concurrent prediction of finger forces based on
908 source separation and classification of neuron discharge information,"
909 *Int. J. Neural Syst.*, vol. 31, no. 6, 2021, Art. no. 6.

[33] Y. Zheng and X. Hu, "Interference removal from electromyography
910 based on independent component analysis," *IEEE Trans. Neural Syst.
911 Rehabil. Eng.*, vol. 27, no. 5, 2019, Art. no. 5.

[34] A. Hyvärinen and E. Oja, "Independent component analysis: Algorithms
912 and applications," *Neural Netw.*, vol. 13, nos. 4–5, 2000, Art. no. 4–5.

[35] H. Zhao, X. Zhang, M. Chen, and P. Zhou, "Adaptive online decompo-
913 sition of surface EMG using progressive FastICA peel-off," *IEEE Trans.
914 Biomed. Eng.*, vol. 71, no. 4, pp. 1257–1268, Apr. 2024.

[36] M. Orlandi et al., "Real-time motor unit tracking from sEMG signals
915 with adaptive ICA on a parallel ultra-low power processor," *IEEE Trans.
916 Biomed. Circuits Syst.*, vol. 18, no. 4, pp. 771–782, Aug. 2024.

[37] E. A. Clancy and N. Hogan, "Probability density of the surface
917 electromyogram and its relation to amplitude detectors," *IEEE Trans.
918 Biomed. Eng.*, vol. 46, no. 6, 1999, Art. no. 6.

[38] R. Roy, F. Xu, D. G. Kamper, and X. Hu, "A generic neural network
919 model to estimate populational neural activity for robust neural decod-
920 ing," *Comput. Biol. Med.*, vol. 144, 2022, Art. no. 105359.

[39] J. Fan, L. Vargas, D. G. Kamper, and X. Hu, "Robust neural decoding
921 for dexterous control of robotic hand kinematics," *Comput. Biol. Med.*,
922 vol. 45, Jun. 2023, Art. no. 107139.

[40] L. Meng, L. Vargas, D. G. Kamper, and X. Hu, "Real-time myoelectric-
923 based neural-drive decoding for concurrent and continuous control of
924 robotic finger forces," *IEEE Trans. Hum.-Mach. Syst.*, vol. 55, no. 2,
925 pp. 256–265, Apr. 2025.

[41] D. Kingma and J. Ba, "Adam: A method for stochastic optimization,"
926 in *Proc. 3rd Int. Conf. Learn. Represent. (ICLR)*, 2014.

[42] T. Chen and C. Guestrin, "XGBoost: A scalable tree boosting system,"
927 in *Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining*,
928 San Francisco, CA, USA: ACM, Aug. 2016, pp. 785–794.

[43] G. Ke et al., "LightGBM: A highly efficient gradient boosting decision
929 tree," in *Advances in Neural Information Processing Systems*, I. Guyon,
930 U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
931 R. Garnett, Eds., Curran Associates, Inc., 2017.

[44] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,
932 "CatBoost: Unbiased boosting with categorical features," in *Advances
933 in Neural Information Processing Systems*, S. Bengio, H. Wallach,
934 H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.,
935 Curran Associates, Inc., 2018.

[45] H.-Y. Yang, Y.-S. Han, and C.-S. Nam, "Study on finger gesture interface
936 using one-channel EMG," *IEEE Access*, vol. 13, pp. 9606–9614, 2025.

[46] Z. Lu, S. Chen, J. Yang, C. Liu, and H. Zhao, "Prediction of lower limb
937 joint angles from surface electromyography using XGBoost," *Expert
938 Syst. Appl.*, vol. 264, Mar. 2025, Art. no. 125930.

[47] H. Wang, Q. Tao, and X. Zhang, "Ensemble learning method for the
939 continuous decoding of hand joint angles," *Sensors*, vol. 24, no. 2, Jan.
940 2024, Art. no. 660.

[48] W. J. Hans and N. M. Lindsay, "Hyperparameter tuning of light gradient
941 boosting machine for electromyography signal classification," *Eng. Res.
942 Exp.*, vol. 7, no. 2, Jun. 2025, Art. no. 025237.

[49] A. K. Sharma, S.-H. Liu, X. Zhu, and W. Chen, "Predicting gait
943 parameters of leg movement with sEMG and accelerometer using
944 catboost machine learning," *Electronics*, vol. 13, no. 9, May 2024, Art.
945 no. 1791.

[50] A. Fougner, Ø. Stavdahl, P. J. Kyberd, Y. G. Losier, and P. A. Parker,
946 "Control of upper limb prostheses: Terminology and proportional my-
947 oelectric control—A review," *IEEE Trans. Neural Syst. Rehabil. Eng.*,
948 vol. 20, no. 5, pp. 663–677, May 2012.

[51] J. G. Ngeo, T. Tamei, and T. Shibata, "Continuous and simultaneous
949 estimation of finger kinematics using inputs from an EMG-to-muscle
950 activation model," *J. Neuroeng. Rehabil.*, vol. 11, no. 1, Dec. 2014, Art.
951 no. 122.

[52] A. Ameri, E. J. Scheme, E. N. Kamavuako, K. B. Englehart, and P. A.
952 Parker, "Real-time, simultaneous myoelectric control using force and
953 position-based training paradigms," *IEEE Trans. Biomed. Eng.*, vol. 61,
954 no. 2, Feb. 2013, Art. no. 2.

[53] X. Chen, P. Wang, Y. Yang, and M. Liu, "Resource-constraint deep forest
955 based intrusion detection method in internet of things for consumer
956 electronic," *IEEE Trans. Consum. Electron.*, vol. 70, no. 2, pp. 4976–
957 4987, May 2024.

[54] H. Bangui and B. Buhnova, "Lightweight intrusion detection for edge
958 computing networks using deep forest and bio-inspired algorithms,"
959 *Comput. Electr. Eng.*, vol. 100, 2022, Art. no. 107901.