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Abdelrahman Elmaradny *, Mohamed Shorbagy ¥, Kyle Spink ¥, and Haithem Taha
Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, 92697, USA

The flow around a rotating cylinder has long fascinated fluid mechanicians. Classic potential
flow models, while elegant, face limitations in predicting circulation unless augmented by
boundary layer modeling and applying the no-slip condition. For rapidly rotating cylinders,
separation is suppressed, resulting in an attached boundary layer whose outer flow is a potential-
flow with circulation. Adopting this assumption, Glauert matched Prandtl boundary layer over
a rapidly rotating cylinder with the outer flow, and managed to determine a series solution
for the value of circulation which , in turn, dictates the Magnus lift force. Interestingly,
Glauert’s results for circulation is independent of viscosity up to the fourth order. This problem
has been recently revisited recently, using Gauss’ principle of Least Constraint to determine
the unknown circulation without any boundary layer calculations. Remarkably, the solution
aligns perfectly with Glauert’s results derived from the boundary layer solution. The Gauss’
principle formulation presents the problem as a one-dimensional optimization problem with
the circulation being a free parameter. In this study, we generalize this approach, performing a
large-scale optimization to determine the entire flow field (not just the circulation). We utilize a
recently developed approach that integrates Physics-Informed Neural Networks (PINNs) with
Gauss’s principle.

L. Introduction
The problem of the normal fluid force acting on a rotating cylinder has a long and rich history, beginning with the
early works of pionners such as Robins , Euler and later named after Magnus [1]. This problem has intrigued numerous
aerodynamicists, including Rayleigh, Prandtl, and Glauert, and has led to innovative applications in industry, such as
Flettner’s rotor ship and the modern E-ship 1. Prandtl’s hypothesis of a maximum lift coefficient value of 4 [2], based
on the coalescence of stagnation points, was later refuted by experiments and simulations that observed higher lift

coefficient values [3—5], challenging earlier experimental limits [6-9].
wR

The bifurcation of the flow field that happens as the ratio @ = $~ increases is critical to understanding this problem.

U
Prandtl’s observations [7] indicated that when « exceeds 2, the flow separation is suppressed, resembling irrotational

flow with circulation. This bifurcation at @ =~ 2 was confirmed by experiments and simulations [5, 10-13], although
some studies reported different critical « values at various Reynolds numbers [14, 15]. For instance, Badr et al. [16]
observed vortex shedding suppression at @ = 3 for certain Reynolds number ranges. The extensive literature includes
notable works by Bryant et al. [17], Swanson [18], and others, underscoring the topic’s rich and complex nature.
Inspired by the work of Gonzalez and Taha [19-21], which approached the aerodynamics problem through
minimization, Gauss’ principle was applied to the problem of a rapidly rotating cylinder using the standard model
of irrotational flow with unknown circulation outside the boundary layer [22]. This approach involved solving for
the circulation by minimizing the deviation between the free motion and the constrained one. Remarkably, this
simple one-Dimensional minimization problem, without explicitly considering viscosity, yielded results that matched

Glauert’s findings, which were derived from complex solutions of boundary layer nonlinear partial differential equations.

Additionally, unlike Glauert’s solution that is limited to large o values, the analytical solution derived from Gauss
principle is able to predict a bifurcation and a change in physics at @ = V6 =2.45.

In this work, we extend the parameterization of the flow field by incorporating the capabilities of Physics Informed
Neural Networks (PINNs) guided by the Principle of Minimum Pressure Gradient, as applied to fluid mechanics
problems [23-25], rather than relying on a single assumed free parameter of circulation. The proposed model yielded
excellent results across both regimes, for values of « less than and greater than V6. This novel approach, combined with
the potential model, shows promise as an efficient solver. When integrated with conformal mapping, it has the potential
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to significantly advance the study and resolution of complex aerodynamics problems at the limit of infinity Reynold’s
number.

II. Theoretical Background

In his work, Gauss [26] introduced one of the foundational principles of classical mechanics, known as the "Principle
of Least Constraint". This principle states that the motion of a system of "N’ material points occurs in a manner that
minimally deviates from free motion, with the measure of constraint being the sum of the products of mass and the
square of the deviation from free motion. Gauss distinguished between two types of acceleration: the free acceleration
(Afree = %)), which is the acceleration a body would have without constraints, and the true acceleration, which occurs
in the presence of constraints. The difference between these accelerations represents the constraint force, and according
to Gauss’ principle, the sum of these constraint forces must be minimized at every moment.

Gauss’ principle implies that a constrained body will follow the path that minimizes deviation from free motion,

expressed mathematically as:
N Fo\2
ZZ;mf(af—;Z) 1)

This minimization is akin to the least squares method, as Gauss noted the similarity by comparing it to how mathematicians
reconcile results through least squares. To illustrate this principle, consider the motion of a pendulum, where the
pendulum’s mass is constrained to move along a circular-shaped trajectory. The Gaussian constraint Z is calculated
based on the pendulum’s tangential and normal accelerations, leading to the familiar equation of motion derived through
Classical Newtonian laws. Gauss’ principle operates instantaneously, optimizing acceleration at each moment, in
contrast to the integral approach of the principle of least action, which optimizes the entire trajectory over time. In
the absence of applied forces F' = 0, Gauss’ principle simplifies to Hertz’ principle of least curvature [27], further
emphasizing its foundational role in analytical mechanics.

When applied to fluid mechanics problems, Gauss’ principle is an efficient method for transforming problems into
minimization problems rather than formulating them as partial differential equations. Although Gauss’ principle has
been integrated into analytical mechanics, it was not widely recognized for solving problems that other techniques
couldn’t address [28]. Variational techniques in fluid mechanics have traditionally been limited by the dissipative nature
of fluids, but recently, applying Gauss’ principle to fluid mechanics problems has shown success and has been termed
the Principle of Minimum Pressure Gradient (PMPG) [29-31].

The PMPG states that the pressure force is a constraint force whose sole role is maintaing the constraint of the
continuity equation. According to Gauss’ principle, this constraint force is minimized at each moment, ensuring nature
does not exert more force than required. The strength of this principle lies in its ability to handle arbitrary forces, not
just conservative ones as in the principle of least action. Mathematically, PMPG involves minimizing the cost A, which
is the integral of the pressure gradient over the computational domain:

2
.ﬂzlp/ %+(U-V)u—lv-r dx.
2 Q ot P

II1. PMPG guided PINNs

Recent advancements in neural networks have sparked growing interest in tackling fluid mechanics problems through
"data-free" Physics-Constrained Neural Networks. This innovative computational framework employs neural networks
guided by the fundamental physical governing equations, eliminating the reliance on external datasets.

Unlike traditional methods that depend on solving partial differential equations or leveraging data-driven optimization,
this variant of Physics-Informed Neural Networks (PINNs) emphasizes the direct minimization of certain physical
quantities. Earlier studies by Nguyen-Thanh et al. [32] and Goswami [33] illustrated the effectiveness of similar
approaches in structural mechanics and brittle fracture problems, respectively.

Recent progress in fluid mechanics has shown the efficacy of employing the Principle of Minimum Pressure Gradient
(PMPG) within the PINNSs platform. This framework has been successfully applied to inviscid flow over a cylinder
[23, 25] and lid-driven cavity flows [24], demonstrating its potential for solving complex flow scenarios with reduced
computational cost and enhanced physical consistency.
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A PINN model can be mathematically expressed as:
Y(x,1,6) = Fyn (X, 1,6) @

where y denotes the model’s output, x represents the input, ¢ signifies time, and # encompasses the parameters of the
neural network Fp . These parameters are determined through the network’s training process, aimed at minimizing the
total loss function £, defined as:

L= Ldara + /LEphysr‘CSa (3)

where £ comprises a data loss term L4, and a physics-informed loss term L, sysics, With weighting coefficient
A controlling the percentage of physical input to the PINNs model. In the case of the PMPG-PINN approach, the
minimization quantity is specified as the pressure gradient, leveraging the latest findings in variational fluid mechanics
[31].

Integrating the Principle of Minimum Pressure Gradient (PMPG) with Physics-Informed Neural Networks (PINNs)
marks a significant advancement. This hybrid approach, PMPG-PINNs, combines the strengths of both methodologies
to address complex fluid dynamics challenges more effectively. In PMPG-PINNS, the principle of minimum pressure
gradient is embedded in the neural network’s learning process through a physics-informed loss function and eliminating
the data loss function. This ensures adherence to physical laws while directing the neural network to minimize the
pressure gradient in fluid flow. The network’s architecture and training process remain similar to standard PINNs, but
the cost function is augmented to include a term representing the PMPG:

du 2
Lpupc = Z|E +(u-V)u-vviu

“

By reformulating the Navier-Stokes equations in terms of the velocity field and its derivatives, this approach avoids
the explicit need for the calculation of the pressure field. The resultant optimization problem for a steady problem
minimizes the integral of pressure gradient squared over the domain, constrained by mass and momentum conservation
and boundary conditions:
1 2

min A= —/p((u -V)u- vvzu) dx

u(x:4) 2 Ja
st. Vx ((u -V)u- szu) =0,

>

V-u=0,
u-n=0, ondQ,
(u—u,,y)-t=0, ondéQ

where n, t are normal and tangential vectors to the boundary 5Q. The first constraint of V x ((u - V)u — vV2u) = 0
employs the vorticity transport equation to enforce the conservation of momentum without the need for a coupled
velocity-pressure equation. The second constraint of V - u = 0 ensures the conservation of mass. While the third and
fourth constraints are for the no-penetration and no-slip boundary conditions respectively.

IV. Problem formulation
The problem addressed in this research is modeled as a steady potential flow over a rotating cylinder. The governing
equations are simplified to omit all terms in the cost function but for the non-linear convective acceleration. The free
motion, that the flow would have followed if there were no constraints, can be derived from the potential motion due to
a point vortex centered at the cylinder origin of strength I',,. This point vortex induces a purely tangential velocity
ug(r,0)= ;T—“‘r which corresponds to wR on the circumference. The vortex strength I',,, thus is equivalent to 2R w
and the corresponding free acceleration given by:

Qfree = —— &, ©)
r

in the radial direction.
The conservation of momentum can be satisfied by utilizing the vorticity transport equation, where the curl of the
momentum equation is taken to satisfy the equilibrium constraintSince, the pressure gradient and the forcing term afree
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Fig. 1 Domain points used for training in blue, Points on the cylinder in green and the points for Far-Field in
red .

both come from a gradient of a potential, and with the inviscid assumption, the equilibrium constraint used reduces to
equating the curl of the convective acceleration V x ((u . V)u) to zero.

This reduces the problem to a constrained minimization problem implementing the same approach investigated by
Atallah et al. [23], Elmaradny et al. [25] to formulate the problem using the PMPG-PINN as follows:

1 rz |2
min —/s;p((u-V)u+ﬁer) dx

u(x:4) 2 wlr
st. Vx ((u : V)u) =0, @
V-u=0,

u-n=0, ondQ

Translating this to loss functions using the penalty method to satisfy the Boundary condition, FarField condition and
the Equilibrium gives us the following:

Lrotai(x;60) = 1.Lpypg + 2L + 3. Lrrc + A4 LEgm, (8)
where L py pg is the main loss function in this problem given as:

rZ p
Lompc = Y |@-Vu+ —256, ©

4x2r3 7

L gc the no-penetration boundary condition, Lrrc the Far-Field condition and £Lggm the equilibrium constraint of the
conservation of momentum weighted by their respective A,,.

When the problem is solved analytically [22] as a one-dimensional minimization problem with a single free parameter
I', minimizing the cost A yielded three roots:

(10)
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Fig. 2 Schematic of the PMPG-PINN formulation applied to the problem of flow over rotating cylinder as well
as the Neural Network structure.
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The + values of I'* occur because the formulation is agnostic to the direction of rotation; the circulation direction is
predetermined by the cylinder’s rotation direction. Equation (10) indicates a critical angular rotation value w., = V6 %‘”.
Below this critical value, the first two roots are imaginary, making the zero circulation the only physical root and the
global minimizer the flow chooses. Beyond w,,, all roots become real, with the first two being global minimizers and
the zero root being a maximizer hence accounting for the bifurcation of the physics of the problem.

V. Implementation
To address the 2D nature of the problem, the streamfunction ¢ is used as the output of the Neural Network to
inherently satisfy the conservation of mass. By differentiating ¢, we obtain the velocity components in the x and y
directions, u, and uy, respectively:

ung—ﬁ, uyz—(;—f. (11)

The selected problem domain features a 2D cylinder with a unit radius, surrounded by 5000 randomly sampled points
within a square of area ten times the cylinder’s radius. Along the cylinder’s circumference, 200 randomly distributed
boundary points enforce the No-Penetration condition using the penalty method [34], ensuring radial velocity is zero at
these points. Additionally, 100 points are placed on each boundary edge to satisfy the FarField condition. The grid
points of training are shown in Figure 1.

The FarField boundary condition acts as the driver for the flow to become a superposition between a flow over
cylinder and a rotating cylinder, it is not accurate to assume in the finite domain we have that the flow at the boundary
points is unity in the x-direction as in the case of the flow over cylinder without circulation. To satisfy this in the model a
feedback constraint on the FarField boundary points is imposed, where the velocity at the FarField points takes the form
of an irrotational flow over a rotating cylinder, with the circulation I" being calculated from the points on the cylinder
boundary:

ur (1x] = 5[y = 15]) = Uso (1 = &) cos6
(12)

2 .
ug(lx| = Slly = 1)) = ~Ue (1 + B )sing - .

This ensures that at each iteration of training, the values of velocities on the boundaries are coupled to the circulation on
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Fig.3 Velocity and convective acceleration fields for the four cases at ', = 27, 47, 6 and 87 (a) PMPG-PINN
generated velocity fields, (b) Analytical velocity fields, (c) PMPG-PINN generated convecevtive acceleration fields
and (d) Analytical convective acceleration fields.

the cylinder surface.

The Neural Network employed is a Feed-Forward Fully-Connected Neural Network with two hidden layers, each
containing 50 neurons. The input layer has two neurons for the spatial coordinates x and y, and the output layer has
a single neuron for the streamfunction . The activation function used is the hyperbolic tangent (7anh). Training is
performed using the Adam optimization algorithm, a stochastic optimization method commonly used for deep neural
networks [35]. A comprehensive schematic and structure of the PMPG-PINN model for the rotating cylinder problem is
shown in Figure 2,

VI. Results

It has been previously shown by Shorbagy et al. [22] that there is a critical value for I, at 4.897, below which
the flow field will not sense the rotation. The simulations were carried for four different values for I',: 2x, 4m, 6
and 8. Qualitative comparison between the generated velocity fields and the analytical one (illustrated in Figure 3),
clearly shows that the velocity fields of 2z and 4 cases (below the critical I, don’t sense the rotation, and converge to
the well-known flow over cylinder flow without circulation. As the I',, increases to values more than the critical one,
namely at 67r and 8, the solver retrieves the results obtained from analytical solutions.

The RMS Error of the obtained velocity fields shows a good match between the PMPG-PINN generated models and
the analytical solutions. The RMS Error didn’t exceed 0.0853 and it increased with the increase in I',, as shown in
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Fig. 4 Normalized pressure gradient obtained from PMPG-PINN solver and that of the analytical solution on
the same grid for different I",, values.

Table 1.

Another physical metric relied on to quantitatively evaluate the results is the normalized pressure gradient. Figure 4
demonstrates the proximity between the solver’s normalized pressure gradient and the expected ones from the analytical
solution on the same grid. Table 1 demonstrates the RMS error of the velocity fields as well as Normalized Pressure
gradient compared to the analytical ones.

Table 1 RMS Error magnitudes for velocity fields and normalized pressure gradients

Fo RMSErmorValue ot oo et Pressure Gradient
2 0.008 43634 3.8608

4n 0.0137 43634 4.4091

6n 0.0725 39.2821 48.0129

8 0.0853 192.7675 164.2493

The main metric that is decisive of the flow rotation is the circulation I'. It is already discussed from Eq. 10, the
relationship between I'* and I',,. Assuming unity values for the cylinder radius R and the free-stream velocity U, the
equation is reduced to :

S (13)

e |Toyl SGm S 4897
0 T, < 4.897

applicable for values of T',, larger than the critical value of 4.89r. Any I',, below this value gives a zero circulation to
the fluid. Figure 5 overlays the circulation of the simulated flows over the analytical ones of Eq. 13. For I, values
below the critical value, the circulation of the obtained velocity fields is almost zero, while it has values matching those
of the analytical solution for I',,, larger than the critical value.
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Fig. 5 Comparison between the circulation obtained from the solver I" vs the imposed circulation I",, with
cylinder radiusR=1,U, = 1.

The blue curve is the analytical solution as per Gauss’ principle in Eq 13 and the green x marks are the
PMPG-PINN generated simulations at different I",, values.

VII. Conclusions

In this work, we have integrated Physics-Informed Neural Networks (PINNs) with Gauss’s principle of least constraint
to tackle the problem of the flow around a rotating cylinder. This novel approach allowed large-scale parametrization of
the flow field using the weights and biases of the Neural Network, that is, the fluid mechanics problem is converted
into a large-scale minimization problem. The optimizer predicted zero circulation at lower rotational speeds (e.g.,
I',, = 2m, 4m), consistent with theoretical expectations derived from Gauss’s Principle, while resulting in non-zero
circulation as rotational speed increased beyond w,, = V6 corresponding to critical T',, = 4.897 .

Our findings demonstrate the efficacy of using PINNs coupled with variational principles for fluid dynamics
problems. This approach not only offers a computationally efficient alternative to traditional methods but also opens
avenues for revisiting various aerodynamic challenges using conformal mapping and inviscid flow assumptions.

The combination of solving this problem and conformal mapping represents a powerful approach to address a wide
range of aerodynamic problems efficiently and accurately. By leveraging PINNs, which are adept at learning complex
physical relationships from data, and guiding them with variational principles like Gauss’s Principle, we can effectively
model fluid dynamics problems without the computational burden of solving complex partial differential equations

explicitly.
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