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Abstract— Connected and automated vehicles (CAVs) provide
the most intriguing opportunity for enabling users to monitor
transportation network conditions and make better decisions
for improving safety and transportation efficiency. In this
paper, we address the problem of effectively coordinating
CAVs on lane-based roadways. Our approach utilizes potential
functions to generate repulsive forces between CAVs that
ensure collision avoidance. However, such potential functions
can lead to unrealistic acceleration profiles and large inter-
vehicle distances. The primary contribution of this work is
the introduction of performance-sensitive potential functions
to address these challenges. In our approach, the parameters
of a potential function are determined through an optimization
problem aiming to reduce both acceleration and inter-vehicle
distances. To circumvent the computational implications due
to the complexity of the resulting optimization problem that
prevents the derivation of a real-time solution, we train a neural
network model to learn the mapping of initial conditions to
optimal parameters derived offline. Then, we prove sufficient
criteria for the sampled-data model to ensure that the neural
network output does not activate any of the state and safety
constraints. Finally, we provide simulation results to demon-
strate the effectiveness of the proposed approach.

I. INTRODUCTION
Connected and automated vehicles (CAVs) have the poten-

tial to significantly enhance the performance of transporta-
tion networks, including improvements in safety, comfort,
energy efficiency, and reduction of congestion [1]–[3]. A
fundamental approach towards these factors is to develop
novel control strategies for CAVs that can optimize their
performance and manage the impacts of vehicle interactions
on system behavior in a variety of traffic situations [4], [5].

Research has shown significant benefits when using adap-
tive cruise control (ACC) [6] to automatically regulate the
car’s speed, keeping a safe distance from the vehicle ahead.
Originally, the primary focus of ACC system design was
safety, specifically to prevent collisions [7], and improve
traffic flow [8]. However, recent developments have added
fuel and energy efficiency as another important performance
criterion [9]–[11]. The advent of vehicle-to-everything con-
nectivity has led to several interesting approaches to cooper-
ative ACC (CACC) [12] and ecological CACC systems [13].
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Ecological CACC has demonstrated significant potential for
energy savings in different driving conditions, e.g., highways,
arterial roads with or without traffic signals, and at highway
merging [14]. Some of these studies have implemented and
tested their controllers in real-world driving scenarios [15].

In prior research efforts [16]–[20], it has been shown
that the behavior of CAVs can be effectively coordinated
on single-lane and lane-free roads using control Lyapunov
functions. Since this results in decentralized feedback laws,
such an approach facilitates each vehicle to determine its
control input based on its speed, relative speeds, distances
from adjacent vehicles, and the boundary of the road. The
Lyapunov function proposed in [16] relies upon a term
that induces a repulsive potential between vehicles to avoid
collisions. This term constitutes a potential function that can
negatively impact the traffic flow by (1) increasing inter-
vehicle distances and (2) negatively influencing accelerations
to decrease the passenger comfort and the fuel efficiency.

This paper addresses these issues by improving the po-
tential function introduced in [16] to develop better vehicle
behavior for both acceleration and inter-vehicle distances.
To this end, we focus on scenarios with vehicles operating
on single-lane roadways. First, we introduce a new family
of parameterized potential functions whose shape can be
changed by adjusting the parameter values. These functions
can induce the desired behavior in vehicles while allowing
for greater precision in how that behavior is achieved. Then,
our goal is to determine the optimal parameters that achieve
our objectives.

We formulate an optimization problem with the parame-
ters as the decision variables and an objective comprising
of a combination of the acceleration and the inter-vehicle
distances. We solve this optimization problem offline using
numerical methods, and then we train a neural network
to provide the solutions during real-time implementation.
This network is effectively trained on an offline dataset of
our problem’s solution for various initial conditions. In the
existing literature, we found no approaches for controlling
CAV acceleration and inter-vehicle distances using a similar
approach within a Lyapunov framework. Finally, since we
use sampled data to emulate our model, we also prove
sufficient conditions to show that the selected sampling
ensures both collision avoidance and positive speeds. The
main contributions of this paper are (1) the introduction of
performance-sensitive potential functions to a) reduce vehicle
acceleration and improve efficiency and comfort, and b)
moderate inter-vehicle distances and improve traffic flow;
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and (2) the establishment of conditions for the sampled-
data model that guarantee no activation of the state and
safety constraints. We validate our analysis using MATLAB
Automated Driving Toolbox.

The structure of the rest of the paper is as follows. In
Section II, we present the modeling framework, and in
Section III, we present the new potential function. In Section
IV, we address the solution approach, and in Section V,
we provide simulation results. Finally, we draw concluding
remarks in Section VI.

II. MODELING FRAMEWORK

Consider a single-lane road and a coordinator, which can
be a group of loop detectors or comparable sensory devices
that can access the state of the road as shown in Fig. 1.
Consider n ∈ N vehicles operating on the single-lane road.
The dynamics of the vehicles are described by the following
ordinary differential equations (ODEs):

ẋi = vi

v̇i = Fi

, i = 1, . . . , n, (1)

where xi ∈ R is the position, vi ∈ R is the speed, and
Fi ∈ R is the feedback law (acceleration) given by [16]:

F1 = −k1(s2)(v1 − v∗)− V ′(s2),

Fi = −ki(si, si+1)(vi − v∗) + V ′(si)− V ′(si+1),

Fn = −kn(sn)(vn − v∗) + V ′(sn).

(2)

Here, si := xi−1 − xi, i = 2, . . . , n is the inter-vehicle
distance, and

k1(s2) = µ+ g(−V ′(s2)),

ki(si, si+1) = µ+ g(V ′(si)− V ′(si+1)),

kn(sn) = µ+ g(V ′(sn)),

(3)

with gain µ > 0; the function g : R → R is given by

g(x) =
vmaxf(x)

v∗(vmax − v∗)
− x

v∗
, x ∈ R. (4)

The terms ki in (2) and (3) are state-dependent gains that
guarantee the speed of each vehicle remains positive and less
than the speed limit vmax. The constant v∗ ∈ (0, vmax) in
(2) denotes the desired cruising speed for each vehicle. The
function V ∈ C2 in (3) is a potential function that exerts
repulsive force for collision avoidance. As the distance s
between two vehicles decreases, the function yields higher
values (of repulsion between the vehicles) to prevent the
vehicles from colliding. On the other hand, when the distance
is greater than a specific value, there is no repulsion. In
particular, the function V satisfies the following conditions:

lim
s→L+

V (s) = +∞,

V (s) = 0, ∀ s ≥ λ,
(5)

where L > 0 is the minimum allowable inter-vehicle distance
and λ > L is the distance at which vehicles will no longer
exert repulsive forces on each other. In (4), the function f(x)

Fig. 1: Single lane road with n vehicles.

is non-decreasing and satisfies max(x, 0) ≤ f(x), ∀ x ∈ R.
Here, we select the function f as in [16]:

f(x) =
1

2ϵ


0, if x ≤ −ϵ,

(x+ ϵ)2, if − ϵ < x < 0,

ϵ2 + 2ϵx if x ≥ 0,

(6)

with parameter ϵ > 0. The state space of the closed-loop
system (1)-(2) after applying the feedback law is given by

Ω =

{
(s2, ..., sn, v1, ..., vn) ∈ R2n−1 : min

i=2,...,n
(si) > L ,

max
i=1,...,n

(vi) ≤ vmax, min
i=1,...,n

(vi) ≥ 0

}
.

The existence of a desirable solution was established in [16].

Theorem 1 ( [16] ). For every initial condition
(s2(t0), . . . , sn(t0), v1(t0), . . . , vn(t0)) ∈ Ω, the solution
(s2(t), . . . , sn(t), v1(t), . . . , vn(t)) ∈ Ω is defined for
all t ≥ t0 and satisfies limt→+∞(vi(t)) = v∗ for
all i = 1, . . . , n and limt→+∞(V ′(si(t)) = 0 for all
i = 2, . . . , n, where t represents the time and t0 denotes the
initial time.

Since v∗ ∈ (0, vmax), we can use conditions (1) and (5)
with ṡi = vi−1 − vi in place of ẋi = vi to establish that the
set of equilibrium points is

S =
{
(s2, ..., sn, v1, ..., vn) ∈ R2n−1 : vi = v∗, i = 1, ..., n

V ′(si) = 0, i = 2, . . . , n} ⊂ Ω.
(7)

Remark 1. It was shown in [16] that V makes all vehicles
converge to an inter-vehicle distance greater than or equal
to λ at equilibrium, reducing both road capacity and overall
traffic flow. Besides, the selection of V may yield unrealisti-
cally large accelerations (see Section V). Next, we propose
a performance-sensitive potential function to address the
issues.

III. PERFORMANCE-SENSITIVE POTENTIAL FUNCTION

In this section, we present the following parameterized
potential function to address the limitations highlighted in
Remark 1:

Vnew(s) =


α (λ−s)3

(s−L) , if L < s < r,

α (λ−s)3

(s−L) + (r+3−s)p(s−r)p

(L−s)2 , if r ≤ s < r + 3,

α (λ−s)3

(s−L) , if r + 3 ≤ s < λ,

0, if λ ≥ s,
(8)
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(a) Influence of the parameter α. (b) Influence of the parameter r. (c) Influence of the parameter p.

Fig. 2: The potential Vnew under different combinations of parameters α, r and p.

(a) Influence of the parameter α. (b) Influence of the parameter r. (c) Influence of the parameter p.

Fig. 3: The derivative V ′
new of the potential Vnew under different combinations of parameters α, r and p.

where, recall that s represents the distance between two
vehicles. Then, (8) gives a piece-wise potential function with
varying cases corresponding to different values of the input s.
The new potential function is parameterized by the variables
α, r and p ∈ R. The constants λ and L hold the same
meaning as in (5).

Next, we examine the influence of the parameters α, r
and p on the shape of the potential function and discuss how
this influence can improve the performance of our system.
Hereinafter, we call the proposed potential V in (8) as Vnew

and the potential V presented in [16] as Vold.

Remark 2. In (8), Vnew exhibits the same behavior in the
first and the third case. However, in the second case, we
incorporate an additional term to create a local minimum in
the function followed by a local maximum, thereby forming
a hill within its profile, as shown in Figs. 2.

Remark 3. It should be noted that in [16], the potential
Vold was assumed to be decreasing, which due to (1), (2),
and (5) implies that the set of equilibrium points was given
by E = { (s2, ..., sn, v1, ..., vn) ∈ R2n−1 : vi = v∗, i =
1, ..., n, si ≥ λ, i = 2, . . . , n}. Due to the local minimum
appearing in the design of (8) and due to (5) and (7), it
holds that E ⊂ S. That is, the potential Vnew has an extra
equilibrium at the local minimum in comparison to Vold.

Remark 3 establishes that an effective parametrization of
the potential Vnew can reduce inter-vehicle distances. This
has a direct impact on improving road capacity and traffic
flow when vehicles cruise at similar speeds.

A. Influence of the Parameters in Vnew

In this subsection, we analyze the explicit influence of
each parameter on the shape of the potential function:

1) The influence of the parameter α in (8) is illustrated
in Fig. 2a. Note that changing α serves to scale up or down
the entire span of Vnew. Furthermore, the primary influence
of this parameter, as shown in Fig. 3a, is to either increase
or decrease the slope of the curve V ′

new. Thus, by selecting
an appropriate value of α, we can control the magnitude of
the repulsive forces generated by V ′

new in (2). This enables
us to achieve smoother accelerations.

2) The influence of the parameter r in (8) is illustrated in
Fig. 2b. This parameter influences the location of the local
minimum along the x−axis by controlling the point at which
Vnew switches between cases. To elucidate, consider Fig. 2b.
When r = 8 (solid line), the local minimum occurs close to
the distance s = 8, while for r = 12 (dotted line) the local
minimum takes place close to s = 12. Therefore, selecting a
value of r allows us to control the position of the hill induced
by the second case in (8), and consequently, to control the
equilibria induced by Vnew.

3) The influence of the parameter p is illustrated in Fig.
2c. This parameter controls the magnitude of the hill’s crest,
that is, the local maximum induced by the second case in
(8). Particularly, in Fig. 2c we observe that when p = 6
(solid line), the created hill becomes higher and sharper
compared to its form when p = 5 (dotted line). We have
dynamically plotted the influence of each of these parameters
on the shape of Vnew, available on the supplemental website:
https://sites.google.com/udel.edu/idspot/home.
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Remark 4. As a convention, we select that the range for the
second case (8) spans 3 m, i.e., [r, r + 3]. This value was
selected empirically to enforce a hill of a reasonable width.
While this value of 3 m can be controlled by an additional
parameter, optimal adjustments are under ongoing research.

Remark 5. Considering that (a) Vnew influences the feed-
back laws in (2), (b) Vnew takes as an input the inter-vehicle
distances s, and (c) the ODEs in (1) constitute an initial
value problem, we can conclude that the performance of
various parameter combinations varies greatly depending
on the initial conditions of the vehicles. As an example,
consider 2 vehicles with a distance s (input of Vnew) of 8,8
m. Then, the derivative V ′

new depicted in Fig. 3b would result
in significantly different outcomes depending on the value of
the parameter r (without loss of generality, in this example,
we do not consider parameters p and α). For instance, when
r = 8 (solid line), the derivative V ′

new in Fig. 3b will return
a larger potential in comparison to the case where r = 12
(dotted line).

Given Remark (5), we aim to identify the optimal combi-
nation of parameters for different sets of initial conditions.
The significance of examining the initial conditions and
associated parameters relates to the dynamic behavior of the
traffic. Specifically, when a new vehicle enters a lane from an
on-ramp or a different lane (for multi-lane roads), the initial
value problem described in (1) must be resolved in order for
the vehicles to update their trajectories. That is, the initial
value problem is resolved, including the initial conditions
associated with the new vehicle.

B. Optimization Framework
In this subsection, we formulate the following optimization

problem to yield the optimal values of α, r, and p for given
initial conditions:

min
α,r,p

w1

∫ tf

t0

n∑
i=1

v̇2i dt + w2

∫ tf

t0

n∑
i=1

si dt (9)

subject to: (1), si(t0) = s0i , vi(t0) = v0i ∀i = 1, . . . , n,

max |V ′
new(s)| ≤ z ∀ s ∈ [r, r + 3],

3 ≤ p ≤ 9, L < r ≤ λ− 3, 10−3 ≤ α ≤ 10−1.

The objective function contains two terms: the first term
captures the sum of accelerations weighted by w1 for all the
vehicles, while the second term represents the sum of inter-
vehicle distances weighted by w2. Here, t0 is the initial time
when the problem must be solved due to a change in the
traffic conditions (such as the merging of a new vehicle into
the lane) and tf signifies the time horizon over which we
aim to monitor the vehicles’ behavior. The initial conditions
for the optimization problem are denoted by the state s0i and
velocity v0i of each vehicle i = 1, . . . , n at time t0.

Remark 6. Our optimization problem (9), includes seven
constraints. The first three constraints are connected to the
system dynamics and the initial conditions of the vehicles
while the inequality constraints define the feasibility domain
for our parameters α, r, and p.

Next, we investigate the selection of the feasibility domain
defined by the constraints in 9:

1) Slope of Vnew: We have shown that the hill in (8)
is responsible for driving inter-vehicle distances to one of
the two equilibrium points while the shape of the potential
Vnew decides the strength of the forces applied to the
vehicles. To prevent the imposition of unrealistic forces by
the potential Vnew within the range of the hill, we select a
threshold z for the maximum derivative of the potential, i.e.
max |V ′

new(s)| ≤ z ∀ s ∈ [r, r + 3]. Note that this threshold
can be changed according to the vehicles’ characteristics.

2) Parameter p: We constrain the value of p to be greater
than or equal to 3 and smaller than or equal to 9. For p < 3,
Vnew does not belong to C2 while for p > 9, V ′

new is always
greater than 4 violating the constraint related to the slope.

2) Parameter r: Recall that r is the parameter that controls
the location of the hill in the range [r, r+3]. To ensure that
the entirety of the hill stays within λ, the parameter r must
fall within the interval (L, λ− 3].

3) Parameter α: We select the domain of the scaling
factor α to be [10−3, 10−1]. Although it would be possible to
expand this range, we have chosen these specific boundaries
for the following reasons: (1) scaling by a number smaller
than 10−3 leads the function to be almost equal to 0,
thus diminishing the function’s influence on inter-vehicle
distances and (2) multiplying by a number larger than 10−1

results in quite large forces, leading to rather unrealistic
accelerations for inter-vehicle distances smaller than 16 m.

IV. SOLUTION APPROACH

A. Challenges in Analytical Solution

An analytical solution to this problem includes several
complexities. From (1), (2), and (3), it is evident that the
feedback laws are nonlinear. Also, the decision variables α, r,
and p are constituents of the potential V , which subsequently
influences the values of vi(t), si(t), and si+1(t), as shown
in (2). This interdependence leads to intricate interactions
among the variables. For these reasons, we selected to solve
the optimization problem numerically. However, solving this
problem numerically in real time is computationally expen-
sive. To circumvent this issue, we first solve the problem
offline for many different initial conditions. Then, we gener-
alize the results obtained from the sampled initial conditions
by training a neural network to map the initial conditions to
optimal parameters α, r, and p.

B. Real Time Implementation using Supervised Learning

To train the neural network, we generate a dataset of
different initial conditions and corresponding solutions to the
optimization problem. To use realistic initial conditions, we
set all inter-vehicle distances si to exceed s + ρv, where s
is a standstill distance, ρ is the minimum headway that the
rear vehicle maintains following the preceding CAV and v
is the initial speed of the rear CAV.

We generated 6,000 normalized data points and split them
as follows: 85% for training, 7.5% for validation, 7.5 %
for testing. The network architecture comprised two layers
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with 32 and 16 neurons, respectively. The output of each
neuron was passed through a rectified linear unit (ReLU)
activation function. Training of the network involved the use
of backpropagation, with a mean squared error (MSE) loss
function and a learning rate equal to 35×10−6. The training
process continued until the MSE dropped below 10−3, until
it had completed 2000 epochs, or until no MSE improvement
was observed for 50 consecutive epochs. Finally, the MSE
achieved by the trained network was 0.0012 at epoch 1104,
suggesting that, on average, each element in the predicted
vectors deviates from the corresponding element in the actual
vectors by

√
0.0012 = 0.035.

Remark 7. The neural network discussed above employs a
7-vehicle case to highlight the effectiveness of our approach.
However, the system can adapt to any number of vehicles on
the road using a similar training approach.

C. Exact Discrete Model

To emulate our system, we need to discretize the
continuous-time domain. In this subsection, we present the
exact discrete model of the continuous-time model (1) using
sampled-data feedback. Assuming that Fi is constant on the
interval [t, t+ T ), where T > 0, t ≥ 0, we obtain via direct
integration of (1) the following exact discrete-time model:

xi(t+ s) = xi(t) + Tvi(t) +
T 2

2
Fi

vi(t+ s) = vi(t) + TFi,
(10)

for all s ∈ [t0, T ].
The following lemma provides a sufficient condition for

the sampling period T so that a vehicle i ∈ {1, . . . , n} avoids
collisions with other adjacent vehicles and has positive and
bounded speed within the given speed limit vmax.

Lemma 1. Let T > 0 and consider (2), with Fi(t) ≡
Fi for all t ∈ [t0, T ], i = 1, ..., n, and (10). Let
(s2(t0), . . . , sn(t0), v1(t0), . . . , vn(t0)) ∈ Ω be given, where
Ω is defined in (7). Let i ∈ {1, ..., n} be a given arbitrary
index. Suppose that for each j = 1, ..., n, j ̸= i, vj(T ) ∈
(0, vmax), and that the following inequalities hold

T <
min{si(t0)− L, si+1(t0)− L}

vmax
, (11)

−vi(t0)

T
< Fi(t0) <

vmax − vi(t0)

T
. (12)

Then, vi(t) ∈ (0, vmax) and si(t) > L, for all t ∈ [t0, T ].

Proof. Let i ∈ {1, ..., n} and T > 0 satisfying (11). Since
Fj(t) ≡ Fj for all t ∈ [t0, T ], it follows by (10), the
assumptions that (s2(t0), . . . , sn(t0), v1(t0), . . . , vn(t0)) ∈
Ω, vj(T ) ∈ (0, vmax) and monotonicity of vj(t) on [t0, T ],
that either 0 < vj(t0) ≤ vj(τ) ≤ vj(T ) < vmax, for all
τ ∈ [t0, T ] (for non-decreasing vj(t), i.e., Fj ≥ 0), or
0 < vj(T ) ≤ vj(τ) ≤ vj(0) < vmax , for all τ ∈ [t0, T ] (for
decreasing vj(t), e.g., Fj < 0). In any case we conclude that
vj(t) ∈ (0, vmax) for all t ∈ [t0, T ], j ̸= i.

Next, (10) and (12) imply that vi(T ) ∈ (0, vmax). Using
the concluding argument above with (10), where Fi(t) ≡

Fi, vi(t0) ∈ (0, vmax), and monotonicity of vi(t), same
arguments as above show vi(t) ∈ (0, vmax), for all t ∈
[t0, T ].

It remains to show that si(t) > L for all t ∈ [t0, T ].
Notice that |ṡi| ≤ vmax for all i = 1, . . . , n. Then, from the
assumption si(t0) > L, and inequality (11) (which implies
that T < si(t0)−L

vmax
), we obtain si(t) ≥ si(t0) − vmaxt ≥

si(t0)−vmaxT > L, for all t ∈ [t0, T ]. The proof is complete
by similarly showing si+1(t) > L for all t ∈ [t0, T ].

V. SIMULATIONS

This section demonstrates simulations employed to au-
thenticate the effectiveness of our proposed analysis. We
consider 7 vehicles. The parameters of our system are set
to L = 5 m, λ = 20 m, v∗ = 30 m/s, vmax = 35 m/s,
ϵ = 0.2, and µ = 0.5 as defined in [16]. We set the weights
w1 = w2 = 0.5 and z = 4 after normalizing each term v̇i and
si in (9). For each scenario, identical initial conditions are
applied with initial inter-vehicle distances si(t0) ∈ (8, 12)
and initial speeds vi(t0) ∈ (27, 33).

Scenario 1: This scenario utilizes the potential function
Vold as defined in [16]. Observing Fig. 4a, we validate
that the inter-vehicle distances converge towards the value
λ = 20 m. This is reasonable, as Vold is strictly decreasing.
Consequently, all inter-vehicle distances converge at the
global minimum λ of Vold (see Remark 3). In this context,
in Fig. 4b, we observe that the vehicle accelerations adopt
large unrealistic values. This occurrence is attributed to the
strong repulsive forces assumed by Vold for short initial
inter-vehicle distances. Specifically, Vold lacked a scaling
factor, leading to extremely large accelerations for inter-
vehicle distances less than 16 m.

Scenario 2: In this scenario, we use the proposed
performance-sensitive potential function Vnew. As illustrated
in Fig. 5a, the inter-vehicle distances converge close to
12 m. This is attributed to the introduced hill established
by Vnew. Especially, per (7), Vnew can obtain an extra
equilibrium point at its local minimum. As a result, the
inter-vehicle distances converge to this local minimum. This
improvement significantly increases the road capacity in
comparison with Scenario 1. Moreover, the parameter α in
the potential function serves as a scaling factor, facilitat-
ing the vehicles to adopt lower, more realistic acceleration
rates as shown in 5b. Consequently, in Fig. 5c, we see
a significant advancement in the uniformity and harmo-
nization of vehicle speeds compared to 4c in Scenario 1.
Video simulations are available on the supplemental website:
https://sites.google.com/udel.edu/idspot/home.

VI. CONCLUDING REMARKS AND DISCUSSION

In this paper, we built upon prior work [16] and introduced
performance-sensitive potential functions to improve vehicle
accelerations and inter-vehicle distances for CAVs. Through
training a neural network on an extensive offline dataset,
we bypassed the computational burden of driving the opti-
mal solution in real time, yielding smoother accelerations,
improved traffic flow, and enhanced speed harmonization.
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(a) Inter-vehicle distances using Vold. (b) Accelerations with using Vold. (c) Speeds using Vold.

Fig. 4: Results using the potential function Vold defined in [16].

(a) Inter-vehicle distances using Vnew. (b) Accelerations using Vnew. (c) Speeds using Vnew.

Fig. 5: Results using the proposed parameterized potential function Vnew.

Furthermore, we established conditions for the sampled data
model that guarantee collision avoidance, emphasizing the
model’s safety considerations. Future work will extend this
framework to lane-free roads and consider the integration of
human driven vehicles.
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