MiniKV: Pushing the Limits of 2-Bit KV Cache via Compression and
System Co-Design for Efficient Long Context Inference

Akshat Sharma, Hangliang Ding”, Jianping Li, Neel Dani, Minjia Zhang
SSAIL Lab, University of Illinois at Urbana-Champaign

{akshat7, 3j1i199,

neeld2,

minjiaz}@illinois.edu

pianogwz@gmail.com

Abstract

State-of-the-art 2-bit KV cache quantization
techniques achieve excellent results in accel-
erating LLM inference while retaining accu-
racy on long context tasks. However, further
pushing the compression ratio fails to deliver
performance gains. In this work, we revisit
these approaches by considering, additionally,
adaptive KV methods that retain LLM accu-
racy with only a subset of KV states. This
leads us to propose a method based on 2-bit KV
cache quantization with adaptive KV policies.
In addition, we take an algorithm and system
co-design approach by developing hardware-
friendly kernels to accelerate LLM inference
while making MiniKV compatible with exist-
ing memory-efficient attention techniques such
as FlashAttention, effectively translating algo-
rithmic improvements into system performance
gains. Experiments on a wide range of long
context tasks show that MiniKV effectively
achieves >80% KV cache compression while
retaining accuracy, outperforming state-of-the-
art methods while achieving excellent latency,
throughput, and memory consumption improve-
ments in long context inference.

1 Introduction

Large language models (LLMs) have exhibited
unique capabilities, such as instruction following,
reasoning, and inference time scaling (OpenAl,
2024; DeepSeek-Al et al., 2025). However, ef-
ficiently serving LLMs is still a pressing concern.
One of the main LLM inference bottlenecks is the
consumption of KV cache memory, which con-
sumes memory in addition to widely studied bot-
tlenecks such as model sizes (Frantar et al., 2022;
Lin et al., 2024).

To address this challenge, one of the prevail-
ing practices is to quantize the KV cache (VLLM,

“Work done while intern at UTUC. Correspondence to:
Minjia Zhang (minjiaz@illinois.edu)

Project Homepage: https://supercomputing-system-ai-
lab.github.io/projects/minikv/

2025; NVidia, 2025). Studies show that FP8/INT8
or even 4-bit quantization can be achieved for
KV cache compression while preserving accu-
racy (Sheng et al., 2023; Liu et al., 2023a; Yang
et al., 2024b). State-of-the-art approaches, such
as KIVI and KVQuant (Liu et al., 2024b; Hooper
et al., 2024), show that the KV cache can be ef-
fectively quantized to sub 4-bit, e.g., 2 bits, while
preserving most accuracy. However, further push-
ing down the compression ratio (e.g.,<2 bits) leads
to a significant accuracy loss.

In a separate line of research in the community,
numerous work have explored adaptive KV, where
the LLM selects a small subset of KV states based
on their importance (Zhang et al., 2023; Xiao et al.,
2023b; Ge et al., 2023; Liu et al., 2023b). Re-
cent advances also introduce head-specific adaptive
KV (Ge et al., 2023; Xiao et al., 2024; Wu et al.,
2024) and layer-specific adaptive KV (Cai et al.,
2024; Nawrot et al., 2024; Wan et al., 2024) with
the goal of evicting or merging KV pairs without
compromising overall performance. However, fol-
lowing the work of (Zhang et al., 2023), few studies
have included studies on how adaptive KV policies
work on quantized KV cache, despite quantized
KV is widely used in practice (Turganbay, 2024).
Moreover, for long context inference, where KV
cache memory becomes the major bottleneck, few
adaptive KV work manage to achieve a compres-
sion ratio that exceeds 50% while maintaining ac-
curacy in long context tasks (Li et al., 2024; Tang
et al., 2024).

These two points of view (quantized KV and
adaptive KV) consider the extreme sides of the
spectrum of optimization points for KV cache mem-
ory. However, there has been very little work
exploring how to consolidate these two lines of
work to maximize the KV cache memory savings.
The conventional wisdom is that these techniques
can be combined. However, existing work aim-
ing to combine 4-bit quantization and adaptive KV

18506

Findings of the Association for Computational Linguistics: ACL 2025, pages 18506-18523
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Pyramid
Budget

— Per-Channel
Quant

Selective Flash
Attention

87
XO - Tﬂﬁl Per-Token N
£ 7 | quant
u‘ Ve f"‘l::> Qv |
V222202
(a) Prefill Phase

. 16-bit| | 2-bit | | evict |
Eviction % 2
- n-1
"

Kernel

A, RV .
quant Matrix Mult
g, Matrd X,
Matrix Mult { Aquant. Aunquant——

(b) Decoding Phase

Kernel

Figure 1: An overview of MiniKV. Tensors colored red/blue indicate 16-bit/2-bit representation, and shaded tokens
are evicted during inference. During the prefill phase, we employ pyramid KV with rectified token selection policy
across layers to identify a sparse set of important tokens. For all the important tokens, we employ sub-channel Key
quantization and per-token Value quantization to minimize the quantization errors while maintaining a compact
KV cache data layout without introducing any irregular operations. To address the incompatibility issue between
score-based KV pair selection policies and memory-efficient system optimizations such as FlashAttention, we
develop a two-pass Triton-based selective flash-attention kernel to output both the representation X and the
cumulative attention map Acymy, While still keeping the memory consumption of the attention calculation linear with
respect to the sequence length. During decoding, we use a fused unpacking and multiplication kernel to compute
both the attention map between the new Query token ¢ and the quantized Keys, as well as the product between the

attention map and the quantized Values.

shows that combining these techniques leads to
non-trivial interactions (Zhang et al., 2024b), which
need to be reasoned through carefully for good per-
formance. In this paper, we address the following
question: How should 2-bit KV cache quantization
techniques be combined with adaptive KV policies
to maximize the inference speed of LLMs given a
memory budget while retaining high model accu-
racy in long context inference?

To answer the question, we revisit existing ap-
proaches on ultra low-bit quantized KV (e.g., 2-bit)
and adaptive KV, together with a compression sys-
tem co-design perspective, which is unexplored so
far. Our findings led us to develop MiniKV, which
effectively compresses the KV cache through a
synergistic combination of 2-bit quantization and
adaptive KV to achieve minimal accuracy loss in
long-context tasks while maximizing the compres-
sion ratio. Specifically, on the algorithm side, we
employ subchannel-wise key and token-wise value
quantization, as well as pyramid KV with recti-
fied token selection policy across layers to signifi-
cantly push the KV compression ratio while keep-
ing the algorithm still hardware-friendly without
introducing any irregular computation. On the sys-
tem side, we develop a two-pass Triton (Tillet et al.,
2019) kernel together with native fused kernels to
accelerate the inference latency while resolving
the incompatibility limitation from the attention
score-based eviction policy and memory-efficient
attention system optimizations such as FlashAtten-
tion (Dao et al., 2022). Consequently, the resulting

system maximizes the compression ratio on the KV
cache while obtaining high accuracy and hardware
efficiency in long context inference.

To validate the approach, we compare MiniKV
with existing KV cache compression techniques
such as H20, SnapKYV, and Q-Hitter, across three
major models in LongBench datasets. The results
show that MiniKV effectively achieves 86% KV
cache compression while retaining comparable ac-
curacy on LongBench, outperforming state-of-the-
art methods. Furthermore, MiniKV enables prompt
lengths up to 44K tokens and a maximum through-
put that is 48% higher than its strongest baseline on
a single NVIDIA A100 GPU. To our knowledge,
our work is the first to show that it is possible to
achieve significantly >50% KV cache reduction
through compression and system co-design while
achieving high batch size > 1 throughput on long
context tasks.

2 Related Work

Numerous efforts have been made to improve the
KV cache efficiency of LLMs. Among them, quan-
tization has been a prevailing technique employed
in deployment to overcome KV memory overhead
without retraining (vLLM, 2025; NVidia, 2025).
Many research has shown that FPS8/INT8/INT4
quantization can be achieved for KV cache while
preserving accuracy (Hooper et al., 2024; Sheng
et al., 2023; Liu et al., 2023a; Yang et al., 2024b;
Zhang et al., 2024b). However, further pushing
the quantization limit to under 4-bit, e.g., 2-bit,

18507

leads to major performance loss. More recently,
researchers have proposed advanced quantization
techniques, such as KIVI (Liu et al., 2024b), to
quantize KV cache into 2-bit without major loss in
accuracy. While being effective, it still has one ma-
jor limitation: its effectiveness against adaptive KV
policies and its implication on system performance
has not yet been studied. Our results indicate that
it is nontrivial to use 2-bit quantized KV together
with adaptive KV policies in conjunction while
achieving high compression ratio, accuracy, and
system efficiency in long context inference, simul-
taneously.

Adaptive KV policies have also gained inter-
est within the community, leading to various algo-
rithms (Zhang et al., 2023; Xiao et al., 2023b; Liu
et al., 2023b; Ge et al., 2023; Wan et al., 2024;
Wu et al., 2024; Cai et al., 2024; Yang et al.,
2024a; Li et al., 2024; Liu et al., 2024a; Bran-
don et al., 2024; Tang et al., 2024). However,
many of those works either do not focus on long
context inference (Zhang et al., 2023; Xiao et al.,
2023b; Liu et al., 2023b; Ge et al., 2023), where
the KV cache pressure is the most prominent, or
introduce irregular operations or auxiliary scores
that are not hardware-friendly (e.g., batch size >1
with FlashAttention enabled) (Ge et al., 2023; Wu
et al., 2024; Wan et al., 2024; Tang et al., 2024).
Finally, most adaptive KV methods struggle to ex-
ceed a 50% compression rate in long context in-
ference (Zhang et al., 2023; Li et al., 2024; Tang
et al., 2024), suggesting that solely identifying im-
portant tokens may have limited improvements for
adaptive KV. Complementary to this line of work,
our goal is to improve the compression ratio of KV
cache via revising ultra-low quantized KV (e.g., 2-
bit) with adaptive KV policies, with an eye toward
system co-design to maximize the performance of
LLM inference. We empirically show that this path
can be more memory-efficient, especially on long
context tasks. We provide a detailed summary of
the comparison between MiniKV and previous ap-
proaches in Appendix B.

3 Method

In this section, we first focus on the compressibility
of ultra low-bit quantized KV cache by consid-
ering adaptive KV policies, with an eye toward
being able to still keep the final solution hardware
friendly, which leads to the proposed algorithm in
MiniKV. In addition, we introduce kernel optimiza-

tion that addresses the composibility issue between
score-based adaptive KV and memory-efficient at-
tention implementation such as FlashAtttention.

3.1 Revisiting 2-Bit Quantized KV with
Adaptive KV Policies

3.1.1 Sub-channel Key Quantization with
Persistent Context Selection

Existing KV cache quantization methods often
perform per-token quantization (i.e., the scaling
factor and zero point are shared by elements in
the same token) (Sheng et al., 2023; Xiao et al.,
2023a). However, it has been observed that out-
liers emerge within the channel dimension of key
cache (Liu et al., 2024b; Hooper et al., 2024), re-
quiring channel-wise quantization.

Recent works (Hooper et al., 2024; Liu et al.,
2024b) observe that the data distribution within
each channel shifts over generation steps, leading
to inaccurate quantization. We measure and con-
firm the accuracy impact of inaccurate quantization
on LongBench in Appendix F. To mitigate quanti-
zation error, prior work suggests fine-grained per-
channel key quantization, which quantizes keys at
the granularity of a small sub-channel group (e.g.
16/32 numbers). Combining these techniques with
a full KV cache is straightforward because the el-
ements within each sub-channel group remain the
same during the entire LLM generation process.

However, with adaptive KV, the elements within
a sub-channel group may change after each decod-
ing step if some tokens in the group are evicted to
make space for newly generated tokens. MiniKV
solves this problem by enabling sub-channel key
quantization via persistent context selection. Our
design for this optimization is based on the fol-
lowing key observation: Given a sufficiently large
cache budget, the important tokens can be identi-
fied before generation and maintained persistently
throughout the process.

We found some recent inference optimization
works that argue against persistent context selec-
tion (Tang et al., 2024). However, all of these texts
show that heavy hitters do not persist when using
a tiny cache budget (<5%). We empirically ver-
ify persistent context selection by measuring the
fraction of heavy hitters that persist during the en-
tire generation phase of HoO when using a large
cache budget. We observe that nearly 60-80% of
the heavy hitters selected during the prefill stage
persist throughout generation. Please see Appendix

18508

E for details.

Based on this observation, we choose a set of
persistent heavy hitters at the end of the prefill to
quantize and not update throughout the generation
phase. This allows MiniKV to avoid re-encoding a
group while keeping a low quantization error with
2-bit sub-channel quantization.

3.1.2 Selectivity in Long Contexts: Heavy
Hitters vs. Recent Window

Prior studies observe that the accumulated attention
scores of all tokens within an attention block follow
a power-law distribution and claim that maintaining
a tiny subset of important tokens (e.g., as low as
5%) with the highest accumulated attention score is
sufficient to maintain precision (Zhang et al., 2023).
However, this observation has not been carefully
examined in long contexts.

We observe that using a highly limited mem-
ory budget (e.g., 20%), existing solutions such
as HyO (Zhang et al., 2023) and SnapKV (Li
et al., 2024) have a significant performance drop
in long context tasks, which motivates us to re-
visit the selectivity of adaptive KV methods. First,
we assess if the model retains performance us-
ing only the recent window (RW) or heavy hit-
ters (HH), we examine the KV cache’s selectivity
towards RW/HH. The cache budget is described
as the percent of the prompt tokens retained, i.e.
an RW/HH budget of (agw, o) and an input
prompt of length [,romp tokens indicate that (apw -
lprompt; CHH - lprompt) tokens are maintained as the
RW and HH respectively. We fix the total cache
budget to 50% and distribute it among the RW
and HH, i.e., RW/HH budget of (apw,ann) =
(0%, 50%), (10%, 40%), (20%, 30%), and so on.
Fig. 2 (left) reveals an interesting aspect of the
KV cache selectivity: The model performs bet-
ter on some datasets with more HH (on Passage
Count) and on some with a longer RW (on Trivi-
aQA). More importantly, using solely RW or HH
leads to a catastrophic accuracy drop in certain
tasks (in Lcc and TriviaQA). This indicates that
to have a robustly optimized KV cache selection
policy, the model needs to maintain at least a criti-
cal percentage of HH/RW (e.g., 5-10%) to avoid a
significant accuracy drop.

Next, we investigate the selectivity between RW
and HH by varying the KV cache budget. In partic-
ular, we fix the RW size (e.g., 10% of the prompt
length) while varying the HH set size, and vice
versa. Interestingly, as seen in Fig. 2 (right), we

KV Cache Selectivity

--- Baseline
—=— PassageCnt —e— Samsum

Heavy Hitter vs.
Recent Window Selectivity
--- Baseline & HotpotQA
= Gov Report

—w— Trec

Lcc —4+— TriviaQA
—— HH e 2wikimga
.80 /"'_W 26
@
:?-,60 y 25
g 7/ 24
<
é 20 23
@0 22
o
g 20 21
-
— 20 s
0 0.0 0.1 0.2 0.3 0.4 0.5 0.15 0.25 0.35 0.45 0.55
«Heavy hitter/Recent window- Cache Budget
Figure 2: (Left) H,O with different recent win-

dow/heavy hitter budget: We fix the total cache budget
to 50% and vary the heavy hitter and recent window bud-
get. (Right) HoO with different recent window/heavy
hitter budget: The heavy hitter/recent window cache
budget is fixed at 10% and the recent window/heavy
hitter budget is increased from 5% to 45%. The dotted/-
solid lines indicate variable recent window/heavy hitter
budget.

observe that there appears to be no common trend
across datasets as to whether increasing the size of
the RW vs. the HH set significantly improves the
selectivity of KV states on long context tasks. In
fact, either HH or RW allow adaptive KV to achieve
accuracy comparable to the full KV cache baseline.
Furthermore, unlike previous findings, which sug-
gest that high levels of eviction (80-95%) do not
decrease model accuracy (Zhang et al., 2023), we
find that as the sequence length increases, maintain-
ing accuracy under the same KV cache size budget
becomes challenging (please see Appendix C for
more details). However, low and medium levels of
eviction (e.g., 50%) are still possible.

Insight. Our experiments suggest that high
levels of KV cache eviction significantly degrade
LLM’s performance on long context tasks. How-
ever, medium levels of eviction can still retain com-
parable model accuracy. Even at medium levels,
the model needs to maintain a critical percentage
of both heavy hitters and recent window tokens.

3.1.3 Layer-Specific Selectivity: Uniform,
Variance, or Pyramid?

Inspired by recent works on layer-wise KV cache
compression (Cai et al., 2024; Liu et al., 2024a;
Wan et al., 2024), we investigate several layer-
specific KV cache selection strategies that allocate
variable KV cache budgets across model layers.

* Uniform allocation: This policy has been
used in multiple previous studies (Zhang et al.,
2023; Xiao et al., 2023b; Liu et al., 2023b),
where all layers have the same KV cache bud-
get.

18509

* Variance-based allocation: Similar to (Wan
et al., 2024), we use the variance of the cu-
mulative attention map to determine the layer-
wise KV cache budget. Lower layers exhibit
smaller variances, making token eviction dif-
ficult. We examine two policy variations: Var-
prop, allocating KV cache per layer propor-
tionally to variance, and Var-inv, allocating it
inversely proportional to variance.
Pyramid-like allocation: Introduced in (Cai
et al., 2024), this strategy adjusts the heavy
hitter cache budget across layers by allocating
more cache in lower layers and less in higher
ones. The cache budget for the intermediate
layers is determined through linear interpola-
tion.

In our experiments, we observe that the Pyramid
policy achieves much better accuracy than the other
policies, especially with medium levels of eviction,
shown in Fig. 3.

Different layerwise strategies on LongBench

> 1]
O 37.0

@©

-

3365

<

= 36.0

[¢]

g 35.5 —=— Uniform
Q —e— Var-prop
?35 0 '4 —=— Var-inv

S o« Pyramid

01 02 03 04 05 06 07 08 09
Heavy Hitter Ratio

Figure 3: Performance of layer-wise KV cache alloca-
tion policies. The Pyramid policy works best, particu-
larly at medium levels of eviction.

3.2 Memory-Efficient Fused Selective
Attention Kernels

Despite ongoing advancements, many adaptive KV
studies predominantly use attention scores as a cri-
terion to determine which tokens should be evicted
(Zhang et al., 2023; Liu et al., 2023b; Leskovec and
Sosic, 2016; Cai et al., 2024).

While showing promising results in reducing the
KV cache size, these attention-score-driven meth-
ods are not aligned with memory-efficient trans-
former system optimizations. In particular, these
methods rely on accessing the attention matrix A,
whose size grows quadratically with the sequence
length. FlashAttention (Dao et al., 2022) performs
the attention process without materializing the at-
tention matrix. Therefore, to the best of our knowl-
edge, no prior adaptive KV works with FlashAtten-
tion enabled, hindering their memory savings on
long sequences.

To address the challenge, this part introduces
our memory-efficient Triton kernel implementation
for MiniKV’s prefill phase, which simultaneously
returns the following two outputs with linear mem-
ory complexity: (1) a weighted sum of the value
tensors X, same as FlashAttention, and (2) cumu-
lative attention score Ay, along each column 1
Despite being a simple task when memory is not a
constraint, implementing such a kernel with linear
memory complexity is challenging. The difficulty
arises because A, requires summing the atten-
tion values for each token position, i.e., along the
columns of the attention matrix. FlashAttention re-
duces memory usage by employing row-wise tiling,
which avoids storing large intermediate attention
matrices. However, this row-wise tiling means that
different rows are processed in parallel, leading
to a race condition when summing the attention
scores column-wise. To prevent this race condition,
atomic add instructions are needed, which signifi-
cantly slow down the kernel execution speed.

We solve this by introducing a two-pass kernel
implementation. In the first-pass of the kernel, we
follow FlashAttention to compute the weighted
sum of the value tensors and save the interme-
diate LSE (Log Sum Exponential) value. To ef-
ficiently operate on data in shared memory, we
tile the input query tensor into row blocks of size
KBlockM. Within each row block, the key tensor is
subdivided into tile blocks of size KBlockN. Each
row and column block calculates the tiled atten-
tion map PKBlockMxKBlockN \With this product
of the query and key tensors and the correspond-
ing tile from the value tensor, we follow FlashAt-
tention’s online softmax reduction to compute the
weighted V block write it back. We aggregate the
LSE value per row into an additional buffer of size
[batchSize, headDim, seqLen].

For the second-pass, we run different columns
in parallel to compute a sequential sum of atten-
tion weights per token. As shown in Fig. 4, we
iteratively recompute the QK value and use the
LSE values to normalize it. From top to bottom,
we accumulate the sum column-wise and save it to
the corresponding position in A¢ymyl.

In summary, any memory buffers that we allo-
cate over FlashAttention scale linearly with se-
quence length, i.e., LSE requires O(lguery) and
Acumul requires O(lgey) memory.

"Variables marked in Red/Blue indicate tensors in
FP16/INT2 precision.

18510

KBlockN

(11

LI LT T Jxmaxise

Q:lqueryxd V : l_key x d LSE: |_query

KBlockM «{

T 11

-
LU TTNA T
|

| | l l |1| | J'/ column-wise
T

cumulated score
oo | [T

Figure 4: Two-pass kernel parallelism: In the first pass,
we choose different row blocks running in parallel to
compute the weighted sum of value tensors. At the same
time, each row updates its max and sum and saves it
to LSE. Then it switches to processing column blocks
in parallel during the second pass. For each column,
it recomputes QKT and normalizes it with the corre-
sponding LSE value. From top to bottom, each column
accumulates the sum and writes the result to A.umul-

3.3 MiniKV Algorithm

l Softmax(QK ™)V

Based on the aforementioned observations and op-
timizations, we employ compression and system
co-design for MiniKV, as shown in Algorithm 1.
In the prefill stage, MiniK'V uses the fused selective
flash-attention kernel (§ 3.2) to obtain aggregated
attention scores A.umui. Based on the attention
score, MiniKV selects the subset of KV states that
has the highest attention score at the end of the pre-
fill stage (denoted as K Ef}?”, Vpreh”) The tokens
retained are compressed to INT?2 representations.
We use a separate high-performance compression
kernel provided by (Liu et al., 2024b) to apply bit
shift to pack 16 INT2 scalar values from selected
KYV states into an INT32 tensor. The key/value to-
kens are quantized along the channel/token dimen-
sion. The results at the end of the prefill phase are
the quantized key/value representation (Q g, Qv
stored in packed INT32 tensors) and the quantiza-
tion zero-point and scale (stored in FP16 tensors).

During each decoding step, MiniKV dequantizes
the quantized KV cache (q~!(Qx, Qv)) and uses
the dequantized key states along with the new key
and query token (?x,t¢) for attention calculation.
Once the attention map (A) is obtained, the dequan-
tized values states (q~ 1 (Qy/)) and the new value to-
ken (¢y/) are multiplied by (A) to compute the out-
put of the attention layer (tp). MiniKV fuses the
dequantization operations with subsequent matrix
multiplications to reduce kernel launch overhead
and global memory accesses, leading to latency

Algorithm 1 The MiniKV Algorithm, FP16/INT2

Require: Input X p € Rlpromp>d
I: Xq, Xk, Xv + XpWq, XpWk, XpWy
2: Xo, Acumu = Selective_flash_attn(X g, X, Xv)
3. KO Vel iy < Heavy_hitters(Acuma)
4: Qr,Qv + Quant(K>M"), Quant(VE)
5: KV Cache + Qk, Qv
6
7
8
9

: procedure DECODING(KYV cache, token ¢ € R'*9)
tQ,tx,tv < tWQ, tWk, tWy
QK, Qv, RK, Rv <+ KV cache
: Ri, Ry < Concat([Rx, tx]), Concat([Rv, tv])
10: if len(Rx) = n, then

11: Q’%, Q% + Quant(Ry), Quant(Ry)

12: QK + Concat([Qx, Qk], dim = channel)
13: Qv <+ Concat([Qv, Q%/], dim = token)
14: Rg, Ry + None

15: end if

16: A + Softmax(Concat([q " (Qx)tH, Rxt))]))
17: A[lll}lllty Aunqudnt <_ A[_len(RI&)] A[ICH(RA) :}
18: to < Aquamq (QV) + AunqudanV

19: KV Cache + Qk,Qv, Rx, Ry

20: return to

21: end procedure

reduction.

Inspired by KIVI (Liu et al., 2024b), we use a
streaming buffer for both key and value states dur-
ing the decoding stage, so that newly generated
key/value caches are first stored in FP16 (indicated
by (Rx, Rv)). These tokens are compressed every
n, step. This saves repeated kernel launch over-
head for quantization while maintaining at most 7,
KV tokens in FP16 during generation.

4 Experiments

We conduct experiments to evaluate the effective-
ness of MiniKV in improving accuracy preserving
and inference performance.

4.1 Evaluation Methodology

Models. We compare MiniKV against state-of-
the-art public LLMs, including LLaMA2-7B-chat,
LLaMAZ2-13B-chat (Touvron et al., 2023) and
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023).
Datasets. We choose LongBench for evalua-
tion (Bai et al., 2023), which has been widely
adopted in state-of-the-art works (Liu et al., 2024b;
Hooper et al., 2024; Li et al., 2024). Additional
details on the datasets used can be found in the
Appendix G.

Baselines. We compare MiniKV with the follow-
ing baselines: adaptive KV (H20, SnapKV (Zhang
et al., 2023; Li et al., 2024)), INT2 quantized KV
(KIVI (Liu et al., 2024b)), adaptive + quantized
KV (Q-hitter (Zhang et al., 2024b)), and FullKV.
Q-Hitter combines HoO with INT4 quantization,
providing a strong baseline for MiniKV.

18511

Table 1: Performance evaluation of MiniKV on various models in a range of benchmarks in LongBench. Rows
marked in brown have a similar KV cache size, while KIVI and the full model use a larger KV cache.

‘ Single-Doc QA Synthetic Code Multi-Doc QA Summarization Few-Shot Learning
. X > A . o > & S
Models Methods o \bQ L Cv ¢ N Qf ol o N C < > <
s 0 e 3 & o N By N 3 SRR P
ny& » &“b ?[ﬁ;& Q‘bgw 4 eQO‘e’ 5 S‘\\\\ ‘(\D\QO 00\1% o QO < gb“\ (“\«1\ e
Full Model 2278 3359 8.44 4775 59.56 48.07 22.35 24.88 24.99 23.60 59.67 3938 8538 35.19
‘ KIVI 2245 3332 11.33 425 59.05 47.96 21.88 23.88 24.46 22.86 59.67 38.74 84.80 34.97
H,0 (15%) 16.98 29.72 11.00 4.55 56.87 48.25 19.92 24.58 22.19 22.16 57.33 37.80 84.02 33.49
LLaMA2-7B-ch:
a chat SnapKV (15%) 17.41 3453 8.67 3.59 58.48 47.52 21.00 24.91 19.04 19.74 59.33 37.92 84.72 33.60
Q-Hitter (59%) 17.43 30.08 9.00 4.13 56.84 45.18 17.66 2251 22.83 22.48 59.67 38.46 82.76 33.01
MiniKV 21.01 29.23 10.00 3.82 58.38 47.99 2091 22.97 2345 22.54 59.00 37.94 80.95 33.71
MiniKV Pyramid 19.92 33.96 10.00 4.12 59.72 49.29 20.69 24.62 24.16 22.90 59.00 39.15 82.89 34.65
Full Model 13.72 28.11 20.67 5.58 49.97 47.18 12.13 15.14 26.29 23.52 64.00 40.39 86.52 3332
‘ KIVI 13.56 28.16 17.33 5.05 49.21 47.18 12.80 15.27 25.24 23.07 64.33 40.24 87.07 32.96
H,0 (15%) 11.94 25.13 15.67 4.61 48.18 44.29 13.04 14.52 23.15 22.12 59.67 39.66 83.70 312
LLaMA2-13B-ch:
a 3B-chat SnapKV (15%) 12.11 27.09 22.00 5.18 49.52 45.44 14.10 14.40 20.06 20.75 62.33 39.25 85.86 32.16
MiniKV 11.24 25.13 15.00 3.62 48.43 46.10 12.74 16.16 24.26 22.84 63.33 40.79 84.33 31.84
MiniKV Pyramid 12.79 27.32 17.00 2.79 48.94 46.25 12.66 15.47 25.06 23.14 63.67 40.35 85.33 S
Full Model 25.79 47.97 50.83 2.98 50.69 47.22 27.44 36.44 31.84 25.82 62.67 4049 86.29 41.2
‘ KIVI 25.13 46.30 50.75 3.02 51.16 46.81 26.39 35.11 31.23 25.36 62.33 40.12 86.31 40.77
Mistral7B-instruct H,0 (15%) 20.20 42.55 42.84 3.00 49.66 45.95 24.27 33.04 2743 24.33 60.33 4045 86.20 384
SnapKV (15%) 24.14 48.32 50.23 3.04 50.39 45.76 25.76 34.55 25.10 22.77 61.67 40.12 86.90 39.90
MiniKV 22.94 45.80 49.47 3.36 49.78 45.56 24.27 33.84 29.73 2522 61.67 39.96 86.36 39.84
MiniKV Pyramid 23.10 45.91 48.88 3.24 50.34 45.41 25.18 34.04 29.69 25.32 61.67 40.17 86.63 39.97
Hyperparameters. We use a 50% cache budget = methods (HoO, SnapKV, Q-Hitter) for the same

with MiniKV, with 25% heavy hitter budget and
25% the recent window budget. The group size
during token/channel-wise quantization is set to 16,
i.e. 16 values along the token/channel axis share
quantization zero point and scale. A residual length
of n, = 128 is used for both MiniKV and KIVI.
The maximum prompt length is 4096 for all models
with the first and last 2048 tokens taken for a longer
prompt. The maximum generation length is dataset-
specific. No task has a generation length of more
than 512 tokens. Please see Appendix H for other
evaluation details.

Hardware. @ We conducted experiments on
NVIDIA 4xA100-40GB, 4xA40-46GB and
4xGH200-120GB GPUs.

4.2 Enhancing KV Cache Compression
Accuracy in Long Context Inference

To make a fair comparison, we compare all meth-
ods with adaptive KV policies (H,O, SnapKV, Q-
Hitter, and MiniKV) under a similar KV cache size
(Appendix I). Given a prompt length of 4096 and
generation length of 512, the KV cache size for
MiniKV is 0.33 GB. A cache budget of o = 15%
results in a similar KV cache size for H,O. A cache
budget of o = 59% results in a similar KV cache
size for Q-Hitter. We test two strategies of MiniKV,
namely MiniKV and MiniKV-Pyramid, to demon-
strate the effectiveness of MiniKV. MiniKV fol-
lows a uniform cache allocation with (25%, 25%)
HH, RW budget per layer. MiniKV-Pyramid uses
25% RW budget per layer but the HH budget is
distributed across layers as described in § 3.1.3.
The results are shown in Table 1. MiniKV
outperforms other state-of-the-art adaptive KV

KV cache size. For LLaMA2-7B-chat, MiniKV-
Pyramid achieves an average accuracy of 34.65,
obtaining 98.5% of the full model accuracy 35.19.
MiniKV is also able to maintain accuracy on
LLaMAZ2-13B-chat and Mistral-7B, indicating that
our approach generalizes well across datasets and
model classes. While the full model and KIVI per-
form marginally better than MiniKV, they have
much larger KV cache memory consumption. The
synergistic composition of 2-bit quantized KV and
layer-wise adaptive KV delivers these improve-
ments, and it also shows the promising aspect of
using both quantization and adaptive KV in con-
junction to reduce the high memory footprint of the
KV cache.

4.3 Setting A New Pareto Frontier

With H20, SnapKV, Q-Hitter, and MiniKV the
user can tune the cache budget, potentially improv-
ing performance at the cost of a larger KV cache.
An ideal technique would maintain performance
when lowering the cache budget. We plot the per-
formance of MiniKV against the KV cache size.
The size of the KV cache is computed using the
KV memory consumption analysis in Appendix L.
To highlight interesting configurations, we mark
the Pareto optimal front, which is the configura-
tion that offers the smallest KV cache size for the
highest performance.

Fig. 5 shows the performance vs KV cache
size curve for two datasets (Qasper and Lcc), the
remaining plots can be found in the Appendix
J. MiniKV achieves the pareto optimal compres-
sion strategy across all 6 major task categories on
LongBench (single/multi-doc QA, LC understand-

18512

ing, code completion, summarization and few-shot
learning). These results validate the effectiveness
of MiniKV with varying KV cache sizes.

Dataset: Qasper Dataset: Lcc

o

Y
3

>22 >

9 [O]

Ca e

3 3 58

S S

< < s7

c® <

o o

C s c 56 +

[} B +H0 [9] W H0

s3] @ v [2a] @ KV

o7 o555

c | 0 SnapKV c 0 SnapKV

O 16 & & Q-Hitter O s & Q-Hitter

— * Minikv — MinikV
15 o x Pareto Frontier 53 A x Pareto Frontier

0.0 2.0 0.0 2.0

0.5 1.0 15 0.5 1.0 15
KV Cache Size (GB) KV Cache Size (GB)

Figure 5: Algorithm Performance vs KV Cache Size:
The Pareto frontier (the black curve) indicates the opti-
mal compression strategy across a range of KV cache
sizes. MiniKV lies on the Pareto frontier across all 6
task categories.

4.4 Results on InfiniteBench

We test the Llama3 herd of models (AI, 2024)
on selected datasets from the InfiniteBench bench-
mark (Zhang et al., 2024a) on GH200 GPUs. We
compare MiniKV with the uncompressed model
baseline and the quantization-only baseline (KIVI).
The results are shown in Table 2.

For the Llama3-8B-instruct model, MiniKV
achieves an average score of 13.44, closely match-
ing the full model and KIVT’s scores of 13.52 and
13.59, respectively, while utilizing a significantly
smaller KV cache.

4.5 Results on GSMSK

We evaluate the Llama3 model family (Al, 2024)
on the Platinum GSMS8K dataset (Vendrow et al.,
2025), a reasoning-focused benchmark with short
contexts (~ 256 tokens). Unlike long-context gen-
eration, where KV cache growth creates scalability
issues, GSMS8K poses a different challenge. De-
spite its compact inputs, the task requires strong
KV state retention (90% adaptive budget) for accu-
rate reasoning, as shown in Fig. 6.

4.6 System Performance Results

We evaluate the system performance of the
LLaMAZ2-7B-chat model on a single NVIDIA
A100 GPU with 40GB of memory. We utilize
FlashAttention kernels for KIVI and the Full Model
while employing our customized kernel introduced
in § 3.2 for MiniKV. H,O and Q-Hitter do not
support FlashAttention.

Speeding up end-to-end latency. LLM inference
is predominantly constrained by the memory band-
width required to retrieve the model states. MiniKV

GSM8K Performance for llama3-8b-instruct

3

s)
& g

GSM8K Accuracy (%)

---- Full Model
=== KIvI
Minikv
[@ MinikV Pyramid

3

20 30 80 %

Adam;)tive K\S/u CacheﬁuBudgelgu(%)
Figure 6: Performance on GSM8K: Since GSMS8K is a
reasoning-intensive task, MiniKV requires a significant
adaptive KV cache budget (90%) to match the perfor-
mance of the full model.

reduces latency through a compression and system
co-design approach, which reduces the number of
KV pairs loaded for each next-token prediction
by revising 2-bit KV quantization combined with
adaptive KV policies, while at the same time main-
taining hardware friendly execution using high-
performance memory-efficient kernels compatible
with system optimizations such as FlashAttention.
As aresult, as shown in Fig. 7 (left), MiniKV has
a lower latency than its baselines, especially in
long sequences (e.g., >10k). We include a detailed
latency breakdown analysis in Appendix K.

Achieving high throughput. As shown in Fig. 7
(right), MiniKV outperforms all its baselines in
throughput, measured as the number of tokens pro-
cessed per second, due to its lower latency and
ability to support larger batch sizes and longer se-

quence lengths.

12001 —+— Full Model

H,0
9001 & KIVI P
—e— MinikV _—
600 =
300 /
/1

0 4 8 12 16
Batch Size

75 —— Full Model ~—=— KIVI
H,0 —e— MiniKV

Latency (s)
- [=2]
& 3
¥
]
|
|
\ \
.

Throughput (tokens/s)

w
=)

0k 10k 20k 30k 40k
Prompt Length

Figure 7: Left: Latency (s) for batch size = 1 and gener-
ation length = 1024. Right: Throughput (tokens/s) for
prompt length = 2048 and generation length = 1024.

Effectively reducing peak memory usage. We
benchmark peak memory usage, i.e., the maximum
memory occupied by all model tensors during the
generation. The memory savings achieved by KV
cache compression can be rendered ineffective if
peak memory usage exceeds the total GPU mem-
ory. We evaluate the impact of batch size and
prompt length on peak memory usage in Fig. 8
(left). MiniKV demonstrates the lowest peak mem-
ory consumption compared to its baselines. HoO
goes out-of-memory at batch size 16 as it material-

18513

Table 2: Performance evaluation of MiniKV on various models in a range of benchmarks in InfiniteBench. Rows
marked in brown have a similar KV cache size, while KIVI and the full model use a larger KV cache.

‘ Methods

Benchmarks

Models N Average
o Q O o S Q> O
0&0\‘ (0% * é@oa@w &e}d N o = o %«\Q\“
\/00%% ST o A g\)‘(\ \)00% W
Full Model 39.74 12.00 31.22 3.39 3.39 1.00 5.94 12.00 13.59
Llama3-8b-instruct ‘ KIVI 39.74 11.50 31.22 3.39 3.39 0.80 6.11 12.00 13.52
MiniKV 40.17 12.00 31.47 3.39 2.20 0.00 6.12 12.00 13.42
MiniKV Pyramid 39.74 12.50 31.22 3.39 2.37 0.20 6.10 12.00 13.44
Full Model 31.88 12.00 26.40 3.39 3.05 0.60 9.66 12.57 12.44
Llama3-3b-instruct KIVI 33.62 15.50 26.40 3.39 3.22 0.20 9.20 7.71 12.41
MiniKV 33.62 11.00 26.65 3.05 2.03 0.00 8.63 8.00 11.62
MiniKV Pyramid 34.50 11.50 26.65 3.39 1.86 0.00 8.92 9.14 11.99
Full Model 37.55 9.50 24.87 3.39 3.22 0.00 10.71 14.57 12.98
Llama3-1b-instruct KIVI 37.12 8.50 24.87 3.39 2.71 0.00 10.37 12.86 12.48
MiniKV 37.12 9.00 24.87 2.88 1.69 0.00 10.01 14.86 12.55
MiniKV Pyramid 37.12 9.50 24.37 3.05 1.69 0.00 10.15 14.29 12.52
izes the intermediate attention score matrix while 1024 | 2048 | 4096 8192
KIVI maintains the full KV cache and therefore MiniKV | 521 | 14.85 | 48.04 | 187.83
has a higher memory consumption. Standard | 10.46 | 40.18 | 130.51 | OOM

) 50k
~ A
g2 / £ 40k
]
@ —4— Full Model =]

21 @
; H,0 G 30k
S 18 —=— KIVI E2Ok
g —e— MinikKV/ g
§ 15 —— 2

& 10k

3
- ' Batcsh Sizel2 10 Full Model H,0 KIVI MiniKV

Compression Strategies
Figure 8: Left: Peak memory usage (GB) vs batch size
for prompt = 2048 and generation length = 1024. Right:
Maximum prompt length supported by MiniKV and its
baselines for batch size = 1.

Enhancing maximum processable prompt.
MiniKV’s lower memory consumption becomes
more apparent with longer prompt lengths. Fig. 8
(right) shows that MiniKV can process prompts
10% longer than its strongest baseline KIVI. Addi-
tionally, MiniKV’s selective flash-attention kernel
allows significantly longer sequence lengths when
compared to HO.

Micro-benching on MiniKV’s kernel. Table 3
and 4 shows MiniKV’s attention kernel outper-
forms the standard attention implementation used
in HyO. Unlike the standard attention mechanism,
MiniKV’s memory footprint scales linearly with se-
quence length, allowing for much longer prompts.
Furthermore, MiniKV ’s kernel offers significantly
reduced latency, enabling faster processing.

1024 | 2048 | 4096 | 8192
MiniKV | 0.25 | 0.50 1.00 2.01
Standard | 1.25 | 4.51 | 17.01 | OOM

Table 3: Memory usage (GB) comparison between
MiniKV’s kernel and the standard attention operator
on different input sequence lengths.

Table 4: Latency (ms) comparison between MiniKV’s
kernel and the standard attention operator on different
input sequence lengths.

MiniKV’s kernel is used only during the prefill
phase to avoid being bottlenecked by the quadratic
dependence on sequence length. While the kernel
slows down the execution time of the prefill phase
from 0.118 ms (using FlashAttention) to 0.622 ms
(using MiniKV’s kernel) in LLama2-7B, it signifi-
cantly reduces the memory consumption from 1.25
GB (using standard attention computation) to 0.25
GB (using MiniKV’s kernel) for sequence length
1024, effectively enabling longer sequence infer-
ence without running out-of-memory.

5 Conclusion

In this work, we revisit KV cache optimization via
compression and system co-design to accelerate
the inference of LLM. Our empirical analysis in-
dicates that it is challenging to directly compose
state-of-the-art 2-bit quantized KV with existing
adaptive KV policies while preserving both accu-
racy and system efficiency on long context tasks
under a high compression ratio. To address this
issue, we develop MiniKV to bridge the gap be-
tween ultra low-bit KV quantization and adaptive
policies, as well as the gap between the compres-
sion algorithm and hardware. Evaluation on a wide
range of datasets and models shows that MiniKV
preserves long context accuracy while significantly
improving the efficiency of LLM inference.

18514

6 Limitations

MiniKV is promising in optimizing the KV cache.
However, we identify several limitations and oppor-
tunities that can become future avenues of research
to achieve an even higher compression ratio and
generalizable compression.

1. Combination with model optimizations.
While we mainly focus on KV cache opti-
mization (which provides significant benefits
on its own), MiniKV can also be combined
with other optimization techniques, such as
model compression (Frantar et al., 2022; Xiao
et al., 2023a). This would further improve
the computational and memory efficiency of
LLMs.

2. Extensible design. While we use H,O and
KIVI as an example, our approach is compat-
ible with other KV optimization techniques,
such as StreamingLLM (Xiao et al., 2023b)
and KVQuant (Hooper et al., 2024). Given
that MiniKV combines HyO and KIVI, we
also explored the possibility of combining
SnapKV and KIVI. This combination should
be viable in theory, as it involves only chang-
ing the eviction strategy during the prefill
phase. However, we find that doing so leads
to a severe drop in performance, with Long-
Bench scores dropping from 35 to 32 points.
Further experiments show that the tokens re-
tained by SnapKV tend to be more sensitive to
2-bit quantization than those selected by HoO.
This highlights the need for a more robust and
generalizable approach to combining eviction
and quantization, and a framework to deter-
mine when such combinations are effective.

Acknowledgments

We sincerely appreciate the insightful feedback
from the anonymous reviewers. This research
was supported by the National Science Founda-
tion (NSF) under Grant No. 2441601. The work
utilized the DeltaAl system at the National Center
for Supercomputing Applications (NCSA) through
allocation CIS240055 from the Advanced Cyberin-
frastructure Coordination Ecosystem: Services &
Support (ACCESS) program, which is supported
by National Science Foundation grants #2138259,
#2138286, #2138307, #2137603, and #2138296.
The Delta advanced computing resource is a col-
laborative effort between the University of Illinois
Urbana-Champaign and NCSA, supported by the

NSF (award OAC 2005572) and the State of Illinois.
This work also utilized the Illinois Campus Cluster
and NCSA NFI Hydro cluster, both supported by
the University of Illinois Urbana-Champaign and
the University of Illinois System.

References

Meta Al 2024. Introducing Meta LLaMA-3. https:
//ai.meta.com/blog/meta-1llama-3/.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2023. Longbench: A bilingual, mul-
titask benchmark for long context understanding.
CoRR, abs/2308.14508.

William Brandon, Mayank Mishra, Aniruddha
Nrusimha, Rameswar Panda, and Jonathan Ragan-
Kelly. 2024. Reducing transformer key-value
cache size with cross-layer attention. CoRR,
abs/2405.12981.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu
Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao
Chang, Junjie Hu, and Wen Xiao. 2024. Pyramidkv:
Dynamic KV cache compression based on pyramidal
information funneling. CoRR, abs/2406.02069.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
In Advances in Neural Information Processing Sys-
tems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurlPS 2022, New Or-
leans, LA, USA, November 28 - December 9, 2022.

Daya Guo DeepSeek-Al, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao
Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025.
Deepseek-r1: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. GPTQ: accurate post-training
quantization for generative pre-trained transformers.
CoRR, abs/2210.17323.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,
Jiawei Han, and Jianfeng Gao. 2023. Model tells you
what to discard: Adaptive KV cache compression for
Ilms. CoRR, abs/2310.01801.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,
Michael W. Mahoney, Yakun Sophia Shao, Kurt
Keutzer, and Amir Gholami. 2024. Kvquant: To-
wards 10 million context length LLM inference with
KV cache quantization. CoRR, abs/2401.18079.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego

18515

de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7B. arXiv
preprint arXiv:2310.06825.

Jure Leskovec and Rok Sosic. 2016. SNAP: A General-
Purpose Network Analysis and Graph-Mining Li-
brary. ACM TIST, 8(1):1:1-1:20.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024. Snapkv:
Llm knows what you are looking for before genera-
tion. arXiv preprint arXiv:2404.14469.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2024.
Awq: Activation-aware weight quantization for on-
device llm compression and acceleration. Proceed-
ings of Machine Learning and Systems, 6:87-100.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholam-
reza Haffari, and Bohan Zhuang. 2024a. Minicache:
Kv cache compression in depth dimension for large
language models. CoRR, abs/2405.14366.

Liyuan Liu, Jialu Liu, and Jiawei Han. 2021. Multi-
head or single-head? an empirical comparison for
transformer training. CoRR, abs/2106.09650.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie
Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chan-
dra. 2023a. LLM-QAT: data-free quantization
aware training for large language models. CoRR,
abs/2305.17888.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-
lidis, and Anshumali Shrivastava. 2023b. Scis-
sorhands: Exploiting the persistence of importance
hypothesis for LLM KV cache compression at test
time. In Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and
Xia Hu. 2024b. KIVI: A tuning-free asymmetric 2bit
quantization for KV cache. CoRR, abs/2402.02750.

Piotr Nawrot, Adrian Lancucki, Marcin Chochowski,
David Tarjan, and Edoardo M. Ponti. 2024. Dynamic
memory compression: Retrofitting 1lms for acceler-
ated inference. CoRR, 2403.09636.

NVidia. 2025. Introducing New KV Cache Reuse Op-
timizations in NVIDIA TensorRT-LLM. https:
//tinyurl.com/4zbvwpcz. Accessed: 14-
Feburary-2025.

OpenAl. 2024. Introducing OpenAl ol . https://
openai.com/ol/.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo-
pher Ré, Ton Stoica, and Ce Zhang. 2023. Flexgen:
High-throughput generative inference of large lan-
guage models with a single GPU. In International
Conference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
31094-31116. PMLR.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao,
Baris Kasikei, and Song Han. 2024. Quest: Query-
aware sparsity for efficient long-context llm inference.
arXiv preprint arXiv:2406.10774.

Philippe Tillet, Hsiang-Tsung Kung, and David D. Cox.
2019. Triton: an intermediate language and com-
piler for tiled neural network computations. In Pro-
ceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming
Languages, MAPL@PLDI 2019, Phoenix, AZ, USA,
June 22, 2019, pages 10-19. ACM.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Raushan Turganbay. 2024. Unlocking Longer
Generation with Key-Value Cache Quantiza-
tion. https://huggingface.co/blog/
kv—-cache-quantization. Accessed: 14-
Feburary-2025.

Joshua Vendrow, Edward Vendrow, Sara Beery, and
Aleksander Madry. 2025. Do large language
model benchmarks test reliability? arXiv preprint
arXiv:2502.03461.

vLLM. 2025. Quantized KV Cache. https:
//docs.vllm.ai/en/stable/features/
quantization/quantized_kvcache.
html. Accessed: 14-Feburary-2025.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head

18516

self-attention: Specialized heads do the heavy lifting,
the rest can be pruned. In Proceedings of the 57th
Conference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 5797-5808.
Association for Computational Linguistics.

Zhongwei Wan, Xinjian Wu, Yu Zhang, Yi Xin, Chaofan
Tao, Zhihong Zhu, Xin Wang, Siqi Luo, Jing Xiong,
and Mi Zhang. 2024. D20: Dynamic discriminative
operations for efficient generative inference of large
language models. CoRR, abs/2406.13035.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao
Peng, and Yao Fu. 2024. Retrieval head mecha-
nistically explains long-context factuality. CoRR,
abs/2404.15574.

Guangxuan Xiao, Ji Lin, Mickaél Seznec, Hao
Wu, Julien Demouth, and Song Han. 2023a.
Smoothquant: Accurate and efficient post-training
quantization for large language models. In Interna-
tional Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research,
pages 38087-38099. PMLR.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian
Guo, Shang Yang, Haotian Tang, Yao Fu, and Song
Han. 2024. Duoattention: Efficient long-context
LLM inference with retrieval and streaming heads.
CoRR, abs/2410.10819.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023b. Efficient stream-
ing language models with attention sinks. CoRR,
abs/2309.17453.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin
Zhang, and Hai Zhao. 2024a. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput Ilm
inference. CoRR, abs/2405.12532.

June Yong Yang, Byeongwook Kim, Jeongin Bae,
Beomseok Kwon, Gunho Park, Eunho Yang, Se Jung
Kwon, and Dongsoo Lee. 2024b. No token
left behind: Reliable KV cache compression via
importance-aware mixed precision quantization.
CoRR, abs/2402.18096.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zi-
hang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, et al.
2024a. oo bench: Extending long context eval-
uation beyond 100k tokens. arXiv preprint
arXiv:2402.13718.

Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya
Kailkhura, Beidi Chen, and Atlas Wang. 2024b. Q-
hitter: A better token oracle for efficient llm inference
via sparse-quantized kv cache. Proceedings of Ma-
chine Learning and Systems, 6:381-394.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark W. Barrett,

18517

Zhangyang Wang, and Beidi Chen. 2023. H20:
heavy-hitter oracle for efficient generative inference
of large language models. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

A Formal Problem Formulation

We introduce a general formulation of the co-
compression of the KV cache via quantization and
selection. For a given LLM ® with H layers, we
denote its key states and value states at a layer h
as K, € R™ and V,, € R™*9, respectively. Let
Qn, € R4 denote the query state. Then, the out-
put Oy, for each attention head of @ is:

T
Oy = ApVh, Ap = softmax (Qf/lgh) (D

Then the co-compression problem can be formu-
lated as:

Definition 2.1 (KV Cache Co-Compression Prob-
lem, informal).

Y K and Vi, where h € {0,1,..,H — 1}, find
the quantizer Qy|-| with b quantization bits, the
selection policy Sp[-] with C selective KV cache
size, such that |Op, — Of | < €, where O represents
the output for each attention head of ® with S|
and Qy[], and € is an acceptable small positive
value.

B Comparison of MiniKV with
Alternative Methods

We provide a detailed summary of the compari-
son between MiniKV and previous approaches in
Table 5.

C KV Cache Eviction on Long-Context
Tasks

Fig. 9 shows that with 50% KV cache size, the
LLM can still obtain comparable accuracy (e.g.,
<1 point) as the full KV cache. However, high
levels of KV eviction (e.g., 80-95%) hurts LLM’s
performance on long context tasks significantly.

Eviction-based KV On LongBench

-@- H0
SnapKV

,j/

w W w
& > bl
o «n 5y

Performance

w
w
«n

33.0 /

01 02 03 0.4 05 06 0.7 08 0.9
Cache Budget

Figure 9: Eviction-based KV on LongBench: High
levels of KV eviction (e.g., 80-95%) hurts LLM’s per-
formance on long context tasks significantly.

D Additional Results on Attention
Distribution on Long-Context
Understanding Tasks

Researchers have always been interested in exploit-
ing the underlying structure of the attention mech-
anism to improve inference efficiency (Liu et al.,
2021; Voita et al., 2019; Wu et al., 2024).

While prior studies show that attention scores
are largely sparse (Zhang et al., 2023; Xiao et al.,
2023b; Liu et al., 2023b), we observe that the at-
tention distribution has more diverse patterns on
long sequences. Fig. 10 shows that attention distri-
bution of LLaMA2-7B-chat on a sample from the
HotpotQA dataset.

We observe distinctive patterns: (i) the attention
distribution at the lower layers has a wide coverage
over sequence lengths and is more dispersed, and
(ii) attention becomes more narrowly focused on a
small subset of tokens and starts to exhibit block-
wise sparse attention as the tokens move to the
higher layers. We consistently observe this pattern
across datasets in LongBench.

E Persistent Context Selection Analysis

We analyzed a sample prompt from the Lcc dataset
to show that the heavy hitters selected in the pre-
fill phase persist across generations Fig. 11. The
green positions indicate that the 150 heavy hitters
currently retained by the HoO algorithm, while the
white ones represent evicted tokens. It is evident
that while different heads have different importance
distributions, the important tokens largely do not
vary across different generation steps.

F Token-Wise Quantization Of The KV
Cache

A prevalent approach to compress the KV cache is
by quantization. However, directly applying quan-
tization to selective KV imposes challenges. Prior
studies find that KV states contain outliers (Liu
et al., 2023a; Xiao et al., 2023a), and per-token
quantization is needed to avoid accuracy degrada-
tion. Fig. 12 shows that while applying INTS8 and
INT4 per-token quantization to both key and value
caches helps maintain the accuracy of selective KV
on LongBench, further reducing it to INT?2 results
in a significant accuracy drop, because 2-bits can
not fully capture the dynamic range of KV token
distributions. This motivates using channel-wise
quantization as in KIVI (Liu et al., 2024b) and
KVQuant (Hooper et al., 2024).

18518

Table 5: Comparison with previous KV cache optimization methods for LLM inference.

Approach Eviction-based KV | Quantization | Training-free | LongBench
AttentionSink (Xiao et al., 2023b) v v
FastGen (Ge et al., 2023) v v
ScissorHands (Liu et al., 2023b) | v/ 4-bit v
H20 (Zhang et al., 2023) v 4-bit v
FlexGen (Sheng et al., 2023) 4-bit v
LLM-QAT (Liu et al., 2023a) 4-bit
Q-Hitter (Zhang et al., 2024b) v 4-bit v
KVQuant (Hooper et al., 2024) 4-bit v v
KIVI (Liu et al., 2024b) 2-bit v v
MiniKV v 2-bit v v
100 10° 100
, Layer 0 Head 0 , Layer 0 Head 15 , Layer 0 Head 31
\ 1071 1071 1071
2004 200 200
400 10_2 400 10_2 400 10_2
600 600 600
1073 1073 1073
1000 104 1000 10~4 1000 104
7 105 | 105 1075
200 400 600 800 1000 1200 200 400 600 800 1000 1200 200 400 600 800 1000 1200
1076 106 1076
100 100 100
, Layer 15 Head 0 , Layer 15 Head 15 , Layer 15 Head 31
1071 1071 101
1072 1072 1072
1073 1073 1073
1074 1074 1074
1075 1075 N , 1075
107 10-° 1076
100 100 100
Layer 31 Head 0 ,__Layer 31 Head 15 ,__ Layer 31 Head 31
107! 107t 107t
1072 4 1 1072 1072
i
1073 ” 1 ‘ 1073 1073
800 ‘
10™4 1000 i it gl 1074 1074
1075 il 105 1075
1076 106 1076
Figure 10: The attention distribution of LLaMA2-7B over the HotpotQA dataset in LongBench.
G Dataset Details task categories and in total 13 datasets (Bai et al.,

2023): Qasper(F1) and MultiFieldQA(F1) are sin-
gle doc QA tasks; Passage Retrieval(accuracy) and
passage count(accuracy) are synthetic datasets to

We seek a dataset that covers a broad range of
long-context understanding tasks. For this reason,
we choose LongBench, which covers six major

18519

Top-k tokens at head 0

RO

\
200 400 600 800 1000 1200 1400
Top-k tokens at head 1

R

0 200 400 600 800 1000 1200 1400
Token Position Index

=
o

w
N

-

Decoding Step

-
o

w
()

Figure 11: Top-k tokens with the highest cumulative
attention score on the Lcc dataset from LongBench.
Green tokens mark the heavy hitters retained by the
H,O algorithm. Here, we choose k£ = 150.

Different Quantization Strategies on LongBench

3 351
o
5 344
(6]
O 334 —e— FP16
< —=— INT8
c 32
O —e— INT4
c]
g 31 INT2
o 301
S 29]
1

20% 40% 60% 80%

Cache Budget

Figure 12: Performance of per-token quantized HyO
on the LongBench dataset. INT8/4 quantization can
maintain performance across cache budgets. However,
INT2 quantization suffers from a catastrophic drop in
performance.

test the model’s tendency to forgot information
over a long context understanding; LCC(similarity)
and RepoBench-P(similarity) are code completion
tasks; 2WikiMultihopQA(F1) and HotpotQA(F1)
are multi doc QA tasks; GovReport(Rouge)
and MultiNews(Rouge) are summarization tasks;
TREC(accuracy), SAMSum(Rouge) and Trivi-
aQA(F1) are few-shot learning tasks.

H Evaluation Details

Decoding Strategy All models generate re-
sponses using deterministic greedy decoding across
all tasks to ensure a fair comparison and repro-
ducibility.

LongBench Truncation Strategy: we ensure
that the model consistently selects the first 2000
and last 2000 tokens, regardless of changes to trun-
cation settings or special tokens. This ensures sta-
ble score calculations across tests.

Pyramid-like Allocation Details Inspired by
PyramidKV(Cai et al., 2024), we adjust the heavy
hitter cache budget across layers by allocating more

cache in lower layers and less in higher ones. The
token allocation across layers follows a linear func-
tion. Specifically, considering the average heavy
budget size is x, we choose a hyper-parameter pyra-
mid depth d to adjust the ratio. The bottom-most
layer has a heavy budget size of x/d, and the top-
most layer has a heavy budget size of 2z —x/d with
intermediate layers linearly interpolated between
these values. We choose pyramid depth d = 7 for
our experiments.

I KV Cache Compression Ratio Analysis

Given a model with (H) layers, hidden dimen-
sion (d), number of attention heads (npeqds)s
and a prompt and generated sequence of length
(prompt, lgen) the KV cache size for different tech-
niques is shown below:

1. Full model: All tokens are stored in FP16
format. Therefore the KV cache has size =
2 % (H x d) x (lprompt + lgen) X 2 bytes.

2. HO: Given a cache budget of (g, rw)
for the heavy hitters and recent window the
KV cache has size = 2 x (H x d) X (Iprompt) ¥
(aHH + aRw) X 2 bytes

3. SnapKYV: Given a cache budget of p, SnapKV
performs eviction in the prefill phase and re-
tains all generated tokens. Hence, the KV
cache has size = 2 x (H x d) X (pxl,+14) X
2 bytes

4. KIVI: With a group size of 16, i.e., 16 scalars
quantized from FP16 to INT2 format, the
memory required by a group is 16 scalars
x2 bits = 4 bytes. The quantization zero-
point and scale are saved in FP16 format and
require 2 X 2 bytes. In total, the group re-
quires 8 bytes. Hence, the KV cache has
(H X d) X (lprompt + lgen) bytes'

5. Q-Hitter: The Q-hitter paper performs INT4
token quantization per attention head. There-
fore, the (d/npeqds) scalars which would be
stored in FP16 are now stored in 4-bit pre-
cision. The quantization metadata is the
zero-point and scale, both in FP16 precision.
Therefore, the compression factor for Q-Hitter
is (d/nheads * 16)/(d/nheads * 4+ 2 x 16)
For the Llama-7B-chat model this number is
(4096/32%16)/(4096/32 x4 4 32) = 3.76 .
Hence, the KV cache size is 2 x (H x d) X
(Iprompt) X (xHrH + agw) % 2/3.76 bytes

6. MiniKV: The prompt tokens are evicted with
a cache budget of ay, agw and all gener-

18520

ated tokens are retained. All tokens are stored
in 2-bit precision. Similar to KIVI, each group
of 16 scalars and their quantization metadata
requires 8 bytes in total. Hence, the size of the
KV cache is = (H x d) X (agyg + arw) X
(lorompe) + (H x d) % (Igen) bytes.

Given a certain prompt and output length, the
uncompressed baseline and KIVI have a fixed KV
cache size. However, HoO, Q-Hitter, and MiniKV
can tune the cache budget (a7, augyy) to modify
the KV cache size.

For prompt length 4096 and generation length
512 the full model’s and MiniKV’s KV cache con-
sume 2.4GB and 0.33GB respectively. Therefore,
MiniKV leads to an (1 — 0.33/2.4) = 86% reduc-
tion in KV cache size.

J Performance against KV cache size

As discussed in § I, the KV cache size depends on
the prompt and generation length. Each dataset in
LongBench has a different maximum generation
length, therefore we make separate plots for each
dataset with prompt length 4096 and the generation
length as the dataset-specific maximum generation
length. Figure 13 and 14 show the performance vs
KV cache size curve. MiniKV achieves the optimal
compression strategy across all six major task cat-
egories on LongBench (single/multi-doc QA, LC
understanding, code completion, summarization,
and few-shot learning). These results validate the
effectiveness of MiniKV with varying KV cache
sizes.

K End-To-End Latency Breakdown

80

Decode QKV Projection
mmm Decode Attention
mmm Decode Output Projection
601 mmm MLP

o MinikV KIVI] MinikV KIvI

Prompt Length = 1024 Prompt Length = 40960
Figure 15: Per token latency breakdown for the decod-
ing phase. Generation length = 1024 and batch size = 1.

Latency (ms)
B
o

=)

We analyze the breakdown of latency associated
with each computation in the standard decoder
layer of the transformer architecture for MiniKV
and KIVI during the decoding phase. We particu-
larly look at latencies for projections of the input
vector into query, key, and value vectors, attention
computation, and output projection. We also mea-

sure the time spent in the MLP layer. We present
the latency breakdown as the total latency for each
computation component divided by the generation
length.

As shown in Fig. 15, MiniKV achieves a lower
end-to-end latency than KIVI. This improvement
primarily arises during attention computation as
well as projection of Query, Key and Value. Specif-
ically, the inference time is dominated by KV cache
loading time when processing long contexts. There-
fore, MiniKV’s smaller KV cache results in re-
duced KV load times from the GPU’s HBM.

18521

Dataset: Qasper Dataset: MFQA

” A v *
2 35
u
a 21 ’ 5 bl
e L c
320 n 533
o o
[*] | | [v]
< <3
= 19 =
2 2
@ 18 g3
[sa) W HO o MW H:0
24 ® KV D30 +* @ Kvi
3 € Snapkv 3 @ Snapkv
16 # QHitter 29 - + Q-Hitter
MinikV Minikv
15 x Pareto Frontier 28 n x Pareto Frontier
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
KV Cache Size (GB) KV Cache Size (GB)
Dataset: PassageRet. ss Dataset: PassageCnt
12 ’
|
S 11 .50
o 1°)
© ©
5 5
010 = Qs *
Q n QT []
< < . =
S o S
c * * < 4.0 »
Q Q
I W H0 I * n W H0
28 ® KV = ® Kvi
S € Snapkv 935 € Snapkv
7 4 Q-Hitter 4 Q-Hitter
Minikv Minikv
x Pareto Frontier 3.0 - x Pareto Frontier
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
KV Cache Size (GB) KV Cache Size (GB)
Dataset: Lcc Dataset: Repobench
60
u 49
59 L]]
> > L 2 u
[e) =) .
© © - *
Css C s °
=1 =1 [} <*
3 S
< 57 g L 4 *
= K=
"] o 47
C s6 c
Q 3
o m H0 0 ¥ B HO
D55 ® KvI D46 ® KV
3 € Snapkv 3 @ Snapkv
54 % Q-Hitter * & Q-Hitter
MinikV 25 Minikv
53 - x Pareto Frontier * x Pareto Frontier
0.00 0.25 0.50 0.75 1.00 125 150 175 2.00 0.00 0.25 050 0.75 1.00 125 150 175 2.00
KV Cache Size (GB) KV Cache Size (GB)
Dataset: 2wikimQA Dataset: HotpotQA
[]
26
22 >
o o
e e
5 u 525
g2 S
< <
S S
f=4 c
@ 20 9] -
o N HO o * m H0
2 ® KV 2. + + e KV
S * @ Snapkv E @ Snapkv
* +* & Q-Hitter & Q-Hitter
Minikv MinikV
1 + * x Pareto Frontier 22 x Pareto Frontier
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
KV Cache Size (GB) KV Cache Size (GB)

Figure 13: Performance Versus KV Cache Size: MiniKV offers the best performance for the smallest KV cache size
across all 6 task categories.

18522

Dataset: GovReport Dataset: MultiNews

25
235
. ‘
24 2
3 [] &30
£ € s
5 .
223 * 2
))
< TS < 220
£ 22 <
2 2215
@ W H0 K m H0
21 2 2
= ® KV o210 : KIvi
s} @ Snapkv S] Snapkv
3 2205
20 * & Q-Hitter * & Q-Hitter
MinikV 20.0 MinikV
19 P x Pareto Frontier * x Pareto Frontier
0.25 0.50 0.75 1.00 1.25 1.50 175 2.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
KV Cache Size (GB) KV Cache Size (GB)
Dataset: Trec Dataset: Samsum
60 = =
¢ ™ 39.5
* PO |
>so > * []
3 & 39.0 &+ | |
s e
¥
§ g ° *
& s8 385 -]
F= ~
% %} <
c c
@ @ 38.0 PS
m 57 W HO0 o W HO
o o L
2 ® KV 2 @® KV
S @ Snapkv CEA @ Snapkv
56 + QHitter + Q-Hitter
Minikv MinikV
x Pareto Frontier 31.0 n x Pareto Frontier
0.00 0.25 0.50 0.75 1.00 125 150 175 2.00 0.00 025 0.50 0.75 1.00 125 150 175 2.00
KV Cache Size (GB) KV Cache Size (GB)

Dataset: TriviaQA

85
>
[®)
e
S 84
o
O
<
=
O 83
o
o H HO0
= ® KV
382 FY @ Snapkv
& Q-Hitter
Minikv
81 x Pareto Frontier
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

KV Cache Size (GB)

Figure 14: Performance Versus KV Cache Size: MiniKV offers the best performance for the smallest KV cache size
across all 6 task categories.

18523

