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Abstract

State-of-the-art 2-bit KV cache quantization

techniques achieve excellent results in accel-

erating LLM inference while retaining accu-

racy on long context tasks. However, further

pushing the compression ratio fails to deliver

performance gains. In this work, we revisit

these approaches by considering, additionally,

adaptive KV methods that retain LLM accu-

racy with only a subset of KV states. This

leads us to propose a method based on 2-bit KV

cache quantization with adaptive KV policies.

In addition, we take an algorithm and system

co-design approach by developing hardware-

friendly kernels to accelerate LLM inference

while making MiniKV compatible with exist-

ing memory-efficient attention techniques such

as FlashAttention, effectively translating algo-

rithmic improvements into system performance

gains. Experiments on a wide range of long

context tasks show that MiniKV effectively

achieves >80% KV cache compression while

retaining accuracy, outperforming state-of-the-

art methods while achieving excellent latency,

throughput, and memory consumption improve-

ments in long context inference.

1 Introduction

Large language models (LLMs) have exhibited

unique capabilities, such as instruction following,

reasoning, and inference time scaling (OpenAI,

2024; DeepSeek-AI et al., 2025). However, ef-

ficiently serving LLMs is still a pressing concern.

One of the main LLM inference bottlenecks is the

consumption of KV cache memory, which con-

sumes memory in addition to widely studied bot-

tlenecks such as model sizes (Frantar et al., 2022;

Lin et al., 2024).

To address this challenge, one of the prevail-

ing practices is to quantize the KV cache (vLLM,

*Work done while intern at UIUC. Correspondence to:
Minjia Zhang (minjiaz@illinois.edu)
Project Homepage: https://supercomputing-system-ai-
lab.github.io/projects/minikv/

2025; NVidia, 2025). Studies show that FP8/INT8

or even 4-bit quantization can be achieved for

KV cache compression while preserving accu-

racy (Sheng et al., 2023; Liu et al., 2023a; Yang

et al., 2024b). State-of-the-art approaches, such

as KIVI and KVQuant (Liu et al., 2024b; Hooper

et al., 2024), show that the KV cache can be ef-

fectively quantized to sub 4-bit, e.g., 2 bits, while

preserving most accuracy. However, further push-

ing down the compression ratio (e.g.,<2 bits) leads

to a significant accuracy loss.

In a separate line of research in the community,

numerous work have explored adaptive KV, where

the LLM selects a small subset of KV states based

on their importance (Zhang et al., 2023; Xiao et al.,

2023b; Ge et al., 2023; Liu et al., 2023b). Re-

cent advances also introduce head-specific adaptive

KV (Ge et al., 2023; Xiao et al., 2024; Wu et al.,

2024) and layer-specific adaptive KV (Cai et al.,

2024; Nawrot et al., 2024; Wan et al., 2024) with

the goal of evicting or merging KV pairs without

compromising overall performance. However, fol-

lowing the work of (Zhang et al., 2023), few studies

have included studies on how adaptive KV policies

work on quantized KV cache, despite quantized

KV is widely used in practice (Turganbay, 2024).

Moreover, for long context inference, where KV

cache memory becomes the major bottleneck, few

adaptive KV work manage to achieve a compres-

sion ratio that exceeds 50% while maintaining ac-

curacy in long context tasks (Li et al., 2024; Tang

et al., 2024).

These two points of view (quantized KV and

adaptive KV) consider the extreme sides of the

spectrum of optimization points for KV cache mem-

ory. However, there has been very little work

exploring how to consolidate these two lines of

work to maximize the KV cache memory savings.

The conventional wisdom is that these techniques

can be combined. However, existing work aim-

ing to combine 4-bit quantization and adaptive KV
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Figure 1: An overview of MiniKV. Tensors colored red/blue indicate 16-bit/2-bit representation, and shaded tokens

are evicted during inference. During the prefill phase, we employ pyramid KV with rectified token selection policy

across layers to identify a sparse set of important tokens. For all the important tokens, we employ sub-channel Key

quantization and per-token Value quantization to minimize the quantization errors while maintaining a compact

KV cache data layout without introducing any irregular operations. To address the incompatibility issue between

score-based KV pair selection policies and memory-efficient system optimizations such as FlashAttention, we

develop a two-pass Triton-based selective flash-attention kernel to output both the representation XO and the

cumulative attention map Acumul, while still keeping the memory consumption of the attention calculation linear with

respect to the sequence length. During decoding, we use a fused unpacking and multiplication kernel to compute

both the attention map between the new Query token tQ and the quantized Keys, as well as the product between the

attention map and the quantized Values.

shows that combining these techniques leads to

non-trivial interactions (Zhang et al., 2024b), which

need to be reasoned through carefully for good per-

formance. In this paper, we address the following

question: How should 2-bit KV cache quantization

techniques be combined with adaptive KV policies

to maximize the inference speed of LLMs given a

memory budget while retaining high model accu-

racy in long context inference?

To answer the question, we revisit existing ap-

proaches on ultra low-bit quantized KV (e.g., 2-bit)

and adaptive KV, together with a compression sys-

tem co-design perspective, which is unexplored so

far. Our findings led us to develop MiniKV, which

effectively compresses the KV cache through a

synergistic combination of 2-bit quantization and

adaptive KV to achieve minimal accuracy loss in

long-context tasks while maximizing the compres-

sion ratio. Specifically, on the algorithm side, we

employ subchannel-wise key and token-wise value

quantization, as well as pyramid KV with recti-

fied token selection policy across layers to signifi-

cantly push the KV compression ratio while keep-

ing the algorithm still hardware-friendly without

introducing any irregular computation. On the sys-

tem side, we develop a two-pass Triton (Tillet et al.,

2019) kernel together with native fused kernels to

accelerate the inference latency while resolving

the incompatibility limitation from the attention

score-based eviction policy and memory-efficient

attention system optimizations such as FlashAtten-

tion (Dao et al., 2022). Consequently, the resulting

system maximizes the compression ratio on the KV

cache while obtaining high accuracy and hardware

efficiency in long context inference.

To validate the approach, we compare MiniKV

with existing KV cache compression techniques

such as H2O, SnapKV, and Q-Hitter, across three

major models in LongBench datasets. The results

show that MiniKV effectively achieves 86% KV

cache compression while retaining comparable ac-

curacy on LongBench, outperforming state-of-the-

art methods. Furthermore, MiniKV enables prompt

lengths up to 44K tokens and a maximum through-

put that is 48% higher than its strongest baseline on

a single NVIDIA A100 GPU. To our knowledge,

our work is the first to show that it is possible to

achieve significantly >50% KV cache reduction

through compression and system co-design while

achieving high batch size ≥ 1 throughput on long

context tasks.

2 Related Work

Numerous efforts have been made to improve the

KV cache efficiency of LLMs. Among them, quan-

tization has been a prevailing technique employed

in deployment to overcome KV memory overhead

without retraining (vLLM, 2025; NVidia, 2025).

Many research has shown that FP8/INT8/INT4

quantization can be achieved for KV cache while

preserving accuracy (Hooper et al., 2024; Sheng

et al., 2023; Liu et al., 2023a; Yang et al., 2024b;

Zhang et al., 2024b). However, further pushing

the quantization limit to under 4-bit, e.g., 2-bit,
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leads to major performance loss. More recently,

researchers have proposed advanced quantization

techniques, such as KIVI (Liu et al., 2024b), to

quantize KV cache into 2-bit without major loss in

accuracy. While being effective, it still has one ma-

jor limitation: its effectiveness against adaptive KV

policies and its implication on system performance

has not yet been studied. Our results indicate that

it is nontrivial to use 2-bit quantized KV together

with adaptive KV policies in conjunction while

achieving high compression ratio, accuracy, and

system efficiency in long context inference, simul-

taneously.

Adaptive KV policies have also gained inter-

est within the community, leading to various algo-

rithms (Zhang et al., 2023; Xiao et al., 2023b; Liu

et al., 2023b; Ge et al., 2023; Wan et al., 2024;

Wu et al., 2024; Cai et al., 2024; Yang et al.,

2024a; Li et al., 2024; Liu et al., 2024a; Bran-

don et al., 2024; Tang et al., 2024). However,

many of those works either do not focus on long

context inference (Zhang et al., 2023; Xiao et al.,

2023b; Liu et al., 2023b; Ge et al., 2023), where

the KV cache pressure is the most prominent, or

introduce irregular operations or auxiliary scores

that are not hardware-friendly (e.g., batch size >1

with FlashAttention enabled) (Ge et al., 2023; Wu

et al., 2024; Wan et al., 2024; Tang et al., 2024).

Finally, most adaptive KV methods struggle to ex-

ceed a 50% compression rate in long context in-

ference (Zhang et al., 2023; Li et al., 2024; Tang

et al., 2024), suggesting that solely identifying im-

portant tokens may have limited improvements for

adaptive KV. Complementary to this line of work,

our goal is to improve the compression ratio of KV

cache via revising ultra-low quantized KV (e.g., 2-

bit) with adaptive KV policies, with an eye toward

system co-design to maximize the performance of

LLM inference. We empirically show that this path

can be more memory-efficient, especially on long

context tasks. We provide a detailed summary of

the comparison between MiniKV and previous ap-

proaches in Appendix B.

3 Method

In this section, we first focus on the compressibility

of ultra low-bit quantized KV cache by consid-

ering adaptive KV policies, with an eye toward

being able to still keep the final solution hardware

friendly, which leads to the proposed algorithm in

MiniKV. In addition, we introduce kernel optimiza-

tion that addresses the composibility issue between

score-based adaptive KV and memory-efficient at-

tention implementation such as FlashAtttention.

3.1 Revisiting 2-Bit Quantized KV with

Adaptive KV Policies

3.1.1 Sub-channel Key Quantization with

Persistent Context Selection

Existing KV cache quantization methods often

perform per-token quantization (i.e., the scaling

factor and zero point are shared by elements in

the same token) (Sheng et al., 2023; Xiao et al.,

2023a). However, it has been observed that out-

liers emerge within the channel dimension of key

cache (Liu et al., 2024b; Hooper et al., 2024), re-

quiring channel-wise quantization.

Recent works (Hooper et al., 2024; Liu et al.,

2024b) observe that the data distribution within

each channel shifts over generation steps, leading

to inaccurate quantization. We measure and con-

firm the accuracy impact of inaccurate quantization

on LongBench in Appendix F. To mitigate quanti-

zation error, prior work suggests fine-grained per-

channel key quantization, which quantizes keys at

the granularity of a small sub-channel group (e.g.

16/32 numbers). Combining these techniques with

a full KV cache is straightforward because the el-

ements within each sub-channel group remain the

same during the entire LLM generation process.

However, with adaptive KV, the elements within

a sub-channel group may change after each decod-

ing step if some tokens in the group are evicted to

make space for newly generated tokens. MiniKV

solves this problem by enabling sub-channel key

quantization via persistent context selection. Our

design for this optimization is based on the fol-

lowing key observation: Given a sufficiently large

cache budget, the important tokens can be identi-

fied before generation and maintained persistently

throughout the process.

We found some recent inference optimization

works that argue against persistent context selec-

tion (Tang et al., 2024). However, all of these texts

show that heavy hitters do not persist when using

a tiny cache budget (<5%). We empirically ver-

ify persistent context selection by measuring the

fraction of heavy hitters that persist during the en-

tire generation phase of H2O when using a large

cache budget. We observe that nearly 60-80% of

the heavy hitters selected during the prefill stage

persist throughout generation. Please see Appendix
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E for details.

Based on this observation, we choose a set of

persistent heavy hitters at the end of the prefill to

quantize and not update throughout the generation

phase. This allows MiniKV to avoid re-encoding a

group while keeping a low quantization error with

2-bit sub-channel quantization.

3.1.2 Selectivity in Long Contexts: Heavy

Hitters vs. Recent Window

Prior studies observe that the accumulated attention

scores of all tokens within an attention block follow

a power-law distribution and claim that maintaining

a tiny subset of important tokens (e.g., as low as

5%) with the highest accumulated attention score is

sufficient to maintain precision (Zhang et al., 2023).

However, this observation has not been carefully

examined in long contexts.

We observe that using a highly limited mem-

ory budget (e.g., 20%), existing solutions such

as H2O (Zhang et al., 2023) and SnapKV (Li

et al., 2024) have a significant performance drop

in long context tasks, which motivates us to re-

visit the selectivity of adaptive KV methods. First,

we assess if the model retains performance us-

ing only the recent window (RW) or heavy hit-

ters (HH), we examine the KV cache’s selectivity

towards RW/HH. The cache budget is described

as the percent of the prompt tokens retained, i.e.

an RW/HH budget of (αRW , αHH) and an input

prompt of length lprompt tokens indicate that (αRW ·

lprompt, αHH · lprompt) tokens are maintained as the

RW and HH respectively. We fix the total cache

budget to 50% and distribute it among the RW

and HH, i.e., RW/HH budget of (αRW , αHH) =
(0%, 50%), (10%, 40%), (20%, 30%), and so on.

Fig. 2 (left) reveals an interesting aspect of the

KV cache selectivity: The model performs bet-

ter on some datasets with more HH (on Passage

Count) and on some with a longer RW (on Trivi-

aQA). More importantly, using solely RW or HH

leads to a catastrophic accuracy drop in certain

tasks (in Lcc and TriviaQA). This indicates that

to have a robustly optimized KV cache selection

policy, the model needs to maintain at least a criti-

cal percentage of HH/RW (e.g., 5-10%) to avoid a

significant accuracy drop.

Next, we investigate the selectivity between RW

and HH by varying the KV cache budget. In partic-

ular, we fix the RW size (e.g., 10% of the prompt

length) while varying the HH set size, and vice

versa. Interestingly, as seen in Fig. 2 (right), we
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Figure 2: (Left) H2O with different recent win-

dow/heavy hitter budget: We fix the total cache budget

to 50% and vary the heavy hitter and recent window bud-

get. (Right) H2O with different recent window/heavy

hitter budget: The heavy hitter/recent window cache

budget is fixed at 10% and the recent window/heavy

hitter budget is increased from 5% to 45%. The dotted/-

solid lines indicate variable recent window/heavy hitter

budget.

observe that there appears to be no common trend

across datasets as to whether increasing the size of

the RW vs. the HH set significantly improves the

selectivity of KV states on long context tasks. In

fact, either HH or RW allow adaptive KV to achieve

accuracy comparable to the full KV cache baseline.

Furthermore, unlike previous findings, which sug-

gest that high levels of eviction (80-95%) do not

decrease model accuracy (Zhang et al., 2023), we

find that as the sequence length increases, maintain-

ing accuracy under the same KV cache size budget

becomes challenging (please see Appendix C for

more details). However, low and medium levels of

eviction (e.g., 50%) are still possible.

Insight. Our experiments suggest that high

levels of KV cache eviction significantly degrade

LLM’s performance on long context tasks. How-

ever, medium levels of eviction can still retain com-

parable model accuracy. Even at medium levels,

the model needs to maintain a critical percentage

of both heavy hitters and recent window tokens.

3.1.3 Layer-Specific Selectivity: Uniform,

Variance, or Pyramid?

Inspired by recent works on layer-wise KV cache

compression (Cai et al., 2024; Liu et al., 2024a;

Wan et al., 2024), we investigate several layer-

specific KV cache selection strategies that allocate

variable KV cache budgets across model layers.

• Uniform allocation: This policy has been

used in multiple previous studies (Zhang et al.,

2023; Xiao et al., 2023b; Liu et al., 2023b),

where all layers have the same KV cache bud-

get.
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• Variance-based allocation: Similar to (Wan

et al., 2024), we use the variance of the cu-

mulative attention map to determine the layer-

wise KV cache budget. Lower layers exhibit

smaller variances, making token eviction dif-

ficult. We examine two policy variations: Var-

prop, allocating KV cache per layer propor-

tionally to variance, and Var-inv, allocating it

inversely proportional to variance.

• Pyramid-like allocation: Introduced in (Cai

et al., 2024), this strategy adjusts the heavy

hitter cache budget across layers by allocating

more cache in lower layers and less in higher

ones. The cache budget for the intermediate

layers is determined through linear interpola-

tion.

In our experiments, we observe that the Pyramid

policy achieves much better accuracy than the other

policies, especially with medium levels of eviction,

shown in Fig. 3.
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Figure 3: Performance of layer-wise KV cache alloca-

tion policies. The Pyramid policy works best, particu-

larly at medium levels of eviction.

3.2 Memory-Efficient Fused Selective

Attention Kernels

Despite ongoing advancements, many adaptive KV

studies predominantly use attention scores as a cri-

terion to determine which tokens should be evicted

(Zhang et al., 2023; Liu et al., 2023b; Leskovec and

Sosic, 2016; Cai et al., 2024).

While showing promising results in reducing the

KV cache size, these attention-score-driven meth-

ods are not aligned with memory-efficient trans-

former system optimizations. In particular, these

methods rely on accessing the attention matrix A,

whose size grows quadratically with the sequence

length. FlashAttention (Dao et al., 2022) performs

the attention process without materializing the at-

tention matrix. Therefore, to the best of our knowl-

edge, no prior adaptive KV works with FlashAtten-

tion enabled, hindering their memory savings on

long sequences.

To address the challenge, this part introduces

our memory-efficient Triton kernel implementation

for MiniKV’s prefill phase, which simultaneously

returns the following two outputs with linear mem-

ory complexity: (1) a weighted sum of the value

tensors XO, same as FlashAttention, and (2) cumu-

lative attention score Acumul along each column 1.

Despite being a simple task when memory is not a

constraint, implementing such a kernel with linear

memory complexity is challenging. The difficulty

arises because Acumul requires summing the atten-

tion values for each token position, i.e., along the

columns of the attention matrix. FlashAttention re-

duces memory usage by employing row-wise tiling,

which avoids storing large intermediate attention

matrices. However, this row-wise tiling means that

different rows are processed in parallel, leading

to a race condition when summing the attention

scores column-wise. To prevent this race condition,

atomic add instructions are needed, which signifi-

cantly slow down the kernel execution speed.

We solve this by introducing a two-pass kernel

implementation. In the first-pass of the kernel, we

follow FlashAttention to compute the weighted

sum of the value tensors and save the interme-

diate LSE (Log Sum Exponential) value. To ef-

ficiently operate on data in shared memory, we

tile the input query tensor into row blocks of size

KBlockM. Within each row block, the key tensor is

subdivided into tile blocks of size KBlockN. Each

row and column block calculates the tiled atten-

tion map PKBlockM×KBlockN . With this product

of the query and key tensors and the correspond-

ing tile from the value tensor, we follow FlashAt-

tention’s online softmax reduction to compute the

weighted V block write it back. We aggregate the

LSE value per row into an additional buffer of size

[batchSize, headDim, seqLen].

For the second-pass, we run different columns

in parallel to compute a sequential sum of atten-

tion weights per token. As shown in Fig. 4, we

iteratively recompute the QKT value and use the

LSE values to normalize it. From top to bottom,

we accumulate the sum column-wise and save it to

the corresponding position in Acumul.

In summary, any memory buffers that we allo-

cate over FlashAttention scale linearly with se-

quence length, i.e., LSE requires O(lquery) and

Acumul requires O(lkey) memory.

1Variables marked in Red/Blue indicate tensors in
FP16/INT2 precision.
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Figure 4: Two-pass kernel parallelism: In the first pass,

we choose different row blocks running in parallel to

compute the weighted sum of value tensors. At the same

time, each row updates its max and sum and saves it

to LSE. Then it switches to processing column blocks

in parallel during the second pass. For each column,

it recomputes QKT and normalizes it with the corre-

sponding LSE value. From top to bottom, each column

accumulates the sum and writes the result to Acumul.

3.3 MiniKV Algorithm

Based on the aforementioned observations and op-

timizations, we employ compression and system

co-design for MiniKV, as shown in Algorithm 1.

In the prefill stage, MiniKV uses the fused selective

flash-attention kernel (§ 3.2) to obtain aggregated

attention scores Acumul. Based on the attention

score, MiniKV selects the subset of KV states that

has the highest attention score at the end of the pre-

fill stage (denoted as K
prefill
HH , V

prefill
HH ). The tokens

retained are compressed to INT2 representations.

We use a separate high-performance compression

kernel provided by (Liu et al., 2024b) to apply bit

shift to pack 16 INT2 scalar values from selected

KV states into an INT32 tensor. The key/value to-

kens are quantized along the channel/token dimen-

sion. The results at the end of the prefill phase are

the quantized key/value representation (QK , QV ,

stored in packed INT32 tensors) and the quantiza-

tion zero-point and scale (stored in FP16 tensors).

During each decoding step, MiniKV dequantizes

the quantized KV cache (q−1(QK , QV )) and uses

the dequantized key states along with the new key

and query token (tK , tQ) for attention calculation.

Once the attention map (A) is obtained, the dequan-

tized values states (q−1(QV )) and the new value to-

ken (tV ) are multiplied by (A) to compute the out-

put of the attention layer (tO). MiniKV fuses the

dequantization operations with subsequent matrix

multiplications to reduce kernel launch overhead

and global memory accesses, leading to latency

Algorithm 1 The MiniKV Algorithm, FP16/INT2

Require: Input XP ∈ R
lprompt×d

1: XQ, XK , XV ← XPWQ, XPWK , XPWV

2: XO, Acumul = Selective_flash_attn(XQ, XK , XV )

3: K
prefill

HH , V
prefill

HH ,#HH ← Heavy_hitters(Acumul)

4: QK , QV ← Quant(Kprefill

HH ),Quant(V prefill

HH )
5: KV Cache← QK , QV

6: procedure DECODING(KV cache, token t ∈ R
1×d)

7: tQ, tK , tV ← tWQ, tWK , tWV

8: QK , QV , RK , RV ← KV cache
9: RK , RV ← Concat([RK , tK ]),Concat([RV , tV ])

10: if len(RK) = nr then
11: Q′

K , Q′

V ← Quant(RK),Quant(RV )
12: QK ← Concat([QK , Q′

K ], dim = channel)
13: QV ← Concat([QV , Q′

V ], dim = token)
14: RK , RV ← None
15: end if
16: A← Softmax(Concat([q−1(QK)tTQ, RKtTQ]))
17: Aquant, Aunquant ← A[: −len(RK)], A[−len(RK) :]
18: tO ← Aquantq

−1(QV ) +AunquantRV

19: KV Cache← QK , QV , RK , RV

20: return tO
21: end procedure

reduction.

Inspired by KIVI (Liu et al., 2024b), we use a

streaming buffer for both key and value states dur-

ing the decoding stage, so that newly generated

key/value caches are first stored in FP16 (indicated

by (RK , RV )). These tokens are compressed every

nr step. This saves repeated kernel launch over-

head for quantization while maintaining at most nr

KV tokens in FP16 during generation.

4 Experiments

We conduct experiments to evaluate the effective-

ness of MiniKV in improving accuracy preserving

and inference performance.

4.1 Evaluation Methodology

Models. We compare MiniKV against state-of-

the-art public LLMs, including LLaMA2-7B-chat,

LLaMA2-13B-chat (Touvron et al., 2023) and

Mistral-7B-Instruct-v0.2 (Jiang et al., 2023).

Datasets. We choose LongBench for evalua-

tion (Bai et al., 2023), which has been widely

adopted in state-of-the-art works (Liu et al., 2024b;

Hooper et al., 2024; Li et al., 2024). Additional

details on the datasets used can be found in the

Appendix G.

Baselines. We compare MiniKV with the follow-

ing baselines: adaptive KV (H2O, SnapKV (Zhang

et al., 2023; Li et al., 2024)), INT2 quantized KV

(KIVI (Liu et al., 2024b)), adaptive + quantized

KV (Q-hitter (Zhang et al., 2024b)), and FullKV.

Q-Hitter combines H2O with INT4 quantization,

providing a strong baseline for MiniKV.
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Table 1: Performance evaluation of MiniKV on various models in a range of benchmarks in LongBench. Rows

marked in brown have a similar KV cache size, while KIVI and the full model use a larger KV cache.

Models Methods

Single-Doc QA Synthetic Code Multi-Doc QA Summarization Few-Shot Learning

Qasper

Multifi
eldQA

Passa
ge Ret.

Passa
ge Ct.

LCC

RepoBench-P

2WikiM
QA

HotpotQ
A

Gov Report

Multi
New

s

TREC

SamSum

Triv
iaQA

Average

LLaMA2-7B-chat

Full Model 22.78 33.59 8.44 4.75 59.56 48.07 22.35 24.88 24.99 23.60 59.67 39.38 85.38 35.19

KIVI 22.45 33.32 11.33 4.25 59.05 47.96 21.88 23.88 24.46 22.86 59.67 38.74 84.80 34.97

H2O (15%) 16.98 29.72 11.00 4.55 56.87 48.25 19.92 24.58 22.19 22.16 57.33 37.80 84.02 33.49

SnapKV (15%) 17.41 34.53 8.67 3.59 58.48 47.52 21.00 24.91 19.04 19.74 59.33 37.92 84.72 33.60

Q-Hitter (59%) 17.43 30.08 9.00 4.13 56.84 45.18 17.66 22.57 22.83 22.48 59.67 38.46 82.76 33.01

MiniKV 21.01 29.23 10.00 3.82 58.38 47.99 20.91 22.97 23.45 22.54 59.00 37.94 80.95 33.71

MiniKV Pyramid 19.92 33.96 10.00 4.12 59.72 49.29 20.69 24.62 24.16 22.90 59.00 39.15 82.89 34.65

LLaMA2-13B-chat

Full Model 13.72 28.11 20.67 5.58 49.97 47.18 12.13 15.14 26.29 23.52 64.00 40.39 86.52 33.32

KIVI 13.56 28.16 17.33 5.05 49.21 47.18 12.80 15.27 25.24 23.07 64.33 40.24 87.07 32.96

H2O (15%) 11.94 25.13 15.67 4.61 48.18 44.29 13.04 14.52 23.15 22.12 59.67 39.66 83.70 31.2

SnapKV (15%) 12.11 27.09 22.00 5.18 49.52 45.44 14.10 14.40 20.06 20.75 62.33 39.25 85.86 32.16

MiniKV 11.24 25.13 15.00 3.62 48.43 46.10 12.74 16.16 24.26 22.84 63.33 40.79 84.33 31.84

MiniKV Pyramid 12.79 27.32 17.00 2.79 48.94 46.25 12.66 15.47 25.06 23.14 63.67 40.35 85.33 32.37

Mistral7B-instruct

Full Model 25.79 47.97 50.83 2.98 50.69 47.22 27.44 36.44 31.84 25.82 62.67 40.49 86.29 41.2

KIVI 25.13 46.30 50.75 3.02 51.16 46.81 26.39 35.11 31.23 25.36 62.33 40.12 86.31 40.77

H2O (15%) 20.20 42.55 42.84 3.00 49.66 45.95 24.27 33.04 27.43 24.33 60.33 40.45 86.20 38.4

SnapKV (15%) 24.14 48.32 50.23 3.04 50.39 45.76 25.76 34.55 25.10 22.77 61.67 40.12 86.90 39.90

MiniKV 22.94 45.80 49.47 3.36 49.78 45.56 24.27 33.84 29.73 25.22 61.67 39.96 86.36 39.84

MiniKV Pyramid 23.10 45.91 48.88 3.24 50.34 45.41 25.18 34.04 29.69 25.32 61.67 40.17 86.63 39.97

Hyperparameters. We use a 50% cache budget

with MiniKV, with 25% heavy hitter budget and

25% the recent window budget. The group size

during token/channel-wise quantization is set to 16,

i.e. 16 values along the token/channel axis share

quantization zero point and scale. A residual length

of nr = 128 is used for both MiniKV and KIVI.

The maximum prompt length is 4096 for all models

with the first and last 2048 tokens taken for a longer

prompt. The maximum generation length is dataset-

specific. No task has a generation length of more

than 512 tokens. Please see Appendix H for other

evaluation details.

Hardware. We conducted experiments on

NVIDIA 4×A100-40GB, 4×A40-46GB and

4×GH200-120GB GPUs.

4.2 Enhancing KV Cache Compression

Accuracy in Long Context Inference

To make a fair comparison, we compare all meth-

ods with adaptive KV policies (H2O, SnapKV, Q-

Hitter, and MiniKV) under a similar KV cache size

(Appendix I). Given a prompt length of 4096 and

generation length of 512, the KV cache size for

MiniKV is 0.33 GB. A cache budget of α = 15%
results in a similar KV cache size for H2O. A cache

budget of α = 59% results in a similar KV cache

size for Q-Hitter. We test two strategies of MiniKV,

namely MiniKV and MiniKV-Pyramid, to demon-

strate the effectiveness of MiniKV. MiniKV fol-

lows a uniform cache allocation with (25%, 25%)
HH, RW budget per layer. MiniKV-Pyramid uses

25% RW budget per layer but the HH budget is

distributed across layers as described in § 3.1.3.

The results are shown in Table 1. MiniKV

outperforms other state-of-the-art adaptive KV

methods (H2O, SnapKV, Q-Hitter) for the same

KV cache size. For LLaMA2-7B-chat, MiniKV-

Pyramid achieves an average accuracy of 34.65,

obtaining 98.5% of the full model accuracy 35.19.

MiniKV is also able to maintain accuracy on

LLaMA2-13B-chat and Mistral-7B, indicating that

our approach generalizes well across datasets and

model classes. While the full model and KIVI per-

form marginally better than MiniKV, they have

much larger KV cache memory consumption. The

synergistic composition of 2-bit quantized KV and

layer-wise adaptive KV delivers these improve-

ments, and it also shows the promising aspect of

using both quantization and adaptive KV in con-

junction to reduce the high memory footprint of the

KV cache.

4.3 Setting A New Pareto Frontier

With H2O, SnapKV, Q-Hitter, and MiniKV the

user can tune the cache budget, potentially improv-

ing performance at the cost of a larger KV cache.

An ideal technique would maintain performance

when lowering the cache budget. We plot the per-

formance of MiniKV against the KV cache size.

The size of the KV cache is computed using the

KV memory consumption analysis in Appendix I.

To highlight interesting configurations, we mark

the Pareto optimal front, which is the configura-

tion that offers the smallest KV cache size for the

highest performance.

Fig. 5 shows the performance vs KV cache

size curve for two datasets (Qasper and Lcc), the

remaining plots can be found in the Appendix

J. MiniKV achieves the pareto optimal compres-

sion strategy across all 6 major task categories on

LongBench (single/multi-doc QA, LC understand-
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ing, code completion, summarization and few-shot

learning). These results validate the effectiveness

of MiniKV with varying KV cache sizes.

Figure 5: Algorithm Performance vs KV Cache Size:

The Pareto frontier (the black curve) indicates the opti-

mal compression strategy across a range of KV cache

sizes. MiniKV lies on the Pareto frontier across all 6

task categories.

4.4 Results on InfiniteBench

We test the Llama3 herd of models (AI, 2024)

on selected datasets from the InfiniteBench bench-

mark (Zhang et al., 2024a) on GH200 GPUs. We

compare MiniKV with the uncompressed model

baseline and the quantization-only baseline (KIVI).

The results are shown in Table 2.

For the Llama3-8B-instruct model, MiniKV

achieves an average score of 13.44, closely match-

ing the full model and KIVI’s scores of 13.52 and

13.59, respectively, while utilizing a significantly

smaller KV cache.

4.5 Results on GSM8K

We evaluate the Llama3 model family (AI, 2024)

on the Platinum GSM8K dataset (Vendrow et al.,

2025), a reasoning-focused benchmark with short

contexts (∼ 256 tokens). Unlike long-context gen-

eration, where KV cache growth creates scalability

issues, GSM8K poses a different challenge. De-

spite its compact inputs, the task requires strong

KV state retention (90% adaptive budget) for accu-

rate reasoning, as shown in Fig. 6.

4.6 System Performance Results

We evaluate the system performance of the

LLaMA2-7B-chat model on a single NVIDIA

A100 GPU with 40GB of memory. We utilize

FlashAttention kernels for KIVI and the Full Model

while employing our customized kernel introduced

in § 3.2 for MiniKV. H2O and Q-Hitter do not

support FlashAttention.

Speeding up end-to-end latency. LLM inference

is predominantly constrained by the memory band-

width required to retrieve the model states. MiniKV

Figure 6: Performance on GSM8K: Since GSM8K is a

reasoning-intensive task, MiniKV requires a significant

adaptive KV cache budget (90%) to match the perfor-

mance of the full model.

reduces latency through a compression and system

co-design approach, which reduces the number of

KV pairs loaded for each next-token prediction

by revising 2-bit KV quantization combined with

adaptive KV policies, while at the same time main-

taining hardware friendly execution using high-

performance memory-efficient kernels compatible

with system optimizations such as FlashAttention.

As a result, as shown in Fig. 7 (left), MiniKV has

a lower latency than its baselines, especially in

long sequences (e.g., >10k). We include a detailed

latency breakdown analysis in Appendix K.

Achieving high throughput. As shown in Fig. 7

(right), MiniKV outperforms all its baselines in

throughput, measured as the number of tokens pro-

cessed per second, due to its lower latency and

ability to support larger batch sizes and longer se-

quence lengths.

Figure 7: Left: Latency (s) for batch size = 1 and gener-

ation length = 1024. Right: Throughput (tokens/s) for

prompt length = 2048 and generation length = 1024.

Effectively reducing peak memory usage. We

benchmark peak memory usage, i.e., the maximum

memory occupied by all model tensors during the

generation. The memory savings achieved by KV

cache compression can be rendered ineffective if

peak memory usage exceeds the total GPU mem-

ory. We evaluate the impact of batch size and

prompt length on peak memory usage in Fig. 8

(left). MiniKV demonstrates the lowest peak mem-

ory consumption compared to its baselines. H2O

goes out-of-memory at batch size 16 as it material-
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Table 2: Performance evaluation of MiniKV on various models in a range of benchmarks in InfiniteBench. Rows

marked in brown have a similar KV cache size, while KIVI and the full model use a larger KV cache.

Models Methods
Benchmarks

Average

LongBook Choice

LongDialogue QA

Code Debug

Passk
ey

Number Strin
g

KV
Retrie

val

LongBook QA

Math
Find

Llama3-8b-instruct

Full Model 39.74 12.00 31.22 3.39 3.39 1.00 5.94 12.00 13.59

KIVI 39.74 11.50 31.22 3.39 3.39 0.80 6.11 12.00 13.52

MiniKV 40.17 12.00 31.47 3.39 2.20 0.00 6.12 12.00 13.42

MiniKV Pyramid 39.74 12.50 31.22 3.39 2.37 0.20 6.10 12.00 13.44

Llama3-3b-instruct

Full Model 31.88 12.00 26.40 3.39 3.05 0.60 9.66 12.57 12.44

KIVI 33.62 15.50 26.40 3.39 3.22 0.20 9.20 7.71 12.41

MiniKV 33.62 11.00 26.65 3.05 2.03 0.00 8.63 8.00 11.62

MiniKV Pyramid 34.50 11.50 26.65 3.39 1.86 0.00 8.92 9.14 11.99

Llama3-1b-instruct

Full Model 37.55 9.50 24.87 3.39 3.22 0.00 10.71 14.57 12.98

KIVI 37.12 8.50 24.87 3.39 2.71 0.00 10.37 12.86 12.48

MiniKV 37.12 9.00 24.87 2.88 1.69 0.00 10.01 14.86 12.55

MiniKV Pyramid 37.12 9.50 24.37 3.05 1.69 0.00 10.15 14.29 12.52

izes the intermediate attention score matrix while

KIVI maintains the full KV cache and therefore

has a higher memory consumption.
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Figure 8: Left: Peak memory usage (GB) vs batch size

for prompt = 2048 and generation length = 1024. Right:

Maximum prompt length supported by MiniKV and its

baselines for batch size = 1.

Enhancing maximum processable prompt.

MiniKV’s lower memory consumption becomes

more apparent with longer prompt lengths. Fig. 8

(right) shows that MiniKV can process prompts

10% longer than its strongest baseline KIVI. Addi-

tionally, MiniKV’s selective flash-attention kernel

allows significantly longer sequence lengths when

compared to H2O.

Micro-benching on MiniKV’s kernel. Table 3

and 4 shows MiniKV’s attention kernel outper-

forms the standard attention implementation used

in H2O. Unlike the standard attention mechanism,

MiniKV’s memory footprint scales linearly with se-

quence length, allowing for much longer prompts.

Furthermore, MiniKV ’s kernel offers significantly

reduced latency, enabling faster processing.

1024 2048 4096 8192

MiniKV 0.25 0.50 1.00 2.01

Standard 1.25 4.51 17.01 OOM

Table 3: Memory usage (GB) comparison between

MiniKV’s kernel and the standard attention operator

on different input sequence lengths.

1024 2048 4096 8192

MiniKV 5.21 14.85 48.04 187.83

Standard 10.46 40.18 130.51 OOM

Table 4: Latency (ms) comparison between MiniKV’s

kernel and the standard attention operator on different

input sequence lengths.

MiniKV’s kernel is used only during the prefill

phase to avoid being bottlenecked by the quadratic

dependence on sequence length. While the kernel

slows down the execution time of the prefill phase

from 0.118 ms (using FlashAttention) to 0.622 ms

(using MiniKV’s kernel) in LLama2-7B, it signifi-

cantly reduces the memory consumption from 1.25

GB (using standard attention computation) to 0.25

GB (using MiniKV’s kernel) for sequence length

1024, effectively enabling longer sequence infer-

ence without running out-of-memory.

5 Conclusion

In this work, we revisit KV cache optimization via

compression and system co-design to accelerate

the inference of LLM. Our empirical analysis in-

dicates that it is challenging to directly compose

state-of-the-art 2-bit quantized KV with existing

adaptive KV policies while preserving both accu-

racy and system efficiency on long context tasks

under a high compression ratio. To address this

issue, we develop MiniKV to bridge the gap be-

tween ultra low-bit KV quantization and adaptive

policies, as well as the gap between the compres-

sion algorithm and hardware. Evaluation on a wide

range of datasets and models shows that MiniKV

preserves long context accuracy while significantly

improving the efficiency of LLM inference.
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6 Limitations

MiniKV is promising in optimizing the KV cache.

However, we identify several limitations and oppor-

tunities that can become future avenues of research

to achieve an even higher compression ratio and

generalizable compression.

1. Combination with model optimizations.

While we mainly focus on KV cache opti-

mization (which provides significant benefits

on its own), MiniKV can also be combined

with other optimization techniques, such as

model compression (Frantar et al., 2022; Xiao

et al., 2023a). This would further improve

the computational and memory efficiency of

LLMs.

2. Extensible design. While we use H2O and

KIVI as an example, our approach is compat-

ible with other KV optimization techniques,

such as StreamingLLM (Xiao et al., 2023b)

and KVQuant (Hooper et al., 2024). Given

that MiniKV combines H2O and KIVI, we

also explored the possibility of combining

SnapKV and KIVI. This combination should

be viable in theory, as it involves only chang-

ing the eviction strategy during the prefill

phase. However, we find that doing so leads

to a severe drop in performance, with Long-

Bench scores dropping from 35 to 32 points.

Further experiments show that the tokens re-

tained by SnapKV tend to be more sensitive to

2-bit quantization than those selected by H2O.

This highlights the need for a more robust and

generalizable approach to combining eviction

and quantization, and a framework to deter-

mine when such combinations are effective.
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Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski,
David Tarjan, and Edoardo M. Ponti. 2024. Dynamic
memory compression: Retrofitting llms for acceler-
ated inference. CoRR, 2403.09636.

NVidia. 2025. Introducing New KV Cache Reuse Op-
timizations in NVIDIA TensorRT-LLM. https:

//tinyurl.com/4zbvwpcz. Accessed: 14-
Feburary-2025.

OpenAI. 2024. Introducing OpenAI o1 . https://
openai.com/o1/.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo-
pher Ré, Ion Stoica, and Ce Zhang. 2023. Flexgen:
High-throughput generative inference of large lan-
guage models with a single GPU. In International
Conference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
31094–31116. PMLR.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao,
Baris Kasikci, and Song Han. 2024. Quest: Query-
aware sparsity for efficient long-context llm inference.
arXiv preprint arXiv:2406.10774.

Philippe Tillet, Hsiang-Tsung Kung, and David D. Cox.
2019. Triton: an intermediate language and com-
piler for tiled neural network computations. In Pro-
ceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming
Languages, MAPL@PLDI 2019, Phoenix, AZ, USA,
June 22, 2019, pages 10–19. ACM.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Raushan Turganbay. 2024. Unlocking Longer
Generation with Key-Value Cache Quantiza-
tion. https://huggingface.co/blog/

kv-cache-quantization. Accessed: 14-
Feburary-2025.

Joshua Vendrow, Edward Vendrow, Sara Beery, and
Aleksander Madry. 2025. Do large language
model benchmarks test reliability? arXiv preprint
arXiv:2502.03461.

vLLM. 2025. Quantized KV Cache. https:

//docs.vllm.ai/en/stable/features/

quantization/quantized_kvcache.

html. Accessed: 14-Feburary-2025.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head

18516



self-attention: Specialized heads do the heavy lifting,
the rest can be pruned. In Proceedings of the 57th
Conference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 5797–5808.
Association for Computational Linguistics.

Zhongwei Wan, Xinjian Wu, Yu Zhang, Yi Xin, Chaofan
Tao, Zhihong Zhu, Xin Wang, Siqi Luo, Jing Xiong,
and Mi Zhang. 2024. D2o: Dynamic discriminative
operations for efficient generative inference of large
language models. CoRR, abs/2406.13035.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao
Peng, and Yao Fu. 2024. Retrieval head mecha-
nistically explains long-context factuality. CoRR,
abs/2404.15574.

Guangxuan Xiao, Ji Lin, Mickaël Seznec, Hao
Wu, Julien Demouth, and Song Han. 2023a.
Smoothquant: Accurate and efficient post-training
quantization for large language models. In Interna-
tional Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research,
pages 38087–38099. PMLR.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian
Guo, Shang Yang, Haotian Tang, Yao Fu, and Song
Han. 2024. Duoattention: Efficient long-context
LLM inference with retrieval and streaming heads.
CoRR, abs/2410.10819.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023b. Efficient stream-
ing language models with attention sinks. CoRR,
abs/2309.17453.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin
Zhang, and Hai Zhao. 2024a. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput llm
inference. CoRR, abs/2405.12532.

June Yong Yang, Byeongwook Kim, Jeongin Bae,
Beomseok Kwon, Gunho Park, Eunho Yang, Se Jung
Kwon, and Dongsoo Lee. 2024b. No token
left behind: Reliable KV cache compression via
importance-aware mixed precision quantization.
CoRR, abs/2402.18096.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zi-
hang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, et al.
2024a. ∞ bench: Extending long context eval-
uation beyond 100k tokens. arXiv preprint
arXiv:2402.13718.

Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya
Kailkhura, Beidi Chen, and Atlas Wang. 2024b. Q-
hitter: A better token oracle for efficient llm inference
via sparse-quantized kv cache. Proceedings of Ma-
chine Learning and Systems, 6:381–394.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark W. Barrett,

Zhangyang Wang, and Beidi Chen. 2023. H2O:
heavy-hitter oracle for efficient generative inference
of large language models. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

18517



A Formal Problem Formulation

We introduce a general formulation of the co-

compression of the KV cache via quantization and

selection. For a given LLM Φ with H layers, we

denote its key states and value states at a layer h
as Kh ∈ R

n×d and Vh ∈ R
n×d, respectively. Let

Qh ∈ R
1×d denote the query state. Then, the out-

put Oh for each attention head of Φ is:

Oh = AhVh, Ah = softmax

(

QhKT
h√

d

)

(1)

Then the co-compression problem can be formu-

lated as:

Definition 2.1 (KV Cache Co-Compression Prob-

lem, informal).

∀ Kh and Vh, where h ∈ {0, 1, .., H − 1}, find

the quantizer Qb[·] with b quantization bits, the

selection policy Sh[·] with C selective KV cache

size, such that |Oh−O∗

h| ≤ ϵ, where O∗

h represents

the output for each attention head of Φ with Sh[·]
and Qb[·], and ϵ is an acceptable small positive

value.

B Comparison of MiniKV with

Alternative Methods

We provide a detailed summary of the compari-

son between MiniKV and previous approaches in

Table 5.

C KV Cache Eviction on Long-Context

Tasks

Fig. 9 shows that with 50% KV cache size, the

LLM can still obtain comparable accuracy (e.g.,

<1 point) as the full KV cache. However, high

levels of KV eviction (e.g., 80-95%) hurts LLM’s

performance on long context tasks significantly.

Figure 9: Eviction-based KV on LongBench: High

levels of KV eviction (e.g., 80-95%) hurts LLM’s per-

formance on long context tasks significantly.

D Additional Results on Attention

Distribution on Long-Context

Understanding Tasks

Researchers have always been interested in exploit-

ing the underlying structure of the attention mech-

anism to improve inference efficiency (Liu et al.,

2021; Voita et al., 2019; Wu et al., 2024).

While prior studies show that attention scores

are largely sparse (Zhang et al., 2023; Xiao et al.,

2023b; Liu et al., 2023b), we observe that the at-

tention distribution has more diverse patterns on

long sequences. Fig. 10 shows that attention distri-

bution of LLaMA2-7B-chat on a sample from the

HotpotQA dataset.

We observe distinctive patterns: (i) the attention

distribution at the lower layers has a wide coverage

over sequence lengths and is more dispersed, and

(ii) attention becomes more narrowly focused on a

small subset of tokens and starts to exhibit block-

wise sparse attention as the tokens move to the

higher layers. We consistently observe this pattern

across datasets in LongBench.

E Persistent Context Selection Analysis

We analyzed a sample prompt from the Lcc dataset

to show that the heavy hitters selected in the pre-

fill phase persist across generations Fig. 11. The

green positions indicate that the 150 heavy hitters

currently retained by the H2O algorithm, while the

white ones represent evicted tokens. It is evident

that while different heads have different importance

distributions, the important tokens largely do not

vary across different generation steps.

F Token-Wise Quantization Of The KV

Cache

A prevalent approach to compress the KV cache is

by quantization. However, directly applying quan-

tization to selective KV imposes challenges. Prior

studies find that KV states contain outliers (Liu

et al., 2023a; Xiao et al., 2023a), and per-token

quantization is needed to avoid accuracy degrada-

tion. Fig. 12 shows that while applying INT8 and

INT4 per-token quantization to both key and value

caches helps maintain the accuracy of selective KV

on LongBench, further reducing it to INT2 results

in a significant accuracy drop, because 2-bits can

not fully capture the dynamic range of KV token

distributions. This motivates using channel-wise

quantization as in KIVI (Liu et al., 2024b) and

KVQuant (Hooper et al., 2024).
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Table 5: Comparison with previous KV cache optimization methods for LLM inference.

Approach Eviction-based KV Quantization Training-free LongBench

AttentionSink (Xiao et al., 2023b) ! !

FastGen (Ge et al., 2023) ! !

ScissorHands (Liu et al., 2023b) ! 4-bit !

H2O (Zhang et al., 2023) ! 4-bit !

FlexGen (Sheng et al., 2023) 4-bit !
LLM-QAT (Liu et al., 2023a) 4-bit

Q-Hitter (Zhang et al., 2024b) ! 4-bit !

KVQuant (Hooper et al., 2024) 4-bit ! !

KIVI (Liu et al., 2024b) 2-bit ! !

MiniKV ! 2-bit ! !
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Figure 10: The attention distribution of LLaMA2-7B over the HotpotQA dataset in LongBench.

G Dataset Details

We seek a dataset that covers a broad range of

long-context understanding tasks. For this reason,

we choose LongBench, which covers six major

task categories and in total 13 datasets (Bai et al.,

2023): Qasper(F1) and MultiFieldQA(F1) are sin-

gle doc QA tasks; Passage Retrieval(accuracy) and

passage count(accuracy) are synthetic datasets to
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attention score on the Lcc dataset from LongBench.

Green tokens mark the heavy hitters retained by the

H2O algorithm. Here, we choose k = 150.
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Figure 12: Performance of per-token quantized H2O

on the LongBench dataset. INT8/4 quantization can

maintain performance across cache budgets. However,

INT2 quantization suffers from a catastrophic drop in

performance.

test the model’s tendency to forgot information

over a long context understanding; LCC(similarity)

and RepoBench-P(similarity) are code completion

tasks; 2WikiMultihopQA(F1) and HotpotQA(F1)

are multi doc QA tasks; GovReport(Rouge)

and MultiNews(Rouge) are summarization tasks;

TREC(accuracy), SAMSum(Rouge) and Trivi-

aQA(F1) are few-shot learning tasks.

H Evaluation Details

Decoding Strategy All models generate re-

sponses using deterministic greedy decoding across

all tasks to ensure a fair comparison and repro-

ducibility.

LongBench Truncation Strategy: we ensure

that the model consistently selects the first 2000

and last 2000 tokens, regardless of changes to trun-

cation settings or special tokens. This ensures sta-

ble score calculations across tests.

Pyramid-like Allocation Details Inspired by

PyramidKV(Cai et al., 2024), we adjust the heavy

hitter cache budget across layers by allocating more

cache in lower layers and less in higher ones. The

token allocation across layers follows a linear func-

tion. Specifically, considering the average heavy

budget size is x, we choose a hyper-parameter pyra-

mid depth d to adjust the ratio. The bottom-most

layer has a heavy budget size of x/d, and the top-

most layer has a heavy budget size of 2x−x/d with

intermediate layers linearly interpolated between

these values. We choose pyramid depth d = 7 for

our experiments.

I KV Cache Compression Ratio Analysis

Given a model with (H) layers, hidden dimen-

sion (d), number of attention heads (nheads),
and a prompt and generated sequence of length

(lprompt, lgen) the KV cache size for different tech-

niques is shown below:

1. Full model: All tokens are stored in FP16

format. Therefore the KV cache has size =
2× (H × d)× (lprompt + lgen)× 2 bytes.

2. H2O: Given a cache budget of (³HH , ³RW )
for the heavy hitters and recent window the

KV cache has size = 2×(H×d)×(lprompt)×
(³HH + ³RW )× 2 bytes

3. SnapKV: Given a cache budget of p, SnapKV

performs eviction in the prefill phase and re-

tains all generated tokens. Hence, the KV

cache has size = 2× (H×d)× (p∗ lp+ lg)×
2 bytes

4. KIVI: With a group size of 16, i.e., 16 scalars

quantized from FP16 to INT2 format, the

memory required by a group is 16 scalars

×2 bits = 4 bytes. The quantization zero-

point and scale are saved in FP16 format and

require 2 × 2 bytes. In total, the group re-

quires 8 bytes. Hence, the KV cache has

(H × d)× (lprompt + lgen) bytes.

5. Q-Hitter: The Q-hitter paper performs INT4

token quantization per attention head. There-

fore, the (d/nheads) scalars which would be

stored in FP16 are now stored in 4-bit pre-

cision. The quantization metadata is the

zero-point and scale, both in FP16 precision.

Therefore, the compression factor for Q-Hitter

is (d/nheads ∗ 16)/(d/nheads ∗ 4 + 2 ∗ 16).
For the Llama-7B-chat model this number is

(4096/32∗16)/(4096/32∗4+32) = 3.76×.

Hence, the KV cache size is 2 × (H × d) ×
(lprompt)× (³HH + ³RW )× 2/3.76 bytes

6. MiniKV: The prompt tokens are evicted with

a cache budget of ³HH , ³RW and all gener-
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ated tokens are retained. All tokens are stored

in 2-bit precision. Similar to KIVI, each group

of 16 scalars and their quantization metadata

requires 8 bytes in total. Hence, the size of the

KV cache is = (H × d)× (³HH + ³RW )×
(lprompt) + (H × d)× (lgen) bytes.

Given a certain prompt and output length, the

uncompressed baseline and KIVI have a fixed KV

cache size. However, H2O, Q-Hitter, and MiniKV

can tune the cache budget (³HH , ³RW ) to modify

the KV cache size.

For prompt length 4096 and generation length

512 the full model’s and MiniKV’s KV cache con-

sume 2.4GB and 0.33GB respectively. Therefore,

MiniKV leads to an (1− 0.33/2.4) = 86% reduc-

tion in KV cache size.

J Performance against KV cache size

As discussed in § I, the KV cache size depends on

the prompt and generation length. Each dataset in

LongBench has a different maximum generation

length, therefore we make separate plots for each

dataset with prompt length 4096 and the generation

length as the dataset-specific maximum generation

length. Figure 13 and 14 show the performance vs

KV cache size curve. MiniKV achieves the optimal

compression strategy across all six major task cat-

egories on LongBench (single/multi-doc QA, LC

understanding, code completion, summarization,

and few-shot learning). These results validate the

effectiveness of MiniKV with varying KV cache

sizes.

K End-To-End Latency Breakdown
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Figure 15: Per token latency breakdown for the decod-

ing phase. Generation length = 1024 and batch size = 1.

We analyze the breakdown of latency associated

with each computation in the standard decoder

layer of the transformer architecture for MiniKV

and KIVI during the decoding phase. We particu-

larly look at latencies for projections of the input

vector into query, key, and value vectors, attention

computation, and output projection. We also mea-

sure the time spent in the MLP layer. We present

the latency breakdown as the total latency for each

computation component divided by the generation

length.

As shown in Fig. 15, MiniKV achieves a lower

end-to-end latency than KIVI. This improvement

primarily arises during attention computation as

well as projection of Query, Key and Value. Specif-

ically, the inference time is dominated by KV cache

loading time when processing long contexts. There-

fore, MiniKV’s smaller KV cache results in re-

duced KV load times from the GPU’s HBM.
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Figure 13: Performance Versus KV Cache Size: MiniKV offers the best performance for the smallest KV cache size

across all 6 task categories.
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Figure 14: Performance Versus KV Cache Size: MiniKV offers the best performance for the smallest KV cache size

across all 6 task categories.
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