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Abstract— This work considers the adaptive repair rate
design of a multi-state reparable system modeled by coupled
transport and integro-differential equations. A reparable system
is one which can be restored to satisfactory operation by repair
actions whenever a failure occurs. The model describes the
probabilities of the system in good and failure modes. The
objective is to design the adaptive repair functions so that the
probability of the system in good mode can be steered to a target
distribution. Rigorous analysis on the convergence of tracking
error between the plant and the target states is addressed.

I. INTRODUCTION

A reparable system is a system which can be restored to
satisfactory operation by repair actions whenever a failure
occurs (e.g. [1], [2]). This type of systems occur very often
in product design, inventory systems, computer networking,
electrical power system and complex manufacturing pro-
cesses. Understanding the reliability of a reparable system
is critical in reliability engineering, which relates closely
to system quality and safety. Reliability is defined as the
probability that the system, subsystem or component will
operate successfully by a given time. Here, we consider a
reparable system with possibly M modes of failure. The
system is good at time zero and transitions are permitted
only between the good mode 0 and the failure mode i.

In this paper, we aim at designing the adaptive repair
actions so that the probability of the system in good mode
can be steered to a target distribution. It is assumed that the
target distribution is part of a reference model driven by an
idealized repair rate that yields a desirable probability distri-
bution. An adaptive control scheme developed for transport
PDEs that avoid bilinear controller design, is adopted for
the specific class of coupled transport and integro-differential
equations to generate the adaptive laws for the repair rates.
Via the appropriate selection of a Lyapunov functional for
the resulting error system, the convergence of the plant
probability density distribution to that of the target system is
established along with the state convergence.

II. PROBLEM FORMULATION

The mathematical model that describes the probabilities
of the system in good and failure modes is governed by
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a coupled system of transport and integro-differential equa-
tions. The application of Markov chain and supplementary
variable techniques are used to derive the model. Specifically,
the system of equations reads (see [3])

dp0(t)
dt

=−
( M

∑
i=1

λi
)

p0(t)+
M

∑
j=1

∫ ℓ

0
µi(x)pi(x, t)dx, (1)

∂pi(x, t)
∂t

+
∂pi(x, t)

∂x
=−µi(x)pi(x, t), (2)

with boundary conditon

pi(0, t) = λi p0(t), i = 1,2, . . . ,M, t > 0, (3)

and initial conditions

p0(0) = φ0, pi(x,0) = φi(x), i = 1,2, . . . ,M, (4)

where p0(t) stands for the probability that the device is in
good mode 0 at time t; pi(x, t) stands for the probability
density distribution (with respect to repair time x satisfying
0 ≤ x ≤ ℓ) that the failed device is in failure mode i at time
t and has an elapsed repair time of x; λi > 0 is the constant
failure rate of the device for failure mode i; and µi(x)≥ 0 is
the repair rate when the device is in failure state at t and has
an elapsed repair time of x. Extracting the probability from
the probability density, one has the probability of the device
in failure mode i at time t is denoted by pi(t) and given by

pi(t) =
∫ ℓ

0
pi(x, t)dx.

It is assumed that the failure rates λi are constant and
repair times are arbitrarily distributed. All failures are statis-
tically independent. The repair process begins immediately
when the device fails. No further failure can occur while
system is down and the device functions as new after repair.

We further assume that the maximum repair time ℓ < ∞
and the associated repair rate is bounded, i.e.,

0 ≤ µi(x)≤ µ< ∞, i = 1,2, , . . . ,M. (5)

It is clear that
∫ ℓ

0 µi(x)dx < ∞. Initially the sum of the
probability distributions in good and failure modes is 1, i.e.,

φ0 +
M

∑
i=1

∫ ℓ

0
φi(x)dx = 1, (6)

where φ0 ≥ 0, φi(x)≥ 0, ∀x ≥ 0, and φi ∈ L1(0, l).

The well-posedness and asymptotic behavior of system
(1)–(4) with given failure and repair rates have been well
addressed using C0-semigroup theory (see [4], [5], [6]).
Optimal repair maintenance design over a finite time interval
was discussed in [7], [8], which leads to a bilinear control
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problem. Also, failure rate identification using a least-squares
method was discussed in [9]. In our recent work [10], we
have constructed adaptive observer to estimate both the
failure and repair rates. The objective here is to construct
adaptive repair actions µi so that the probability of the system
in good mode can be steered to a target distribution.

A. Well-posedness of the Model

We first recall the well-posedness of equations (1)–(4).
Define the state space X = R×

(
L1(0, ℓ)

)M
with ‖ · ‖X =

| · |+∑M
i=1 ‖ · ‖L1(0,ℓ) and define the system operator A and

its domain by

A p =




−
M

∑
i=1

λi p0 +
M

∑
i=1

∫ ℓ

0
µi(x)•dx

−

(
d
dx

+µ1(x)

)
•

...

−

(
d
dx

+µM(x)

)
•







p0

p1
...

pM


 (7)

for p = (p0, p1(x), . . . , pM(x))T ∈ D(A), and

D(A) =
{

p ∈ X
∣∣ dpi(x)

dx
∈ L1(0, ℓ), and pi(0) = λi p0,

i = 1,2, . . . ,M
}
.

Equations (1)–(4) can be rewritten as an abstract Cauchy
problem in the non-reflexible Banach space X

ṗ(t) = A p(t), t > 0, (8)

p(0) = (φ0,φ1, . . . ,φM)T . (9)

It is shown in [4] that the operator A generates a positive
C0-semigroup of contraction. The solution to (1)–(4) is
nonnegative if the initial data are nonnegative. Moreover, if∫ l

0
µi(x)dx = ∞, i = 1, . . . ,M, (10)

then the system is conserved in terms of the norm ‖ · ‖X . In
other words, the summation of the probability distributions
of the system in good and failure modes is always 1 for any
t > 0, that is,

p0(t)+
M

∑
i=1

p(t) = φ0 +
M

∑
i=11

∫ ℓ

0
φi(x)dx = 1, ∀t > 0. (11)

In fact, condition (10) indicates that the failed components
or subsystems can be completely repaired or replaced by
new ones when the repair time reaches its maximum. In this
case, 0 is a simple eigenvalue of A and the time-dependent
solution of (8)–(9) converges to its steady-state exponentially,
which is the eigenfuction associated with 0 (see [4], [5], [6]).
Utilizing this property, the authors in [11] have established
the exact bilinear controllability of the repair actions under
certain conditions on the desired distribution of the failure
modes.

In the current work, we assume that
∫ l

0 µi dx < ∞, which
means that the failed components may not be fully recovered

from repair, As a result,

p0(t)+
M

∑
i=1

p(t)< 1, ∀t > 0,

and 0 is no longer in the spectrum of A . The solution to
(8)–(9) will converge to zero exponentially.

In the rest of our discussion, we consider the state space
X = R ×

(
L2(0, ℓ)

)M
for addressing the convergence of

the adaptive repair actions. One can show that pi(x, t) ∈
L2(0,T ;L2(0, ℓ)) if the initial datum φi ∈ L2(0, ℓ) using the
characteristic method (see (36) in [6]) and Volterra integral
equation (see Remark 1 in [12]).

III. MODEL REFERENCE CONTROLLER DESIGN

Viewing the repair rates µi(x) as the control signals in (1)–
(4), we arrive at coupled bilinear control systems. Using opti-
mal control techniques, one can solve for the optimal controls
[8] but such a solution increases controller complexity and
computational load. As an alternative for the bilinear control
of transport PDEs, we consider adaptive control techniques
presented in [13].

Central to the design of the adaptive controller is the
reference model, which represents an idealized reparable
system; this of course is the target system and the controllers
µi must ensure that (1)–(4) follows the target system.

Assumption 1 (Idealized repair rate controllers): It is as-
sumed that there exist unknown positive repair rates mi(x),
i = 1, . . . ,M, each with known lower and upper bounds

0 < mi ≤ mi(x)≤ mi, i = 1, . . . ,M, (12)

such that the solution to the systems

dq0(t)
dt

=−
( M

∑
i=1

λi
)
q0(t)+

M

∑
i=1

∫ ℓ

0
mi(x)qi(x, t)dx,

∂qi(x, t)
∂t

+
∂qi(x, t)

∂x
=−mi(x)qi(x, t),

(13)

with boundary condition

qi(0, t) = λiq0(t), i = 1,2, . . . ,M, t > 0, (14)

and initial conditions

q0(0) = φ0, qi(x,0) = φi(x), i = 1,2, . . . ,M (15)

produce the solutions (q0(t),qi(x, t)) to an idealized behavior
that represents the reference model (i.e., target system).

Remark 1: Please note that if the idealized controllers
mi(x) were known, then applying controllers µi(x) = mi(x)
to the systems (1)–(2) and examining the evolution of the
errors e0(t) = p0(t)− q0(t), ei(x, t) = pi(x, t)− qi(x, t), with
boundary condition

ei(0, t) = λie0(t), i = 1,2, . . . ,M, t > 0, (16)

and initial conditions

e0(0) = 0, ei(x,0) = 0, i = 1,2, . . . ,M, (17)

one can show that the errors are zero.

IV. MODEL REFERENCE ADAPTIVE CONTROLLER DESIGN

Since the idealized controller rates mi(x) in (13), are
unknown, one can replace them by their adaptive estimates
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µ̂i(x, t), i = 1, . . . ,M, in (1)–(4). The use of the reference
model (13)–(15) will subsequently aid in their adaptation.

A. Stability Analysis

Application of the adaptive controllers µ̂i(x, t) in place of
the unknown controllers µi(x) in (1), (2), i.e., select µi(x) =
µ̂i(x, t), produces the closed-loop plant

dp0(t)
dt

=−
M

∑
i=1

λi p0(t)+
M

∑
i=1

∫ ℓ

0
µ̂i(x, t)pi(x, t)dx,

∂pi(x, t)
∂t

+
∂pi(x, t)

∂x
=−µ̂i(x, t)pi(x, t),

(18)

with boundary conditions (3) and initial conditions (4).
In order to extract the update laws for the adaptive esti-

mates µ̂i(x, t) and to examine the performance of the adaptive
controllers, one compares (18) to the model reference (13)–
(15). The adaptive errors in this case are governed by

de0(t)
dt

= −
M

∑
i=1

λie0(t)+
M

∑
i=1

∫ ℓ

0
µ̂i(x, t)pi(x, t)dx

−
M

∑
i=1

∫ ℓ

0
mi(x)qi(x, t)dx

= −
M

∑
i=1

λie0(t)+
M

∑
i=1

∫ ℓ

0
µ̃j(x, t)pi(x, t)dx

+
M

∑
i=1

∫ ℓ

0
mi(x)ei(x, t)dx

(19)

and
∂ei(x, t)

∂t
+

∂ei(x, t)
∂x

=−µ̂i(x, t)pi(x, t)+mi(x)qi(x, t)

=−µ̃i(x, t)pi(x, t)−mi(x)ei(x, t)
(20)

where µ̃i(x, t) = µ̂i(x, t)−mi(x), i = 1, . . . ,M, denote the pa-
rameter errors, with boundary and initial conditions given by
(16), (17). The right hand side of (20) used the substitution

−µ̂i(x, t)pi(x, t)+mi(x)qi(x, t) =−(µ̂i(x, t)−mi(x)) pi(x, t)

−mi(x)pi(x, t)+mi(x)qi(x, t)

=−µ̃(x, t)pi(x, t)−mi(x)ei(x, t).

Lemma 1: Consider the reparable system (1)–(3) with the
repair rates assumed to satisfy the strengthened positivity
(12) in Assumption 1. Moreover, assume that there exists a
constant ε > 0 such that

∑M
i=1(λi −

1
2 λ2

i − ε)≥ a1 > 0 and

∑M
i=1(mi −

m2
i ℓ

4ε )≥ a2 > 0,
(21)

for some constants a1,a2 > 0. If the adaptive controllers are
updated according to the rules∫ ℓ

0

˙̂µi(x, t)ψi(x)dx =

γi

∫ ℓ

0
(ei(x, t)− e0(t)) pi(x, t)ψi(x)dx

(22)

for i= 1, . . . ,M and test functions ψi(x)∈ L2(0, ℓ), with γi > 0
denoting the adaptive gains [14], the state errors converge

in the sense

lim
t→∞

e0(t) = 0, lim
t→∞

∫ ℓ

0
e2

i (x, t)dx = 0, i = 1, . . . ,M. (23)

Proof: The extraction of the update laws (22) is based
on Lyapunov-redesign methods. The associated Lyapunov
functional is given by

V (t) =
1
2

e2
0(t)+

1
2

M

∑
i=1

∫ ℓ

0
e2

i (x, t)dx

+
1
2

M

∑
i=1

∫ ℓ

0

1
γi

µ̃2
i (x, t)dx.

(24)

When the derivative of V is evaluated along (19)–(20) with
adaptive laws (22) and conditions (16), (17), one arrives at

V̇ =−

(
M

∑
i=1

λi

)
e2

0(t)+ e0(t)
M

∑
i=1

∫ ℓ

0
µ̃j(x, t)pi(x, t)dx

+e0(t)
M

∑
i=1

∫ ℓ

0
mi(x)ei(x, t)dx−

M

∑
i=1

∫ ℓ

0
ei(x, t)e

′
i(x, t)dx

−
M

∑
i=1

∫ ℓ

0
µ̃i(x, t)pi(x, t)ei(x, t)dx−

M

∑
i=1

∫ ℓ

0
mi(x)e

2
i (x, t)dx

+
M

∑
i=1

∫ ℓ

0
µ̃i(x, t)(ei(x, t)− e0(t)) pi(x, t)dx

=−

(
M

∑
i=1

λi

)
e2

0(t)+ e0(t)
M

∑
i=1

∫ ℓ

0
mi(x)ei(x, t)dx

−
1
2

M

∑
i=1

∫ ℓ

0

de2
i (x, t)
dx

dx−
M

∑
i=1

∫ ℓ

0
mi(x)e

2
i (x, t)dx

≤−

(
M

∑
i=1

λi

)
e2

0(t)+ |e0(t)|
M

∑
i=1

‖mi‖L2‖ei(t)‖L2

−
1
2

M

∑
i=1

(e2
i (L, t)−λ2

i e2
0(t))−mi

M

∑
i=1

‖ei(t)‖
2
L2

≤−
M

∑
i=1

(
λi −

1
2

λ2
i − ε

)
e2

0(t)−
M

∑
i=1

(mi −
m2

i ℓ

4ε
)‖ei(t)‖

2
L2

≤−a1|e0(t)|
2 −a2

M

∑
i=1

‖ei(t)‖
2
L2 ≤ 0,

where the cross product term is simplified via Young’s
inequality [15] and which results in a1,a2 > 0 by (21). The
convergence (23) along with the boundedness of the adaptive
estimates of the controllers follows from [16].

B. Well-posedness of adaptive controller

In order to write the plant (8) in a form that provides an
explicit parametrization, we consider abstracting the evolu-
tion of each probability density pi(x, t). We let H denote the
state space for (2) that is equipped with an appropriate inner
product 〈·, ·〉 and associated induced norm | · |. Considering a
Gelfand triple, we also let V =H1(0, ℓ) be a reflexive Banach
space with norm ‖φ‖ = (|φ|2 + |φ′|2)1/2 for φ ∈ V . We then
consider the following triple V →֒ H →֒V ∗ with V ∗ denoting
the dual V ∗ = (H1(0, ℓ))∗. This space represents the space of

2684

Authorized licensed use limited to: University of Georgia. Downloaded on August 30,2025 at 23:22:59 UTC from IEEE Xplore.  Restrictions apply. 



continuous conjugate linear functionals on V with the dual
norm on it denoted by ‖ ·‖∗. As a consequence of the dense
and continuous embeddings we have

|φ| ≤ k‖φ|, k > 0. (25)

A parameter space associated with the spatially varying
repair rates µi(x) is defined as follows

Θ=
{

θ : θ ∈ L1(0, ℓ) with θ satisfying 0 < θ ≤ θ ≤ θ
}

(26)

for some constants θ,θ > 0.

We can now define the θ-parameterized operators associ-
ated with the PDE (2). For each θ ∈ Θ, define the operator
A0(θ) : V →V ∗ by

〈A0(θ)φ,ψ〉=−
∫ ℓ

0

dφ(x)
dx

ψ(x)dx

+
∫ ℓ

0
θ(x)φ(x)ψ(x)dx.

(27)

In a similar fashion to [16], this operator satisfies:

(P1) (Θ-linearity) The map θ → A0(θ)φ is affine from Θ
into V ∗ for each test function φ ∈ V . For each θ ∈ Θ
and each φ ∈ V we have the decomposition of A0(θ)
into a known operator A2 : V → V ∗, and a linearly-
parameterized operator A1(θ) : V →V ∗ as follows

A0(θ)φ = A1(θ)φ+A2φ. (28)

The map θ → A1(θ)φ from Θ into V ∗ is linear for each
φ ∈V .

(P2) (V →V ∗-boundedness) There exist bounds α1,α2 > 0

|〈A1(θ)φ,ψ〉| ≤ α1|θ|Θ‖φ‖‖ψ‖, (29)

for φ,ψ ∈V and θ ∈ Θ, and

|〈A2φ,ψ〉| ≤ α2‖φ‖‖ψ‖, φ,ψ ∈V. (30)

We can now identify the two operators in (27): for each
θ ∈ Θ and φ,ψ ∈V we have

〈A1(θ)φ,ψ〉=
∫ ℓ

0
θ(x)φ(x)ψ(x)dx, (31)

and for φ,ψ ∈V we have

〈A2φ,ψ〉=
∫ ℓ

0
Dφ(x)ψ(x)dx. (32)

To express the parameter-dependent operator A1(θ) as an
operator in Θ, we follow the work in [16]. For each φ ∈V ,
let Π(φ) : V → Θ ⊂V ∗ be the linear mapping defined by

〈θ,Π(φ)ψ〉Θ = 〈A1(θ)φ,ψ〉, ψ ∈V, θ ∈ Θ. (33)

The boundedness follows from (P2) since for φ ∈V we have

|〈θ,Π(φ)ψ〉Θ| = |〈A1(θ)φ,ψ〉|

≤ θ|φ| |ψ| ≤ θ‖φ‖‖ψ‖,
(34)

and thus the mapping Π(φ) : V → Θ is bounded. We subse-
quently define Π∗(φ) : Θ →V ∗ via

〈Π∗(φ)θ,ψ〉= 〈θ,Π(φ)ψ〉Θ = 〈A1(θ)φ,ψ〉, (35)

for ψ ∈ V , θ ∈ Θ. We can write (1)–(4) as an initial value

problem

∂t p0(t) =−
M

∑
i=1

λi p0(t)+
M

∑
i=1

〈A1(µi)pi(t),1〉, (36a)

∂t pi(t) = A2 pi(t)−A1(µi)pi(t)+Bλi p0(t), (36b)

p0(0) = ϕ0, pi(x,0) = ϕi(x), i = 1,2, . . . ,M, (36c)

where the boundary operator B : R1 →V ∗ is identified as

Bc = cδ(x−0) and B∗φ = φ(0), (37)

that is,

〈Bc,φ〉= 〈c,B∗φ〉= 〈c,φ(0)〉, ∀c ∈ R
1, ∀φ ∈V, (38)

where we used the fact that V →֒ C[0,L], so φ(0) is well-
defined. To view the M equations in (36b) collectively along
with (36a) as the single evolution equation in (8), (9), we
define the aggregate state space which consists of M copies
of H via H = ∏M

i=1 H. Similarly, we define the aggregate
interpolating spaces V = ∏M

i=1 V and V
∗ = ∏M

i=1 V ∗. It is
easily seen that V →֒ H →֒ V

∗ and the duality pairing
〈·, ·〉V∗×V is the extension by continuity of the inner product
〈·, ·〉H; i.e., for an element Φ = {φ1,φ2, . . . ,φM} ∈V

∗ and an
element Ψ = {ψ1,ψ2, . . . ,ψM} ∈V we have that 〈Φ,Ψ〉V∗×V

reduces to 〈Φ,Ψ〉H if Φ ∈H. The aggregate state is

p(t) =
[

p1(t) p2(t) . . . pM(t)
]T

,

and the aggregate parameter set is ΘΘΘ = ∏M
i=1 Θ ⊂ V

∗. We
define the aggregate parameter-dependent operator A1(µµµ) =
IM ⊗A1(µi)|

M
i=1 or in matrix form

A1(µµµ) = diag(A1(µ1),A1(µ2), . . . ,A1(µM)),

where A1(µi) is given by (31), A2 =
(
IM ⊗ A2

)
with

A2 given by (32) and B =
(
IM ⊗ B

)
, where µµµ =

(µ1 µ2 · · · µM )T , with ⊗ denoting the Kronecker
product, [17].

Similarly, following (33) we define the aggregate linear
mapping ΠΠΠ(Φ) : V→ΘΘΘ as follows

〈µµµ,ΠΠΠ(Φ)Ψ〉ΘΘΘ = [〈µ1,Π(φ1)ψ1〉Θ, . . . ,〈µM,Π(φM)ψM〉Θ]
T

= [〈A1(µ1)φ1,ψ1〉, . . . ,〈A1(µM)φM,ψM〉]T

= 〈A1(µµµ)Φ,Ψ〉,

yielding the aggregate version in (35) ΠΠΠ∗(Φ) : ΘΘΘ → V
∗ via

〈ΠΠΠ∗(Φ)µµµ,Ψ〉 = [〈Π∗(φ1)µ1,ψ1〉, . . . ,〈Π∗(φM)µM,ψM〉]T

= 〈µµµ,ΠΠΠ(Φ)Ψ〉ΘΘΘ.

The equations for the M probability densities in (2) and (36b)
can be written in aggregate form as

ṗ(t) =−A1(µµµ)p(t)+A2p(t)+Bλλλp0(t),

or in terms of ΠΠΠ∗ as

ṗ(t) =−ΠΠΠ∗(p(t))µµµ+A2p(t)+Bλλλp0(t).

Finally, the probability p0(t) from (36a) can be written as

ṗ0(t) = −
(
λλλT 1M

)
p0(t)+ 〈A1(µµµ)p(t),1M〉

= −
(
λλλT 1M

)
p0(t)+ 〈ΠΠΠ∗(p(t))µµµ,1M〉

= −
(
λλλT 1M

)
p0(t)+ 〈µµµ,ΠΠΠ(p(t))1M〉ΘΘΘ,

2685

Authorized licensed use limited to: University of Georgia. Downloaded on August 30,2025 at 23:22:59 UTC from IEEE Xplore.  Restrictions apply. 



where

λλλ =
[

λ1 λ2 . . . λM
]T

and 1M is the M-dimensional column vector of 1’s.

The augmented state (p0(t),p(t)) is written in alternate
forms to facilitate the control design below[

ṗ0(t)

ṗ(t)

]
=

[
−
(
λλλT 1M

)
p0(t)+ 〈ΠΠΠ∗(p(t))µµµ,1M〉

A2p(t)−ΠΠΠ∗(p(t))µµµ+Bλλλp0(t)

]

=

[
〈ΠΠΠ∗(p(t))µµµ,1M〉

−ΠΠΠ∗(p(t))µµµ

]
+

[
−
(
λλλT 1M

)
p0(t)

Bλλλp0(t)+A2p(t)

]

p0(0) = ϕ0, p(0) =ϕϕϕ,

(39)

where

ϕϕϕ(x) =
[

ϕ1(x) ϕ2(x) . . . ϕM(x)
]T

∈H.

Equation (39) is the detailed representation of the evolution
equation (8), (9). The benefit of this representation is that
it allows one to design the adaptive controller since it sepa-
rates the dynamics into parameter-dependent and parameter-
independent dynamics.

Similar to (39), one can write the reference model (13) as[
q̇0(t)

q̇(t)

]
=

[
−
(
λλλT 1M

)
q0(t)+ 〈ΠΠΠ∗(q(t))m,1M〉

A2q(t)−ΠΠΠ∗(p(t))m+Bλλλq0(t)

]

=

[
〈ΠΠΠ∗(q(t))m,1M〉

−ΠΠΠ∗(q(t))m

]
+

[
−
(
λλλT 1M

)
q0(t)

Bλλλq0(t)+A2q(t)

]

q0(0) = ϕ0, q(0) =ϕϕϕ.

(40)

Since the idealized aggregate control signal m is not avail-
able, then application of its adaptive estimate µ̂µµ(t) in (39),
(40) produces the error system

ė0(t) =−
(
λλλT 1M

)
e0(t)+ 〈ΠΠΠ∗(p(t))µ̃µµ(t),1M〉

+〈(ΠΠΠ∗(p(t))−ΠΠΠ∗(q(t)))m,1M〉

ė(t) =−ΠΠΠ∗(p(t))µ̃µµ(t)− (ΠΠΠ∗(p(t))−ΠΠΠ∗(q(t)))m

+A2e(t)+Bλλλe0(t)

e0(0) = 0,e(0) = 0.

(41)

Using (35), we can write (41) as

ė0(t) = 〈ΠΠΠ∗(p(t))µ̃µµ(t),1M〉

−
(
λλλT 1M

)
e0(t)+ 〈A1(m)e(t)),1M〉

ė(t) =−ΠΠΠ∗(p(t))µ̃µµ(t)+Bλλλe0(t)−A1(m)e(t)+A2e(t)

with initial conditions e0(0) = 0, e(0) = 0. The above can
be combined with the adaptive laws (22) to arrive at the
skew-adjoint structure of adaptive systems.

Towards that consider the above expression in matrix form[
ė0(t)

ė(t)

]
=

[
〈ΠΠΠ∗(p(t))µ̃µµ(t),1M〉

−ΠΠΠ∗(p(t))µ̃µµ(t)

]

+

[
−
(
1T

Mλλλ
)

〈A1(m)·,1M〉

Bλλλ (−A1(m)+A2)

][
e0(t)

e(t)

]
,

e0(0) = ϕ0 −ϕ0, p(0) =ϕϕϕ−ϕϕϕ.

(42)

then[
〈ΠΠΠ∗(p(t))µ̃µµ(t),1M〉

−ΠΠΠ∗(p(t))µ̃µµ(t)

]
=

[
〈ΠΠΠ∗(p(t))•,1M〉

−ΠΠΠ∗(p(t))•

]
µ̃µµ(t)

=

[
0 〈A1(µ̃µµ(t))•,1M〉

0 −A1(µ̃µµ(t))•

][
p0(t)

p(t)

]
.

(43)

Define the extended error E(t) ∈ H = R
1 ×H via

E(t) =

[
e0(t)
e(t)

]

with the interpolating spaces given by V =R
1×V and V ∗ =

R
1 ×V

∗ We define the counterpart of (35) in the spaces
H ,V ,V ∗ and Q . To extract the counterpart of the operator
Π defined in (33) applied for the extended states over H ,
we consider the last two expressions in (43), in weak form

〈A(µµµ)X ,Y 〉V ∗,V

=
〈[ 0 〈A1(µµµ)•,1M〉

0 −A1(µµµ)•

][
x0

x

]
,

[
y0

y

]〉

=
〈[ 0 〈ΠΠΠ∗(x)•,1M〉

0 −ΠΠΠ∗(x)•

]
[

µµµ
]
,

[
y0

y

]〉

= 〈P ∗(X)µµµ,Y 〉V ∗,V

=
〈

µµµ,

[
〈x0B∗•,y〉

−〈•,ΠΠΠ(x)y〉ΘΘΘ

]〉
Q

=
〈

µµµ,

[
0 〈x0B∗•, ·〉

0 −〈•,ΠΠΠ(x)·〉ΘΘΘ

][
y0

y

]〉
Q

= 〈µµµ,P (X)Y 〉Q ,

for

µµµ∈ Q =ΘΘΘ,

and

X =

[
x0

x

]
,Y =

[
y0

y

]
∈ H = R

1 ×H,

where we used the identity

〈µµµ,ΠΠΠ(Φ)Ψ〉ΘΘΘ = 〈ΠΠΠ∗(Φ)µµµ,Ψ〉= 〈A1(µµµ)Φ,Ψ〉.

Finally, we define the evolution operator A(t) : V → V ∗ via

A(t) =

[
Am P ∗(X(t))

−P (X(t)) 0

]
, (44)
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where Am is the operator from (42)

Am =




−
(
1T

Mλλλ
)

〈A1(m)·,1M〉

Bλλλ (−A1(m)+A2)


 ,

and which is the operator A in (8), (9) evaluated at m. The
associated state and parameter error is now written in the
skew-adjoint form


˙̃X(t)

˙̃q(t)


= A(t)

[
X̃(t)

q̃(t)

]
, (45)

with initial conditions X̃(0) = X̂(0)−X(0) = 0 and q̃(0) =
q̂(0)−m. Equation (45) is in the form presented in [18].
The evolution operator A(t) has the skew-adjoint structure
of adaptive systems and satisfies all the conditions in [18]
needed for the well-posedness of (13), (14) and (19), (20) or
(13), (14) and (18) with the adaptation (22).

V. NUMERICAL EXAMPLES

Consider (1)–(4) with M = 1. To approximate (2), we use
the discretization scheme in [8], [12] with a uniform mesh
{xi = ih}N

i=0 having a step size of h = T/N in the spatial
domain [0,T ]. Denote p1,i(t) = p1(xi, t) and set µi = µ(xi).
To approximate the integral, we use the rectangular rule and
apply the upwind scheme [19] to discretize the spatial first-
order partial derivative term in (2). This leads to the semi-
discretized state equations

ṗ0(t) =−λ1 p0(t)+h
N

∑
i=1

µi p1,i(t),

ṗ1,i(t) =−

(
p1,i(t)− p1,i−1(t)

h

)
−µi p1,i(t), 1 ≤ i ≤ N,

with boundary condition p1,0 = λ1 p0(t) and initial conditions
p0(0) = φ0 and p1,i(0) = φ1,i. Setting

p(t) =
[

p0(t) p1,1(t) . . . p1,N(t)
]T

and

Ah =




−λ1 hµ1 hµ2 · · · hµN

λ1/h −µ1 −1/h 0 · · · 0

0 1/h −µ2 −1/h · · · 0

0
. . .

. . .
. . . 0

0 0 · · · −µN−1 −1/h 0

0 0 0 1/h −µN −1/h




,

then (1)–(4) is viewed as an IVP of the system

ṗ(t) = Ah p(t), p(0) = [1,0, · · · ,0]T . (46)

Using Trotter-Kato Theorem [20], one can show that the
solution to (46) strongly converges to (8)–(9) as N → ∞ [21].
The ODE system (46) can be solved by MATLAB’s ODE
solvers (e.g., ode15s).

The ODE system (46) can be recast into the finite dimen-
sional representation of (39)

ṗ(t) = PT
h (p(t))µµµ+Ch p(t),

where the (N +1)×N matrix is

PT
h (p) =




hp1,1 hp1,2 hp1,3 · · · hp1,N

−p1,1 0 0 · · · 0
0 −p1,2 0 · · · 0
. . .

. . .
. . .

. . . 0
0 · · · 0 −p1,N−1 0
0 0 · · · 0 −p1,N




,

the (N +1)× (N +1) matrix is

Ch =




−λ1 0 0 0 · · · 0
λ1/h −1/h 0 0 · · · 0

0 1/h −1/h 0 · · · 0

0
. . .

. . .
. . .

. . . 0
0 0 · · · 1/h −1/h 0
0 0 0 0 1/h −1/h




,

and the N-dimensional vector is µµµ=
[

µ1 µ2 . . . µN
]T

.
The product PT

h (p(t))µµµ above is also written as Dh(µµµ)p(t)
where the N × (N +1) matrix Dh(µµµ) is

Dh(θ) =




0 hµ1 hµ2 hµ3 · · · hµN

0 −µ1 0 0 · · · 0
0 0 −µ2 0 · · · 0
...

. . .
. . .

. . .
. . . 0

0 0 · · · 0 −µN−1 0
0 0 0 · · · 0 −µN




,

and which represents the matrix representation of the adjoint
of the operator P ∗ in (44). In a similar way, the finite
dimensional representation of the reference model is

q̇(t) = PT
h (q)m+Chq(t),

and the associated adaptive error is

ė(t) = PT
h (p)µ̃µµ(t)+(Dh(m)+Ch)e(t),

which produces the adaptive laws
˙̂µµµ(t) =−ΓBh(p)e(t),

where Γ= ΓT > 0 is the adaptive gain matrix. The parameter
space in this case is Θ = {µµµ∈ R

N : µ1 . . . ,µN ≥ 0}.
The reference model use the idealized repair rate given

by m(x) = 0.2(x/10)4 and a known constant rate λ1 = 0.2.
The initial conditions were selected as φ0 = 0.4 and φ1,i =
(1−φ0)/(Mh), i = 1, . . . ,N. Using an adaptive gain in (22)
as γi = 50, and the initial estimates µ̂i(0) = 0.1mi, both the
closed loop system and reference model were integrated in
the time interval [0,20]s.

Figure 1 depicts the evolution of the plant probability p0(t)
and that of the reference model q0(t). It is observed that the
state error e0(t) = p0(t)− q0(t) converges to zero in less
that 0.4s. The plant probability density p(x, t) that uses the
proposed adaptive controller, and that of the reference model
q(x, t) are depicted in Figure 2, where it is observed that the
controlled system converges to the reference model. Finally,
the adaptive estimate µ̂(x, t) (also the adaptive controller)
is presented in Figure 3 at the initial (dashed green line)
and final (solid blue line) times as well as the idealized
probability density m(x) (dotted black line). It is observed
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Fig. 1. Evolution of adaptively controlled p0(t) and model reference q0(t).

Fig. 2. Evolution of adaptively controlled p1(t) and model reference q1(t).

that the error at the final time is identically zero for all x.

VI. CONCLUSIONS

Following a recently proposed adaptive alternative for the
bilinear control of transport integro-differential equations
representing multi-rate reparable systems, we presented a
model reference adaptive control scheme to ensure that the
probabilities of the system in good mode can be steered
to a target distribution. Assuming that there exist spatially
varying repair rates representing the target distributions and
generating the target transport integro-differential equations,
we proposed an adaptation of the bilinear controllers and
presented both the well-posedness of the resulting adaptive
system and the convergence of the plant states to the model
reference states in the appropriate norms. Numerical studies
involving a system with a single failure model, resulting in
a scalar integro-differential equation coupled to a transport
PDE, demonstrated both a state and a parameter convergence.
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Cambridge Mathematical Library. Cambridge University Press,
Cambridge, 1988, reprint of the 1952 edition.

[16] J. Baumeister, W. Scondo, M. A. Demetriou, and I. G. Rosen, “On-
line parameter estimation for infinite-dimensional dynamical systems,”
SIAM J. Control Optim., vol. 35(2), pp. 678–713, 1997.

[17] R. A. Horn and C. R. Johnson, Topics in matrix analysis. Cambridge
University Press, Cambridge, 1991.
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