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We compute the differential cross section for direct quarkonium production in high-energy electron-
nucleus collisions at small x. Our computation is performed within the nonrelativistic QCD factorization
formalism that separates the calculation into short distance coefficients and long distance matrix elements
that depend on the color and spin of the state. We obtain the short distance coefficients of the production of
the heavy quark pair within the framework of the color glass condensate effective field theory, which
resums coherent multiple interactions of the heavy quark pair with the nucleus to all orders. Our results are
expressed as the convolution of perturbatively calculable functions with multipoint lightlike Wilson line
correlators. In the correlation limit, we establish the correspondence between our color glass condensate
formulation with calculations employing the transverse momentum dependent (TMD) framework. We
extend this correspondence by resumming kinematic power corrections within the improved TMD
framework, which interpolates between the TMD formalism and k | -factorization formalism. We present a
detailed numerical analysis, focusing on J /y production in the kinematics accessible at the future Electron-
Ion Collider, highlighting the importance of genuine higher-order saturation contributions when the
electron collides with a large nucleus. Our results are also valid in the photoproduction limit where we
expect the largest contribution from genuine higher-order saturation contributions which could be accessed
in ultraperipheral collisions of relativistic heavy ions.

DOI: 10.1103/PhysRevD.110.094039

I. INTRODUCTION

Over the last few decades, high-energy nuclear and
particle physics collider experiments have extensively
studied the landscape of quantum chromodynamics
(QCD). Major efforts have been devoted to elucidating
the structure of protons and nuclei in terms of their
fundamental constituents: quarks and gluons, collectively
known as partons. It is well known that the probability of

“Contact author: cheung27 @lInl.gov
“Contact author: zkang @physics.ucla.edu
:]fCOntact author: faridsal@uw.edu
SContact author: rlvogt@lbl.gov

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2024/110(9)/094039(29)

094039-1

finding gluons that carry momentum fraction x of the
hadron rapidly grows at smaller values of x, and it is
conjectured that recombination effects in QCD result in
gluon saturation suppressing this growth [1,2]. The large
gluon occupation number at small x suggests that a more
natural characterization of the degrees of freedom of this
regime is in terms of dense fields instead of the usual
partonic picture. The color glass condensate (CGC) is an
effective field theory of QCD which provides a systematic
way to study the dynamics of these fields and their
consequences on particle production across different col-
liding systems [3—-8]. An important feature of the CGC is
the emergence of a semihard, energy and nuclear-size
dependent, momentum scale Q, known as the saturation
scale. Momentum modes of the gluon fields with transverse
momenta less than or comparable to the saturation scale are
suppressed, which in turn has an imprint on particle
production. A promising tool to probe the signatures of
gluon saturation is the direct production of quarkonia in
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high-energy collisions. The mass of the quarkonium state,
such as J/y, is similar in magnitude to the expected
saturation scale reached at small x in collider experiments
while still sufficiently hard to allow for a controllable
perturbative expansion.

Various research efforts have been carried out to study
quarkonium produced with large transverse momentum
within the collinear perturbative QCD (pQCD) formalism
jointly with different mechanisms for the formation of
the quarkonium, such as nonrelativistic QCD (NRQCD)
[9-13], the color evaporation model [14-17], and the
improved color evaporation model [18-25]. The collinear
pQCD approach has been extended to incorporate next-to-
leading power corrections [26-31] as well as next-to-
leading order corrections in a, [32—-36]. On the other hand,
in the low transverse momentum regime, quarkonium
production has been studied using the transverse momen-
tum dependent (TMD) factorization formalism [37-44]
(see Refs. [45-48] for quarkonium accompanied by a jet or
a photon), and soft-collinear effective theory [49-51].

In the forward/small-x regime, quarkonium produc-
tion has been investigated within the k, factorization
formalism [52-58] in terms of unintegrated gluon distri-
butions and off-shell gluon partonic matrix elements. The
unintegrated gluon distribution obeys the Balitsky-Fadin-
Kuraev-Lipatov equation [59-61] resumming large energy
logarithms (for other approaches to high-energy factoriza-
tion following the collinear framework see Refs. [62-64]).
On the other hand, at sufficiently low values of x or in
nuclear environments, we expect that a more appropriate
description of particle production is provided by the
CGC/saturation formalism, which captures the physics of
multiple scattering as well as non-linear QCD evolution
equations the Jalilian-Marian-Iancu-McLerran-Weigert-
Leonidov-Kovner (JIMWLK) equations [65-70] and their
mean field approximation the Balitsky-Kovchegov
equation [71,72]. In the CGC effective theory, direct
quarkonium production studies have focused on high-
energy proton-proton and proton-nucleus' collisions at
RHIC and the LHC [76-87] (see also [88] for diffractive
studies). In particular, the combined framework of CGC +
NRQCD developed in [89], and its subsequent phenom-
enological studies have successfully described the particle
spectra in the semihard regime, p; <5 GeV, as well as the
rapidity distribution [90-95]. Meanwhile, most studies of
quarkonium production in deep inelastic scattering (DIS)
and photoproduction within the saturation framework have
been devoted to diffractive production [96-115].

In this paper, we compute, for the first time, the direct
quarkonium production in electron-nucleus collisions at

'Nuclear modification to quarkonium production in a cold
QCD environment have also been investigated in [73,74] follow-
ing a collinear or a k, factorized approach combined with the
nuclear modification of the gluon densities in nuclei (see also [75]
for a more general approach).

e
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FIG. 1. Schematic diagram of quarkonium production in high-
energy electron-nucleus collisions. The elongated red oval
represents the CGC effective interaction of the heavy quark-
antiquark pair with the nuclear target. The gray oval represents
the formation of the quarkonium in NRQCD.

small x within the joint CGC 4+ NRQCD framework (see
Fig. 1). Our computation of the short distance coefficients
in the CGC allows us to resum the coherent multiple
interactions of the heavy quark pair to all orders in the
small-x gluon background field of the nucleus. This paper
is organized as follows. In Sec. II we briefly introduce our
conventions and the kinematic variables for the process
under consideration. We present a convenient decomposi-
tion of our differential cross section expressed in terms of
the density matrix for quarkonium production in virtual
photon-nucleus collision. We then review the basic theo-
retical tools for our computation: the CGC effective field
theory and the NRQCD formalism.

We review the computation of the leading order ampli-
tude for the production of the heavy quark pair within the
CGC in Sec. III. The computations of the NRQCD short
distance coefficients for the differential cross section of
quarkonium production are performed in Sec. IV, where we
include both color octet and singlet contributions, as well as
S and P wave states. Our results are expressed as the
convolution of a color-dependent CGC distribution which
encodes the properties of the scattering of the heavy quark
pair with the small-x background field of the target, and
perturbative functions which depend on the polarization of
the virtual photon and the spin state of the heavy quark pair.
We comment on the origin of k; factorization breaking
when the saturation scale Q2 is comparable to the other
semihard scales in the process.

In Sec. V we show that in the small p; limit our results
are consistent with those obtained within TMD factoriza-
tion at small x provided the saturation scale Q2 is also
sufficiently smaller than the hard scales Q% and M?,. In this
limit, the differential cross section is expressed as the
product of hard function and the small-x Weizsicker-
Williams (WW) transverse-momentum-dependent gluon
distribution, consistent with the results obtained in [39].
Furthermore, following the strategy in [116,117] we resum
the kinematic twists (p7/Q* and pj /M%) to all orders,
obtaining analytic expressions for the improved TMD
(ITMD) hard functions. We present a numerical analysis
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of our results in Sec. VI where we study the short distance
coefficients relevant for J/y production, as well as the
differential cross section. We study their dependencies on
the transverse momentum p,; and the virtuality Q. We
compare the results of the full CGC, TMD, and ITMD
calculations. We present our conclusions and potential
avenues for future work in Sec. VIIL.

Lastly, our manuscript is supplemented with several
appendices. In Appendix A we briefly outline the compu-
tation of the spin projections necessary to obtain the
perturbative functions. Then, in Appendix B we collect
the final results for the perturbative functions in the full
CGC calculation, as well as the hard functions in the TMD
and ITMD limits. In Appendix C we briefly review the
computation of lightlike Wilson line correlators with the
Gaussian approximation. Finally, in Appendix D we
provide supplementary numerical results for the short
distance coefficients.

II. THEORETICAL FRAMEWORK

We begin this section by defining the kinematics and
notations employed throughout this paper and remind the
reader of the decomposition for particle production in DIS
expressed in terms of the subhadronic virtual photon-
nucleus scattering. We then briefly review the basic
elements of the CGC effective theory and the NRQCD
formalism that we will use to compute direct quarkonium
production.

A. Kinematics and notations

The 4-momenta of the nucleus and the exchanged
spacelike photon are denoted by P, and ¢, respectively.
We work in a frame where they move along the z axis, the
photon has a large ¢* component, and the nucleus has a
large P, component,

Py =(0,P3,0,), (1)
Q2
g’ = ((1+7—2(]—+,0¢ . (2)
We ignore the mass of the nucleus, and Q> = —¢? is the

virtuality of the photon.

Let p; and p, be the 4-momenta of heavy quark and
antiquark, respectively. We define p as the total momentum
and k as half the relative momentum,

p = p1+ P2,
1

kzi(pl—pz)- (3)

The on-shell conditions,

where m, is the mass of the heavy quark, demand

p'k, =0,
p? = 4(my — k). (5)

The total momentum p will correspond to the momentum
of the produced quarkonium, and the relative momentum k
provides an expansion parameter in NRQCD to calculate
the different states of orbital angular momentum of the
heavy quark-antiquark pair. The quarkonium mass Mg
equals twice the mass of the heavy quark mg. Thus after
expansion around k = 0 we have p* = M5,

B. Lepton-hadron tensor decomposition
in the photon polarization basis

We compute direct quarkonium production H in deep
inelastic electron-nucleus scattering at small x

e(ke) +A(Py) — e(ke) + H(p) + X. (6)

As is conventional in small-x calculations, we compute the
subhadronic process:

r*(q.2) +A(P,) = H(p) + X, (7)

where A4 denotes the polarization of the virtual photon.

Following the decomposition in Sec. II in [105], the DIS
process in Eq. (6) and the y* 4+ A process in Eq. (7) are
related by

dotA=el X g (1) doj 47X i aoy delp A= HHX
dQ%dydp7dd,;  22°Q% a2 VT4
6?[:4_)H+X dGZI;ﬁ;HJrX
+\/2(1—y)(Z—)’)TCOS%H‘F(1—Y)70052¢e11}, (8)
1 1
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where ¢,y = ¢, — ¢py is the relative azimuthal angle
between the electron and the produced quarkonium, y is
the inelasticity y = (¢ - P4)/(k, - P5) and xg; = Q*/(ys).
In the decomposition in Eq. (8), we introduce the following
shorthand notation:

’

y'A-H+X y*A-H+X
doy. = do()

y'A-H+X _ y*A-H+X
do7 = do ;

y'A-H+X y*A-H+X
do7y = doy ; ,

y*A-H+X y*A-H+X
d"Tﬂip = E :da—/u ) )
ASHAX . . .
where do/, """ is the “density matrix” for direct quar-

konium production in y*A scattering. 4 and A’ refer to the
polarization of the virtual photon in the amplitude and
complex conjugate amplitude, respectively. We also in-
troduce the shorthand notation Y, =4",_ . The diago-
nal elements A = A’ correspond to the differential cross
section for quarkonium production in the scattering of a
nucleus with a virtual photon with definite polarization A
and the off-diagonal terms correspond to quantum inter-
ference terms which are accessible in the DIS azimuthal
correlations as seen in Eq. (8). The evaluation of the
expressions in Eq. (9) within the joint CGC + NRQCD
framework is one of the principal results of this manuscript.

In this manuscript, we work in light-cone gauge, A* = 0,
of the photon field where the polarization vectors are

(g1 =0) = <O’q%’0l>’ (10)

for longitudinally polarized photons, and
(g, A =+1) = (0,0,€}), (11)

for transversely polarized photons, with two-dimensional

A 1 . —igp : :
transverse vector €| = \/—5(1, iA)e™", where ¢ is an arbi-

trary angle, whose dependence will disappear at the level of
the cross section. To obtain the specific form in Eq. (8) we
have chosen ¢ = ¢y the azimuthal angle of the produced
quarkonium.2 With this choice the expressions in Eq. (9)
are independent of the angle ¢y, and all the angular
dependence is explicit in the azimuthal modulations
cos(ng,y) in Eq. (8).

C. Color glass condensate

In the color glass condensate, the large x partons [with
rapidities Y < Y,, where ¥ = In(1/x)] of the nucleus are
integrated out and effectively treated as stochastic classical

’In [105] we chose ¢ = 0 in such case one has to extract the
angular dependence from the subhadronic matrix elements.

color charge density sources p4. For a fast-moving nucleus
along the minus component of the light-cone direction, the
color sources generate a current density of the form

J”(XJF,XL) :5”_PA(X+,xL)’ (12)

where the subeikonal components of the current are
neglected. In turn, this current generates the gauge field
AH (referred as to the background field) which represents
the small-x content (partons with rapidities ¥ > Y) of the
nucleus [118-122]. In the CGC, the expectation value of
any observable is computed from the path integral

fYo [’DA]OeiS[AsPA]
fyo [’DA} eiSApa] 7

(©) = / DpsWy,[pa]

where Wy, [p4] is a gauge-invariant weight functional for
the distribution of the color charges p,. The invariance of
the physical observables on the arbitrary rapidity cutoff Y,
results the JIMWLK renormalization group evolution
equations [65-70].

In the semiclassical approximation, the small-x color
field is obtained in the saddle point approximation of the
path integral by solving the classical Yang-Mills equations
[D,, F**] = J¥, where the current is given by Eq. (12). In
the light-cone gauge, AT = 0, these equations have the
solution

Af(xtix)) = a,(x,x)), (14)
where ay (xT,x ) satisfies the Poisson equation
Viaa(xt,x1) = —pa(xt,x). (15)

Corrections beyond the semiclassical approximation can be
performed systematically in perturbation theory. An impor-
tant subset of these contributions yields large rapidity
logarithms of the form a?(Y —Y,)", where Y is the
physical rapidity of the observable. These potentially large
corrections can be absorbed by the IMWLK renormaliza-
tion group evolution.

A key ingredient for computing scattering amplitudes in
the CGC is the effective vertex for the eikonal interaction of
fast-moving colored charged partons with the background
(see Fig. 2). For a quark one has

o6

X/dzzle_i(ll_m'z*Vij(zl)v (16)

T4, (L1) = Qo3I = 1)y,

while for an antiquark the interaction is given by
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A S S S _

FIG. 2. The effective vertex for the quark interaction with the
CGC background field, accounting for multiple (eikonal) scatter-
ing off the classical gauge fields Aj.

T, (L1) =

o0 \ij

—Qa)s(I" — I )y,

o0

8 / &z e BAInyi(z,),  (17)

where [ and [’ are the outgoing and incoming momenta of
the quark (antiquark). The indices i, j represent the color
state of the outgoing and incoming quark (antiquark),
respectively, and o, ¢’ are their Dirac indices. The lightlike
Wilson line in the fundamental representation appearing in
the effective CGC vertex is given by the SU(3) matrices

Vii(z1) = Pexp (ig/_oc dztA~(z* thf,-), (18)

where A7 is the background field, tfj are the generators of
SU(3) in the fundamental representations, and P stands for
path ordering. A similar effective vertex exists for the
interaction of a gluon with the background field, this time
in terms of the lightlike Wilson line in the adjoint
representation. However, we will not include it here as it
will not appear in the calculations in this manuscript.

D. Nonrelativistic QCD

In NRQCD the production of quarkonium H is com-
puted by first evaluating the short distance coefficients, d6*,
for the production of a heavy quark pair in a given quantum

state x =21 L' These states have definite spin S, orbital
angular momentum L, total angular momentum J, and
color state [c]. The short distance coefficients are then
weighted by nonperturbative long-distance matrix elements
(LDMEs), (O), and summed,

doy = d&*(OH). (19)
For example, for J/y production one has

doyy, =Y de(OY), (20)

where only three color octet states and one color
singlet state contribute to J/w production (k=
8] 3al8 3pl8
{ls([)]’ 35[1 ]’ 3P[J], 35[11]})
To compute the short distance coefficients d6© we need
the projection of the QQ amplitude to the specific quantum

state k. Following [89], the amplitude of the short distance
coefficient is

MR () :_Z LL_;SS.|JJ.)

mo s,

85,000

<; é SS ><3i;37(1,8c)>
Msi,if(p’o)

X oM _(p.k)
ep(L) =5

if kis S wave

if kisPwave ’
(21)

where Mﬂ ”( p, k) is the amplitude for direct QQ pro-
duction by virtual photon-nucleus scattering in the CGC.
The polarization of the virtual photon is denoted by A, while
s (5) and i (i) denote the spin and color indices of the quark
(antiquark), respectively.

As in [89], we use the following normalization con-
vention for the color states: (3i;3i|1) = &7/\/N, and
(3i;3i8c) = /211

III. HEAVY-QUARK PAIR PRODUCTION
IN THE CGC

At leading order, the quarkonium is produced by the
splitting of the virtual photon into a quark-antiquark pair
Q0 which scatters off the nucleus and then emerges as a
quarkonium state. The leading order diagram for QQ
production in virtual photon-nucleus collisions within the
CGC is shown in Fig. 3. Employing standard QCD + QED
Feynman rules with the effective vertex in Sec. IIC, the
leading order scattering amplitude is

&l
S (pok) = / ( 2”)4 i, (§+k>7’?k <§+k, z)

q,4))So(l =

)

p
2

li

Q
&®

>

&®
A

o~
|
Q
NS
|
o

FIG. 3. Leading order QQ production by virtual photon
scattering with the background field of the nucleus in the
CGC. The red rectangle represents the effective interaction of
the quark and antiquark with the CGC background field.
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where e is the fractional charge of the quark. The vacuum
fermion propagator is Sy(1) = i(} + mo)(I* — my + ie)™!
and 799 are the effective vertices in Egs. (16) and (17).
For simplicity, we do not explicitly write the Dirac indices.
We introduce the (reduced) amplitude /\/lfs (p,k),

(27)8(q" = p* )M (P, k)

= Sﬁg.if(p’ k) - Sigﬁ(p7 k)'nonint’ (23)

where we subtract the noninteracting contribution, corre-
sponding to equating the Wilson lines with the identity
matrix V(x,) =1 and V'(y, ) = 1. We also factor out an
overall light-cone momentum conserving delta function
(27)8(q" — p™). Putting these ingredients together, the
reduced amplitude for y; +A — 00 + X production is

+
Mis,ii(p’k):eefzq/dzbl/dzrle_ik”ie‘il’rh
X il <§+k>,/\//1(l7,k;rl)vi <§—k)

x [V (bL +%) Vi (bL —%) - 1]] CY

where we introduce the perturbative function A/*

NAp.k;ry)

B / A1 —i(2g ") TSI — B — kt)elims
~ ) @ [P =y +iell(1 = ) = m} + e

. (25)

with Dirac-Lorentz structure

1
(24")?

The integral over the internal momenta [ can be easily
worked out, and the results for longitudinally and trans-
versely polarized photons are

T(1) =

rr(J+mg)é(q. 2)(] =4+ mg)yt]. (26)

jL‘ﬁ»KJz(p,rl) = Z(LLZ;SSZ|JJZ> X {

L..S.

with the covariant spin projectors

I1%%(p, k)

—\/Lm_Q;<%s;%ilssz>v§ (%k) it <§+k>. (33)

Te[I1%% (p. k = O)N*(p.k = 0:r )]
€n(L,) 5 {e * e Te[I15% (p, k)N (p. kyr )]} =g  if & is Pwave

N=(p,kiry)

- (3+¢) (3-¢)exot@i . 2

N=(p ki)

irJ_a ~ ~ 1 a a ]/+
=~ P 0 (Dl ety [ . )+ 207

1 _ oyt
~5moKo(Qelroelart - (28)

respectively, where & =k%/q"™ and we introduce the
effective virtuality

G- (5+¢)(z-)e+m @)

IV. QUARKONIUM PRODUCTION
IN CGC + NRQCD

The amplitude for the short distance coefficients in the
CGC is obtained by combining the results in Eqs. (24) and
(21), giving

M/l,x,], (P, k)
+
_ eeiq /dzrj_]:/l’K'J’(P,rJ_)/dzble_iprbl
r, . r,
XTI' VbL‘i‘? V’ bJ_—7 —ﬂ CK, (30)

where we define the color projector

1/y/N. if kissinglet
ok = { / £ (31)
\/itc if k1s octet
and the perturbative functions
if k is S wave
(32)

I
The differential cross section® of the production of a heavy
quark pair with spin state and color state x in a virtual
photon-nucleus collision is

*More precisely dé%, is a density matrix in the polarization
state of the virtual photon [see the discussion below Eq. (9)].
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a5, 1 1

dp2L - 47T(2p+)2 W Z<M1'K’JZ (p>'/\_/llll’KJz (p)>Y’ (34)

where the factor N* = (2J + 1)Ngior (With N = 1 for the singlet and 8 for the octet) is included to average over the
number of states for a given k. Combining Eqgs. (30) and (34), we can cast the differential cross section as

where the fine structure constant is a,,, = €?/(4x) and we
define

— 1 - 1
S By =— = (36
— <2J+ 1) - Y \color Y ( )

The color-projected correlator of lightlike Wilson lines is

(Tr[(Vx )V (yL) = 1)C]
< Tr[(VO) V(L) = DCT)y- (37)

EI;(vayLvylxl) =

We can cast our final result in the compact form:

) d?r d3r
5% L L e
dpl / / M'(I’L’Q rlyrl)
xGy(pysr..r)), (38)

where we define CGC distribution

glf’(pl;rj_vrl) _/dzbj_/dzble_ipi'(lﬂ—bl)

= n "L
25 (b b -t -
= <l+2 2 LTy

!
1+ 2)

(39)
The perturbative function I" in Eq. (38) is defined as

L. Qir.r))
= aned Y FH(pr ) FIS(p.r,). (40)
J.

This expression provides the short distance coefficients of
the production of QQ pairs in virtual-photon nucleus
collisions within the CGC framework. The heavy quark
pair spin and virtual photon polarization dependence are
fully encoded in the perturbative functions I'. Explicit
expressions for these functions for all polarization and spin
combinations are given in Appendix B 1. The multiple
eikonal scattering of the QQ is encoded in the non-

/ d&r, [dF
/12/1 = Qo€ Q/ J-/ J.Zf/lk](pr )J’THKJ (pr )

/dsz/dzb/ —ip (b =b) 5 (bl_l_”- b, — rJ- b/

ry o, 'J_J_
2,bi+2>, (35)

perturbative function G§(p,;r, .7, ) which depends only
on the color state of the heavy quark pair. The color
singlet is

GV (pisrr,) = / &b, / b/, e=ipi-(b.b)

X N [s1 -y,

(2)
Y,y y) x| Yix, 9, SY;v'lxl_Fl]’

(41)

while for the color octet we have

GHpysr.r) = / &b, / b/, =1 (bub)

wNe (g _ 22 l

N% — Yy X Y,y X 0

(42)

where we introduce the dipole, double-dipole, and quadru-
pole correlators of lightlike Wilson lines,

Sk, =~ (VLY 1)y
SED o = TV )V )TV OV )]
@) 1

ATV E)VIGOVEDVIE])y. (43)

IETR IR T N,

respectively. The calculation of quarkonium production in
CGC 4 NRQCD has been previously carried out for the

singlet channel (diffractive) 3S[1 We have verified that our
results in this channel are consistent with those presented
in [123].

It is evident from the convolution in Eq. (38) that
quarkonium production in DIS within the CGC does not
satisfy &k, factorization [52—-54]. To see this more clearly,
we express Eq. (38) in momentum space,
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/ d2l d2r
6% 1 1T '
I, (p,,0O;1,.1
dpL / / PO L)
X gY(pJ_;lJ_? J_)'

The transverse momentum transferred from the background
field to the quark and antiquark are, respectively,p | /2 + 1
and p /2 —1, in the amplitude, with similar expressions
in terms of I for the momenta flow in the conjugate

|

(44)

eA—seH+X
dogge

szdydpid¢eH

1
< {(1=E 1 @iriry) +3

+V2(1=y)(2-y) TL(pL’Q r..r

where the small-x CGC distributions are given by
Eqgs. (41) and (42). The list of all perturbative functions
can be found in Appendix B 1. Equation (45) is the
main result of this manuscript. We present a numerical
study in Sec. VI. Before doing so, we study its correla-
tion limit and show that the resulting expression is
consistent with TMD factorization. We will also study
the improved TMD framework which will extend the
regime of applicability of the correlation limit to large
values of p .

V. CORRELATION LIMIT AND BEYOND

In this section, we first examine the correlation limit,
which amounts to performing a derivative expansion
of the lightlike Wilson line correlators in the CGC
distribution [128]. Kinematically, this limit corresponds
to the phase space where the quarkonium transverse
momentum p? and the intrinsic saturation scale Q? are
much smaller than Q2 + M%, where Mg = 2my, is the
mass of the quarkonium. In this limit, the short distance
coefficients factorize into a hard function times the gluon
Weizsidcker-Williams TMD. These results have been
obtained directly within the TMD formalism in [39], so
studying this limit of our calculation provides a strong cross
check on our results. We then study the ITMD expansion
which does not impose a constraint on p3, but requires
the hard scales Q> + MzQ to be larger than the saturation
scale Q2.

The k| -factorization approach involving unintegrated
gluon distributions and off-shell matrix elements of the
partonic subprocess can be recovered from the ITMD
approach (and more generally the full CGC result) in the
limit in which the saturation scale is much smaller than the
(semi)hard scale of the process.

1+(1-

amplitude. Our conclusions for quarkonium production in
DIS are analogous to the observation that multiple scatter-
ing breaks k| factorization in the production of open heavy
flavor and quarkonium in proton-nucleus collisions in the
CGC [80,124-127].

We end this section by providing the complete expres-
sion for direct quarkonium production in DIS within the
joint CGC + NRQCD framework,

em d
:2n02CQ2y2< /rl/ rng@larJarj_)

Y5 (py, Qiryr))

1) €05 s + (1= )y (P Q57 L) €05 2bert }. (45)

A. Correlation limit

In the limit pi,QF < Q> 4+ Mp, the convolution in
Eq. (38) are dominated by small dipole sizes r; and r/,
due to the suppression from the perturbative functions I'.
The leading contribution in the dipole size expansion

is [128]
L)\ _TL
V(bl—kz)V(bL 2)

T+rV(b)(01VI(bL). (40)

At leading power, the singlet contribution vanishes since
Tr[V(b,)(0°Vi(b,))] = 0* while the octet contribution is

=18 r r 4 r
&y (bL b= = b +§)
1
r N2 — l'la J_a/gz (Tr[Ag bL)Aa &)y (47)
where we define
i .
A (b,) = QV(IM)(@%V’ b)), (48)

which corresponds to the small-x transverse gauge field in
light-cone gauge A~ = 0. Thus we have

a,(2n)*

SNE = 1) L G L) (49)

g[g](Pl;Mv'ﬁ)N

“Contributions to the color singlet have been studied beyond
the leading power, see e.g. [129-131] in the context of the
diffractive production of jets.
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where we introduce the (non-Abelian) Weizsicker-
Williams gluon TMD,’

/ d?b  d%’ /
G()x/a (pJ_) :/ ;—ﬂ3 e _’PL (b.-b')

X (Tr[A% (b1 )AT (B))])y. (50)
The differential cross section in the correlation limit is

d”u’

— K
d i |TMD - Hﬁj’yaa’

(Q)G¥ (p.). (51)

where the hard function is defined as

a,(2n)* der
HY, s
it (Q) = 5oy —py Him,
XrJJl 1a ,u/(PLQ rL7rJ_) (52)

The explicit results for the hard functions H are shown in
Appendix B 2. The correlation limit corresponds to the
|

do eA—eH+X

OTMD _ Oem H
dQ%dydpideg,y 27°Q% ;wk >{ [(1

WHE(Q) +5 11+

product of the hard matrix element yg — QQ with the WW
gluon TMD. It is now clear that, due to this effective one-
gluon exchange, only the octet contribution survives. It is
customary to decompose the WW distribution into its trace
and traceless components:

() o

G (p,) = ‘52 G (p1) + = P20 (p1), (53)

which are, respectively, known as the unpolarized and
linearly polarized distributions [132—-134]. The projector is
defined as

ad 2p(1pﬁ ad’
™ (pJ_):< pizL—al). (54)
1

Combining the results in Egs. (51), (53), (53), and (8), the

differential cross section for quarkonium production in DIS
in the correlation limit is

(1=y)2JH5(0) |Gy (p.)

(1= ) Hegy Q) <pl>cosz¢eH} (55)

where the sum « runs over the octet contributions only. To
obtain this expression we exploit the orthogonality of the
projectors 8%, T1% (p, ) when contracting the WW gluon
TMD with the hard functions given in Appendix B 2, and
define

H{(Q) = —5““ HY 0 (Q),
1
H§(Q) 75(1{/[-1% ao (Q)’
1 /
H%ﬂip(Q) = EHTZ (pJ_)H”;ﬂip,aa’(Q)‘ (56)

While the azimuthal-angle-integrated differential cross
section is proportional to the unpolarized WW gluon
TMD, to access the linearly polarized distribution, one
has to determine the azimuthal correlation between the
produced quarkonium and the scattered electron in DIS. We
have verified that Eq. (55) is in agreement with the results
obtained in [39] directly obtained from the TMD formal-
ism, providing a nontrivial consistency of our results.

>This expression for the WW gluon TMD is consistent with its
operator definition at small x [117,128].

I

The saturation scale Q, is implicit in the WW gluon
TMD, which can be computed explicitly in the McLerran-
Venugopalan (MV) model [128,135]. The small-x evolu-
tion of the WW gluon TMD is given by the JIMWLK
equation [136] and in the dilute limit by the Balitsky-Fadin-
Kuraev-Lipatov equation. The numerical solutions of the
evolution of the WW gluon TMD exhibit geometric
scaling [137]. Therefore, in principle one can probe the
physics of saturation by studying the p | dependence of the
produced quarkonium, especially in the low p; < Q,
regime most sensitive to the physics of saturation.
However, beyond the leading order, large Sudakov-type
logarithms [138] arising from soft gluon emissions modify
the production at low p, and must be considered.

B. Improved TMD limit

An ITMD framework to extend the validity of the
correlation/TMD limit at small x was proposed in [139]
which interpolates between the TMD formalism at low
values of p | and high-energy k | -factorization formalism at
large p,. The ITMD framework accounts for the off
shellness of the small-x gluon which enters the calculations
of the hard functions. For dijet production in hadronic
collisions and in DIS, the ITMD framework provides an
excellent approximation to the full CGC calculation when
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the saturation scale Q, is small [117,140,141]. Instead of
following the original approach proposed in [139], we
directly obtain the results in the ITMD framework by a
careful expansion of the lightlike Wilson line correlators as
outlined in [142,143] where kinematic and genuine satu-
ration corrections are isolated. This later approach has been
employed to study heavy-quark pair in DIS [144], but the
calculations of this section provide the first results for
quarkonium production in DIS within the ITMD frame-
work. We start with the exact identity that expresses the pair
of lightlike Wilson lines as a parallel transport of the
transverse gauge field [116] (for a brief derivation of this
result see Appendix A in [117])

VeV ) =exo {io | LAt | (57

where the transverse gauge field was defined in Eq. (48).
The ITMD is obtained from the expansion

Vi )Vip) =1+ ig/” d21,A% (z1) + ... (58)

This approximation is more general than Eq. (46) which

can be obtained by taking the small r| limit in Eq. (58).
The parallel transport in Eq. (58) is independent of the

path connecting x, and y,. The simplest choice is the

straight path, defined by z,(§) =b, —¢&r,, where
€[-1/2,1/2], so that

Tpi(p, -T2
V(b (b=
. 1/2
=1- lgrLa/l/zdéAi(bJ_ —«frj_) + ... (59)

As in the correlation limit, the singlet contribution vanishes
since Tr[A%] = 0, while the correlator for the octet is now

8, . ~ 27)'ay
gY (pL,rL,ri)NmGY (pl)
x / e / - déemrrGr=Erop ¥ .
-1/2 -1/2 -
(60)
|
do eA—eH+X

O1T™MD
dQ*dydpidg.n 2752Q2

The first line corresponds to the standard contribution in the
correlation limit, while the second term captures the so-
called kinematic twists. The differential cross section in the
ITMD expansion is

dé® ’ /
J_ ITMD

where the improved TMD hard functions are defined as

a,(2n)*
2(N2-1)

1/2 1/2 42 d2ﬂ
X/ dg / rl/ J-arLa
1/2 -1/2
XFM’(pL’Q r..r)e e—ilPiry) pil (P
(62)

;ﬂ’,aa’(Q’pJ—) =

The explicit results for these hard functions are collected in
Appendix B 3. Compared to the correlation/TMD result in
Eq. (61) the hard functions in the improved TMD in
Eq. (51) are p, dependent (off shell). They satisfy the
expected property:

hm H/M' ad (Q’pi) = Hﬁ,{’,aa’(Q)' (63)

The term on right-hand side is the on-shell hard function
defined in Eq. (52).

Due to the more complicated tensor structure of the hard
functions in Eq. (62), both unpolarized and linearly
polarized WW gluon distributions contribute to all the
elements of the density matrix d&ﬁ" which in turn
implies that both components of the WW gluon distribu-
tion contribute to the azimuthal-angle-integrated cross
section as well as to the angular anisotropies in
e(k,) +A(P,) — e(k,) + H(p) + X. In particular, in the
ITMD expansion, there is a nonzero contribution to the
cos ¢,z modulation. For completeness, we write the full
expression for the differential cross section

>0ty <pl>{<1 I (Q.p1) 5 1+ (1= )M (0.p)

2(1 - )(2 y)HLT ad (val_> €Os ¢eH + ( )Hgﬂlp ad (Q?pJ_) cos 2¢€H}7 (64)
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where the sum « runs over the octet contributions only. In
the limit p, < Q,M;,,, Eq. (64) reduces to the TMD
result in Eq. (55).

The virtue of the ITMD expansion is that, as in the TMD
limit, all the physics of saturation is contained small-x
Weizsidcker-Williams gluon distribution. Yet, the ITMD
result provides a good approximation to the full CGC result
in Eq. (45) in the limit where O < 0 or Q7 < M7,
without imposing any constraint on pi.

VI. NUMERICAL ANALYSIS

Here we numerically compute the differential cross
section for direct quarkonium production in the joint
CGC + NRQCD formalism. Our numerical studies
focus on J/y production, thus we include the channels
k= {11 3518 3pl¥ 35l Furthermore, we employ heavy
quark symmetry of the long distance matrix elements,

(O = (27 + 1)(OY). (65)

3p(8
PJ

which motivates us to define the “averaged” short distance
coefficient®

| : :
AP = —[d6® +3ds™ +5d6™].  (66)

]

We use m, = M, /2 for the charm quark mass where
M;,, = 3.1 GeV. We compare the results in the CGC
obtained in Sec. IV with those obtained in the TMD and the
improved TMD approximations in Sec. V. Before present-
ing our numerical results, we briefly describe the model
used to compute the small-x CGC distributions.

A. Modeling the nonperturbative
small-x distributions

The nonperturbative small-x gluon distributions
Gy(py.ry.r)) defined in Egs. (41) and (42), and the
WW gluon TMD G$*(p,) defined in Eq. (50), respec-
tively, can be computed from the correlator of lightlike
Wilson lines and their derivatives. Their rapidity (or
energy) dependence is obtained by solving the
JIMWLK [65-71] renormalization group equations. We
employ the McLerran-Venugopalan model [118,119] for
the initial conditions. In this preliminary study, we will not
include the rapidity evolution and employ the so-called
Gaussian approximation [125,135,145], allowing us to
express these correlators in terms of the two-point corre-
lator (see Appendix C). Furthermore, we assume transla-
tional invariance, thus the correlators depend only on the

6Following the definition of this SDC we define its corre-

3
sponding perturbative function I ;;“g in Eq. (A37) with analogous
constructions for the TMD and ITMD hard functions.

difference of transverse coordinates. We use the MV model
of the dipole correlator,

2 1 1
SP(B ) =exp [_Z 02B2 In (mBL + eﬂ . (67)

2

where m = 0.241 GeV and the saturation scale is Q5 , =
0.2 GeV? for a proton and Q2 , = 1.0 GeV* for a large

nucleus. The small-x distributions are then obtained fol-
lowing Egs. (C5), (C9), (C12), and (C13).

B. Numerical results for the short distance coefficients
and the differential cross section

We present the p, and Q dependence of the short
distance coefficients using two different saturation scales

:p =02 GeV? (proton) and Q?2, = 1.0 GeV? (large
nucleus). We focus on the case in which the photon is
transversely polarized. The results for the longitudinally
polarized photon and the off-diagonal elements (interfer-
ence between different polarizations) are shown in
Appendix D. Since we compare the CGC, ITMD, and
TMD results, for simplicity, we normalize our results by the
transverse area of the target:

dN* = ds*/S . (68)

The expressions for the short distance coefficients obtained
in the CGC, TMD, and ITMD are given by Egs. (38), (51),
and (61), respectively. We note that, in the TMD frame-

work, only x = 1S¥ and x = 3P¥ channels are nonvanish-
ing, while in the full CGC result, all channels contribute.’
In particular, the CGC has a nonvanishing contribution to
the singlet channel 3S[11] in which the virtual photon
interacts with the nucleus via color singlet exchange, the
so-called Pomeron. In the upper panels in Fig. 4 we show
the p, dependence of the short distance coefficients. When
the saturation scale is small, all three frameworks agree
with each other in the small p, region (~1.5 GeV) as
expected from the correlation expansion. The TMD result,
where the p | dependence is completely determined by the
WW gluon distribution, behaves as 1/p3 at large p. In
contrast, the ITMD has an additional p; dependence on the
hard function, which at large p | results ina 1/p4 behavior
for the short distance coefficients, as expected from k|
factorization. The CGC and ITMD results are in good
agreement with each other throughout the entire p | range
in the proton case (small saturation scale). However, large
deviations are observed when the saturation scale is

"Unlike the TMD framework, where the channels S| and 35"
are forbidden by selection rules, the CGC can accommodate these
channels via higher-twist corrections involving multiple gluon
exchanges.
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FIG. 4. Upper panels: the p, dependence of the short distance coefficients at fixed virtuality Q = 3.0 GeV. Lower panels: the Q
dependence of the short distance coefficients at fixed transverse momentum p; = 1.55 GeV. We show the results for the CGC (solid
lines), the improved TMD (dashed dotted), and the TMD (dashed). Panels on the right show the results at a Q2 = 0.2 GeV? (proton).
Panels on the left show the results at Q2 = 1.0 GeV? (large nucleus). The short distance coefficients corresponding to the P wave are

multiplied by m2.

increased signaling the presence of genuine saturation
corrections that are only captured in our full CGC calcu-
lation. These corrections significantly suppress production
in the low-p | region.

Next, we turn to the Q dependence of the short distance
coefficients shown in lower panels in Fig. 4. In the high-Q
limit, we observe the convergence of all three frameworks

for the x =S¥ and x =3P¥ channels. At high Q2 the
kinematic and genuine saturation corrections are sup-
pressed and the TMD approximation is adequate. In this
regime, the Q dependence is completely controlled by the
hard function. The x =3S!" and x =3S!¥ channels are
power suppressed by an additional factor 1/Q? as these

require at least a two-gluon exchange (higher twist). When
we either increase the saturation scale Q, or decrease the
virtuality Q, the genuine higher-twist corrections in the
CGC tend to suppress the short distance coefficients for

K= ISE)S] and x = 3P[Jg]. On the other hand, we note that the
relative contribution of the color singlet becomes more
important, which is consistent with the observation that
diffractive events are more copious in the saturation
regime [146].

We now present the results for the differential cross
section given by Eqgs. (45), (55), and (64). We normalize
our results by the transverse area of the target and use the
values for the long-distance matrix elements in [147]

094039-12



DIRECT QUARKONIUM PRODUCTION IN DIS FROM A JOINT ...

PHYS. REV. D 110, 094039 (2024)

(Ollf) = 1.16/(2N,)GeV?,

(O/lf) = 0.089 GeV?,
0

<0{éf]§]> = 0.0030 GeV?,

<O{}{[‘;> /m? = 0.0056 GeV>. (69)

0

The fit to the LDMEs in [147] uses m, = 1.5 + 0.1 GeV
compatible with our choice m, = M, /2. While alter-
native fits for the LDMEs exist in the literature, our main
objective in this preliminary numerical study is to compare
results from the three different frameworks CGC, TMD,
and ITMD, thus the specific values of the LDMEs are
not critical. We decompose our results in harmonics in
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FIG. 5.

the azimuthal angle between the electron and the pro-
duced J/y,

dN,elA_)EJ/WJrX _ /2” Cos(n¢el/vl)d¢el/w
dQ?dydp? 0 2n
dNeA—»eJ/l//+X

X , (70
szdydpidgbeJ/y/ )

and we fix the inelasticity y = 0.8. We present the results

differential dlnydIn Q*dp? = i—fdQ—Q;dpi to absorb the

additional 1/(yQ?) factor from the photon fluxes [see
e.g. Eq. (45)].

The results for the p, and Q” dependence are shown
in the upper and lower panels of Fig. 5, respectively.
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Upper panels: the p, dependence of the differential cross section at fixed virtuality Q = 3.0 GeV. Lower panels: The

QO dependence of the differential cross section at fixed transverse momentum p; = 1.55 GeV. We show the results for the CGC
(solid lines), the improved TMD (dashed-dotted), and the TMD (dashed). Panels on the right show the results at a Q = 0.2 GeV?
(proton). Panels on the left show the results at Q2 = 1.0 GeV? (large nucleus). We present the results at fixed inelasticity

y=1(q-Pa)/(k.-Py)=0.8.
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FIG. 6. Nuclear modification factor [as defined in Eq. (71)] for

the azimuthally averaged different cross section as a function of
p. and at fixed virtuality Q = 3 GeV.

The conclusions are similar to those observed in our
comparison of the short distance coefficients. Namely,
the TMD provides an excellent approximation when
p 1,0, < Q both for the azimuthally averaged differential
cross section (n =0) as well as its elliptic modulation
(n= 2).8 The ITMD framework extends the agreement to
larger values of p, when the saturation scale is small, but it
fails as the virtuality Q7 is decreased or when the saturation
Q? is increased. The genuine saturation corrections, which
are not captured by the WW gluon TMD, contained in the
full CGC calculation, suppress the production. The degree
of suppression is larger at low values of p . This behavior
was also observed for semi-inclusive dijet production in
DIS in [140].

Lastly, we compute a proxy for the nuclear modification
factor, based on the azimuthally averaged differential cross
section:

ReA

) A—ed fy+X —el/y+X
L J )

- 0?2, dQ%dydp? dQ*dydp? -

In the limit Q; ,, Q4 < p,,Q, where saturation effects
are expected to be weak, R,4, — 1. Our results for R,, are
shown in Fig. 6. The TMD result displays the characteristic
broadening of the p, distribution with suppression for
p1 < Q4. followed by a Cronin peak, and then the R,
tapers towards unity. This behavior reflects the migration of
gluons to higher momentum modes in the WW gluon
distribution. Effectively, this observable is proportional to
the ratio of the nuclear to proton unpolarized WW gluon
TMD. The results obtained in the improved TMD have a

8Note that the harmonic n = 1 vanishes in the TMD frame-
work, but it is nonzero both in the ITMD and the CGC.

similar behavior; however, in this case, there is also a
contribution from the linearly polarized WW gluon TMD.
The broadening of the transverse momentum-dependent
gluon distribution is a well-known property of the MV
model [148]; however, we expect that nonlinear quantum
evolution will result in a suppression of the nuclear
modification factor [149-151]. On the other hand, the
inclusion of genuine saturation corrections in the CGC
depletes the nuclear modification factor, even in the
absence of evolution. We have verified that when p | <
Qs the degree of depletion increases as either the
saturation scale is increased or the virtuality is reduced.
A systematic treatment of the amount depletion must
therefore take into account genuine saturation corrections
as well as nonlinear small-x evolution.

VII. SUMMARY AND OUTLOOK

In this manuscript, we obtain for the first time the
differential cross section for direct quarkonium production
in deep inelastic scattering at small x using a joint
framework of the color glass condensate effective theory
and nonrelativistic QCD. Our main result is given by
Eq. (45). To derive this result, we first obtain the short
distance coefficients for x = ISE"], 3820], IPEC], 3P[f] for both
color singlet [¢ = 1] and octet [¢ = 8] states. We consider
separately the cases where the virtual photon is longitudi-
nally and transversely polarized, as well as the interference
between different polarizations. Combined with the decom-
position in Eq. (8), these results allow us to compute the
differential cross section at the level of electron-nucleus
scattering. Our results for the short distance coefficients are
shown in Eq. (38). They are expressed in terms of polar-
izations and spin-dependent perturbative functions (the
complete set of expressions is given in Appendix B 1).
The CGC distributions are built up of correlators of
lightlike Wilson lines given by Eqgs. (41) and (42) for
color singlet and octet, respectively.

Furthermore, in the correlation expansion (p |, O, < Q,
M), our results are consistent with the TMD framework.
In this limit, the differential cross section [see Eq. (55)]
factorizes into a hard function and the small-x Weizsicker-
Williams gluon TMD. Both the unpolarized and linearly
polarized components of the WW gluon TMD contribute to
the differential cross section and implicitly contain satu-
ration effects as they are constructed from CGC correlators
of lightlike Wilson lines. We also consider the improved
TMD expansion, which interpolates between the TMD and
high-energy k, factorization frameworks and provides
an adequate approximation to the CGC when Q? < Q?
or O < M7,

Lastly, we perform a preliminary numerical study in the
spirit of the work in [117], where we quantified the
differences between the CGC, TMD, and ITMD frame-
works. We focus on J/y production and employ the MV
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model to compute the CGC distributions with two choices
of saturation scale, 0%, = 0.2 GeV? and Q?, = 1.0 GeV?,
corresponding to protons and large nuclei, respectively. We
numerically evaluate the short distance coefficients relevant
for J/w production as well as the differential cross section
and examine their dependencies on the transverse momen-
tum of the J/y and the DIS virtuality Q%>. We numerically
confirm that the TMD and CGC results are consistent with
each other in the regime p , Oy < 0, M,,,, and the [TMD
provides a good approximation to the full CGC result when
the saturation scale is smaller than the hard scale (Q? or
M3 1)- However, when the saturation scale is comparable

in magnitude to the hard scale, genuine saturation correc-
tions only present in the full CGC result suppress the
differential cross section, especially in the low p, region.

We conclude with an outlook on future studies that are
suggested by our work. A more realistic study of the initial
conditions, the inclusion of small-x evolution, an assess-
ment of the uncertainties of the LDMEs, as well as a more
precise calculation of the nuclear modification factor,
would be desired before we confront our results with
existing data from HERA [152-154] and make predictions
for the future EIC [155—157]. Furthermore, to obtain robust
results, we plan to carry out the next-to-leading order
corrections which include one-loop corrections in the CGC,
as well as relativistic corrections to NRQCD. It has been
found that in the exclusive production [123], relativistic
corrections are significantly large at low values of Q2.

In the correlation limit, direct quarkonium production
provides a window to access the small-x WW gluon
distribution, complementary to the back-to-back produc-
tion of dijet and dihadron studies [151,158-160]. In this
limit, we also expect the emergence of large rapidity
logarithms as well as large double and single Sudakov
logarithms calling for a joint resummation [161] (for direct
quarkonium production in proton-nucleus collisions, see
Refs. [84,85]). The first steps towards the one-loop cor-
rections have been recently studied in [162] for the S-wave
channel.

Furthermore, it would be interesting to perform a
detailed analysis of our results in the photoproduction
limit which can be accessed through ultraperipheral colli-
sions at RHIC and the LHC.” We expect that genuine
saturation corrections will be large and thus necessitate the
full CGC calculation. On the other hand, in this limit we
expect soft gluon radiation to play a subdominant role,
especially for charmonium production, providing an attrac-
tive avenue to study saturation through nuclear suppression
effects.

It should be straightforward to study the polarization
dependence of the produced quarkonium which will

A recent detailed analysis, in the collinear pQCD formalism,
for the feasibility of studying inclusive quarkonium production in
ultraperipheral collisions at the LHC has been conducted in [163].

manifest as correlations of the J/y decay to dileptons. A
similar study in the joint CGC + NRQCD framework has
been conducted in proton-proton collisions [86,87]. Lastly,
transverse spin asymmetries in polarized collisions provide
an opportunity to access the gluon Sivers function [164,165]
with quarkonium production [166—170]. It would be inter-
esting to extend our framework and examine the conse-
quences of gluon saturation to this observable at low-x (see
e.g. [171] in proton-proton collisions). Such a program will
require the implementation of subeikonal physics beyond
the usual CGC framework [172-176].
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APPENDIX A: SPIN PROJECTIONS
OF THE S AND P WAVES

In this appendix, we briefly outline the computation for
the projections of QQ into specific states of spin and orbital
angular momentum.

1. NRQCD projector

The covariant spin projectors defined in Eq. (33) can be
expressed as

P

Hoo(p,k)Z\/tié<§—k—mQ)75<§+k+mQ> (A1)

and
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1'% (p, k) =

€(S2) <15

\/873 5 —mQ>},p<§+k+mQ>, (A2)
Mo

for the S = 0 and § = 1 states, respectively. Since we are
interested in unpolarized quarkonium production, the
explicit expression for the polarization vectors €;(S,) will
not be needed, and it is sufficient to use the polarization
summed relations [89]. We define

PalPo
Paa’ = —Gao + p2 ’ (A3)
then
ZG;(Lz)ep’<Lz) = [ppp" (A4)
LI
For the 3P ; states, it is convenient to define
€;/4(J’Jz) = Z(le;SSz|JJz>€;(Lz)€;(Sz)v (AS)
L..S,
then
1
ZG’/)M 0 J € n r 0 J ) 3Ppﬂpp/ﬂ/, (A6)
1
Zep,, (L6 (1.02) = 5 (B Py = PpuPy). (A7)
. 1
Zeﬂﬂ(z’Jz)eﬂ’ﬂ’(z’JZ> - §< PP + P Pry)
‘Iz
1
3 P/’M Pﬂ’ﬂ’ <A8)

Lastly, since we will be using heavy-quark symmetry [see
Egs. (65) and (66)] it is useful to employ the identity:

Ze,,ﬂ (e (1, J) =P,yP .,

(A9)
to compute the “averaged” perturbative functionin Eq. (A37).

2. Computation of perturbative functions F**/:

In order to compute the perturbative part of the amplitude
F*%J: defined in Eq. (32) we combine Egs. (27) and (28)
with the projectors in Egs. (Al) and (A2), and use
elementary identities of traces of gamma matrices.

Fred(pory) =Y (LLy;SS|JT) x €(L;) =~
L,S,

a. S wave

For the S wave (L = 0), we have

Fied(p.r)) = Tr[l:(p,0)N*(p.0;r,)],  (A10)

where we use (0L _; SS.[JJ ) = 8y 0,05, The projectors
in Egs. (A1) and (A2) at k = O simplify to

1 (p.0) = - ﬁl_@m fomg).  (AlD)
H”z(p,()) _ E;(Jz) yp(lﬁ 4 2mQ)- (AIZ)

\/SmQ

The perturbative functions A* in Egs. (27) and (28) at
k =0 (note £ = 0 since k* = 0) are

N*=(p, 0sr,) = Q1<0<Q|rr|>L+ (A13)

- o 70 o7 « 17
N=H (p,0sry) = = . QKI(Q|"L’)€/IL/}[7J_17§_]_+
4lry | q

1 - e
_EmQKO(Q|rJ_|)€ia7JI_ Pl (A14)
Then, for the 'S, state we have

Fr=000=0(p p ) = 0 (A15)

IS0 U T ok, (O e, (A16)

1/2mQ| |
/3

where ei is the Levi-Civita tensor in two dimensions

(e —e? L =1).
Furthermore for the 3S, state we have

p’rJ_):

]—"LSSI’JZ(p,rJ_) — ﬁl'3sl'ﬂ(p’rj_)€;(Jz)7 (A17)
where
FOS(pr)) = f T OKo(QlrL])iggt.  (A18)
FES 0y p ) = - el \/_Ko(Q|"J_|)
(gp*pr ~d'r"). (AL9)
b. P wave
For the P wave (L = 1) we have
3]
ak { —lkr’LTr[HSS (p, k)Nﬂ(P k; rl)]} 0’ (AZO)
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It is convenient to first carry out the derivative and set kK = 0 before taking trace of gamma matrices, then we have

{HSS (p.k)e*Lmi N *(p,k;u)}‘ o

ok,

— |y SS, i SS,
= [P .0+ ST Y

where we use

9 aff aff
(ko)) = o (=g kary) = —g 1 Sry
ok, ok,
= —‘g‘i‘[}r/} = —]Jj"

We compute the derivatives of the projectors at k = 0:

(A22)

o .0 2

1
% I NHpkery)| . (A21)
|
9 1o ) _
a_kﬂN (p’k’rl_>‘ _ =0, (A25)
0 _ ir e
@N’Pil(l”k;ﬂﬂkzoz = |lr |LQK {(Qlr.[)g
(A26)

0
%HQO(R k) li—o = 3 it gl (A23) It is worth noting that since we express the perturbative
g 32my functions N*(p, k;r, ) in Egs. (27) and (28) in coordinate
(s) space and factor out the phase e~*. 7+ from their definition,
€,(8;) |1 the only dependence on k is on the momentum fraction &
'S (p. k)|, = 222 |=pP[p#, Bl — g 2 y dep :
ok, (P F)li0 /8m3Q [2 . Pl =g (h+ mQ)}’ Combining these results we find for the 'P; state
(A24) FERL (o) = PP (pary ) (). (A2)
as well as the derivatives of the perturbative functions at
k=0: where we use (1L_;0S_|JJ.) = 6ys.6,,6;_;., and
|
F0Pu(p oy, ) =0, (A28)
7 | € 5 = 1
Fras ) = it | 0K @I st ~ Ko@ra (- Epre) | (a9)
Furthermore, for the 3P, , states we have
FHR(pors) = FFE(por1)es, (1,02), (A30)
where €,(J,J,) was defined in Eq. (A5), and
g 97
FA=0Peon(p ) \/7 (21mQr” +p’ o ) (A31)
a a 9" g
AR (p,r ) F{ Ko@) (=2 + Lopl) = 0K @l
9" 9”+ a o (9T g
<_+ p _ /4 +p° p_+g/jf4 gﬁﬂ ﬂgﬁﬂ_gpgﬂﬂ (A32)
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3. Computation of perturbative functions I'};,

Following our results in the previous sections, the perturbative functions I'}, (p, Q;r .7/ ) defined in Eq. (40) can be

computed:
IS 1 — ST —
IM‘?(p ,O;r v ) = aemeZQ}"LSO‘Jz O(p,r )]—'”*SOJZ O(p,r ),

: 1
T (pr. Qiry.1)) = aqeb TS0 (por ) FH57 (p, u)3Z€Z(Jz)€p'(JZ),
7.

I - ~ D 1
U5 1, Q5r1r)) = @ P4 (por E P (por )33 ()6 U,
‘IZ

F;];{(pj_, Q;rJ_,r'J_) = aemesz:’l'EP-”p”(p,rl)j:w"zpf’p” * J J € n / J J )

We also define the perturbative function,

P, 1 3p 3p
Lys = 9[ w Tt 3F/u'l + Sruﬂ

(A33)

(A34)

(A35)

(A36)

(A37)

corresponding to the short distance coefficient defined in Eq. (66) which was introduced to exploit the heavy quark

symmetry of the LDMEs [see Eq. (65)]. Then we have

FML’“ (PJ_’Q rJ_7rJ_) _aeme -7:/1 Pjpﬂ(p r )FH P,p” p rl)zzeﬂﬂ(‘] J )6”(J Jz)

The explicit expressions are given for these functions are provided in Appendix B 1.

APPENDIX B: COMPLETE EXPRESSIONS FOR THE PERTURBATIVE FUNCTIONS

1. Perturbative functions in the CGC
In the case of longitudinally polarized photons, the perturbative functions are

35 aemezQ Pt 2 !
O = s QKo QI 0K 1),
rP — 366"129 (por)(pL T )OK(Qlr L )OK(Dlr.]).
P, _ Qem€h ? C
= 48m, (ro-r.)OKo(Olr.|)OKo(Olr.']),
Aem€l

3 1 _ _
I S [t or.) + 50271111 | QKo @I )OKo @I

3Pavg . aemeQ
L

72mQ

The contributions of the 'S, and 'P, states vanish.
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In the case of transversely polarized photons, the perturbative functions are

]l:)1
T

L LR {(Olr ) OK, (O, ])
T 4mQ |U||M| - ! L

S, Qem

2
0 ) )
' = CmoKo(0lr  [ymoKo(Olr, ).
o)

:“emeg{( ") 0K, (Ol ) 0K (DI ) |mir, rl>+ (pr-ri)po-rl)

12m3y \lr ol |

= OlrL|K(QlrL)mGKo(QIr[) — mGKo(Qlr L OIF, K1 (Ol ]) + 2mQKO(Q|rJ_|)mQK0(Q|'JJ_|)}’

3 Aoy €7 ) - _ _ _ , _
O = o ﬁ:j ”:,if [OK(Qlr.l) + mp|r o [Ko(QriDIOK (QIF,|) + mplr' [Ko(2r, ).

Aoy €7 -7
I = Q{(” r) [QK(QIMI) mQIMIKo(QIUI)HQK @IF,]) - mQ|rL|Ko<Q|rL>}

6my Ulr. i

F 0 TP MK (O oK@,

2 -
r%’z:“e"“’Q{(” r) [ngm mQ|u|Ko<Q|u|>] [QK1<Q|rL|> —mQ|rl|Ko<Q|rL>}

30my L lrellr|

3| )+ )0 ) K@i moKo(@i D

3 em 2 ° /
rres = eQ{(” 1) [QK (0lr]) - QOKo(Qm] [QK (©IF.]) 1wy, |1<0<Q|rl|>}

12m L lroflr|

+g {mé(’l ) +%@L r)(pyL "‘l)] mQKO(Q|"L|)mQK0(Q|’JL|)}'

In the case of polarization changing photon (7'L), the perturbative functions are

Py “emezQ pL-r)pL-r)

Iy = 24\/§m3Q Pl [sz‘rJ_|KO(Q|rJ_|)+QK1(Q|rJ_|)]QKO(Q ),
P, aemeQQ (P r )(P 'rl) - -
L avmmy gl "o Ko@rieKo@ir,
by L)) [ o ] i i
FTPL_:_6O\/§;33Q = piIrLLI - QKI(Q|rJ_|)+Zm2Q|rJ_|KO(Q|rJ_|) QK (I, ]),

Pug _ Temep (P )(pL-T)) /
I = 72\/_’"9 ool OK,(Olr.])]OKo (O, ).

The contribution of 'Sy, 3S;, and 'P, states vanish.
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In the case of polarization flipping photon (T4 = +1,T4 =

—1), the perturbative functions are

s, __ %em€h /3/3’ iy /
IﬂTﬂip 4mQ (PJ_)| J_|| | ( |rJ_|)QK ( )7 (B17)
! em / 1
Fq?ﬁip = 6;2 ezQ v (PL){| L/;|lﬂ| QKI(Q|"J_‘)QK1(Q|"J_ ) [sz(rl ry') +Z(PJ_ T )P "‘L/)}
r r’ _ _
’j””"’ 0K\ (DI JmpKo(QIr|) + == mpKo(0 |m|)QK1(Q|'i|)}, (B18)
iR
Thp = 12“’6? ﬂﬂ’(pn|“Hﬂ[Qm@m+ngmmo@m][Qm@rrﬂ)+mg|rg|z<0@|rg|>], (B19)
3 em | = 1 = 1 =
i, = - “6sz 07 9. 70 (0K @1 = Y Kol @0 )| [ 2K @1 = S Kot )] (B20)
P, aemeQ ﬁ/’” lﬁ l/} K K _K 7 / 1 2 "K 7 / B21
Tip = 30,7 3 (I’L>| ] OK,(Qr.]) - mQ|"L\ o(Olr.])| |OK,(Qlr. |)—§mQ|'l| o(Qlr. /)|, (B21)
3 aeme 9 ,
i = 3 1L (1) ;’j' 7 Ll |Ko(Qlr, Dl /1Kol lr)
- [QK1(Q|'1|) — mplr, |Ko(Qlr  ][QK, (Qlr.| = mp|ri'|Ko(Qlr']))]}- (B22)

The contribution of the 3S, state vanishes.

2. Hard functions in TMD

Let us define the following prefactor:

asaemeZQ (2”)4

AT

(B23)
and the mass of the quarkonium Mg = 2m,. We will
express the hard functions in terms of the tensors 8, ,, and
IT, ,v(p1), the latter was introduced in Eq. (54).
Following the heavy-quark symmetry, we define the hard
function:
P, 1

Ho — g% 1 3HY  45H
*_[ M’,aa’+ A o T /u'aa]

A ad 9 (B 24)

In the case of longitudinally polarized photons, the hard
functions are

» 64.A0>
W Q) = ., B2
L.ad (Q) 3MQ(Q2 + M29)4 5J_aa ( 5)
3p, 64.AQ2
2 = 0 ae > B26
L.aa (Q) 5MQ(Q2 + M2Q)4 Lad ( )
P 128 A0Q?
H[I:m;’ (Q) = Q 51.0!0/ . (B27)

IMo(Q* + M3)*

The contributions of 'Sy, 3S;, 'P;, and 3P, states vanish.

In the case of transversely polarized photons, the hard
functions are

Hy,(0) = MQ(QZL—M‘SM” (B28)

Hy' () = ;%((QQZJ;AA; )) : 81aw»  (B29)

Taa (Q) = EYVE (3;;4_%4]”2 ) Lo (B30)

Q) = g iy (B3
HP () = OABL T2MQO" T TM) gy

M (Q* +M2Q)

The contributions of 3S; and 'P, states vanish.

There are no contributions to the polarization changing
photon (T'L) case.

In the case of polarization flipping photon (T4 = +1,

TA = —1), the hard functions are
S _ 4A
HTﬂoipwg<Q) == %(QZ—‘WHLQQ/@L)’ (B33)
3 16A(Q2 +3M? )
Tipae (Q) = M (py).  (B34)

3ML(Q* + M)
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5 32A40* 1 1
HpL o (Q) = - ML), (B35 _ _
Tflip,ad (Q) 3M%Q(Q2 4 M2Q)4 Lad (pJ_) ( ) 131;()() 2<1 +)(2)3 4)((1 +)(2) arctan(;()
1
3 32A40* — — arctan®(y). (B44)
H”l%ip,aa/ (Q) = Q HJ_aa’ (pj_) ’ (B36) 4)(2

15M%(0* + M3)*
Following the heavy-quark symmetry, we define the hard
16A(BMY +2ME 0% - Q) function:

Pavg ad (Q) Hlaa’(pJ_)'
Hriip IML(0* + MZQ) . |
(B37) Hlﬁ?‘ia’ = 9 [HM’ ad’ + 3HM’ ad + SHM’ ad’ ] (B45)
The contributions of °S; and Py states vanish. In the case of longitudinally polarized photons, the hard

functions are
3. Hard functions in ITMD

In the equations below we define the variable AQ? X
p2 Laa (Q pl) 24m 3QQ6 ( +%2)4 {6Laa’ + Hiad (pi)}’
= 0? +leg’ (B38) (B46)
. . 5
and the auxiliary functions: Laa (O.p,)= Q Qg {008 Lo +12p ()T 1w (P 1)}
1 1
la (){) W + — 2 5 arctan (){), (B39) (B47)
1 1 5 AQ2 2 2 QZ
e P, o 24
Lip(x) = 20+ 2 Syarctan®(y), (B40) H o (O.p1) _W{ [Iza()() +W 2:|5J_aa
B 1 1 1 27° Qz] }
I2a()() _2(1 +)(2)4+8(1 +x )2+8 arctan ()() + |:12b()()+ (1+ ) m} Hj_aa (pJ_>
1
+ 5017 arctan(y), (B41) (B48)
\ AQ? { [ X QZ]
1 1 1 Tre = I a + =16 ad
R T L TRl e Mar( @) =56,,591 " ()(2) 2(_12+12)4m2g :
) 52 0 5 g e}
L, (y) = arctan(y)

+
2(1+42)°  4y(1 442
(I+x7) (1427 The contribution of 'S, 3S,, and 'P, states vanish.
+ %arctanz (), (B43) In the case of transversely polarized photons, the hard
4y functions are
|

1 A
TS(()m (Q pJ_) 8mQQ4 {Ila()()éj_aa’ +Ilb()()nl_aa’(pl)}v (BSO)

HP(0.0,) = 24“2‘Q4{[1a<x> 1)+ 5 )]

+ [t + 0 1) + Ime} M (p.) (B51)
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A mp &
Taa (Q.p1) = 12m3Q4{ [ () — ISa()() ‘|‘ Iza()() W] 0 aw
m
[111;()() Isb()() Izb()() —gm] ng/(pl)},
3 A 2 2
]l“)fm (Q PJ_) 60m n. 3 A4 Q4 {|: la()() 130(1) Za()() Q2 (1 £ ) :|5J_aa

2

+ |t - 20 1) + 12,7(;() ’"Q(lfﬂ} Maslp) .

2
){2

3Q2 (1422

2

[111)(){) 3Q2 w()() nglzb()()+3ng(1j_sz)4}Hma’(PL)}-

T:; (Q PJ_) 24J§Q4{|: la()() 3Q2 I3a()() Q4 2a()()+

The contribution of 3S; and 'P; states vanish.
In the case of polarization changing photon (7'L), the hard functions are

Ao 1 4 2mg 1 ]
TLaa (Q PJ_) 24\/§m3Q Qs( ) |:Q2 1+ 2+1 {5J_aa’+HJ_aa’(pJ_)}’

Ao 1
TLaa (Q PJ_) 24\/EMQ?(1 +)(2)4 {5J_aa’+nj_aa’(pl)}’

A0 1 X
60v2m3, 0° (1 +12)?

m2Q 1
TL ad (Q pJ_) +r T, 2 +1 {5J_aa/ + HJ_aa (PJ_)}

2Q2

A 1
TLaaf(Q PJ_) 72\/§m3Q§(1 +)(2)3 {5J_a(i +HJ_aa’(pJ_)}'

The contributions of 'Sy, 3S;, and 'P, states vanish.
In the case of polarization flipping photon (T4 = +1, T4’ = —1), the hard functions are

Ho e (Qup1) = =g g 1Bt + 10 (p1)},

A
Mt (Q.11) = W{[w(){) " L)+ 52 1)

+[ato+ -%m 4Q912au>]nm<pl>},

Tﬂlp w(0:pL) = Iz éQ4 { { () = 13b()() IZb(Z):|5J_aa’

+ |htn -5 2oy )+ Izaoo}nmw}
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M (0.01) = @{[W) L)+ 22 1)
1)~ 2 te) + 5 1] Mo}

P, A 4mg, 4my,
HTﬂip,(mﬂ(vaL) = W { |: Q2 ]3h ()() - Ilb()():| 5La{z’ + |: Q2 13(1 0() - ]la()():| HLaa’(pl)}' (B63)

The contribution of 3S; and 'P; states vanish

(B62)

APPENDIX C: GAUSSIAN APPROXIMATION FOR WILSON LINE CORRELATORS

The Gaussian approximation allows us to express any multipoint correlator of lightlike Wilson line (and their derivatives)
in terms of the dipole correlator and its derivatives [125,135,145]

In this approximation, the quadrupole correlator is

2 2 Nc
Sy 0eyusyix) = 87 ey )SY 0 x exp <—7Fy(xby1;yl,xl)

« [(v Ay + Fy(x,.y'\:y..x))

1
N (xl,yl;y’l,xl)>

Fy(x.y13y0.x)) N,
- — VA
2By va, ) TPV
n VAY_FY(xJ_’yﬁ_;.YJ_?x/J_)_I_FY(xL’yJ_;y/J_’xﬁ_) exp _&\/r 1)
2 /AY /AY 4 Y s
and the double-dipole correlator is

2 2 2 Nc 1
Sy eyuy ) = 87 ey )8y 0 xexp (—Tnubn;yl,xm—w FY<xL,yl;y;,x¢>)
c

VAy + Fy(x,y5y..X))  Fy(xp.y.:y,.x)) N, VA,
X — ) eXp\ — Y
2v/Ay Nzv/Ay 4
VAY—FY(xL,J’l;nyl) FY(vayL;y/J_»x/J_) N,
——54V/A , C2
+< 2/A, NG, P\ Ty VY (€2)
where
4 / / / i
Ay = (xbyl,ypn) + mFY(xJ_vyJ_;yl’xL)FY(xJ_st;yLvyJ_) (C3)
and

1 S<2) - S(Z) -
Fy(x1,y.;y).x))=—"In (YZ)(xl Y0 1(’2)(yL X)) '
Cr L8y (s = 21)8y 0 - 1)

(C4)

1. Color octet
In the Gaussian approximation, the correlator corresponding to the color octet contribution in Eq. (42) is obtained using
Egs. (C1) and (C2):

8
Sy yx) =

[

c 4
N_1 SV ey iy X)) -
2C 2 2 Nc
= _Fl Y (e 1) SV (v ¥ ) exp <—7Fy(xby1;yl,xl) +
% Fy(x,.y:y).x))

7 o (4 5) o ().

22
SPD(x L,y 1y x))]

1
WCFY<xJ_7yJ_;yIJ_vx/J_)>

(C5)
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2. Color singlet
Before we compute the color structure corresponding to singlet contribution in Eq. (41), it is convenient to split it into
elastic and inelastic pieces

=[1].el =[1].inel

ey sy x)) = BP9y sy ) + B ey sy x), (C6)
where
=l[1].el 2 2
EV ey sy X)) = NS e yy) = 1S 0. x)) — 1, (C7)
gl ey syx) = Ne[SPP ey iy x)) = SPxy )SP (L x). (C8)

Since the elastic piece in Eq. (C7) is independent of b, — ', its contribution to the cross section is proportional to 5 L),
so we can drop it. Thus it is sufficient to consider only the inelastic piece

2 2
XLy LYiE) = NS (eny oy ) = 87 ey )8V 0720

N. 1
= Ncsg’z)(xLny)Sg’Z) /Lxl){eXP (—4Fy(xia)’l§ypxl) + N

« [(\/AY + Fy(x .y sy.x)) FY(xJ_,yJ_;yl,xl)) exp (& \/IY>

11,inel
-

—_
=
—_—

Fy(xl,yl;yj_,xl))

2VA, N2/A, 4
VAY = Fy(x ¥y 5y.0,x)) | Fy(x,ysy,x)) N,
—2e /A )| =1 h.
+< 2\/Ay + N2JVA, KP\TY VA (©9)

3. Weizsiacker-Williams gluon distribution

In the Gaussian approximation, one can show (see Appendix A in [177])

, d?p d%, . RTo(b. B[l —exp (=T, (b, b

a,G¥ (p) =2Cy | — gL e B r( L Dl p(-¢ Y/( L L))}’ (C10)
(2”) abL(labJ_a’ I_‘Y (bl ) bl)

where
Ty(by, b)) = —In (Y (b..b")). (C11)

Furthermore, assuming translational invariance:

20,8 | [&Ty(B,) 1 aly(B)) C
0 A y(By) 1 dly(B, B Gy
Gy(p.) = as(2”)3/BJ_dBJ_JO(pJ_BJ_)FY<Bl) { B2 +BJ_ OB, } {1 exp( CFFY(BJ_)>]’ (C12)

R o R | IR =) | D)

where By = b, —b', and S is the transverse area of the target, | &b, d%' =S, / d’B | . Here have abused the notation,
and written the translational invariant correlator I'y(B, =b, —b',) =Ty(b,.b')).

APPENDIX D: ADDITIONAL NUMERICAL RESULTS FOR THE SHORT DISTANCE COEFFICIENTS

In this appendix, we provide the results for the short distance coefficients when the photon is longitudinally polarized and
for the off-diagonal matrix elements LT and Tflip corresponding to different polarizations of the photon in the amplitude and
complex conjugate amplitude. The p, and Q dependencies are shown in Figs. 7 and 8, respectively.
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FIG.7. The p, dependence of the short distance coefficients computed in the CGC (solid lines), the improved TMD (dashed dotted),
and the TMD (dashed). All results are shown at fixed virtuality Q = 3.0 GeV. The upper panels show the results when the photon is
longitudinally polarized, and the lower panels show the result for the absolute value of the off-diagonal matrix elements (interference of
polarization). Panels on the left show the results at Q2 = 0.2 GeV? (proton). Panels on the right show the results at Q2 = 1.0 GeV?
(large nucleus). The short distance coefficients corresponding to the P wave are multiplied by 2.
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FIG. 8. The Q dependence of the short distance coefficients computed in the CGC (solid lines), the improved TMD (dashed dotted),
and the TMD (dashed). All results are shown at fixed virtuality Q = 3.0 GeV. The upper panels show the results when the photon is
longitudinally polarized, and the lower panels show the result for the absolute value of the off-diagonal matrix elements (interference of
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(large nucleus). The short distance coefficients corresponding to the P wave are multiplied by 2.
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