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Abstract—Bit-serial processing-in-memory (PIM) architectures
have been extensively studied, yet a standardized tool for
generating efficient bit-serial code is lacking, hindering fair
comparisons. We present a fully automated compiler framework,
PIMsynth, for bit-serial PIM architectures, targeting both digital
and analog substrates. The compiler takes Verilog as input
and generates optimized micro-operation code for programmable
bit-serial PIM backends. Our flow integrates logic synthesis,
optimization steps, instruction scheduling, and backend code
generation into a unified toolchain. With the compiler, we provide
a bit-serial compilation benchmark suite designed for efficient bit-
serial code generation. To enable correctness and performance
validation, we extend an existing PIM simulator to support
compiler-generated micro-op-level workloads. Preliminary results
demonstrate that the compiler generates competitive bit-serial
code within 1.08x and 1.54x of hand-optimized digital and
analog PIM baselines. Our code is publicly available at https:
/lgithub.com/UVA-LavaLab/PIMsynth.

Index Terms—processing in memory (PIM), bit-serial code
generation

I. INTRODUCTION

Processing-in-memory (PIM) architectures have been
widely studied as a promising approach to address mem-
ory bottlenecks and leverage the high internal parallelism
of DRAM. Bit-serial PIM architectures take advantage of
the inherent massive parallelism of DRAM row operations,
attracting considerable interest from both academia and in-
dustry. Analog bit-serial PIM designs, e.g., [1]-[5], often
utilize triple-row activation (TRA) to perform majority (MAJ)
logic operations directly within memory arrays with low area
overhead, often referred to as processing-using-DRAM (PUD).
Alternatively, digital PIM designs, e.g., [6]-[9], integrate logic
gates near the sense amplifiers to perform bit-serial logic
operations, possibly in combination with PUD.

Programming bit-serial PIM remains challenging due to
the complexity of implementing bit-serial code variants for
different instruction sets, data types, register configurations,
and hardware constraints. Fig. 1 shows two bit-serial data
dependency graphs of a 1-bit full adder as an example of
how to program a digital bit-serial PIM [9] and an analog
bit-serial PIM [4]. Without a compiler toolchain, significant
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Fig. 1. Bit-serial data dependency graphs of 1-bit full adder: (left) digital
bit-serial PIM; (right) analog bit-serial PIM. Analog PIM requires variable
replication due to the input-destructive behavior of triple-row activation
(TRA)-based majority (MAJ) operations, and it supports multiple outputs.
Register allocation is further needed to utilize PIM hardware resources.

manual effort is required to map such dependency graphs
into the target PIM instruction set, considering instruction
scheduling, register allocation, spilling, etc. This manual effort
is often infeasible or unreliable when comparing bit-serial PIM
architectures, due to the complexities of bit-serial algorithms
and need for different architecture-specific optimizations.

Previous PIM research has addressed the bit-serial compila-
tion challenges specific to certain architectures. For example,
SIMDRAM [4] introduced a majority-inverter graph (MIG)-
oriented synthesis flow with row-to-operand allocation algo-
rithms. CHOPPER [10] proposed a general compiler infras-
tructure designed for analog bit-serial PIM, incorporating the
Usuba bit-slice compiler [11], LLVM [12] and several perfor-
mance optimizations. However, to the best of our knowledge,
these approaches have seen limited adoption, primarily due to
being closed-source, limited generality, or requiring non-trivial
manual effort.

To address the challenge, we present a fully automated, end-
to-end bit-serial compilation framework, PIMsynth, targeting
both digital and analog bit-serial PIM architectures, to allow
a deep and fair study of diverse PIM architectures. This
framework integrates open-source logic synthesizers Yosys
[13] and ABC [14] to convert bit-parallel computation into bit-
serial, LLVM [12] for instruction scheduling and register allo-
cation, PIMeval [9] simulator for verification and performance
energy modeling, with multiple PIM-oriented transformation
and optimization steps and code generation, as a unified
compilation toolchain.

With this compiler framework, we provide a set of carefully
designed Verilog combinational circuit modules as a bit-
serial compilation benchmark suite. These modules represent
conventional bit-parallel operations, e.g., arithmetic/Boolean
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operations on 8/16/32/64-bit operands, but their circuit struc-
ture can strongly influence the performance of the generated
bit-serial code. For example, using an arithmetic ‘+" operator
often produces a wider data dependency graph and higher
register pressure than sequential designs such as a ripple-
carry adder. We therefore construct the suite to minimize
dependencies and register usage, enabling high-performance
bit-serial code generation and consistent evaluation.

The key contributions of this work are as follows.

1) A fully automated, end-to-end compilation flow for dig-
ital and analog PIM bit-serial architectures, supporting
multiple instruction sets and register configurations;

2) A transformation and optimization flow to convert a
digital circuit into an analog bit-serial PIM compatible
intermediate representation (IR);

3) A benchmark suite of Verilog modules implementing
bit-paralle]l operations;

4) An extension in PIMeval simulator to enable digital and
analog bit-serial code execution for automated verifica-
tion and performance energy modeling.

We evaluate the compiler across two representative digital
and analog PIM architectures to demonstrate that it generates
efficient bit-serial code comparable to handwritten baselines.
Furthermore, this bit-serial compiler framework serves as a
foundation for supporting a range of bit-serial PIM instruction
sets, register configurations, and operations, enabling compre-
hensive analysis and comparison across diverse architectures.

II. RELATED WORK

SIMDRAM [4] is an end-to-end framework for analog bit-
serial PIM. In addition to its architectural and system-level
contributions, it introduces a compilation flow that translates
logic from AND-OR-Invert Graph (AOIG) into Majority-
Inverter Graph (MIG), applies MIG-level optimizations, and
performs row-to-operand allocation. Despite its comprehensive
design, the framework has a few limitations: 1) It is closely
tied to the SIMDRAM hardware architecture, limiting general-
ity; 2) AOIG generation is not integrated into the compilation
toolchain; and 3) the register allocation strategy lacks gener-
ality and provides limited support for spilling. MIMDRAM
[5] is built on top of SIMDRAM, focusing on mapping high-
level programs to bit-parallel operations in multi-instruction
multi-data (MIMD) fashion, while the underlying bit-serial
compilation is solved in the same way as SIMDRAM.

CHOPPER [10] is a compiler infrastructure proposed for
analog bit-serial PIM architectures. Although it shares a sim-
ilar high-level objective and investigates both register spilling
and analog PIM specific optimizations, it has some limitations:
1) It is built on the Usuba bit-slice compiler [11], inheriting
limited logic synthesis capabilities and lacking full support
for converting general bit-parallel logic such as arithmetic
operations into optimized bit-serial sequences. 2) It offers
limited instruction set customization and relies on separate
post-processing to support different architectures. 3) To the
best of our knowledge, no open-source implementation of
CHOPPER is publicly available, which limits reproducibility
and hinders comparative evaluation.
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Fig. 2. Bit-serial PIM programming models: (left) digital; (right) analog. Both
models assume a vertical data layout within DRAM subarrays. Digital PIM
attaches a bit-serial logic unit (LU) to each sense amplifier, while analog PIM
introduces triple-row activation (TRA)-based majority (MAJ) capability, with
dual-contact cell (DCC) rows to perform NOT operations.

PIMLC [15] is a recent bit-serial compiler solution targeting
SRAM- and ReRAM-PIM solutions, integrating a workload-
resource aware scheduling (WRAS) algorithm to minimize
latency. However, it does not support DRAM-based PIM
architectures, which have distinct computing models, input-
destructive analog operations, and digital registers.

ITI. COMPILER DESIGN
A. Bit-Serial PIM Programming Models

To support a range of PIM architectures, we define two bit-
serial programming models for digital PIM and analog PIM
respectively, as illustrated in Figure 2. Both models assume a
vertical data layout and enable bit-serial SIMD computation
within DRAM subarrays, but they differ in how computation
is implemented and how operations are executed. Digital bit-
serial PIM, e.g. [7], [9], introduces lightweight digital bit-
serial logic units (LUs) attached to sense amplifiers, which
can perform bit-serial operations on a small set of single-bit
registers. Computation proceeds by reading memory rows into
sense amplifiers, possibly copying values to registers, and ex-
ecuting bit-serial operations on the registers. A bit-serial logic
operation is 10 —20x faster than a memory row read or write
operation on DRAM, as described in Section IV-A. Analog
bit-serial PIM, such as [4], performs computation directly in
memory based on the triple-row activation (TRA) mechanism,
which allows in-place majority logic. AND and OR operations
are implemented using MAJ with constant zero and one inputs.
We currently assume that all TRA-enabled rows are also dual-
contact cell (DCC) rows for NOT operations. Computation
proceeds by reading data from regular memory rows to a small
group of TRA/DCC-enabled register rows, executing bit-serial
operations, and writing results back to regular memory rows.

B. Bit-Serial Compiler Main Flow

The main flow of the bit-serial compiler is shown in Fig. 3.
The compiler takes three inputs: 1) Verilog description of bit-
parallel computation, 2) bit-serial PIM instruction set (ISA)
defined as a standard cell library, and 3) the number of registers
in the target PIM architecture. The compiler then performs
logic synthesis, optimization, scheduling, code generation,
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Fig. 3. PIMsynth bit-serial compiler main flow: A unified compilation

framework that supports diverse digital and analog bit-serial PIM architectures

and simulation phases in a unified framework. If a new bit-
serial PIM architecture follows either the digital or analog
programming model and differs only in its ISA or register
configurations, the compiler can already support it without
modification, given the proper inputs. There are other PIM
architectures beyond these two, e.g., with different analog
instruction sets [8] or mixed analog-digital solutions [6].
Extending support to a broader range of PIM architectures,
such as [2], [3], [6], [8], [16], [17], is left for future work.

1) Logic Synthesis Phase: The bit-serial compiler frame-
work integrates Yosys and ABC synthesizers to convert bit-
parallel computation Verilog into digital circuit netlists in
BLIF. Verilog provides flexible ways of describing the struc-
tures of bit-parallel computation and serves as standard input
to logic synthesizers. Digital circuits can be naturally inter-
preted as bit-serial data dependency graphs for the next phase
of compilation. Using Verilog helps with low-level mapping,
but adding support for high-level programming languages is
a natural direction for future work. Another compiler input is
the bit-serial PIM ISA definition. The PIM ISA is converted
to a standard cell library in GenLib format, used by Yosys and
ABC to perform technology mapping from a general digital
circuit into a circuit using specific logic gates or operations
supported by the target architecture.

2) Transformation & Optimization for Digital/Analog PIM:
During this phase, the compiler converts the output of logic
synthesis, i.e., digital circuits, into bit-serial PIM IR-1 (bit-
serial data dependency graph) for scheduling considering key
characteristics of digital and analog bit-serial PIM. The pur-
pose of these transformation steps is to convert digital circuits
into PIM operations, particularly for analog PIM.

Based on the digital bit-serial PIM programming model,
digital bit-serial logical operations are performed on a small set
of single-bit registers within each bit-serial LU, which can be
directly mapped to logic gates in the digital circuits generated
by the logic synthesis phase. However, analog bit-serial PIM is
more complicated due to its unique characteristics and require-
ments: 1) Because of the input-destructive behavior of TRA,
input variables will be updated after performing an analog
MALJ operation, and this further creates the requirements of
protecting global input variables and preventing using the same
variable to drive more than one input-destructive operations.
2) Analog PIM has DCC capability, which embeds NOT
operations as part of TRA. 3) The analog PIM AAP primitive
supports more than one output variable for efficient one-to-
multi copying.

To meet the above requirements and fully exploit the
computational potential of analog bit-serial PIM, we design
a multi-step flow that transforms and optimizes a digital
circuit with NOT/MAJ/AND/OR gates into an analog PIM
compatible bit-serial IR, more comprehensive than prior work
[4], [10], as shown in Fig. 4. Step 0 is for replicating global
inputs to avoid impact from analog TRA operations. Step @
is for mapping AND and OR gates into MAJ with additional
zero and one inputs. Step @ is to eliminate inverters in the
circuit by negating the inputs of MAJ and taking advantage
of DCC. Step @, @. @ are three alternative approaches to
resolve the input-destructive requirements of analog PIM, by
leveraging the inout inputs and multi-outputs of TRA, or insert
a copy as a final measure.

3) Scheduling Phase: We integrate LLVM [12] to perform
instruction scheduling, register allocation, and spilling. This
phase lowers bit-serial PIM IR-1 (before register allocation
and spill insertion) to IR-2 with register allocation and spill
insertion. For both digital and analog bit-serial PIM, a spilled
register causes an additional pair of memory row read and
write, which can impact bit-serial execution time substantially.
We implement bit-serial-friendly Verilog inputs and perform
priority-aware topological sort before scheduling to relieve
register pressure, and we leave the exploration of optimal
scheduling algorithms for future work.

4) Bit-Serial Code Generation Phase: The compiler trans-
lates bit-serial PIM IR-2 into executable bit-serial code. To
facilitate result verification, we extend the PIMeval simulator
to support bit-serial PIM primitives. Code generation is based
on a set of PIMeval APIs for memory row read and write, dig-
ital PIM logical operations, analog PIM AP/AAP operations,
and DCC row access. It is extensible to support other formats,
including bitwise C code for bit-serial PIM IR verification.

5) Simulation & Verification Phase: Given the complexities
of generated bit-serial code for digital and analog PIM, verifi-
cation is essential. After compilation, the framework generates
test functions and test inputs for the generated bit-serial code,
and perform micro-op-level simulation using PIMeval.

IV. EVALUATION
A. Bit-Serial PIM Timing Parameters

Timing parameters for performance evaluation are derived
from a DDR4_8Gb_x16_3200 model listed in Table I

TABLE I
B1T-SERIAL PIM TIMING PARAMETERS

Timing Parameter Formula Latency (ns)
DRAM clock period tCK 0.63
DRAM row active time tRAS = 52 * tCK 3276
DRAM row precharge time tRP = 22 * tCK 13.86
DRAM column-to-column delay | tCCD = 4 * tCK 2.52
Digital PIM row read or write tRAS + tRP 46.62
Digital PIM logic operation tCCD 2.52
Analog PIM AP/AAP operation | tRAS + tRP 46.62

B. Bit-Serial Compilation Benchmark Suite

The PIMsynth benchmark suite consists of Verilog imple-
mentations of 8/16/32/64-bit integer arithmetic, relational and
logical operations, min/max, shift, and population count, for
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Fig. 4 Transformation and optimization steps to convert a digital circuit into analog PIM IR, by leveraging the input-destructive behavior of triple-row
activation (TRA), dual-contact cell (DCC)-based NOT, and multi-output activate-activate-precharge (AAP) operations
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Fig. 5. Comparison of digital and analog bit-serial PIM execution time
between human expert-written baseline and compiler generated code

evaluating compiler efficiency in mapping bit-parallel opera-
tions to bit-serial ISAs. The compiler and suite are designed to
be readily extensible, e.g. to more complex operations such as
floating-point arithmetic and look-up table (LUT) based logic.

C. Comparison Against Manually Optimized Baseline

We evaluate a subset of benchmarks selected based on
baseline availability and types of operations. Baselines are
highly compact bit-serial code optimized by human experts
over months of effort, while the compiler generates results in
seconds or minutes. Digital bit-serial PIM baseline results are
obtained from [9], using an ISA of NOT/AND/XNOR/SEL,
with 4 single-bit registers. Analog bit-serial PIM baseline
results are collected from [4], [5], which models TRA/DCC
operations using AP/AAP primitives in 6 register rows.

Figure 5 shows the comparison between bit-serial compiler-
generated code and manually optimized baseline. For digital
PIM, the results are strong, with performance comparable to or
better than the manually optimized baseline, and a geometric
mean of 1.08x. For analog PIM, the compiler-generated code

remains competitive, with a geometric mean within 1.54x of
the baseline. We observe compilation inefficiencies in analog
operations such as add_int8 and max_int8, due to difficulties
in exploiting the analog MAJ operation as efficiently as human
experts. Despite these inefficiencies, the overall results demon-
strate the effectiveness of the bit-serial compiler, providing
significant reduction in manual effort.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a bit-serial compiler framework for dig-
ital and analog bit-serial PIM code generation. This achieves
performance within 1.08 x and 1.54x of hand-optimized base-
lines, while eliminating manual programming effort. Future
work will explore improved synthesis and scheduling algo-
rithms and extend support to a wider range of bit-serial targets,
and compare to related compiler approaches.
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