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Abstract
Accurate modelling of black hole (BH) binaries is critical to achieve the science
goals of gravitational-wave detectors. Modelling such configurations relies
strongly on calibration to numerical-relativity (NR) simulations. Binaries on
quasi-circular orbits have been widely explored in NR, however, coverage
of the broader nine-dimensional parameter space, including orbital eccentri-
city, remains sparse. This article develops a new procedure to control orbital
eccentricity of binary BH (BBH) simulations that enables choosing initial data
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parameters with precise control over eccentricity and mean anomaly of the sub-
sequent evolution, as well as the coalescence time. We then calculate several
sequences of NR simulations that nearly uniformly cover the two-dimensional
eccentricity–mean anomaly space for equal mass, non-spinning BBHs. We
demonstrate that, for fixed eccentricity, many quantities related to the merger
dynamics of BBHs show an oscillatory dependence on mean anomaly. The
amplitude of these oscillations scales nearly linearly with the eccentricity of
the system. We find that for the eccentricities explored in this work, the mag-
nitude of deviations in various quantities such as the merger amplitude and
peak luminosity can approach ∼5% of their quasi-circular value. We use our
findings to explain eccentric phenomena reported in other studies. We also
show that methods for estimating the remnant mass employed in the effective-
one-body approach exhibit similar deviations, roughly matching the amplitude
of the oscillations we find in NR simulations. This work is an important step
towards a complete description of eccentric BBH mergers, and demonstrates
the importance of considering the entire two-dimensional parameter subspace
related to eccentricity.

Keywords: numerical relativity, black holes, eccentricity and mean anomaly

1. Introduction

By the end of the fourth observing run of the LIGO-Virgo-KAGRA network of gravitational-
wave (GW) detectors, it is expected that the number of detected binary black hole (BBH) events
will exceed 200 [1–6]. In order to both detect potential events, as well as to ascertain their
properties via parameter estimation [4, 7–10], it is essential that we have accurate waveform
models across the entire BBH parameter space. This necessity only becomes more drastic
when considering future, next-generation detector missions such as Einstein Telescope, LISA,
and Cosmic Explorer [11–14], which will not only be more sensitive (and so more prone to
bias due to waveform systematics), but will also cover new frequency bands, opening up the
possibility to detect BBH events from new formation channels [15–17].

While many waveform models leverage analytic prescriptions or perturbative approaches,
almost all modern waveform models rely on calibration to numerical-relativity (NR) simu-
lations (e.g. [18–20]) or are directly constructed from NR simulations [21]. This calibration
can only be effective in regions of parameter space with sufficient simulation coverage. To
date, much of the focus of NR simulations has been on quasi-circular systems, representing
a 7 dimensional subspace of possible configurations. This is natural, as orbital eccentricity is
radiated away during the inspiral of a binary [22], and so by the time the system enters cur-
rent detectors’ frequency bands it is typically well-described by a quasi-circular system. Still,
an understanding of eccentricity is vital for several science goals; to ensure that if there are
eccentric signals we can properly identify them [23–26], to explore the formation scenarios
for different binary systems [17, 27–32], as well as to disambiguate eccentric effects from
potential deviations of General Relativity [33–35]. To this end, there are on-going efforts to
build waveform models for eccentric systems [36–41]. However, most waveform models that
do allow for orbital eccentricity in the inspiral still assume a quasi-circular merger model, with
the exception being NRSur2dq1Ecc [36]. As such, both the calibration to NR and the assess-
ment of these merger models requires extending our coverage to the eccentric parameter space.
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Figure 1. Importance of mean anomaly. Top panel: instantaneous GW frequency ω22(t)
for three NR simulations. The maxima andminima of these curves share common envel-
opes, indicating that these systems have the same eccentricity, and differ only in their
mean anomaly. Note that all three systems share the same orbit-averaged frequency
throughout their inspiral, plotted as the black dashed curve. Bottom panel: a represent-
ative GW mode, with phasing aligned at the time at which the orbit averaged frequency
of the (2, 2) mode ⟨ω22⟩= 0.069/M. While the systems accumulate the same overall
number of GW cycles, the amplitude- and phase-modulations differ. This plot zooms
into the merger part of the NR simulations and the full simulations are visible in figure 5.

At the same time, several NR groups have begun to expand into this part of the parameter
space [36, 42–53]. However, relaxing the quasi-circular restriction not only introduces a para-
meter describing the eccentricity of the system (namely, the eccentricity), but also a parameter
describing its phasing (typically referred to as the anomaly, see figure 1). While these serve
as excellent exploratory studies, to the authors’ knowledge, no complete study accounting
for both eccentric parameters has been performed thus far. As such, coverage of this two-
dimensional parameter space remains haphazard at best (see figure 3 of [36] for one such
example).

While controlling the eccentricity of a simulation is a difficult problem in its own right
[54, 55], controlling the anomaly at an arbitrary reference epoch proves even more challen-
ging because for eccentric binary systems, the length of the simulation before the black holes
(BHs) coalesce (referred to as the time to merger) has a much more sensitive dependence on
the initial conditions compared to their quasi-circular counterparts. This sensitivity makes effi-
cient exploration of eccentric binaries challenging. Therefore, to access such a complete study
requires improvements upon our current eccentricity control methods.

In this work, we address two problems: first, we propose a new eccentricity control method,
which is based on the gravitational waveforms and utilises state-of-the-art eccentric waveform
models. This new method not only allows exceptional control over the eccentricity of the bin-
ary, but also over the length of the simulations, which in turn enables targeting of specific
values of the anomaly parameter. Second, we use this method to present the first complete
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exploration of the impact of both eccentricity and mean anomaly on several merger-related
quantities, such as the peak of the strain and the remnant BH parameters. We demonstrate that
many quantities have an oscillatory dependence on the mean anomaly, with the magnitude of
these oscillations scaling roughly linearly with eccentricity. Using this information, we are
able to explain features seen in previous eccentric studies. Finally, we show that some of these
results may actually be accessible via analytic methods, using the SEOBNRv5EHM eccentric
waveform model [38, 56].7

This paper is organised as follows: in section 2, we lay out several definitions used through-
out this work, as well as our newwaveform-based eccentricity control. In section 3, we demon-
strate the effectiveness of this eccentricity control procedure, and use it to generate several
sequences of eccentric simulations, which we use to assess the impact of eccentricity and
mean anomaly. Finally, in section 4, we summarise our results, and discuss future avenues of
research.

2. Methods

2.1. Definitions

To avoid any gauge/definition ambiguities, we will define both eccentricity and mean anomaly
directly from the gravitational waveform using the package gw_eccentricity [50, 58]. One
first decomposes the complex waveform h= h+− ih× into a sum of spin-weighted spherical
harmonics,

h(t, ι,φ0) =
ℓ=∞
∑

ℓ=2

m=ℓ
∑

m=−ℓ

hℓm (t)−2Yℓm (ι,φ0) , (1)

where ι and φ0 are the polar and azimuthal angles on the sky in the source frame, and −2Yℓm
are the s=−2 spin-weighted spherical harmonics. This study is largely restricted to binar-
ies without orbital plane precession, and ι= 0 corresponds to the direction orthogonal to the
orbital plane. Each mode hℓm is further decomposed into a real amplitude and a real phase:

hℓm (t) = Aℓm (t)e
−iϕℓm(t). (2)

Following [50, 58], we introduce the frequency of h22 as ω22 = dϕ22/dt, and define the
eccentricity of the system as the envelope of ω22, i.e.

egw (t) = cos(Ψ/3)−
√
3sin(Ψ/3) , (3)

where

Ψ = arctan

(

1− e2ω22

2eω22

)

, eω22 (t) =

√

ωp
22 (t)−

√

ωa
22 (t)

√

ωp
22 (t)+

√

ωa
22 (t)

, (4)

7 The SEOBNRv5EHM waveform model is publicly available through the Python package pySEOBNR (https://
waveforms.docs.ligo.org/software/pyseobnr) [57].
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and ω
a/p
22 (t) are smooth interpolants of the (2, 2) mode frequency at apastron/periastron. For

a time interval between successive periastron passages tpi < t< tpi+1, i.e. between maxima of
ω22, the mean anomaly is defined as

ℓgw (t) = 2π
t− tpi
tpi+1− t

p
i

, (5)

where tpi is the time of the i-th periastron passage. Note that ℓgw(t) is essentially a piecewise
linear function in time, which increases from 0 to 2π between each periastron passage. We
will omit the subscript ‘gw’ for the rest of this work.

As should be clear from the above formulae, both the eccentricity and mean anomaly of a
given system are functions of time. As such, it is important to specifywhere in thewaveformwe
are defining eccentricity and mean anomaly when comparing systems. This is typically either
done at some reference time tref, or at some reference orbit-averaged frequency ⟨ω22⟩(t), which
we define as a smooth interpolant of

⟨ω22⟩i =
1

tpi+1− t
p
i

ˆ tpi+1

tpi

ω22 (t) dt=
ϕ22

(

tpi+1

)

−ϕ22
(

tpi
)

tpi+1− t
p
i

. (6)

Throughout this work we will make use of both reference time and reference frequencies:
for comparing systems of the same eccentricity we use reference frequencies, while compar-
ing across eccentricities we will use reference times. We will use subscripts to indicate when
a quantity is defined (e.g. ℓ−700M represents the mean anomaly 700M before merger, while
ℓ0.03/M would be the mean anomaly when ⟨ω22⟩= 0.03/M). Additionally, we make frequent
use of an orbit averaged frequency of ⟨ω22⟩= 0.069/M, corresponding to an epoch near mer-
ger. For brevity, we will use the subscript ‘ref’ (e.g. ℓref and tref) to denote quantities evaluated
at this epoch.

As will be discussed in section 3, the choice of exactly where in the inspiral to define the
reference epoch is important when studying the impact of mean anomaly on merger dynamics.
The reason is that mean anomaly cycles through many periods during the inspiral (once per
radial period), and so even a small secular dephasing between two runs can lead to dramatically
different mean anomaly values. In contrast, eccentricity is slowly and monotonically decaying,
and a change in reference epoch for the definition of eccentricity will primarily result in a re-
scaling of all eccentricities that respects their ordering (for constant BH parameters). However,
when comparing across systems of varying BH parameters, one could have that the ei(t) curves
cross, and so the choice of reference epoch becomesmore important. As wewill focus on equal
mass non-spinning systems in this work, we leave careful consideration of the reference epoch
for defining eccentricity to future work.

Figure 1 gives a more intuitive picture of how eccentricity and mean anomaly paramaterise
a system. We plot the evolution of ω22 for three sample NR simulations (all with mass-ratio
q= 1, both BHs non-spinning). As equation (3) depends only on the apastron and periastron
frequencies (i.e. the envelopes of the frequency), it should be clear that these three simulations
share the same e(t). As such, a second parameter is required to distinguish between these
simulations, the ‘phase’ of the radial orbit. This is precisely the mean anomaly ℓ(t).

All numerical simulations in this work were carried out using the Spectral Einstein Code
(SpEC) [59] developed by the Simulating eXtreme Spacetimes (SXS) collaboration. SpEC
employs a multi-domain spectral discretisation [60–63] to solve a first-order representation of
the generalised harmonic system [64]. Excision surfaces are placed within apparent horizons
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[61–63, 65], and constraint-preserving boundary conditions are used for the outer boundaries
[64, 66, 67]. Initial data is constructed using Spells [68, 69], which solves the extended
conformal-thin sandwich equations [70–72].

2.2. Waveform-based eccentricity control

The initial data of a NR simulation determines the properties of the system. In SpEC, initial data
is specified through mass-ratio q= m1/m2 ⩾ 1 and BH spins χ⃗1,2, where the subscript labels
the two BHs. In this paper, we will largely restrict our focus to BH spins parallel to the orbital
angular momentum (which in turn is parallel to the ẑ-axis), so that χ⃗1 = ẑχi where χi ∈ [−1,1]
represents the projection of χ⃗i onto the orbital angular momentum vector. In addition to mass-
ratio q and spins χi, one must also specify:

(i) the initial coordinate separation D0,
(ii) the initial orbital frequency Ω0, and
(iii) the initial expansion ȧ0, defined as the initial in-going velocity divided by the initial

separation vr/D0.

These three values encode the orbital properties (eccentricity & radial phase) as well as the
merger time Tmerger, which we define as the time of the peak ofA22. Our goal is to obtain precise
control over mean anomaly, eccentricity, and merger time. As such, we need a procedure to
obtain initial parameters D0, Ω0 and ȧ0 that correspond to a NR simulation with the desired
initial eccentric parameters (e0, ℓ0), and time to merger Tmerger.

As a first step we will restrict ourselves to construct initial data only at apastron. Because
of the larger separation and smaller velocities of the BHs at apastron, junk radiation [73] is
reduced; moreover, this choice meshes well with technical restrictions of SpEC which limit
by how much the separation can increase during an evolution [74]. We note that starting at
apastron does not limit our ability to reach any physically possible configuration. For instance,
we achieve all three simulations shown in figure 1 with initial data at apastron by suitably
changing D0, Ω0, and ȧ0 so that the subsequent simulations have the same eccentricity (at a
reference epoch) but slightly different durations between initial data andmerger. In section 3.1,
we will use this approach to systematically explore the mean anomaly parameter space.

We furthermore aim for an iterative procedure to adjust our initial conditions: Based on
evolutions lasting a few orbits, we aim to adjust our initial conditions, such that a subsequent
evolution is closer to the desired configuration. Many such iterative eccentricity control pro-
cedures have been employed to date [54, 55, 75–80], however we shall improve on those in
two ways: First, we will use the gravitational waveform in our adjustment procedure, in order
to eliminate the coordinate-dependence inherent in procedures that use the coordinate traject-
ories of the BHs [54, 55, 75, 77, 79, 80]. Second, in our updating step, we will utilise state-
of-the-art waveform models for eccentric BBH, rather than using a fitting function based on
ad hoc choices (e.g. [75, 77]) or post-Newtonian inspired approximations [54]. Specifically,
we employ SEOBNRv5EHM [38, 56], an aligned-spin, effective-one-body (EOB) model for
eccentric BBH systems. SEOBNRv5EHM parameterises its orbit differently to NR initial data,
namely with
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(i) initial eccentricity e0,
(ii) initial relativistic anomaly ζ0,8 and
(iii) initial orbit-averaged orbital frequency ⟨Ω⟩0.

The EOB model internally translates these quantities through a root-finding procedure into
the actual initial conditions for the EOB dynamics evolution: separation r0, instantaneous
orbital frequency ω0, and radial momentum pr.

Our task is now to combine SEOBNRv5EHM with short NR simulations to achieve our target
configuration with initial eccentricity etarget0 and time to merger T target

merger. We seek an iterative
procedure that ultimately yields NR initial-data parameters (D0,Ω0, ȧ0) for our target config-
uration. Our eccentricity control method begins by constructing a first NR initial data as a seed
for the subsequent iterative procedure:

(i) Fix ζ0 = 0, and perform a root find in the EOB initial parameters (e0,⟨Ω⟩0) to find the
EOB waveform with the desired eccentricity and waveform length.

(ii) Extract the initial dynamical quantities from the EOB model (r0,ω0,pr).
(iii) Set the NR initial-data parameters to D0 = r0−M, Ω0 = ω0 and ȧ0 = pr/r0.

Now that we have seed NR initial conditions, we can begin the actual iterative procedure:

(iv) Construct the NR initial-data set for (D0,Ω0, ȧ0), and evolve for three radial periods up
to a time tmax.

(v) Extract the gravitational waveform from the NR simulation. We use a waveform extrac-
ted at a finite radius (typically r≈ 300M), discard data for t< tjunk which is contaminated
by junk radiation, and calculate the amplitude of the (2, 2) mode, ANR

22 (t). Figure 2 plots
an exemplary ANR

22 (t) obtained in this way; because we remove the initial junk-radiation
phase, the data starts somewhat after an apastron passage, i.e. somewhat after a minimum
in ANR

22 (t).
(vi) Find the SEOBNRv5EHM waveform that best matches ANR

22 . In this step, we find EOB para-
meters (e0,⟨Ω⟩0), a time-shift δt, and an overall amplitude offset C to minimise

ˆ tmax

tjunk

∣

∣ANR
22 (t)−AEOB

22 (t+ δt;e0, ℓ±,⟨Ω⟩0)+C
∣

∣dt. (7)

The time-shift δt aligns the time-axes of the EOB evolution with the NR evolution (e.g.
to account for finite-radius GW extraction effects) and the overall offset C is likewise
necessary to reach good agreement and a robust fit in the light of using a finite-radius NR
waveform. In addition, for systems with low eccentricities, the EOB relativistic anom-
aly is varied over the two choices ℓ± = {0,π} to account for rare cases that the NR
simulation switches into a periastron-configuration, rather than the intended apastron-
configuration (a more detailed explanation is provided below). Figure 2 also plots this
best-fit EOB waveform.

(vii) From the best-fit EOB waveform, obtain a predicted time to merger Tfitmerger and initial

eccentricity efit0 . If e
fit
0 and Tfitmerger are sufficiently close to our target eccentricity etarget0

8 The relativistic anomaly ζ employed in the SEOBNRv5EHM model represents a different radial phase parameter than
the mean anomaly ℓ. While the evolution of these parameters varies across radial orbits, they are defined such that
both satisfy ζ = ℓ= 0 at periastron and ζ = ℓ= π at apastron.
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Figure 2. Waveform-based eccentricity control. Shown is a single step of eccentricity
control, where the blue curve corresponds to A22 obtained via finite-radius extraction in
anNR simulation, and the dashed orange curve corresponds to the best-fit SEOBNRv5EHM
waveform. tjunk corresponds to the time at which junk has decreased by an acceptable
amount for us to start fitting, which typically takes ∼100M. System corresponds to a
particular eccentricity control iteration for the tenth entry in table 2.

and time to merger T target
merger (within±10−4 and±50M respectively), and ℓ± = π, then the

eccentricity control procedure was successful. Exit the iterative loop and continue the
NR simulation.

(viii) Extract the initial EOB dynamical parameters
(

rfit0 ,ω
fit
0 ,p

fit
r

)

from the EOB fit obtained
in step (vi). Update the NR initial data parameters based on differences between these
current EOB parameters and the target EOB parameters determined in step (ii) above:

D0← D0
r0
rfit0

, (8)

Ω0← Ω0
ω0

ωfit
0

, (9)

ȧ0← ȧ0
pr
pfitr

rfit0
r0

. (10)

(ix) Go to step (iv).

For large eccentricities, the inclusion of the fitted parameter ℓ± is not required, as the beha-
viour of the binary at periastron and at apastron is quite distinct. However, for eccentricities
e≲ 10−2, the motion of the BHs is dominated by the monotonic inspiral as opposed to the
eccentricity-driven oscillations. As such, it can happen that between eccentricity iterations,
the NR simulation switches from starting at apastron to starting at periastron. The same is
true for the constant offset C: when the waveform is dominated by large, eccentricity-driven
oscillations (e.g. as in figure 2), the inclusion of C in the fit makes little difference. However,
for lower eccentricities, the near-zone effects become more noticeable and may degrade the
quality of the fit.

8



Class. Quantum Grav. 42 (2025) 135011 P J Nee et al

Table 1. Test cases for waveform-based eccentricity control procedure. The last column
lists the actual time to merger obtained by the target NR simulation.

q χ⃗1 χ⃗2 etarget0 T target
merger Tmerger

Case 1 1 (0,0,0) (0,0,0) 0.123 11543M 11505M
Case 2 2 (0,0,0.8) (0,0,0.8) 0.496 11688M 11468M
Case 3 1 (0.7,0,0.4) (0.8,0,0) 0.395 14522M 13935M

Figure 3. Performance of our eccentricity control procedure. Plotted is the convergence
of (efit0 ,T

fit
merger) for test cases defined in table 1. Open circles indicate iterations per-

formed at low resolution to save computational time, while solid circles indicate itera-
tions performed at production-level resolutions. Note that Tfitmerger is the estimated time
to merger predicted by the best fit SEOBNRv5EHM system, not the actual time to merger.

Let us now investigate the efficacy of the iterative procedure just defined. We pick three
representative cases, defined in table 1. Specifically, we include a non-spinning system, an
aligned spin system, as well as a precessing configuration.

Figure 3 shows the convergence of this iterative procedure for our test-configurations. For
improved computational efficiency, we perform the first few iterations of eccentricity control
at a numerical resolution lower than that we intend to use for our final simulation (referred
to as ‘rough eccentricity control’, and indicated by open circles in figure 3). The final itera-
tions (filled circles) are run at production resolutions. NR simulations at different numerical
resolution will, in general, result in slightly different eccentricity. As such, the switch from
low to high resolution can move us away from our target (etarget0 ,T target

merger), as can be seen in the
blue curve. We find that the number of iterations required seems largely independent of the
parameters of the BBH, usually taking 3 or 4 iterations.

We emphasise that the convergence plotted is that of the expected time to merger Tfitmerger,
calculated from the EOB model. This will, in general, differ from the merger time of the NR
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evolution by a few 100M; see the last column in table 1. There are several possible reasons for
the discrepancy between Tmerger and Tfitmerger; while it is possible this arises due to inaccuracies
of the EOBmodel in parts of the parameter space, the results of Gamboa et al [38] indicate this
is unlikely to be the dominant source of these errors.More likely is the fact that during step (vi),
we are comparing an un-extrapolated, finite radius NRwaveformwith an EOBwaveform asso-
ciated with future null infinity. In any case, our procedure satisfies two important requirements:
First, the achieved Tmerger is close enough to T target

merger for practical applications: Neither do the
resulting NR simulations waste large amounts of CPU time simulating unneeded earlier parts
of the inspiral, nor are the simulations accidentally much shorter than desired. Secondly, T target

merger

and Tmerger correlate very well: If we change T
target
merger by a small fraction of an orbital period (say,

20M), then the actual Tmerger changes by a closely matching amount. This property is essential
in constructing sequences of simulations with nearly uniform spacing in mean anomaly.

In addition to the runs shown in figure 3, we have also tested the procedure further for
spin-aligned systems with mass-ratios up to q= 6, BH spins up to χi = 0.8, and eccentricities
10−3 ⩽ e0 ⩽ 0.5. For such eccentricities, we can achieve control over the target eccentricity
etarget0 to better than 10−4. To extend this method to lower eccentricities (as well as to obtain
more accurate control over the time to merger) will likely require switching from using finite-
radius waveforms, to using extrapolated waveforms (either via partial extrapolation, or Cauchy
Characteristic Extraction).

Finally, we have performed preliminary tests for precessing systems, an example of which
is the green curve in figure 3. While SEOBNRv5EHM contains no precession effects, we expect
that 1) early in inspiral, for a short amount of orbits the precession effects are negligible, and
2) the time to merger from a given orbit is dominated by eccentricity dependence as opposed
to non-aligned spin component dependence. Since there is currently not an agreed-upon way
of defining eccentricity from the gravitational waveform for precessing systems, it is difficult
to provide an estimate of the precision of our eccentricity control. We find that for precessing
systems we can control efit0 to be within ±10−3 of etarget0 for eccentricities ∼0.5, while for a
target T target

merger of approximately 12000M we can control the time to merger to within ±500M.

3. Results

3.1. Two-dimensional parameter survey in (e, ℓ)

To isolate the impact of both eccentricity andmean anomaly, wemust ensure that we are cover-
ing the entire two-dimensional (e, ℓ) parameter space in a controlled way. Previous works [49,
81] generate one-parameter sequences of simulations with increasing eccentricity, with little
control over mean anomaly or relied on randomness to generate simulations with different
mean anomaly [36].

To ensure proper attention is given to both eccentricity parameters, we seek to generate
sequences of simulations with equal eccentricity, but with uniform coverage over reference
mean anomaly. To do so, we will use the eccentricity control method developed in section 2
to construct a sequence of 13 simulations such that T target

merger changes by one orbital period dur-
ing the sequence, and such that etarget0 changes slightly, to keep eccentricity at a reference
epoch constant. Because all our simulations start at apastron, the variation of T target

merger through
one radial period causes mean anomaly at the reference point to cycle through a full [0,2π]
interval. The exact values are found via root-finding on EOB initial parameters, such that the
EOB waveform at the reference epoch has the desired constant eccentricity and varying mean
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Table 2. etarget0 and T target
merger used for the mean anomaly sequence presented in figure 4. Bold faced entries

represent the three coloured simulations presented throughout the paper.

etarget0 0.5000 0.5000 0.4984 0.4974 0.4964 0.4948 0.4937
T target
merger 11915M 11884M 11798M 11719M 11642M 11557M 11478M

etarget0 0.4925 0.4912 0.4899 0.4886 0.4877 0.4877
T target
merger 11398M 11318M 11238M 11158M 11084M 11021M

Figure 4. Sample sequence of 13 NR simulations spanning mean anomaly. Each curve
corresponds to a full NR simulation with q= 1 and χi = 0, where the initial conditions
were generated using our new eccentricity control method. The common envelope show-
cases the control obtained over both eccentricity and mean anomaly. Three simulations
are highlighted in colour.

anomaly. The results, listed in table 2, are then used in the eccentricity tuning procedure of
section 2. We will then generate 3 more of these sequences with 12 simulations each for vary-
ing values of orbital eccentricity, allowing us to probe the impact of eccentricity itself.

Figure 4 showcases a sample sequence of 13 simulations of constant eccentricity. Plotted
is the coordinate separation of the BHs throughout the simulation, with the time-axis aligned
at orbit-averaged frequency ⟨ω22⟩= 0.069/M. We see that all simulations in figure 4 share the
same envelope of maxima/minima of separation.While we provide no proof, it is expected that
for most sensible evolution gauges, sequences of equal eccentricity should share a common
envelope of their respective separation curves. We quantify how constant the eccentricity is
within the sequence in the appendix. The right panel of figure 4 zooms in on the transition-
to-plunge portion of the simulation. Depending on the specific reference mean anomaly, both
the length and shape of the final orbit can be markedly altered. This highlights that the type of
‘merger geometry’ obtained will depend on the specific mean anomaly of each system.

Figure 5 plots the amplitude of the (2,2) mode A22 for each of the simulations in table 2,
aligned by the time at which the orbit-averaged frequency is ⟨ω22⟩= 0.069/M. The inset shows
a zoom-in on the merger portion of the waveform. Again, the shared envelope formed by the
local maxima of A22 demonstrates the constant reference eccentricity throughout the sequence.
We observe that both the amplitude of the peak of the (2, 2) mode, as well as the time taken
from tref to the peak show a cyclic dependence on the reference mean anomaly.
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Figure 5. GW amplitude for the mean anomaly sequence with eref = 0.17. Shown is
A22 for the NR simulations arising from table 2. Variations of mean anomaly across
this sequence manifest themselves as ‘sliding’ of the extrema during the inspiral, and as
modulations of amplitude and time of max(rA22/M), as indicated by the circles in the
inset.

Let us now explore the dependence on mean anomaly within this sequence of simulations
in more detail, continuing to use a reference frequency ⟨ω22⟩= 0.069/M for reporting mean
anomaly and eccentricity. Specifically, we consider the maximum of the amplitude of the (2, 2)
GW-mode (max(rA22/M)), the peak GW luminosity (L) and the remnant mass and remnant
spin (Mf and χf ). Figure 6 plots these four quantities as a function of the reference mean
anomaly.

We see that the dependence of each of these quantities on mean anomaly is oscillatory, with
the largest deviations (in L) having relative magnitudes of ∼5%. The horizontal dashed lines
in each panel represent the corresponding value for quasi-circular inspirals, demonstrating that
eccentricity can lead to either an increase or decrease in merger quantities depending on the
specific value of mean anomaly obtained.

Given our parametrisation, we expect the BH systems to be 2π-periodic in mean anomaly,
and to vary smoothly with respect to mean anomaly. As such, we can expand the depend-
ence of any particular quantity in terms of a Fourier series in mean anomaly. The fact that
the oscillations are (nearly) about the quasi-circular value indicates that this is the dominant
contribution to the constant term in the expansion, and figure 6 indicates that the first mode of
the Fourier series dominates the oscillatory behaviour. We expand the data plotted in figure 6
in a series of the form

δX≡ X−XQC = A0 +
m
∑

k=1

Ak sin(kℓ+ϕk) . (11)

Here X denotes any of our four quantities of interest, and we subtract off the quasi-circular
value so that A0 directly represents the mean anomaly averaged change in that value due to
eccentricity. We keep the first three terms in the expansion, m= 2. While we can fit for higher
harmonics, we find that our limited dataset makes it difficult to ascertain the accuracy of these
fits.
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Figure 6. Dependence of merger quantities on mean anomaly. Here, we plot the peak of
A22, peak luminosity, and remnant mass and spin for the systems shown in figure 4. Note
that each quantity can be both increased and decreased relative to their quasi-circular
value (indicated by the horizontal dashed black lines). Coloured points correspond to
the highlighted simulations in figure 4. The faint lines in each panel represent results
from lower-resolution numerical simulations; they are visually indistinguishable from
the high-resolution simulations plotted as symbols, showcasing that numerical trunca-
tion error is subdominant.

Figure 7 plots partial sums of the expansions (11), confirming that the constant term is
slightly different from the quasi-circular value, and that the first mode dominates the oscilla-
tions. The second harmonic is a factor ∼10 smaller than the first harmonic, still large enough
to be easily visible in figure 7.

Turning towards the dependence on eccentricity, we choose three additional values of ref-
erence eccentricity, and perform NR simulations at several values of reference mean anomaly,
bringing our set of simulations up to 49 simulations. Figure 8 represents (e, ℓ) for these simu-
lations in a polar plot, highlighting the uniform coverage our technique achieves. The colour-
coding of figure 8 conveys information about the peak-amplitude of the (2, 2) GW mode for
all the simulations. Specifically, the colour represents the difference between max(rA22/M)
of each eccentric simulation to that of the quasi-circular simulation, normalised by each sim-
ulation’s eccentricity. Going around the centre of figure 8 at fixed eccentricity, one sees one
oscillation of δmax(rA22/M), duplicating the oscillatory behaviour of max(rA22/M) seen in
figure 6. Going radially in figure 8, one notices that the colours are nearly constant; this indic-
ates that δmax(rA22/M) is proportional to the eccentricity of the simulations.

The data plotted in figures 6 and 8 depends on the reference point chosen to extract eccent-
ricity and mean anomaly. If the reference point moves earlier (farther before merger), then the
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Figure 7. Presence of different harmonics in each quantity. Plotted are partial sums
of (11), including only the constant term (k= 0), up to first harmonic (k⩽ 1) and up
to second harmonic (k⩽ 2).

extracted eccentricities will be larger, owing to the decay of eccentricity during the inspiral.
Furthermore, the extracted mean anomalies will cycle once through the interval [0,2π] with
each radial oscillation period the reference point moves earlier. Because the inspiral rate of
eccentric binaries depends on their eccentricity, the mean anomaly values extracted at earlier
times will dephase between simulations with different eccentricities: The very simple overall
behaviour seen in figure 8 is only present when ℓ is extracted sufficiently close to merger (in the
figure, at t− tpeak =−700M). Since it is the merger behaviour that determines δmax(rA22/M),
it comes at no surprise that its dependence on (e, ℓ) is simplest when a reference point very
near merger is chosen.

While figure 8 indicates that the overall scale of the oscillations scales linearly with eccent-
ricity, one might wonder how the individual harmonics presented in figure 7 scale with increas-
ing eccentricity. Focusing on δmax(rA22/M), we repeat fits of the form (11) separately for the
four different mean anomaly sequences at different eccentricities, and plot the obtained amp-
litudes in the top panels of figure 9. Figure 7 indicates that the dominant contribution to (11)
is the first harmonic A1, which we find indeed scales almost linearly.

To understand the phenomenology of these scalings, first note that the amplitudes of (11)
can be extended to depend on eccentricity using a low eccentricity expansion:

Ak (e) = a1e+ a2e
2 + a3e

3 + a4e
4 + .... (12)

14



Class. Quantum Grav. 42 (2025) 135011 P J Nee et al

Figure 8. Deviation of max(rA22/M) across eccentricities. Plotted are 4 sequences of
NR simulations of varying eccentricity (indicated by constant radius rings), with eccent-
ricities e

−2000M = 0.095,0.185,0.272,0.346. The angle of each point corresponds to
ℓ
−700M, while distance from the origin is equal to e

−2000M. Each point is coloured
by the deviation of the peak of A22 divided by e

−2000M, to highlight that the range
of δmax(rA22/M) grows approximately linearly in e (as each ring spans the same
δmax(rA22/M)/e

−2000M range).

Because we are expanding the difference to the quasi-circular limit, the constant a0 term
vanishes. Consider a system characterised by a reference (e, ℓ). Under the inter-change of the
definition of periastron and apastron, we observe that the same physical system would instead
be characterised by (−e, ℓ+π). As such, any eccentric correction should be invariant under
this re-definition. This limits the number of possible terms in the eccentric expansion of Ak, as
these terms come with a factor of sin(kℓ). Specifically, keeping only the first two terms in the
expansion, for even k we should expect the dependence on e to be

Ak = a2e
2 + a4e

4, (13)

while for odd k, we obtain

Ak = a1e+ a3e
3. (14)

The dashed curves in figure 9 show fits of (13) and (14) as appropriate. We find that these
fits match the data well, approaching the truncation error of our data. However, a more careful
consideration of these fits (including the exploration of higher-order contributions) will be
required to build fits of these deviations across parameter space.
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Figure 9. Scaling of mean anomaly harmonic amplitudes with eccentricity. We perform
the analysis of figure 7 for each of the constant eccentricity sequences shown in figure 8.
Plotted are the amplitudes Ai of the expansion of peak GW amplitude A22 in the form
of (11). The dashed lines correspond to fits of (13) and (14) as appropriate. We include
an additional data point for e0.03/M = 0, as we know the correction to the quasi-circular
value must vanish. The lower panel shows the residuals of the fits.

3.2. Interpreting one-parameter eccentric sequences

With our comprehensive NR data-set in hand, and the accompanying understanding of eccent-
ric binaries, we can now discuss the phenomenology observed in other eccentric explora-
tions. Several other works have reported a seemingly oscillatory dependence of merger-related
quantities (e.g. maximum waveform strain max(rA22/M)) on eccentricity [51–53, 81, 82]. In
contrast, figure 9 indicates a monotonic dependence on eccentricity. Our claim is that such
reported oscillations arise from taking a one-parameter sequence of simulations across the
two-dimensional (e, ℓ) parameter space. As e changes along such a one-parameter sequence,
typically ℓ will also change in some way, related to the precise description being used to con-
struct the one-parameter sequence. It is then the dependence on ℓ (as exhibited in figure 6) that
induces a seemingly ‘oscillatory behaviour with eccentricity’.

To support our claim, we generate a one-dimensional sequence of eccentric BBH simu-
lations following the procedure of Healy and Lousto [49]: we fix the intrinsic BH paramet-
ers to be non-spinning, equal mass throughout this calculation, and begin with (D0,Ω0, ȧ0)
such that the BHs are in a quasi-circular configuration. We choose a large initial separa-
tion of D0 ≈ 24.1M, corresponding to a quasi-circular inspiral of duration 30000M, in order
to always have a sufficiently long inspiral to measure eccentricity and mean anomaly with
gw_eccentricity. This furthermore will allow us to exhibit a large number of oscillations
of max(rA22/M) as we proceed through this sequence. We then generate a sequence of sim-
ulations where we keep D0 and ȧ0 unchanged, but decrease Ω0, resulting in simulations with
increasing initial eccentricity and decreasing time to merger. For each simulation, we estimate
eccentricity at a reference time 2000M before merger, and we record the maximum amplitude
of the (2, 2) mode of the emitted gravitational radiation, max(rA22/M). Results from 31 NR
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Figure 10. Typical sequence obtained if mean anomaly is neglected. Sequence consists
of simulations where the initial separation and in-going velocity of the BHs is fixed, but
the initial orbital frequency Ω0 is slowly decreased. Top: peak of A22 for the sequence.
The orange line corresponds to the model (15). Middle: unwrapped reference mean
anomaly as a function of the reference eccentricity. Bottom: deviation of the peak of
rA22/M as a function of the mean anomaly. Colouring corresponds to e

−2000M.

simulations are plotted as filled circles in the top panel of figure 10. This plot of max(rA22/M)
vs e−2000M indeed appears to exhibit oscillatory behaviour with eccentricity. However, the
simulations of this sequence will also have different mean anomaly at a fixed reference epoch,
here chosen as 700M before merger. In fact, each time the number of radial periods of the
inspiral decreases by one, we should approximately cycle through a full period of reference
mean anomaly near merger. The mean anomaly of each of the 31 simulations is plotted in the
middle panel of figure 10, made continuous by suitable additions of 2π, and divided by 2π, so
that the y-axis represents the difference in number of radial periods each simulation completes,
relative to the simulation with the smallest eccentricity.
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To interpret the NR data shown in figure 10, we utilise the functional form for the peak
amplitude that we derived in section 3.1, namely

max(rA22/M)(e−2000M, ℓ−700M) =max(rA22/M)
QC

+ e−2000MA1 sin(ℓ−700M+ ℓ0) , (15)

where for simplicity we have elected to keep only the first harmonic in mean anomaly (as well
as the first term in the eccentricity expansion), and exclude the constant offset. Here ℓ0 rep-
resents the offset in mean anomaly at reference epoch to the phasing of the merger amplitude
max(rA22/M). The one-parameter sequence of simulations covers a wide range of eccentricit-
ies, with correspondingly somewhat different inspiral rates; therefore, ℓ0 will mildly depend on
eccentricity, even for our reference epoch t=−700M close to merger9. Because the variations
in ℓ0 are mild, we approximate it as a first order Taylor expansion,

ℓ0 (e−2000M) = B0 +B1e−2000M. (16)

Our NR simulations give us 31 data-points for maxA22 in the two-dimensional (e, ℓ) plane,
and (15) with (16) represents the expected behaviour of this quantity, given the three paramet-
ers A1,B0,B1. We now fit these three unknown parameters to the NR data, and thus achieve
the full functional form max(rA22/M)(e, ℓ). The result of this fit is plotted as a solid curve
in the top panel of figure 10, where we evaluate ℓ−700M(e−2000M) for arbitrary e−2000M via the
interpolant shown in blue in the middle panel. The three-parameter fit reproduces all variations
in the data-points, exhibiting that indeed within the eccentricity range considered in figure 10,
the one-dimensional sequence of simulations proceeds through 10 maxima and minima of
max(rA22/M), corresponding to 10 cycles through mean anomaly. Finally, the bottom panel
of figure 10 plots the deviations of max(rA22/M) from the quasi-circular value as a function
of mean anomaly. After normalisation by eccentricity, the data approximately collapses to a
single sinusoidal curve, reminiscent of figure 6.

Compared to other works [51–53], our dataset seemingly contains many more oscillations.
This arises from the length of our simulations: as previously stated, each time the number of
radial periods decreases by one, the mean anomaly defined near merger will cycle through 2π.
One conclusion is that even for significant eccentricities near merger, one can approximate
the behaviour of several quantities in the two-dimensional (e, ℓ) space with simple formulae
(requiring only 3 parameters fit from data).

3.3. EOB estimates of the final mass and spin

While several of our results may only be accessible via full NR simulations, there are hints that
others, such as the final mass and spin of the remnant BH, may be well approximated using
semi-analytical methods. The idea of analytically estimating the final mass and spin of a BBH
coalescence was introduced in [83, 84]. In this work, the final mass and spin were estimated
from the EOB Hamiltonian HEOB and orbital angular momentum pϕ at the end of the plunge,
providing a prediction of such quantities for a remnant generated by a BBH merger. With the
breakthrough of NR [85–87], the picture outlined in [83] was shown to be qualitatively, and
to some extent quantitatively, correct [88]. The main physical ingredient which is lacking in
these early estimates is the loss of energy and angular momentum during the ringdown phase.

9 Here, as in figure 8, we choose to define eccentricity and mean anomaly at different times to merger. Currently,
gw_eccentricity produces oscillatory eccentricities very close to merger, likely due to the spline interpolation. To
avoid this, we define our reference eccentricity earlier in the inspiral.
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Later works [89, 90] refined the accuracy of EOB estimates by approximately accounting for
such losses, as

Mf = HEOB (tmatch)−Eringdown, (17)

Jf = JEOB (tmatch)− Jringdown. (18)

Here, tmatch represents the time at which the inspiral-plunge and ringdown waveforms are con-
nected, around the peak of the EOB orbital frequency. The energy and angular momentum
losses during the ringdown, Eringdown and Jringdown, were approximated by a suitable rescaling
of test-particle results [91]. Recent EOB models compute these quantities from more accur-
ate NR fits for binaries on quasi-circular orbits [92, 93]. While analogous fits have started to
become available for eccentric BBHs [82], the limited number of NR simulations covering the
eccentric parameter space prevents a precise assessment of their accuracy, particularly when
spin effects are also included.

Here, we present an approximate method which offers a practical approach to account for
merger effects in current EOB models for eccentric BBHs, relying only on quasi-circular NR
fits. Focusing on the final mass, let us consider (17) for an eccentric and a quasi-circular BBH
with the same component masses and spins,

Mecc
f = HEOB (t

ecc
match)−Eecc

ringdown, (19)

MQC
f = HEOB

(

tQCmatch

)

−EQC
ringdown. (20)

Since the binary circularises during the inspiral, we assume that the energy emitted during the
ringdown stage is similar in the two cases,

Eecc
ringdown ≃ EQC

ringdown. (21)

We can then approximate the final mass for an eccentric BBH as

Mecc
f ≃MQC

f +
[

HEOB (t
ecc
match)−HEOB

(

tQCmatch

)]

. (22)

In this equation, theMQC
f value can be obtained from NR fits for quasi-circular BBH mergers,

or—for the present study of equal-mass, non-spinning BBH—it can be directly read off from
NR simulations [61]. The second term can be estimated using the SEOBNRv5EHM eccentric
waveform model [38]. In this model, the value of tQCmatch is calibrated to quasi-circular BBH NR
simulations, while teccmatch is not calibrated to eccentric NR simulations. However, the predicted
attachment time teccmatch employs indirectly the calibration to quasi-circular NR simulations from
the SEOBNRv5HM model [18], hence making (22) a reasonable approximation10.

Analogously, the final spin of an eccentric BBH merger can be estimated via

Jeccf ≃ JQCf +
[

pϕ (t
ecc
match)− pϕ

(

tQCmatch

)]

,

χecc
f = Jeccf /

(

Mecc
f

)2
, (23)

where JQCf can also be obtained fromNRfits for quasi-circular BBHs. In the rest of this section,

we use the NRSur7dq3Remnant fits [21] for MQC
f and JQCf .

10 A similar argument was applied in [94] to estimate corrections for the final mass and spin in Einstein-scalar-Gauss–
Bonnet gravity relative to their value in General Relativity.
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Figure 11. EOB estimates of the final mass and spin. Left: result of (22) plotted with
the actual NR data already shown in figure 6. Right: absolute value of the difference
between the NR and EOB predictions for the remnant mass and spin (in blue) across
all NR simulations presented in this work, along with comparisons to the quasi-circular
NRSur7dq3Remnant fit (in orange). Horizontal dashed lines indicate the median values.

To assess the accuracy of the estimates equations (22) and (23), we need a mapping between
eccentric EOB waveforms and the NR results presented in the previous section, which is com-
plicated because many definitions (including the ones employed in many waveform models)
of eccentricity are gauge dependent [95–97]. For the purpose of this work, we employ the
method described in [38] to find the optimum EOB waveform given an eccentric NR simula-
tion. This method is based on the one presented in [95], and consists of optimising over the
EOB input values of eccentricity and orbit-averaged frequency to get the waveform with the
lowest (2,2)-mode unfaithfulness; in this optimisation, the waveforms are initialised at apas-
tron. Given the high NR-faithfulness of the SEOBNRv5EHM model [38], this approach leads to
a good agreement between the gauge-invariant values of eccentricity egw and mean anomaly
ℓgw extracted from the EOB and NR waveforms at the same reference frequency. In this way,
for each NR simulation, we calculate the values ofMecc

f and χecc
f from equations (22) and (23)

using the SEOBNRv5EHM model.
The results for a subset of NR simulations with different values of mean anomaly ℓgw, but

equal values of eccentricity egw ≃ 0.17 at a reference frequency ⟨ω22⟩= 0.069/M, are presen-
ted in the left panel of figure 11. In this plot, we include the values of the final massMf extrac-
ted from the NR simulations, and the corresponding SEOBNRv5EHM estimates based on (22).
For the EOB data points, the values of egw and ℓgw are extracted with the gw_eccentricity
package at ⟨ω22⟩ from the optimum SEOBNRv5EHM waveforms. We observe that the oscillatory
dependence ofMf around the quasi-circular value is also captured by the EOB estimates, with
the amplitude and phasing being reasonably well reproduced.

To better assess the accuracy of the estimates (22) and (23), the right panel of figure 11
shows the absolute difference between the NR and EOB predictions for the remnant mass
and spin (in blue) across all NR simulations presented in this work, along with comparisons
to the quasi-circular NRSur7dq3Remnant fit (in orange). Horizontal dashed lines indicate the
median values. For this comparison, the EOB estimates use the input parameters correspond-
ing to the optimum waveforms. The quasi-circular NR surrogate for the remnant properties
does not capture eccentricity-induced variations as those shown in the left panel of figure 11,
whereas the EOB estimates reproduce such variations to a reasonable degree. Therefore, the
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EOB-estimates reduce differences |∆x| in the right panel of figure 11 by a factor ∼2 for the
final mass and ∼3 for the final spin.

We note that equations (22) and (23) can be evaluated during waveform generation with
the SEOBNRv5EHM model at negligible computational cost, so that these corrections can be
included without requiring additional parameter space fits. It would also be straightforward to
produce fits for these corrections using the same techniques applied to NR remnant fits, given
the efficiency of generating large numbers of EOB waveforms.

4. Conclusion

In this work, we have presented a complete analysis of eccentric simulations where, for the
first time, both eccentric parameters are accounted for. To do so, we propose a new waveform-
based eccentricity control method, which we implement in the Spectral Einstein Code SpEC.
This eccentricity control procedure enables a new, precise control over both reference eccent-
ricity and mean anomaly. We utilise this procedure to generate several sequences of full NR
simulations with constant reference eccentricity, but uniform coverage of mean anomaly. We
show that, for the parameter space explored, merger-related quantities show an oscillatory
dependence on mean anomaly with mean very close to the corresponding quasi-circular value,
with the amplitude of these oscillations determined by the eccentricity of the system (see,
e.g. figures 6 and 9).

Our results highlight the importance in considering the entire two-dimensional parameter
space when studying eccentric systems. Several recent studies have found a seemingly oscil-
latory dependence of several quantities on eccentricity. By recreating a typical sequence of
simulations used in such studies, we demonstrate that the reported oscillations arise from a
lack of control over the reference mean anomaly of these systems.

While there are several subtleties in regards to defining reference eccentricity and mean
anomaly for a binary, it is shown that so long as one defines these values sufficiently close to
merger, the resulting dependence on both eccentricity and mean anomaly is quite simple. This
result is promising in the context of waveform modelling, where the inclusion of such effects
should be straightforward.

Finally, we show that some of the results in this work may be accessible by analytic mod-
els. By considering a previously used phenomenological estimate for the mass of the remnant
BH, we show that the SEOBNRv5EHM model reproduces oscillations of a similar order of mag-
nitude. This hints at a possible analytic explanation to some of our results, as was also recently
explored in [53].

There aremany other quantities one can examine using our simulations. Continuing to focus
on the merger portion of the evolution, the modification of the mass and spin of the remnant
indicate that accounting for both the anomaly and eccentricity is necessary to characterise
ringdowns from eccentric systems. Further, the variation of the peak of A22 suggests that the
excitation coefficients will likely have a similar dependence on both parameters. This is further
supported by the notion that, in linear perturbation theory, the excitation coefficients depend on
the exact perturbation imparted on the BH [98]. As the mean anomaly picks out the ‘merger
geometry’ obtained, one should expect this will also choose the exact type of perturbation
present in the remnant BH. We leave further exploration of these quantities to future works.

It is also interesting to consider the impact of eccentricity and mean anomaly on the recoil
kick imparted on the remnant BH due to asymmetric emission of linear momentum [81]. Such
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a study, however, comes with some subtle difficulties; for systems of sufficient eccentricity,
one obtains non-negligible kicks imparted on the binary system during inspiralwith each peri-
astron passage. While these kicks are significantly smaller than that imparted on the remnant,
their contributions make it more difficult to define the initial rest-frame which we relate the
recoil to. As well as this, periastron precession leads to these kicks being imparted in varying
directions, which can lead to both constructive and destructive contributions. We leave a more
complete exploration of BH recoil to future work.

To account for mean anomaly in modern waveform models, one would have to explore
the phenomenology of mean anomaly/eccentricity deviations across more of the parameter
space. In particular, one would have to explore the impact of varying the mass-ratio and spins.
Preliminary results indicate that the phenomenology of these deviations is similar in other
parts of parameter space, indicating that fewer simulations may be required to parametrise
these effects. We leave a more complete exploration of the non-precessing parameter space to
future work.

While the new eccentricity control procedure presented is sufficient for our purposes, there
are several avenues for improvement. Currently, we compare a finite-radius NR waveform to
an SEOBNRv5EHMwaveform associated with future null infinity. Yet more accurate control than
what we achieved here may require to extrapolate the NRwaveform to future null infinity [99].
One could also attempt to extend the eccentricity control procedure to generic spins, once
analytic waveform models with both eccentricity and precessing spins are available.

Data availability statement

The data that support the findings of this study will be openly available following an embargo
at the following URL/DOI: https://data.black-holes.org/simulations/index.html [99]. Data will
be available from 11 April 2026.
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Appendix

Table A1 lists the SXS IDs of the simulations analysed in section 3.1. In addition, we provide
the initial conditions (D0,Ω0, ȧ0) used to perform these simulations, which were obtained via
the eccentricity control procedure described in section 2.2. The values etarget0 in table A1 refer
to the initial eccentricities reported by the EOB-model utilised in the eccentricity tuning pro-
cedure. We extract the actual eccentricities of each NR waveform using gw_eccentricity at
reference frequency ⟨ω22⟩= 0.03/M, and plot their spread in figure A1.We find that the actual
NR eccentricities are constant within each sequence to fractional accuracy of a few 10−3.

Table A2 presents the initial data parameters for the simulations analysed in section 3.2
(this analysis does not utilise eccentricity control).

Table A1. Simulations analysed in section 3.1. The columns show the SXS ID, as well as
the initial conditions (D0,Ω0, ȧ0) obtained from the procedure presented in section 2.2.

SXS ID D0/M MΩ0 Mȧ0 etarget0 T target
merger/M

SXS:BBH:4381 38.540 3.032× 10−3 2.41× 10−6 0.5000 11915
SXS:BBH:4293 38.527 2.982× 10−3 2.07× 10−6 0.5000 11884
SXS:BBH:4304 38.336 3.009× 10−3 2.14× 10−6 0.4984 11798
SXS:BBH:4303 38.207 3.027× 10−3 2.19× 10−6 0.4974 11719
SXS:BBH:4302 38.072 3.046× 10−3 2.23× 10−6 0.4964 11642
SXS:BBH:4301 37.896 3.071× 10−3 2.30× 10−6 0.4948 11557
SXS:BBH:4300 37.736 3.094× 10−3 2.37× 10−6 0.4937 11478
SXS:BBH:4299 37.590 3.116× 10−3 2.44× 10−6 0.4925 11398
SXS:BBH:4298 37.449 3.136× 10−3 2.49× 10−6 0.4912 11318
SXS:BBH:4297 37.289 3.160× 10−3 2.56× 10−6 0.4899 11238
SXS:BBH:4296 37.137 3.183× 10−3 2.63× 10−6 0.4886 11158
SXS:BBH:4295 37.030 3.198× 10−3 2.66× 10−6 0.4877 11084
SXS:BBH:4294 36.977 3.205× 10−3 2.68× 10−6 0.4877 11021
SXS:BBH:4375 31.321 4.446× 10−3 1.95× 10−5 0.3748 12018
SXS:BBH:4374 31.258 4.461× 10−3 1.99× 10−5 0.3743 11955
SXS:BBH:4372 31.073 4.507× 10−3 2.14× 10−5 0.3715 11822
SXS:BBH:4373 31.068 4.511× 10−3 2.19× 10−5 0.3705 11876
SXS:BBH:4371 30.990 4.528× 10−3 2.22× 10−5 0.3703 11757
SXS:BBH:4370 30.909 4.548× 10−3 2.31× 10−5 0.3692 11692
SXS:BBH:4369 30.832 4.567× 10−3 2.39× 10−5 0.3680 11627
SXS:BBH:4380 30.750 4.588× 10−3 2.49× 10−5 0.3669 11556
SXS:BBH:4379 30.706 4.598× 10−3 2.51× 10−5 0.3667 11491
SXS:BBH:4378 30.622 4.617× 10−3 2.54× 10−5 0.3665 11363
SXS:BBH:4377 30.582 4.626× 10−3 2.54× 10−5 0.3664 11301
SXS:BBH:4376 30.656 4.610× 10−3 2.56× 10−5 0.3664 11425
SXS:BBH:4321 25.721 6.452× 10−3 −2.15× 10−5 0.2500 11882
SXS:BBH:4332 25.677 6.470× 10−3 −2.17× 10−5 0.2496 11822
SXS:BBH:4331 25.733 6.450× 10−3 −2.17× 10−5 0.2495 11940
SXS:BBH:4330 25.629 6.489× 10−3 −2.18× 10−5 0.2493 11762

(Continued.)
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Table A1. (Continued.)

SXS ID D0/M MΩ0 Mȧ0 etarget0 T target
merger/M

SXS:BBH:4329 25.562 6.518× 10−3 −2.18× 10−5 0.2483 11700
SXS:BBH:4328 25.512 6.539× 10−3 −2.19× 10−5 0.2478 11641
SXS:BBH:4327 25.462 6.559× 10−3 −2.19× 10−5 0.2472 11581
SXS:BBH:4326 25.412 6.581× 10−3 −2.19× 10−5 0.2467 11522
SXS:BBH:4325 25.362 6.602× 10−3 −2.20× 10−5 0.2461 11462
SXS:BBH:4324 25.309 6.624× 10−3 −2.20× 10−5 0.2455 11403
SXS:BBH:4323 25.258 6.646× 10−3 −2.21× 10−5 0.2450 11344
SXS:BBH:4322 25.210 6.667× 10−3 −2.21× 10−5 0.2445 11285
SXS:BBH:4361 22.012 8.639× 10−3 −1.79× 10−5 0.1248 11936
SXS:BBH:4360 21.979 8.660× 10−3 −1.80× 10−5 0.1245 11881
SXS:BBH:4359 21.948 8.678× 10−3 −1.81× 10−5 0.1243 11826
SXS:BBH:4358 21.916 8.698× 10−3 −1.81× 10−5 0.1241 11771
SXS:BBH:4357 21.884 8.717× 10−3 −1.82× 10−5 0.1239 11716
SXS:BBH:4368 21.851 8.738× 10−3 −1.83× 10−5 0.1236 11658
SXS:BBH:4367 21.820 8.756× 10−3 −1.84× 10−5 0.1234 11601
SXS:BBH:4366 21.787 8.777× 10−3 −1.85× 10−5 0.1232 11543
SXS:BBH:4365 21.754 8.797× 10−3 −1.86× 10−5 0.1229 11486
SXS:BBH:4364 21.721 8.818× 10−3 −1.87× 10−5 0.1227 11429
SXS:BBH:4363 21.690 8.837× 10−3 −1.87× 10−5 0.1225 11374
SXS:BBH:4362 21.662 8.853× 10−3 −1.88× 10−5 0.1225 11319

Figure A1. Deviation of eccentricity within each constant-eccentricity sequence. Each
colour corresponds to one of the constant eccentricity sequences presented in figure 8.
⟨e0.03/M⟩ is computed by taking the average of e0.03/M across each sequence.
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Table A2. Simulations analysed in section 3.2. The columns show the SXS ID, as well
as the initial conditions (D0,Ω0, ȧ0) used to perform these simulations.

SXS ID D0/M MΩ0 Mȧ0

SXS:BBH:4392 24.102 7.203× 10−3 1.02× 10−5

SXS:BBH:4408 24.102 7.181× 10−3 1.02× 10−5

SXS:BBH:4398 24.102 7.158× 10−3 1.02× 10−5

SXS:BBH:4409 24.102 7.136× 10−3 1.02× 10−5

SXS:BBH:4399 24.102 7.114× 10−3 1.02× 10−5

SXS:BBH:4410 24.102 7.092× 10−3 1.02× 10−5

SXS:BBH:4393 24.102 7.069× 10−3 1.02× 10−5

SXS:BBH:4411 24.102 7.047× 10−3 1.02× 10−5

SXS:BBH:4400 24.102 7.025× 10−3 1.02× 10−5

SXS:BBH:4412 24.102 7.002× 10−3 1.02× 10−5

SXS:BBH:4401 24.102 6.980× 10−3 1.02× 10−5

SXS:BBH:4413 24.102 6.958× 10−3 1.02× 10−5

SXS:BBH:4394 24.102 6.936× 10−3 1.02× 10−5

SXS:BBH:4414 24.102 6.913× 10−3 1.02× 10−5

SXS:BBH:4402 24.102 6.891× 10−3 1.02× 10−5

SXS:BBH:4415 24.102 6.869× 10−3 1.02× 10−5

SXS:BBH:4403 24.102 6.847× 10−3 1.02× 10−5

SXS:BBH:4416 24.102 6.824× 10−3 1.02× 10−5

SXS:BBH:4395 24.102 6.802× 10−3 1.02× 10−5

SXS:BBH:4417 24.102 6.780× 10−3 1.02× 10−5

SXS:BBH:4404 24.102 6.757× 10−3 1.02× 10−5

SXS:BBH:4418 24.102 6.735× 10−3 1.02× 10−5

SXS:BBH:4405 24.102 6.713× 10−3 1.02× 10−5

SXS:BBH:4419 24.102 6.691× 10−3 1.02× 10−5

SXS:BBH:4396 24.102 6.668× 10−3 1.02× 10−5

SXS:BBH:4420 24.102 6.646× 10−3 1.02× 10−5

SXS:BBH:4406 24.102 6.624× 10−3 1.02× 10−5

SXS:BBH:4421 24.102 6.602× 10−3 1.02× 10−5

SXS:BBH:4407 24.102 6.579× 10−3 1.02× 10−5

SXS:BBH:4422 24.102 6.557× 10−3 1.02× 10−5

SXS:BBH:4397 24.102 6.535× 10−3 1.02× 10−5
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