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A B S T R A C T

Accurate and reliable prediction of leaf traits is crucial for understanding plant adaptations to environmental 
variation, monitoring terrestrial ecosystems, and enhancing comprehension of functional diversity and 
ecosystem functioning. Currently, various approaches (e.g., statistical, physical models) have been developed to 
estimate leaf traits through hyperspectral remote sensing and leaf spectroscopy. However, the absence of high- 
performing, transferable, and stable models across various domains of space, plant functional types (PFTs) and 
seasons hinder our ability to quantify and comprehend spatiotemporal variations in leaf traits. This study pro-
poses robust and highly transferable models for better predicting leaf traits with hyperspectral reflectance. 
Initially, three datasets were assembled, pairing common leaf traits — chlorophyll (Chla→b), carotenoids (Ccar), 
leaf mass per area (LAM), equivalent water thickness (EWT) — with leaf spectra measurements collected across 
diverse geographic locations in the U.S. and Europe, PFTs, and seasons. Measurements were acquired using 
spectroradiometers (e.g., ASD FieldSpec 3/4/Pro and SVC HR-1024i) with integrating spheres, leaf clips, and 
contact probes. We then developed transfer learning-based hybrid models that incorporated the domain 
knowledge of radiative transfer models (RTMs) through pretraining processes and were well-constrained by fine- 
tuning with field measurements. Through comparison with other state-of-the-art statistical models, including 
partial-least squares regression (PLSR) and Gaussian Process Regression (GPR), as well as pure physical models, 
we found that the proposed transfer learning models achieved better predictive performance and higher trans-
ferability. Specifically, compared to other statistical models and pure RTMs, the transfer learning model 
exhibited higher coefficient of determination (R2) values with range of 0.01 to 0.79, lower normalized root mean 
square error (NRMSE) with range of 0.06 % to 33.25 % in model performance. Additionally, the models exhibited 
improved transferability, with higher R2 values range from 0.04 to 0.32, lower NRMSE range from 0.08 % to 
30.81 %. The findings underscore that transfer learning models through integrating domain knowledge from 
RTMs and limited observations, can harness the advantages of both RTMs and statistical models and serve as a 
promising approach for effectively predicting leaf traits.

1. Introduction

Accurate quantification of leaf traits is crucial for understanding 
plant adaptation (Adler et al., 2013; Fajardo and Siefert, 2016), 
ecosystem functioning (Asner and Martin, 2016) and interactions with 
their environment. These traits provide insights into resource strategies 
(Collins et al., 2016; Vendramini et al., 2002), nutrient cycling, and 
productivity (Schimel et al., 2019; Van Bodegom et al., 2014), 

supporting Earth system models (Fatichi et al., 2019; Rogers et al., 2017; 
Skidmore et al., 2021) for better predicting ecosystem responses to 
climate change (Ito et al., 2006; Reichstein et al., 2014). Despite global 
trait databases being larger and more accessible than ever, significant 
gaps and sampling biases still hinder trait-based ecological research 
(Cornwell et al., 2019; Kattge et al., 2020), and efforts to upscale traits 
spatially from databases remain challenged by those gaps (Dechant 
et al., 2024). Traditional wet chemical analysis methods are cost- and 
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labor-intensive (Burnett et al., 2021; McKown et al., 2013; Szollosi et al., 
2011). Leaf spectroscopy, however, offers powerful opportunities to 
estimate leaf traits from their optical properties, filling these gaps and 
improving ecosystem monitoring and management (Hill et al., 2019; 
Nakaji et al., 2019; Serbin et al., 2019; Spafford et al., 2021; Yan et al., 
2021; Yang et al., 2016).

The widely used spectroscopy-based leaf trait estimation method 
relies on vegetation indices (VIs) to infer leaf traits (Schlemmera et al., 
2013; Xu et al., 2019). VI-based methods are particularly suitable for 
multispectral data and can achieve acceptable estimations but often lack 
robustness due to uncertainty in VI-trait relationships and saturation 
effects, which limit their broad application (Colombo et al., 2008; Zeng 
et al., 2022). In contrast, multivariate statistical methods like partial 
least square regression (PLSR. Wold et al., 1984) and machine learning 
(ML) algorithms such as deep neural networks (DNNs) (Hornik et al., 
1989; Shabani et al., 2017) and GPR (Rasmussen, 2004) have been 
commonly used for leaf trait estimation. These approaches leverage the 
higher spectral dimensionality of hyperspectral data, enabling more 
comprehensive analyses by utilizing the full spectral information, which 
is less feasible with the VI-based methods. Recent developments include 
more complex machine-learning models, such as multi-trait 1-D con-
volutional neural networks (CNN) models (Cherif et al., 2023), which 
outperform PLSR models but require large, often costly and unavailable 
training datasets. In general, multivariate statistical methods make full 
use of the hyperspectral information and usually perform well within the 
training space but can lose generalizability when applied to new mea-
surements out of the range of the data used to train the predictive 
models, as we shown in previous study with a comprehensive dataset (Ji 
et al., 2024). In parallel, physical models, also known as radiative 
transfer models (RTMs) are widely used. Notable examples include the 
PROSPECT model (Jacquemoud and Baret, 1990) and the Leaf-SIP 
model (Wu et al., 2021). These models are developed upon physical 
interpretation of the interaction between electromagnetic radiation and 
leaf constituents. They are typically considered more robust and trans-
ferable than statistical models (Jacquemoud et al., 2009), but have been 
criticized for their relatively poor predictive accuracy (Verrelst et al., 
2019; Wang et al., 2021, 2015) as well as for the “ill-posed” problem 
widely existing in RTM inversions that different trait combinations yield 
similar reflectance (Combal et al., 2003; Lewis and Disney, 2007).

More recently, the hybrid models have been developed to address the 
challenges of previous methods, combining the physical basis of RTMs 
with the efficiency and flexibility of regression methods. These models 
train machine learning algorithms on synthetic data simulated by RTMs, 
leveraging the causal relationships between RTM inputs (e.g. leaf traits) 
and outputs (e.g. leaf optics) (Doktor et al., 2014; Verger et al., 2011). 
However, RTMs themselves can be biased and have low predictive ac-
curacy and the ML model trained on them is consequently biased with 
poor performance on real data. Alternatively, transfer learning tech-
niques provide potential solutions that make full use of process-model 
generated synthetic data as compensation to limited sample sizes to 
address the unknown physics simplification in RTMs (Berger et al., 
2018; Reichstein et al., 2019; Verrelst et al., 2019; Wang et al., 2021; 
Yuan et al., 2022; Zhu et al., 2022).

Transfer learning techniques can be categorized into five types: fine- 
tuning-based transfer learning, multi-task learning, few-shot learning, 
unsupervised domain adaptation, and self-supervised learning (Ma 
et al., 2024). These approaches have been applied to various research 
areas, including land cover mapping (de Lima and Marfurt, 2019; 
Nowakowski et al., 2021), soil property estimation (Shen et al., 2022) 
and crop yield prediction (Zhao et al., 2022). In plant trait estimation, 
several studies have demonstrated the potential of transfer learning. 
Wang et al. (2023b) developed a process-guided machine learning 
model that outperforms traditional methods in estimating crop traits. 
Wan et al. (2022) utilized a transfer learning model, TCA-SVR, that 
showed a greater performance than PLSR model in predicting leaf ni-
trogen content and improved model transferability across 5 spectra-trait 

datasets. Zhang et al. (2021) used the fine-tuning-based transfer learning 
methods to estimate leaf chlorophyll content and improved the model 
accuracy and transferability across two closed fields. While these 
studies, focused on specific small regions or species, have shown transfer 
learning’s capability to enhance leaf trait estimation models, the 
broader applicability and transferability of these models remain un-
known. A truly effective predictive model should be transferable across 
different dimensions such as spatial scales, species, and time periods, 
given the complexity of natural systems.

The objective of this study is to develop this kind of model for esti-
mating leaf traits and evaluate its accuracy and transferability. Devel-
oping robust and highly transferable models that can infer leaf traits 
across different locations, species, and time simultaneously is essential 
and timely, particularly in the context of current and upcoming global 
satellite imaging spectroscopy missions like ESA’s Copernicus Hyper-
spectral Imaging Mission for the Environment (CHIME, Nieke and Rast, 
2018) and NASA’s Surface Biology and Geology (SBG, Cawse-Nicholson 
et al., 2021). We present two main questions: (1) Do our proposed 
transfer learning models for predicting leaf traits have better perfor-
mance than other state-of-the-art statistical models like PLSR and GPR, 
and the pure RTMs? (2) Are the transfer learning models more trans-
ferable across different geographic locations, plant functional types 
(PFTs), and seasons than other models? (3) How the inconsistency and 
the quantity of real observations used for fine-tuning influence the 
performance of transfer learning models?

2. Materials and methods

2.1. Leaf traits and leaf spectra measurements

We used a large dataset compiled by Ji et al. (2024) that paired a 
variety of leaf traits with leaf spectra measurements with 47,393 sam-
ples, over 700 species, and 101 locations distributed over multiple 
continents. To evaluate the performance and robustness of the devel-
oped models, we created three distinct subsets (spatial, PFT and tem-
poral) from the compiled dataset (Fig. 1 and Table 1). In the spatial and 
PFT datasets, leaf spectra were measured using two different spectror-
adiometers: the ASD FieldSpec 3/4/Pro (Malvern Analytical Inc., 
Westborough, MA, USA) for Chla→b, Ccar, and LMA samples, and the 
SVC HR-1024i full-spectrum spectroradiometer (Spectra Vista Corp., 
Poughkeepsie, NY, USA) for EWT samples. In the temporal dataset, all 
spectra were measured using the ASD FieldSpec 3/4/Pro. Moreover, 
three measurement methods were used, an integrating sphere, which 
captured spectra as directional-hemispherical reflectance (DHRF); and a 
leaf clip and contact probe, which acquired spectra as bidirectional 
reflectance factor (BRF). Detailed information on the spectral mea-
surements is provided in Table 1.

To ensure the consistent spectral resolution, all leaf spectra were 
subsampled to 10 nm intervals using the resampling method described 
by Adjorlolo et al. (2013) and Fu et al. (2020). For each band center, a 
Gaussian model with a full width at half maximum (FWHM) equivalent 
to the specified bandwidth interval (10 nm) was applied to convolve the 
original reflectance spectra, effectively simulating the spectral resolu-
tion of the data. The analysis specifically focused on wavelengths 
ranging from 450 nm to 2400 nm. Additionally, we ensured a relatively 
balanced representation of leaf samples across various sites, PFTs, and 
seasons by randomly selecting samples to achieve equal or approxi-
mately equal representation for each category. For example, in the 
spatial dataset, we included a total of 1600 Chla→b samples evenly 
distributed across eight sites in the U.S. and Europe, with 200 samples 
per site. For Ccar, there were 1000 samples from five sites, with 200 
samples per site. The EWT dataset consisted of 400 samples from four 
sites, with 100 samples per site, while the LMA dataset included 4800 
samples from twelve sites, with 400 samples per site (Fig. 1 and Table 1). 
A similar sampling strategy was applied to the PFT and temporal data-
sets (Table 1). This sampling strategy mitigates potential biases and 
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ensures fairness in the subsequent cross-validation procedures and 
guarantees that variations in model accuracy will not be influenced by 
disparities in the number of training or validation samples. The samples 
in the temporal dataset are located in the temperate northern hemi-
sphere and share the same PFT (DBF).

2.2. Modeling methods

To develop robust and transferable models for predicting leaf traits, 
we designed the framework with the following four steps (Fig. 2.).

Step I: Pure radiative transfer modeling. We applied two RTMs 
rooted in different principles, PROSPECT-D (Jacquemoud and Baret, 
1990) and Leaf-SIP (Wu et al., 2021). PROSPECT employs the general-
ized plate model, which simulates leaf optical properties over the 
spectral domain from 400 to 2500 nm with 1 nm spectral resolution 
based on the light-absorbing biochemical constituents like chlorophyll, 
carotenoids, equivalent water thickness and leaf mass per area, etc., the 
corresponding pigments absorption coefficients, as well as a spectral 
refractive index and leaf mesophyll structure parameter N. The leaf-SIP 
model draws from spectral invariants theory (Knyazikhin et al., 1998; 
Stenberg et al., 2016), which decouples the leaf scale radiative transfer 
process into two parts: the wavelength-dependent contribution from leaf 
chemical components and wavelength-independent contribution from 
leaf structures, described by two spectrally invariant parameters, a 
photon recollision probability p and a scattering asymmetry parameter 
q. The inversion processes of radiative transfer models were based on an 
iterative optimization method (differential evolution; Storn and Price, 
1997), which minimize the residuals between measured and modeled 
leaf reflectance using a RMSE-based cost function over the full spectral 
ranges by exploring the boundary predefined input parameter space of 
the model.

Step II: Transfer learning modeling. We combined the radiative 
transfer models described in the first step and observational data with 

several fine-tuning strategies to build the transfer learning models for 
leaf trait estimation. In particular, we first ran RTMs in forward mode to 
simulate a synthetic dataset comprising 10,000 pairs of synthetic leaf 
spectra and leaf traits (Herman and Usher, 2017). The range of model 
input parameters for generating this dataset was shown in Table 2. These 
ranges were determined based on a combination of trait value ranges 
observed in the dataset and values reported in previous studies (Berger 
et al., 2020; F!eret et al., 2017; Jay et al., 2016; Jiang et al., 2021; Wan 
et al., 2021). Subsequently, this simulated synthetic data was randomly 
split into 90 % for calibration and 10 % for validation, which were 
employed to construct individual pre-trained DNN models for each leaf 
trait. The pre-trained DNN models were built using the PyTorch API, 
featuring a three-layer fully connected network. The hidden layers 
consisted of 196, 64, and 32 nodes, each employing the ReLU activation 
function. The training process involved using the Adam optimizer, 
optimizing with the L1 Loss function, and running for 300 epochs. 
Crucial hyperparameters such as learning rate and batch size were 
determined through GridSearchCV method (Bergstra et al., 2012). 
Finally, we applied four fine-tuning strategies to build the transfer 
learning models, namely, random fine-tuning, spatial fine-tuning, cross- 
PFTs fine-tuning, and temporal fine-tuning. The fine-tuning refers to the 
process of updating the parameters of pre-trained DNN models with new 
observational data to better adapt them to specific applications. Random 
fine-tuning involved randomly selecting varying portions of observa-
tional data (10 %, 20 %, …, 80 %) as the calibration sets, repeated 10 
times for each portion, to fine-tune pre-trained DNN models and the rest 
of the observations were used for model validation. Spatial fine-tuning 
iteratively utilized all data in spatial dataset except that from a single 
site as calibration set while keeping the remaining one site data as the 
validation set. Within each calibration set, we further randomly divided 
the data into 80 % and 20 % splits, repeating this process 10 times for 
pre-trained model fine-tuning. The performance of each iteration was 
assessed using the excluded site, and the average performance and 

Fig. 1. Spatial distribution of leaf trait samples in the spatial dataset. A. Chla→b samples distribution, B. Ccar samples distribution, C. EWT samples distribution and 
D. LMA samples distribution. Schl1 to Schl8, Scar1 to Scar5, Sewt1 to Sewt4 and Slma1 to Slma12 represent the site numbers of Chla→b, Ccar, EWT and LMA, respectively. 
Chla→b, Ccar, EWT and LMA correspond to chlorophyll contents, carotenoid contents, equivalent water thickness and leaf mass per area, respectively.
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uncertainties of these 10 models represented each iteration’s outcome. 
The performance of the final model and associated uncertainties were 
determined by averaging across all iterations. Similarly, the cross-PFTs 
and temporal fine-tuning processes followed a comparable approach, 
which iteratively utilized all data in the PFT/temporal dataset except 
that from a single PFT/season as the calibration set while keeping the 
remaining one PFT/ season as the validation set. This was followed by 
employing analogous modeling strategies to those used in spatial fine- 
tuning. To enhance performance during the fine-tuning processes, we 
employed GridsearchCV to pinpoint the optimal hyperparameters such 
as initial learning rate and batch size, which helps us to achieve better 
performance and faster convergence.

Step III: Statistical modeling. We employed GPR and PLSR methods 
to estimate leaf traits. GPR is a nonlinear nonparametric machine 
learning algorithm that has gained increasing usage for trait estimation 
(Wang et al., 2019). GPR entails a probabilistic (Bayesian) approach for 
learning generic regression with kernels (Rasmussen, 2004). The output 
values of all training/testing data points are considered to be samples of 
a joint multivariate normal distribution, with the mean of a zero vector 
and the covariance matrix given by the kernel function. PLSR is a widely 
used multivariate linear regression for leaf trait estimation with leaf 
spectroscopy (Asner and Martin, 2008; Dechant et al., 2017; Townsend 
et al., 2003; Verrelst et al., 2019; Wold et al., 1984; Yendrek et al., 2017) 
and can effectively solve the multicollinearity problem of hyperspectral 
reflectance as it transforms input and target variables into several 
orthogonal latent vectors (Wold et al., 2001; Wold et al., 1984). In this 
study, The GPR models were implemented using the GPyTorch API, 
employing a constant mean and a radial basis function (RBF) kernel as 
their foundational components. These models were optimized using the 
Adam optimizer alongside exact marginal log-likelihood, focusing on 
minimizing the negative log-likelihood loss during the training process. 
PLSR models were built using the Python PLSRegression API. The 

optimal number of PLSR components was determined following Ji et al. 
(2024), in which iterative permutation is used to select the number of 
components that minimize the prediction residual error sum of squares 
(PRESS) (Allen, 1974; Allen, 1971). The training for statistical models 
followed the four strategies described for transfer learning fine-tuning 
processes in Step II.

Step IV: To assess the performance of the developed transfer learning 
models to predict leaf traits, we compared the results to state-of-the-art 
leaf trait prediction models, including GPR, PLSR, and pure RTMs 
(Section 2.3).

2.3. Statistical analysis and model evaluation

Mean values, standard deviations, the range of leaf traits and two- 
way analysis of variance (ANOVA) were employed to identify varia-
tions in traits across sites, PFTs, and seasons within the compiled data-
sets. The performance assessment of different models for estimating leaf 
traits was evaluated by standard summary statistics including coefficient 
of determination (R2), root mean square error (RMSE) and normalized 
root mean square error (NRMSE, calculated by the RMSE divided by the 
range of the estimated leaf traits). Averaged accuracy was used to assess 
the performance of different models in predicting the selected leaf traits, 
based on averaging the accuracy for each individual trait. Out-of- 
domain accuracy was used to quantify the transferability of models, 
providing a metric of model performance when confronted with data 
from domains not represented in the training set.

3. Results

3.1. Variations of leaf traits and leaf spectra data

Leaf traits exhibited large variations across different sites, PFTs and 

Table 1 
Description of the datasets. CRP, GRA, DBF, EBF, ENF, Vine and SHR refer to croplands, grasslands, deciduous broadleaf forests, evergreen broadleaf forests, evergreen 
needleleaf forests, vine and shrublands, respectively. Chla→b, Ccar, EWT and LMA correspond to chlorophyll contents, carotenoid contents, equivalent water thickness 
and leaf mass per area, respectively.

Leaf traits/datasets Spectrora- 
diometers

Spatial dataset PFT dataset Temporal dataset

Chla→b (μg/cm2) ASD FieldSpec 3/ 
4/Pro

o 1600 samples. 8 sites (200 samples for 
each site).

o Foreoptic type: integrating sphere, leaf 
clip, and contact probe.

o 3000 samples. DBF, CPR, GRA (1000 samples for each 
PFT).

o Foreoptic type: integrating sphere, leaf clip, and 
contact probe.

o 608 samples.
o Early growing season (71 

samples);
o Peak growing season (278 

samples);
o Post-peak season (259 

samples)
o Foreoptic type: 

integrating sphere.

Ccar (μg/cm2) ASD FieldSpec 3/ 
4/Pro

o 1000 samples. 5 sites (200 samples for 
each site).

o Foreoptic type: integrating sphere, leaf 
clip.

o 2100 samples. DBF, CPR and GRA (700 samples for 
each PFT).

o Foreoptic type: integrating sphere, leaf clip, contact 
probe.

o 634 samples.
o Early growing season (71 

samples);
o Peak growing season (278 

samples);
o Post-peak season (285 

samples)
o Foreoptic type: 

integrating sphere.

EWT (g/m2) SVC HR-1024i

o 400 samples. 4 sites (100 samples for 
each site).

o Foreoptic type: integrating sphere, leaf 
clip.

o 540 samples. DBF, GRA, CPR (180 samples for each 
PFT).

o Foreoptic type: integrating sphere, leaf clip.
N/A

LMA (g/m2) ASD FieldSpec 3/ 
4/Pro

o 4800 samples. 12 sites (400 samples for 
each site).

o Foreoptic type: integrating sphere, leaf 
clip, and contact probe.

o 1400 samples. DBF, SHR, GRA, Vine, EBF, CPR and 
ENF (200 samples for each PFT).

o Foreoptic type: integrating sphere, leaf clip, and 
contact probe.

o 626 samples.
o Early growing season 

(278 samples);
o Peak growing season (303 

samples);
o Post-peak season (45 

samples)
o Foreoptic type: 

integrating sphere.
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seasons (Fig. 3 and Table S1). In the spatial dataset, site Schl1 have the 
highest values, which ranges from 1.43 to 59.94 μg/cm2 with a mean 
value of 34.38 μg/cm2 and a standard deviation of 13.15 μg/cm2, while 
site Schl8 have the lowest values, which ranges from 3.48 to 23.91 μg/ 
cm2 with a mean value of 11.01 μg/cm2 and a standard deviation of 
4.98 μg/cm2. Sites Scar5 and Scar2 displayed the largest and lowest values, 
with rages of 5.72-12.41 μg/cm2 (mean ↑ 1std of 9.29 ↑ 1.71 μg/cm2) 
and 1.7-9.58 μg/cm2 (mean ↑ 1std of 5.48 ↑ 1.82 μg/cm2), respec-
tively. Sites Sewt4 and Sewt2 showed the largest and lowest values, span-
ning 70.1-477.02 g/m2 (mean ↑ 1std of 187.98 ↑ 86.37 g/m2) and 
44.33-115.5 g/m2 (mean ↑ 1std of 81.96 ↑ 17.54 g/m2). Lastly, LMA 
samples demonstrated site Slma5 with the highest value, ranging from 
59.65 to 254.39 g/m2 with mean ↑ 1std of 137 ↑ 41.16 g/m2) and Slma9 
with the narrowest range (0.07-74.11 g/m2, mean ↑ 1std of 32.1 ↑
15.94 g/m2). Among PFTs, croplands (CRP) exhibit the highest mean 
values for Chla→b, grasslands (GRA) exhibits the highest mean values 
for Ccar, and EWT, while evergreen needleleaf forests (ENF) stands out 
with the highest mean values for LMA. Moreover, all leaf traits in the 
temporal dataset, which are located in the temperate northern hemi-
sphere, displayed strong seasonal variability. Chla→b and Ccar experi-
ence rapid increases during the early growing season, stabilizing at the 
peak growing season, and subsequently decline in post-peak season. 
LMA demonstrates an upward trend from the early growing season, with 
a gradual increases until leveling off at the end of the time series. The 
ANOVA test also indicated significant differences in leaf traits across 
sites, PFTs and seasons (p ω 0.001) in the three compiled datasets.

Similarly, leaf reflectance and its coefficient of variation (CV) also 
displayed significant variations across sites, PFTs, and seasons, varying 
notably across different wavelength regions (Fig. 3, Table S2). Specif-
ically, the reflectance variability in the visible (VIS: 450–750 nm), 
shortwave infrared 1 (SWIR1: 1300–1800 nm), and shortwave infrared 2 

(SWIR2: 1800–2400 nm) bands was highest in SHR with CV values of 
0.699 ↑ 0.267, 0.581 ↑ 0.178, and 1.078 ↑ 0.576, respectively, and 
ENF with CV values of 0.673 ↑ 0.257, 0.506 ↑ 0.160, and 0.918 ↑
0.501, respectively. In contrast, the lowest variability was observed in 
CRP (CV ↓ 0.312 ↑ 0.140, 0.081 ↑ 0.021, and 0.136 ↑ 0.027, respec-
tively) and vine (CV ↓ 0.215 ↑ 0.063, 0.081 ↑ 0.021, and 0.177 ↑
0.053, respectively). Among phenological stages, the post-peak season 
exhibited the highest variability in the VIS and SWIR2 bands, with CV 
values of 0.418 ↑ 0.219 and 0.305 ↑ 0.103, respectively. Additionally, 
the early growing season demonstrated relatively higher variability than 
other stages in SWIR1 band, with a CV of 0.181 ↑ 0.017.

3.2. Leaf trait prediction

3.2.1. Synthetic and data pre-training
Fig. 4A illustrates the simulated synthetic reflectance generated 

using sampled leaf traits (Table 2) through the PROSPECT and Leaf-SIP 
models. Notably, the synthetic reflectance of the Leaf-SIP model was 
consistently higher than that of the PROSPECT model due to structural 
differences between the two models, particularly how they simulate the 
interactions between light and leaf tissues. These differences were also 
pronounced in the visible region (400–700 nm), which is critical for 
pigment-related absorption, and may therefore influence the estimation 
of pigments. Using these reflectance simulations, pre-trained DNN 
models were applied to predict leaf traits, with the results shown in 
Fig. 4B and Fig. 4C. These results demonstrate that the pre-trained DNN 
models effectively estimated the leaf traits when compared to their true 
values, regardless of whether the synthetic data were generated using 
PROSPECT or Leaf-SIP. For DNN models pre-trained with PROSPECT- 
generated synthetic data, the R2 values are 1.0 for Chla→b, 0.96 for 
Ccar, 1.0 for EWT and 1.0 for LMA estimation, with NRMSE values of 

Fig. 2. Overall workflow for estimating leaf traits based on various models.

Table 2 
Ranges of radiative transfer models (RTMs) input parameters for simulation synthetic data.

Model Variable Description Unit Range

PROSPECT-D N Leaf structural parameter N/A 0.8-2.5
PROSPECT-D/Leaf-SIP Chla→b Leaf total chlorophyll content μg/cm2 0-170
PROSPECT-D/Leaf-SIP Ccar Leaf carotenoid content μg/cm2 0-30
PROSPECT-D/Leaf-SIP Cbrw Brown pigment content μg/cm2 0-1
PROSPECT-D/Leaf-SIP EWT Equivalent water thickness g/m2 20-1400
PROSPECT-D/Leaf-SIP LMA Leaf mass per area g/m2 0-400
PROSPECT-D/Leaf-SIP Cant Leaf anthocyanin content μg/cm2 0-10
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1.4 %, 5.9 %, 1.0 %, 1.9 %, respectively. Similarly, for DNN models 
pretrained with Leaf-SIP simulated synthetic data, the R2 values are 0.97 
for Chla→b, 0.91 for Ccar, 0.99 for EWT, and 1.0 for LMA estimation, 
with NRMSE values of 4.6 %, 8.2 %, 2.9 %, and 0.6 %, respectively, with 
higher prediction errors observed for Ccar compared to other traits and 
PROSPECT model.

3.2.2. Comparison of models’ performance in predicting leaf traits
Fig. 5 illustrates the averaged accuracy of different models to predict 

the four selected leaf traits (Chla→b, Ccar, EWT and LMA) using varying 
proportions of observations for model training or fine-tuning. The re-
sults show that the developed transfer learning models, TL(PROSPECT) 
and TL(Leaf-SIP), both consistently outperformed pure statistical models 
(GPR and PLSR) as well as RTMs (PROSPECT and Leaf-SIP). Specifically, 

Fig. 3. Mean leaf traits, reflectance and variability (coefficient of variation, CV) among sites, plant functional types (PFTs) and growing season in the datasets. Panel 
A, B and C represent spatial, PFT and temporal dataset. The first row presents leaf traits across sites, PFTs and growing season; the second row represents the 
variability of leaf reflectance and CV across sites, PFTs and growing season. Each column corresponds to different leaf traits, Chla→b (chlorophyll contents), Ccar 
(carotenoid contents), LMA (leaf mass per area) and EWT (equivalent water thickness), respectively. The shaded areas refer to the standard deviation of reflectance.
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TL (PROSPECT) models exhibited 0.08–0.17, 0.01–0.11, 0.45–0.79 and 
0.4–0.64 higher R2 and 1.63 % – 3.09 %, 0.06 % – 1.88 %, 10.7 % – 
33.18 % and 9.89 % – 28.9 % lower NRMSE than GPR, PLSR, Pure Leaf- 
SIP and Pure PROSPECT, respectively. TL (Leaf-SIP) models exhibited 
0.13–0.17, 0–0.1, 0.48–0.78 and 0.44–0.63 higher of R2 and 1.67 % – 
3.05 %, 0.09 % – 1.84 %, 10.74 % – 33.25 % and 9.99 % – 29.0 % lower 
of NRMSE than GPR, PLSR, Pure Leaf-SIP and Pure PROSPECT, respec-
tively. The results of ANOVA test for the predictions of different models 
indicate significant differences between models (p ω 0.001). Notably, 
the pure RTMs exhibited the poorest performance across all analyses, 
followed by GPR and PLSR models and the performance disparity was 
most pronounced when limited observations were incorporated for 
training or fine-tuning. However, as the size of the training or fine- 
tuning set increased, the rate of performance improvement dimin-
ished, although the differences are still large. Leading to reduced per-
formance differences between different models.

Table S3 and Fig. S1-S8 present the accuracy statistics and corre-
sponding scatter plots for each trait prediction. The performance of 
transfer learning models for each trait model prediction is always better 
as the size of the training or fine-tuning dataset increases. Specifically, 
for Chla→b and Ccar models, transfer learning models achieved R2 

values ranging from 0.6 ↑ 0.06 (mean ↑ 1SD, same in the following 
text) to 0.81 ↑ 0.07 and 0.5 ↑ 0.13 to 0.78 ↑ 0.1, respectively. These 
results surpass the performance of GPR models with R2 values of 0.45 ↑
0.05 to 0.63 ↑ 0.04 and 0.41 ↑ 0.03 to 0.58 ↑ 0.05, respectively, and 
PLSR models with R2 values of 0.55 ↑ 0.06 to 0.72 ↑ 0.04 and 0.49 ↑
0.05 to 0.66 ↑ 0.06, respectively. RTMs had even lower R2 values of 

0.17 to 0.3 and 0.01 to 0.06, respectively. Similarly, transfer learning 
models for predicting EWT achieved R2 values spanning from 0.77 ↑
0.07 to 0.95 ↑ 0.02. These results are comparable to those PLSR, which 
exhibited R2 values from 0.86 ↑ 0.05 to 0.94 ↑ 0.02 and are higher than 
those of GPR models (0.66 ↑ 0.08 to 0.88 ↑ 0.04), RTMs (0.75 to 0.82). 
For LMA models, transfer learning models exhibited R2 values from 0.68 
↑ 0.07 to 0.83 ↑ 0.05, outperforming the GPR models, which ranged 
from 0.6 ↑ 0.06 to 0.76 ↑ 0.06, the PLSR models with R2 values from 
0.7 ↑ 0.03 to 0.79 ↑ 0.05, RTMs with values of 0.08 to 0.11. Similar 
results were observed in NRMSE metric, indicating that transfer learning 
models provided better predictive accuracy than other models.

3.2.3. Comparison of models’ transferability in predicting leaf traits
The strategies of “leave one site out,” “leave one PFT out,” and “leave 

one season out” were employed on the spatial, PFT, and temporal 
datasets, respectively to explore the transferability of the leaf trait 
estimation models. Notably, the transfer learning models exhibited the 
most robust performance outside their trained domains (Fig. 6, Table S4) 
in comparison to other state-of-the-art models. Specifically, the transfer 
learning models TL (PROSPECT) and TL (Leaf-SIP) exhibited mean R2 

values of 0.65, 0.57, 0.42 and 0.65, 0.56, 0.41, respectively, for spatial, 
PFT, and temporal transferability. Additionally, the NRMSE values were 
18.26 %, 18.27 %, 23.66 % for TL (PROSPECT) and 18.82 %, 17.95 %, 
22.3 % for TL (Leaf-SIP) across these categories. Transfer learning 
models outperformed GPR, which showed R2 values of 0.6, 0.49, 0.36 
and NRMSE values of 18.96 %, 18.35 %, 23.12 %; PLSR with R2 values of 
0.61, 0.46, 0.35 and NRMSE values of 20.99 %, 23.58 %, 28.27 %; Pure 

Fig. 4. Pre-training processes using the synthetic data of RTMs (PROSPECT and Leaf-SIP). A. RTMs synthetic reflectance; B. and C. The comparison of leaf trait 
prediction against their true values using pre-trained deep neural networks (DNN) models, which were trained by the paired leaf traits and simulated leaf reflectance 
generated from PROSPECT and Leaf-SIP, respectively.
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PROSPECT with R2 values of 0.6, 0.41, 0.12 and NRMSE values of 26.24 
%, 20.9 %, 51.29 %; and Pure Leaf-SIP with R2 values of 0.33, 0.28, 0.13 
and NRMSE values of 25.07 %, 24.45 %, 53.11 %, for spatial, PFT, and 
temporal extrapolation, respectively. The ANOVA test results for the leaf 
trait predictions across out-of-trained domains of different models also 
revealed significant differences between the models (p ω 0.001).

4. Discussion

In this study, we collected the leaf traits and leaf spectra observations 
across diverse sites, PFTs, and seasons using data from a previously 
compiled large dataset (Ji et al., 2024). Both leaf traits and leaf spectra 
exhibited significant variations across different sites, PFTs, and seasons 
(p ω 0.001) (Fig. 4, Table S1). The variations are driven by the envi-
ronmental heterogeneity (Albert et al., 2010; Jung, 2022; Messier et al., 
2017; Messier et al., 2010), including differences in resource availability 
(e.g., nutrients and water), seasonal phenology, and functional adapta-
tions across PFTs (Chavana-Bryant et al., 2017; Regos et al., 2022; 
Serbin et al., 2019; Stein and Kreft, 2015; Wu et al., 2017). Such factors 

highlight the interplay between biotic and abiotic influences in shaping 
leaf traits and spectral properties across ecosystems.

During the model pre-training process, differences in synthetic 
reflectance simulated by PROSPECT and Leaf-SIP (Fig. 4A) illustrate the 
impact of model structures on their outputs. Leaf-SIP generally predicts 
higher reflectance across wavelengths. However, this results in higher 
uncertainty for certain traits in the pre-trained DNN model, such as Ccar 
(Fig. 4C). Despite these differences, transfer learning models demon-
strated broadly consistent performance across both RTMs. Nevertheless, 
our results suggest that the choice of RTM remains an important 
consideration, as discrepancies in model structures and assumptions can 
influence trait estimation accuracy. Thus, while TL methods can 
partially mitigate discrepancies arising from RTM choice, users should 
not dismiss careful RTM selection for pretraining. Overall, our results 
indicate the effectiveness of integrating leaf spectroscopy with both 
RTMs and statistical models for estimating leaf traits, while also 
emphasizing the importance of thoughtful RTM selection when applying 
transfer learning approaches. Statistical models, including GPR and 
PLSR, consistently outperformed the PROSPECT and Leaf-SIP RTMs 

Fig. 5. The performance of different models in predicting leaf traits by incorporating varying proportions of observations for model training or fine-tuning. TL 
(PROSPECT) and TL(Leaf-SIP) refer to the transfer learning models developed by fine-tuning the pre-trained DNN models based on PROSPECT and Leaf-SIP synthetic 
data, respectively. Panel A. Spatial dataset; panel B. PFT dataset; panel C. Temporal dataset. (a), (c) and (e) refer to R2 of leaf trait estimation in different datasets; (b), 
(d) and (f) refer to NRMSE of leaf trait estimation in different datasets.
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(Fig. 5 and detailed in Table S3 and Fig. S1-S8). Notably, the statistical 
models demonstrated comparable performance in estimating Chla→b, 
Ccar, EWT, and LMA with previous studies (Chen et al., 2022; Cherif 
et al., 2023; Serbin et al., 2019; Xie et al., 2021). In the statistical models 
employed, PLSR exhibited higher accuracy than GPR, potentially due to 
GPR’s sensitivity to hyperparameter tuning and challenges in dealing 
with high-dimensional hyperspectral data (Rivera-Caicedo et al., 2017). 
The superior performance of statistical models can be attributed to their 
ability to learn complex patterns and relationships from the available 
training data. In contrast, the RTMs show strong physical basis while 
they rely on the simplified assumptions and predefined physical inter-
pretation of the interaction between electromagnetic radiation and leaf 
constituents (Feret et al., 2008; Jacquemoud et al., 1996; Jacquemoud 
and Baret, 1990; Wu et al., 2021), leading to limitations in representing 
intricate relationships present in real-world data, potentially due to the 
inherent constraints of the models themselves or suboptimal parame-
terization. As well, many RTM parameters, such as specific absorptiv-
ities, refractive index are actually empirically calibrated (Verrelst et al., 
2019; Wang et al., 2021; Wang et al., 2015) using specific datasets like 
LOPEX (Hosgood et al., 1994) and ANGERS (Jacquemound et al., 2003), 
which may not fully capture the diversity of the internal leaf structure as 
well as pigment mixtures and absorption features in our compiled 
datasets (Pe”nuelas et al., 1993; Proctor and He, 2013; Villa et al., 2024). 
These factors collectively contribute to the overall poor predictive per-
formance of both PROSPECT and Leaf-SIP models, particularly for leaf 
carotenoid pigments and LMA estimation. The poor predictability of 
carotenoids is attributed to overlapping absorption features with chlo-
rophyll content. Similarly, the poor predictability of LMA is due to the 
overlapping absorption features with water and the use of a single 
specific absorption coefficient in RTMs to model its influence on optical 
properties (Ali et al., 2016; Colombo et al., 2008; F!eret et al., 2019; Feret 
et al., 2008; Jacquemoud et al., 1996). Furthermore, the two RTMs, 
PROSPECT and Leaf-SIP, exhibited different accuracies, which high-
lights the uncertainties introduced by differences in model structures. 
These structural differences, such as variations in the treatment of light 
absorption, scattering, and internal leaf organization, can lead to 
divergent reflectance predictions and ultimately influence model per-
formance in trait estimation tasks.

The proposed transfer learning models (TL(PROSPECT) and TL(Leaf- 
SIP)) for leaf traits estimation consistently outperformed pure statistical 
models (GPR, and PLSR) as well as RTMs (PROSPECT and Leaf-SIP) 
(Fig. 5, Table S3, Figs. S1-S8). This finding aligns with several previ-
ous studies (Wan et al., 2022; Wang et al., 2023a, 2023b; Zhang et al., 
2021). The proposed transfer learning models incorporated domain 
knowledge from RTMs through synthetic data pre-training processes as 
well as acquired knowledge from real observational data utilized 
through fine-tuning processes. This dual-learning approach enhances 
model robustness, enabling it to adapt to variations in spectra and traits 
resulting from diverse and heterogeneous environmental conditions. 
Through fine-tuning processes, these models can mitigate uncertainties 
inherent in RTMs, which rely on simplified assumptions and predefined 
physical interpretations, leading to superior predictive performance. 
Moreover, the transfer learning models leverage synthetic data from 
RTMs for pre-training, requiring only limited labeled data for fine- 
tuning and yielding promising results. This reduces the dependency on 
large volumes of observational data necessary for pure statistical 
models. To further support this, we conducted an additional experiment 
on anthocyanin (Cant) prediction, Anthocyanin datasets are relatively 
rare in the research community, and for this study, we collected 192 
Cant samples along with corresponding leaf spectra from previous 
studies (Gitelson et al., 2009; Gitelson et al., 2006; Merzlyak et al., 2008) 
The dataset includes three species: Siberian dogwood (Cornus alba L.), 
Norway maple (Acer platanoides L.) and Virginia creeper (Parthenocissus 
quinquefolia (L.) Planch.), respectively. Spectral measurements were 
acquired using a Hitachi 150–20 spectrophotometer (Tokyo, Japan) 
with an integrating sphere. Despite the limited sample size, the TL model 
consistently outperformed GPR and PLSR (Fig. S9). With only 10 % of 
the samples used for fine-tuning, the TL model achieved an R2 of 0.62 
and an NRMSE of 18.84 % (Fig. S9C.1), significantly outperforming GPR 
(R2 ↓ 0.37, NRMSE ↓ 25.2 %) and PLSR (R2 ↓ 0.2, NRMSE ↓ 60.2 %) 
(Fig. S9 A.1 and B.1). As the amount of fine-tuning data increased 
beyond 30 %, the TL model’s performance improved further, reaching 
an R2 above 0.8 and an NRMSE below 12.5 % (Fig. S9 C.2 – C.4). 
Furthermore, the transferability of the TL model was significantly better 
than that of GPR and PLSR. In the leave-one-PFT-out validation, the TL 
model maintained strong predictive performance across plant functional 

Fig. 6. Out-of-domains performance of different models. TL(PROSPECT) and TL(Leaf-SIP) refer to the transfer learning models developed by fine-tuning the pre- 
trained DNN models based on PROSPECT and Leaf-SIP synthetic data, respectively. (a), (c) and (e) refer to mean NRMSE of different models for predicting leaf 
traits out of spatial, PFT and temporal training domains; (b), (d) and (f) refer to NRMSE of different models for predicting leaf trait estimation out of spatial, PFT and 
temporal training domains.
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types, whereas GPR and PLSR showed substantial declines in accuracy 
(Fig. S9A.5, B.5 and C.5). This analysis further underscores the advan-
tage of TL models in handling scenarios with limited labeled data, 
demonstrating their effectiveness in improving leaf trait estimation 
while ensuring strong model generalization across diverse datasets.

The results, as indicated by out-of-domain accuracy (Fig. 6), 
demonstrated that the proposed transfer learning models are relatively 
more transferable than the statistical models. Our findings agree with 
the prior research that the statistical models are facing the challenges in 
maintaining stability and transferability across species (Helsen et al., 
2021), across sites (Nakaji et al., 2019; Yan et al., 2021) and across 
phenological stages (Chlus and Townsend, 2022; Schiefer et al., 2021; 
Yang et al., 2016). This limitation is attributed to the inherent issue of 
statistical models where the variations in training data may not 
adequately represent or overlap with the variations in unseen data, 
leading to poor model performance when applied to novel datasets (Ji 
et al., 2024). Pure RTMs consistently exhibit the lowest performance 
within and outside their domains largely due to model simplifications 
and assumptions (Fig. 6). The transfer learning models, by incorporating 
domain knowledge from RTMs and fine-tuning with in-situ observa-
tions, ensure a balanced performance, transferability, and stability of the 
model (Wang et al., 2023b; Zhang et al., 2021).

Many studies have demonstrated that canopy spectra properties are 
capable of inferring leaf traits (Cherif et al., 2023; Est!evez et al., 2021; 
Tagliabue et al., 2022; Verrelst et al., 2021; Wang et al., 2023b; Wang 
et al., 2021; Zhang et al., 2021). Built on this foundation, our proposed 
transfer learning models, initially developed at the leaf scale, offer sig-
nificant potential for scalability to canopy scales by leveraging pre- 
training the canopy RTMs simulated synthetic data, such as PROSAIL 
(Jacquemoud et al., 2009). However, the effective implementation of 
these models at canopy scales requires careful consideration of factors 
like soil background, topography, illumination and viewing geometries 
as well as canopy structure, including leaf angle distribution, leaf area 
index, and clumping index. Addressing these complexities enhances the 
potential of transfer learning models to bridge the gap between leaf- 
scale measurements and large-scale remote sensing observations. Un-
like purely data-driven models, our approach minimizes dependence on 
extensive in-situ calibration data, instead fine-tuning domain knowledge 
derived from RTMs. This enables accurate prediction of foliar traits 
across broader spatial scales.

Such capability is particularly relevant given the growing availabil-
ity of current and upcoming global spaceborne hyperspectral missions 
such as ESA’s CHIME (Nieke and Rast, 2018), NASA’s EMIT (Green 
et al., 2020) and SBG (Cawse-Nicholson et al., 2021), which aim to 
monitor vegetation traits globally. These missions are unlikely to have 
globally comprehensive in-situ datasets for calibrating statistical 
models, making transfer learning a valuable tool for scaling trait esti-
mation across diverse ecosystems. Statistical models demonstrate the 
capability to estimate various leaf traits when calibration data are 
accessible. However, RTMs remain limited to a specific subset of leaf 
traits, even as they continue to evolve, such as the inclusion of nitrogen 
in PROSPECT-PRO (F!eret et al., 2021) and xanthophylls in Fluspect 
(Vilfan et al., 2018).

This limitation also extends to the proposed transfer learning models, 
which rely on domain knowledge from RTMs, restricting their applica-
tion to traits such as Chla→b, Ccar, EWT, LMA, and certain pigments like 
brown pigments and anthocyanin pigments. Additionally, it is important 
to acknowledge that the temporal transferability test in this study was 
based on relatively unbalanced subsets across different phenological 
stages, which may have affected the robustness of the results for tem-
poral transferability compared to transferability across PFTs and sites. 
Despite these limitations, the integration of RTM-based transfer learning 
with statistical approaches represents a promising avenue for advancing 
trait estimation across scales. By combining the strengths of physics- 
based models with the flexibility of machine learning, transfer 
learning models can bridge the gap between traditional RTMs and 

purely data-driven approaches. Future efforts should focus on expanding 
the range of RTMs to incorporate additional traits and refining transfer 
learning models to improve their scalability and applicability across 
diverse ecosystems. These advancements will be critical for leveraging 
emerging global hyperspectral datasets and addressing pressing 
ecological and environmental challenges.

Beyond model limitations, the inconsistencies in sampling protocols 
and measurement methods can introduce uncertainties in leaf optical 
measurements, potentially affecting the relationships between leaf 
spectra and traits. In our previous study (Ji et al., 2024), we have 
examined the effects of spectroradiometers on model transferability by 
selecting the measurements using ASD FieldSpec 3, PSR 3500→, and SVC 
HR-1024i that shared the identical location, PFT, and time. This analysis 
demonstrated promising model performance in cross-sensor validation, 
indicating minimal inconsistencies among spectroradiometers in terms 
of model transferability. Another key challenge when working with 
heterogeneous datasets is the influence of different spectral measure-
ment setups. Many studies have utilized the leaf directional- 
hemispherical reflectance (DHRF) obtained from integrating spheres 
as input for RTMs in leaf trait prediction (F!eret et al., 2019; Spafford 
et al., 2021). However, Z. Wang et al. (2023) has confirmed the capa-
bility of leaf bidirectional reflectance factor (BRF) — obtained using leaf 
clips or contact probes — for leaf trait estimation using RTMs. Their 
findings showed that BRF-based predictions achieved accuracy compa-
rable to those using DHRF. Additionally, a simplified relationship be-
tween DHRF and BRF spectra has been established: BRF↔λ↗ ↓ DHRF↔λ↗→
b, where λ represents wavelength and b is a wavelength-independent 
factor accounting for the difference in specular reflectance between 
BRF and DHRF spectra (Jay et al., 2016; Li et al., 2018, 2019). In this 
study, we investigated the effect of spectral measurement methods on 
model performance by categorizing samples into DHRF and BRF groups 
based on their measurement techniques. These grouped samples were 
then used as inputs for the trained transfer learning models. The results 
(Fig. S10) demonstrated high accuracy for both DHRF and BRF esti-
mations, with R2 values of 0.75, 0.60, 0.91, and 0.71 for Chl a → b, Ccar, 
EWT, and LMA, respectively, using DHRF. Similarly, the BRF-based es-
timations achieved R2 values of 0.83, 0.86, 0.89, and 0.69, respectively. 
These results confirm that our transfer learning model is well-suited for 
both types of reflectance data.

5. Conclusions

Numerous models have been developed to predict leaf traits based on 
leaf spectroscopy, each of which has its limitations. The absence of 
universally high-performing, transferable, and stable models across 
different domains hinder our ability to quantify and comprehend 
spatiotemporal variations in leaf traits and their responses to environ-
mental changes and biodiversity in terrestrial ecosystems. In this study, 
we ensembled three types of datasets, with significant variability in leaf 
traits and leaf spectra across different locations, PFTs, and seasons. Our 
proposed transfer learning models, incorporating domain knowledge 
from RTMs and limited observational data, achieved better predictive 
performance compared to other statistical models and pure RTMs. Most 
importantly, the transfer learning models exhibited higher trans-
ferability than statistical models. Our study underscores that transfer 
learning models can harness the advantages of both RTMs and statistical 
models and represent a promising approach for effectively predicting 
leaf traits.
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