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A B S T R A C T

A timing and precise diagnosis of crop nutrient status is essential for optimizing management practices that
promote environmentally friendly and enhanced crop yields. Although plant tissue analysis has conventionally
been employed to evaluate the nutritional status of crops, this method cannot capture the spatial variability of
crop nutrients. In contrast, satellite-based remote sensing can monitor the nutrient status of crops across
expansive areas. This study explored the capability of multi-source satellite images (PlanetScope-4: 3 m, 4 bands;
PlanetScope-8: 3 m, 8 bands; Sentinel-2: 10–60 m, 13 bands; PRISMA: 30 m, 239 bands) in mapping 12 foliar
nutrients in cranberries. Three machine learning approaches, including partial least squared regression (PLSR),
support vector regression (SVR), random forest regression (RFR), were used to relate foliar nutrients to different
types of satellite-derived features (SR: surface reflectance; VI: vegetation indices; TF: texture features) or their
combinations (SR→VI, VI→TF and SR→VI→TF). Model performance was compared across different foliar nutri-
ents, modelling approaches and combinations of model input features using R2 (the coefficient of determination)
and RRMSE (relative root mean square error, ↑ root mean square error/nutrient range ↓ 100 %). Input features
that were important to foliar nutrient modelling were identified. The model performance difference among
nutrients was consistent between Planet-4 and Sentinel-2, as well as between Planet-8 and PRISMA. In the Planet-
4 and Sentinel-2 derived models, N was best predicted (average R2 ↑ 0.77, average RRMSE↑15 %), followed by
macronutrients S (0.60–0.63, 11 %), Mg (0.58–0.65, 10–11 %), Ca (0.49–0.51, 9 %), Na (0.69, 22 %), P (0.49, 9
%) and K (0.20, 8 %), and then by all micronutrients(i.e., Fe, Mn, B, Cu and Zn: R2 ↑ 0.04–0.61; RRMSE↑16–28
%). In the Planet-8 and PRISMA derived models, macronutrients (i.e., N, P, K, Mg, Ca, S and Na) had lower R2
and RRMSE (R2 ↑ 0.06–0.59; RRMSE↑7–57 %) than micronutrients (i.e., Fe, Mn, B, Cu and Zn: R2 ↑ 0.18–0.60;
RRMSE↑19–66 %). The successful retrieval of foliar nutrients from satellite imagery was influenced by many
factors, including the intercorrelation between nutrients and model input features, the data availability at critical
growth stages, and satellite images characteristics (e.g., spatial and spectral resolutions). Except for foliar ni-
trogen, foliar nutrients typically do not exhibit distinct absorption features associated with C, H, N, or O mo-
lecular bonds in the 400–2500 nm range. Our results indicate that their successful retrieval can be primarily
attributed to the association between foliar nutrients and other leaf components (e.g., pigments, water, and dry
matter) that do display spectral features within this range. Our study demonstrated the potential of integrating
multi-source satellite data for precise nutrient monitoring over large scales.
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1. Introduction

Depending on the relative quantities in crops, mineral nutrients are
generally grouped into macro- and micro-nutrients (Kirkby, 2023). Take
the cranberry crop investigated in our study as an example. The macro-
nutrients include nitrogen (N), phosphorus (P), potassium (K), magne-
sium (Mg), calcium (Ca) and sulfur (S), while the micro-nutrients
include iron (Fe), manganese (Mn), boron (B), copper (Cu), zinc (Zn).
These nutrients are essential to crop growth, production and quality
(Brown et al., 2022; Connor et al., 2011; de Bang et al., 2021; Taiz and
Zeiger, 2010; Thapa et al., 2021). Primary macronutrients N, P and K
play a fundamental role in crop development such as energy meta-
bolism/storing, protein/fat/glucose synthesis, root growth and water
intake. Secondary macronutrients Mg, Ca, S regulate several critical
processes such as the formation of chlorophyll, the absorption/trans-
portation of phosphorus and the activating of enzymes. Although being
needed in relatively small quantities by crops, micronutrients are
responsible for several essential functions such as sugar shipment,
flowering, fruiting, enzyme composition and chloroplast production.
Any deficiency or excess of mineral nutrients in crops may result in
symptoms of chlorosis and necrosis (de Bang et al., 2021; Francis et al.,
2023), yield reduction (Amanullah, 2020; Li et al., 2019) and even
environmental pollution (Barker and Pilbeam, 2015; Campos-Soriano
et al. (2020); Van Maarschalkerweerd and Husted, 2015). Therefore,
an accurate diagnosis of crop nutrient status is needed to optimize
management practices for environmental-friendly crop yields.

Plant tissue analysis helps determine the nutritional status of plants
and diagnose any deficiencies or excesses of essential elements neces-
sary for their growth and development (Jones and Case, 1990;
Marschner, 1995; Mortvedt, 1991; Mu!noz-Huerta et al., 2013). This
technique requires an in-field destructive collection and a laboratory
chemical examination of plant tissues (e.g., foliage, petioles and stems),
and therefore is time-consuming and laborious (Adhikari et al., 2020).
Furthermore, since plant tissues are collected at spatially limited and
separated sites, this method cannot represent the spatial variation in
crop nutrients (Berger et al., 2020). Thus, plant tissue analysis is inap-
propriate to guide management practices for those unsampled areas.

Satellite remote sensing enables the monitoring of the entire nutri-
tional life cycle of crops across expansive regions, due to its high flight
altitude and long flight endurance (Berger et al., 2020; Weiss et al.,
2020). Ideally, satellite images with high spatial, temporal and spectral
resolutions are preferred for monitoring the nutrient status of crops.
However, achieving such high resolutions in all three domains simul-
taneously poses significant technical and practical challenges, often
necessitating trade-offs among these parameters. Take the satellite im-
agery used our study as an example. PlanetScope imagery offers a high
spatial resolution of ~ 4 m and a remarkable temporal resolution of one
day. However, it is limited to 4 ~ 8 spectral bands within the 400–1000
nm wavelength range. In contrast, Sentinel-2 imagery features a mod-
erate spatial resolution ranging from 10 to 60 m and a temporal reso-
lution of 5 days, yet it encompasses 13 spectral bands spanning the
400–2500 nm wavelength range. The hyperspectral PRISMA imagery
has the highest spectral resolution (240 bands, ~10 nm bandwidth)
within 400–2500 nm, while its spatial resolution (~30 m) and revisiting
period (~29 days) are relatively poor. Each satellite imagery platform
offers distinct advantages and limitations for agricultural monitoring
applications, particularly in retrieving crop nutrient information.
However, a comprehensive comparison of their capabilities in this re-
gard remains under-investigated.

Various data-driven models have been used to quantitatively relate
crop nutrient concentrations to satellite-observed spectral signals,
including Partial Least Squared Regression (PLSR) (Belgiu et al., 2023;
Inoue et al., 2012; Liu et al., 2021), Support Vector Regression (SVR)
(Cao et al., 2022; Sarkar et al., 2023), and Random Forest Regression
(RFR) (Osco et al., 2020; Pereira (2022)). PLSR projects input features
into a new orthogonal space (also called latent factors), and then

regresses these latent factors against crop nutrients. SVR maps input
features into a high-dimensional feature space, where the optimal hy-
perplane is found to fit the data within a specified margin of error,
minimizing the overall prediction error while maintaining computa-
tional efficiency. RFR is a machine learning algorithm that uses an
ensemble of decision trees to predict continuous outcomes. By averaging
the predictions of multiple trees. RFR improves accuracy and reduces
overfitting, making it robust against noise in the data.

Various types of features have been used by statistical models to
predict crop nutrients, including: 1) Spectral Reflectance (SR); 2)
Vegetation Indices (VI); 3) Texture Features (TF). Some studies have
found that incorporating more spectral bands into model inputs could
improve prediction accuracy (Cao et al., 2022; Darvishzadeh et al.,
2019; Delloye et al., 2018; Liu et al., 2021). For example, Delloye et al.
(2018) demonstrated a substantial improvement in model accuracy by
incorporating the four Sentinel-2 red-edge spectral bands into models,
surpassing the performance of models that only used the four 10 m
spectral bands as inputs. Belgiu et al. (2023) demonstrated that hyper-
spectral PRISMA satellite (239 bands in 400–2500 nm) was generally
better than multispectral Sentinel-2 satellites (13 bands in 400–2500
nm) in predicting the grain nutrient composition of staple crops. This is
mainly because hyperspectral satellites can detect the finer spectral
features related to crop nutrient changes.

Vegetation indices, a mathematical combination of few spectral
bands, have been widely used for modelling crop foliar nutrients due to
its simplicity and effectiveness (Zeng et al., 2022). Sharifi (2020) eval-
uated the performance of ten commonly used VIs derived from Sentinel-
2 images in predicting maize nitrogen uptake, and found that VIs uti-
lizing near-infrared and red-edge spectral bands had a better prediction
accuracy than other VIs. Belgiu et al. (2023) tested all possible Sentinel-
2 band combinations on the normalized difference spectral index
(NDSI). They found that the optimal band combination for estimating
nutrients in staple crop grains varied from conditions such as crop types,
growth stages and grain nutrients. Liu et al. (2021) grouped 24
commonly used hyperspectral VIs into three classes according to their
responsiveness to leaf biochemistries (i.e., leaf pigments, water and dry
matter), and found that no group of vegetation indices outperformed
others in predicting potato leaf nitrogen. All these findings confirmed
that the fact that there was no optimal VI for modelling crop nutrients.

Texture features have proven to be valuable attributes for capturing
the spatial variations in crop nutrient concentrations, especially when
working with high-resolution images (Fan et al., 2023; Liu et al., 2018;
Zheng et al., 2020). Gray-level co-occurrence matrix (GLCM) texture
features are typically used to quantify the texture of an image by
examining the spatial relationships between pixel intensities. These
features provide information about the texture’s patterns, contrast, ho-
mogeneity, and other characteristics, which cannot be captured by
simply analyzing individual pixels. For example, Zheng et al. (2020)
calculated all possible normalized difference texture indices (NDTI)
based on UAV multispectral images. They found that NDTI had com-
parable performance with traditional VIs in predicting rice nitrogen
nutrient. Currently, most research is focused on extracting texture fea-
tures from UAV images, while relatively few studies employed satellite
images of high spatial resolutions such as PlanetScope, WorldView and
QuickBird (Sarkar et al., 2023). The capability of high-resolution sat-
ellite images to characterize the spatial variations in crop nutrient
concentrations remains under-investigated.

Previous studies have shown that a combination of various features
can improve model performance (Fan et al., 2022; Fu et al., 2020; Per-
eira (2022); Zheng et al., 2020). For example, Fan et al. (2023) extracted
eight gray-level co-occurrence matrix (GLCM) texture features from
unmanned aerial vehicle images with a spatial resolution of 1.3 cm.
They found an improvement in the prediction accuracy of potato leaf
nitrogen models by integrating these texture features alongside spectral
features. Similar findings were also reported by Zheng et al. (2020) and
Pereira (2022), emphasizing the significance of integrating spatial and
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spectral information to enhance the prediction of foliar nutrients.
In this study, we aim to examine the capability of multi-source sat-

ellite images with various spatial and spectral resolutions to monitor the
foliar nutrient status in cranberries. More specifically, we: 1) investigate
the capability of PlanetScope, Sentinel-2 and PRISMA images to quantify
12 nutrients in cranberry leaves; 2) identify the optimal features for
predicting nutrients; 3) evaluate the performance of different modelling
approaches in predicting foliar nutrients.

2. Study site and data collection

2.1. Study site

As the top cranberry growing state in the US, Wisconsin harvested
half of the nation’s cranberry supply (USDA, 2022). Our field sampling
was conducted at a cranberry farm in Wisconsin, USA (Fig. 1). It has 210
commercial cranberry beds (size: 50 ↓ 300 m), and maintains 12
cranberry cultivars. In Wisconsin, mid-May to early September is the
cranberry growing season: Buds begin to form from mid to late May,
coupled with some elongation of stalks and leaves; Flowers emerge in
late June, lasting for a month into July; Fruits undergo maturation for
2–3 months, varying based on cultivars and weather conditions; Har-
vesting commences in late September and extends into October.

2.2. Foliar nutrients

Foliar samples were collected from 278 cranberry beds during the
growing seasons of 2018–2021 (“Foliar nutrients” in Table 1). Within
each cranberry bed, 20 cranberry uprights were randomly collected.
These samples underwent drying at 65 ↔C for at least three days, fol-
lowed by grinding to ensure passage through a 20-mesh sleeve (0.25
mm). Twelve nutrients were chemically analyzed, including seven foliar
macronutrients (i.e., N, P, K, Mg, Ca, S and Na) and five foliar micro-
nutrients (i.e., Fe, Mn, B, Cu and Zn) (Liu et al. 2023). Nitrogen was
determined using the Dumas combustion method. For others, the pow-
ders underwent digestion with nitric acid and hydrogen peroxide, fol-
lowed by a chemical analysis on an inductively coupled plasma-optical
emission spectrometer.

2.3. Multi-source satellite imagery

The capability of four types of satellite images to monitor 12 cran-
berry foliar nutrients was investigated, including PlanetScope-4, Plan-
etScope-8, Sentinel-2 and PRISMA (Table 1). The PlanetScope
constellation consists of ~ 130 Dove cube-satellites, and has the capacity
to image the global land surface every day (Roy et al., 2021) (“Planet-
Scope-4 and ↗8” in Table 1). Three generations of satellites have been
launched during the PlanetScope mission. The first two generations,
Dove-C and ↗R, provide four spectral bands within 400–900 nm

Fig. 1. Study site and examples of satellite images. Panel A shows a cranberry farm located in Juneau County, Wisconsin, USA. Cranberry beds are highlighted by the
false color composite of a PlanetScope-4 image. Panel B shows the close-up views of six cranberry beds (i.e., the black box in panel A with different color composites
from Sentinel-2, PlanetScope-4, PlanetScope-8 and PRISMA images. Panel C shows the average spectra (↘one standard derivation) of all cranberry beds extracted
from these satellite images.
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(“PlanetScope-4” in Table 1), and have a ground sample distance of
3.0–4.1 m. The third generation, SuperDove, provides eight bands
within 400–900 nm and has a ground sample distance of 3.7–4.2 m
(“PlanetScope-8” in Table 1). In the following sections, PlanetScope
images from the first two generations were referred to as PlanetScope-4,
while the third generation as PlanetScope-8. In this study, five cloud-free
PlanetScope images were found for PlanetScope-4 and two cloud-free
images were found for PlanetScope-8 (WWW: https://www.planet.
com/explorer/). PlanetScope images had been geometrically orthor-
ectified, atmospherically corrected and spectrally harmonized to the
corresponding Sentinel-2 spectral bands (Planet Labs, 2022).

The Sentinel-2 constellation has two satellites Sentinel-2A and ↗B,

providing a revisit interval of 5 days. Both satellites have thirteen
spectral bands within 400–2500 nm and a ground sample distance from
10 to 60 m (“Sentinel-2” in Table 1). Five Sentinel-2 top-of-atmosphere
(TOA) images were downloaded (WWW: https://earthexplorer.usgs.
gov/). The Sen2Cor package (WWW: https://step.esa.int/main/snap-
supported-plugins/sen2cor/, version ↑ 2.5) was implemented to cor-
rect the atmospheric, topographic, and cirrus effects on TOA images to
produce bottom-of-atmosphere (BOA) reflectance images. The BOA
images at 20 and 60m resolutions were spatially resampled to 10 mwith
the nearest sampling method. The SWIR-Cirrus spectral band (wave-
length range: 1360–1390 nm) was excluded because of the absorption
by atmospheric water vapor (see the “excluded band” in Fig. 1C).

PRISMA is an Italian Space Agency mission which aims to demon-
strate the development and delivery of hyperspectral imagery products
(Cogliati et al., 2021). PRISMA consists of two imaging spectrometers:
visible-to-near infrared (VNIR) and shortwave infrared (SWIR). The
VNIR spectrometer provides 66 narrow bands within 400–1010 nm. The
SWIR spectrometer has 174 narrow bands within 920–2505 nm
(“PRISMA” in Table 1). Both spectrometers have a bandwidth of ~ 13
nm and a ground sample distance of ~ 37 m. In this study, only two
cloud-free PRISMA images were available due to the long satellite revisit
cycle (~29 days). The downloaded PRISMA Level-2D images (WWW:
http://prisma.asi.it/) had been geometrically orthorectified and atmo-
spherically corrected. Spectral bands within 1361–1450 nm,
1803–1949 nm and 2477–2500 nm were excluded because of the strong
atmospheric water absorptions.

3. Methods

3.1. Statistical approaches for modelling foliar nutrients

The performance of three commonly used data-driven approaches in
modeling foliar nutrients was evaluated, including PLSR, SVR, and RFR.
We randomly divided the raw dataset into calibration and validation
datasets with a ratio of 3:1. The calibration dataset was used to optimize
model parameters, while the validation dataset was to evaluate the
performance of prediction models.

Grid search was conducted to determine the optimal parameters for
each modeling approach. This method involves testing every possible
combination of model parameters on the calibration dataset within the
specified parameter ranges, and then selecting the configuration that
yields the best performance. The parameters to be optimized for each
modeling approach were outlined in Table 2. For PLSR, the number of
latent factors was optimized by minimizing the predicted residual sum
of squares (PRESS) (Liu et al., 2021). For SVR, the optimal model pa-
rameters were determined using the grid searchmethod. The radial basis
function (RBF) was used as the SVR kernel function; The penalty coef-
ficient C, kernel coefficient γ and margin of tolerance ε were exponen-
tially optimized from 2-15 to 216, from 2-5 to 26 and from 10-5 to 104,

Table 1
Data used in the project.

A)Foliar nutrients

Sampling date Sample size Foliar nutrients
2018–07-03 79 Macro-nutrients: N, P, K, Mg, Ca, S,

Na;
Micro-nutrients: Fe, Mn, B, Cu, and Zn;
Unit: mg≃g-1

2019–06-26 75
2019–09-04 31
2020–08-15 41
2021–06-22 11
2021–08-15 41
B) PlanetScope-4 (Dove-C/Dove-R)
Acquisition
date

Band
ID

Band
name

Spectral range
(nm)

Spatial
resolution (m)

2018–07-02
2019–06-22
2019–08-30
2020–08-12
2021–06-18

1 Blue 455–515/
464–517

3.0–4.1

2 Green 500–590/
547–585

3 Red 590–670/
650–682

4 Near
infrared

780–860/
846–888

C) Sentinel-2 A/B
Acquisition
date

Band
ID

Band
name

Spectral range
(nm)

Spatial
resolution (m)

2021–06-18
2021–08-15

1 Coastal
blue

431–452 3.7–4.2

2 Blue 465–515
3 Green 513–549
4 Green 547–583
5 Yellow 600–620
6 Red 650–680
7 Red edge 697–713
8 Near

infrared
845–885

D) PlanetScope-8
Acquisition
date

Band
ID

Band
name

Spectral range
(nm)

Spatial
resolution (m)

2018–07-08
2019–06-18
2019–09-16
2020–08-11
2021–06-12

2 Blue 458–523 10
3 Green 543–578
4 Red 650–680
8 Near

infrared
785–900

5 Red edge 698–713 20
6 Red edge 733–748
7 Red edge 773–793
8A Red edge 848–880
11 SWIR 1565–1655
12 SWIR 2100–2280
1 Coastal

blue
443–453 60

9 Water
vapor

935–955

10 SWIR-
Cirrus

1360–1390

E) PRISMA
Acquisition
date

Specifications VNIR sensor SWIR sensor

2021–06-17
2021–08-13

Spectral range (nm) 400–1010 920–2500
Number of bands 66 174
Full width at half
maximum (nm)

13 13

Spatial resolution (m) 37.11 38.38
Table 2
The parameter optimization of each modelling approaches. p is the number of
the model inputs.

Models Parameters Grid search range

Partial least square regression
(PLSR)

Number of latent factors 1, 2, ….30

Support vector regression
(SVR)

Kernel function Radial basis function
(RBF)

Penalty coefficient 2-15, 2-14, …, 216

Kernel coefficient 2-5, 2-4, …, 26

Margin of tolerance 10-5, 10-4, …, 104

Random forest regression
(RFR)

Number of trees 100
Number of regression
features

1, 2, …, p/3

Maximum tree depth 3, 4, …,15
Minimum number of
samples

5, 10

Y. Huang et al.

https://www.planet.com/explorer/
https://www.planet.com/explorer/


International Journal of Applied Earth Observation and Geoinformation 132 (2024) 104063

5

respectively. For RFR, The number of trees was set to 100 as suggested
by Belgiu, (2016); The number of regression features was optimized
from 1 to one third of the number of model inputs; The maximum tree
depth was optimized from 3 to 15; The minimum number of samples was
optimized from 5 or 10.

3.2. Input features of foliar nutrient models

In this study, three types of features were used as the inputs of foliar
nutrient models: spectral reflectance (SR), vegetation indices (VI) and
texture features (TF). The average surface reflectance at each spectral
band was extracted for each cranberry bed. Spectral bands strongly
influenced by water vapor absorptions were removed. They were band
10 for Sentinel-2 and spectral bands within 1361–1450 nm, 1803–1949
nm and 2477–2500 nm for PRISMA (Table 1). The Sentinel-2 Coastal
blue band was also excluded due to its coarse spatial resolution (i.e., 60
m). Finally, spectral reflectance was vector-normalized to reduce the
influence of illumination conditions on reflectance (Wang et al., 2020).
A set of vegetation indices (VIs) were calculated for Sentinel-2, Planet-
Scope-4 and↗8 (Table 3). These VIs were previously utilized to estimate
different foliar biochemistries (Pereira (2022)).

Gray-level co-occurrence matrix (GLCM) texture features were
calculated for PlanetScope-4, PlanetScope-8 and Sentinel-2 images
(Table 4). Here, we calculated texture features for all the bands of
PlanetScope-4 and PlanetScope-8, but only for the bands 2, 3, 4 and 8 of
Sentiniel-2 due to their fine resolution (10 m). First, satellite images
within each cranberry bed were linearly rescaled to a grey level of 256.
Then, the GLCM-based texture metrices were calculated with the
following parameters: pixels offset p1 ↑ 1; relative orientation θ ↑ 0↔;
window size p2 ↑ 5 pixels for PlanetScope-4/8 and 3 pixels for Sentinel-
2; window moving step p3 ↑ 1 pixel. Texture metrices included contrast
(CON), angular second moment (ASM), correlation (COR), dissimilarity

(DIS), energy (ENE), homogeneity (HOM), mean (MEA), standard de-
viation (SD), variance (VAR), sum average (SA) and entropy (ENT)
(Table 4).

We tested various combinations of the above-mentioned three types
of input features (Table 5). For Sentinel-2, PlanetScope-4 and
PlanetScope-8, the performance of seven combinations of input features
in predicting foliar nutrients was examined, including spectral reflec-
tance (SR), vegetation indices (VI), texture features (TF), SR→VI,
SR→TF, VI→TF, and SR→VI→TF; For PRISMA, only spectral reflectance
was investigated because of the coarse resolution.

3.3. Model evaluation

The statistical models calibrated in Section 3.1 were applied to the
validation datasets. Two indicators were used to evaluate model per-
formance: the coefficient of determination (R2) and the relative root
mean square errors (RRMSE):

R2 ↑ 1↗
)n

i↑1⇐yi ↗ [yi⇒2)n
i↑1⇐yi ↗ y⇒2

(1)

RRMSE ↑

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
1
n
⌊n

i↑1⇐yi ↗ [yi⇒2
⌋

ymax ↗ ymin
↓ 100%

(2)

Where n is the number of samples; yi is the foliar nutrient measurement
of the i-th sample; [yi is the predicted nutrient of the i-th sample;y is the
mean of nutrient measurements; ymax and ymin are the maximum and
minimum of nutrient measurements, respectively.

Furthermore, the feature importance scores from PLSR, SVR and RFR
models were calculated to identify the features that were important to
nutrient prediction. For PLSR, the standardized regression coefficients
were utilized as the metrics of feature importance. For SVR, the inner
product of spectral reflectance and the α-vector was used to evaluate
feature importance. For RFR model, the Gini importance coefficients
were used to measure the importance of input features. For all metrics,
the larger the absolute value of the feature important scores, the more
important the feature.

Table 3
Spectral indices used for predicting foliar nutrients in this study.RR, RGω RB, RNIR
indicates the reflectance in the red, green, blue, near-infrared wavelength range
respectively. and

A) Canopy structure sensitive indices

Vegetation indices Abbreviations Formulas References

Normalized
Difference
Vegetation Index

NDVI RNIR ↗ RR
RNIR → RR

(Rouse et al.,
1973)

Enhanced
Vegetation Index

EVI 2ε5↓ ⇐RNIR ↗ RR⇒
RNIR → 6RR ↗ 7ε5RB → 1

(Huete,
1997)

Wide Dynamic
Range Vegetation
Index

WDRVI 0ε1RNIR ↗ RR
0ε1RNIR → RR

(Gitelson,
2004)

Ratio Vegetation
Index

RVI RNIR
RR

(Tucker,
1979)

B) Leaf biochemistry sensitive indices
Vegetation indices Abbreviations Formulas References
Chlorophyll Index
green

CIgreen RNIR
RG

↗1 (Gitelson
et al., 2003)

Chlorophyll
Vegetation Index

CVI RNIRRR
RG2

(Vincini
et al., 2008)

Normalized Green
Red Difference
Index

NGRDI RG ↗ RR
RG → RR

(Tucker,
1979)

Green Leaf Index GLI 2RG ↗ RR ↗ RB
2RG → RR → RB

(Louhaichi
et al., 2001)

Green Normalized
Difference
Vegetation Index

GNDVI RNIR ↗ RG
RNIR → RG

(Huete et al.,
2002)

Structure Insensitive
Pigment Index

SIPI RNIR ↗ RB
RNIR → RR

(Pen Uelas
et al., 1995)

Visible
Atmospherically
Resistance Index
green

VARIgreen RG ↗ RR
RG → RR ↗ RB

(Gitelson
et al., 2002)

Adapted from Bhattarai et al. (2023)Zeng et al. (2022).

Table 4
Texture features used in this study. In these formulas, both i and j indicate the
grey levels of pixels; Pij indicates the probability of the grey level values i and j at
adjacent pixels; N is the total grey level; μ indicates the mean; σ indicates the
standard deviation; ε is a small positive number (↑2.2 ↓ 10-16). For the sym-
metrical GLCM, σi ↑ σj and μi ↑ μj.
Texture features Abbreviations Formulas

Contrast CON )N↗1
iωj↑0Pij⇐i↗ j⇒2

Correlation COR
)N↗1
iωj↑0Pij

⌈

⌉{
⇐i↗ μi⇒

}
j↗ μj

〈

]]]]]]]]]]]]]]]]]]]]]
⇐σi2⇒

〉
σj2

/\

/

\⎛

Dissimilarity DIS )N↗1
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Table 5
Number of variables used in each feature combination. SR: spectral reflectance; VI: vegetation indices; TF: texture features.

Satellite images Number of variables used in each feature combination

SR VI TF SR!VI SR!TF SR!TF SR!VI!TF

PlanetScope-4 4 11 44 15 48 55 59
PlanetScope-8 8 11 88 19 96 99 107
Sentinel-2 12 11 44 23 56 55 67
PRISMA 204 ↗ ↗ ↗ ↗ ↗ ↗

Fig. 2. Comparison of model performance across foliar nutrients. Seven types of input features (Table 5) were fed into each of three modelling approaches (i.e., PLSR,
SVR and RFR) for each foliar nutrient. The R2 and RRMSE values derived from these models were grouped into either 12 foliar nutrients (Panel A) or two nutrient
groups (Panel B). Bars indicate the average ↘ one standard derivation of R2 and RRMSE values within each group. Panel A shows the model performance comparison
among 12 foliar nutrients. Welch ANOVA indicates that both R2 and RRMSE are significantly different among 12 foliar nutrients (p ϑ 0.001). The Tamhane T2 test is
used to rank R2 and RRMSE in descending order (indicated by alphabets a-h). Panel B shows the comparison of model performance between macronutrients (N, P, K,
Mg, Ca, S and Na) and micronutrients (Fe, Mn, B, Cu and Zn). The Mann-Whitney U test indicates that both model R2 and RRMSE are significantly different between
macronutrients and micronutrients.
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4. Results

4.1. Comparison of model performance across nutrients

Model performance (i.e., validation R2 and RRMSE) was significantly
different among 12 foliar nutrients (Welch ANOVA, p ϑ 0.001; Fig. 2A).
Specifically, the performance difference among foliar nutrients was
consistent between Planet-4 and Sentinel-2, as well as between Planet-8
and PRISMA. In the Planet-4 and Sentinel-2 derived models, N was best
predicted (average R2 and RRMSE: 0.77, 15 % for Planet-4 and Sentinel-
2), followed by macronutrients S (0.63, 11 % for Planet-4; 0.60, 11 % for
Sentinel-2), Mg (0.58, 11 % for Planet-4; 0.65, 10 % for Sentinel-2), Ca
(0.51, 9 % for Planet-4; 0.49, 9 % for Sentinel-2), Na (0.69, 22 % for
Planet-4 and Sentinel-2), P (0.49, 9 % for Planet-4 and Sentinel-2) and K
(0.20, 8 % for Planet-4 and Sentinel-2), and then by all micronutrients
(R2 ↑ 0.04 ~ 0.61; RRMSE↑16 %~ 28 %). In the Planet-8 and PRISMA

derived models, macronutrients (i.e., N, P, K, Mg, Ca, S and Na) had
lower R2 and RRMSE (R2 ↑ 0.06 ~ 0.59; RRMSE↑7%~57 %) than
micronutrients (i.e., Fe, Mn, B, Cu and Zn: R2 ↑ 0.18 ~ 0.60;
RRMSE↑19 %~ 66 %).

Macronutrients were generally more predictable compared to
micronutrients (Fig. 2B). In the PlanetScope-4 and Sentinel-2 derived
models, macronutrients had a significantly higher R2 (Mann-Whitney U
test: p ϑ 0.05 for PlanetScope-4; p ϑ 0.001 for Sentinel-2) and a
significantly lower RRMSE (p ϑ 0.001 for both satellites) than micro-
nutrients. In the PlanetScope-8 and PRISMA derived models, both the R2
and RRMSE for macronutrients were significantly lower than that for
micronutrients (p ϑ 0.001).

4.2. Comparison of model performance among modelling approaches

Fig. 3 presents the ranks of the overall performance of three

Fig. 3. Comparison of model performance among three modelling approaches, including PLSR, SVR and RFR. The model performance (R2 and RRMSE) of three
modelling approaches is ranked by critical difference diagrams, in which the lower the rank (closer to the left) the better the modelling approach performs. Groups of
R2 or RRMSE that are not significantly different (Nemenyi pos-hoc test, p ϖ 0.05) are connected by horizontal lines.
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modelling approaches (i.e., PLSR, SVR and RFR) using critical difference
diagrams, in which the lower the rank the better the modelling approach
performs. In general, no modelling approach consistently outperformed
others when using different types of satellite data as inputs. However,
the ranks of three approaches were consistent between Planet-4 and
Sentinel-2, as well as between Planet-8 and PRISMA. For Planet-4 and
Sentinel-2, RFR significantly outperformed PLSR and SVR (Nemenyi
post-hoc test: p ϑ 0.05); PLSR and SVR did not show significant differ-
ence in model performance. For Planet-8, the R2 of RFR and SVR were
significantly better than PLSR, whereas the RRMSE of PLSR and SVR
were significantly better than RFR. For PRISMA, no modelling approach
outperformed others.

4.3. Comparison of model performance using different feature
combinations

Fig. 4 ranks the performance of the PlanetScope-4, Sentinel-2 and
PlanetScope-8 derived feature combinations in modelling nutrients.
These feature combinations included SR (spectral reflectance), VI
(vegetation indices), TF (texture features), SR→VI, VI→TF, SR→TF and

SR→VI→TF. For PlanetScope-4 and PlanetScope-8, models using texture
features (i.e., TF, VI→TF, SR→TF and SR→VI→TF) consistently out-
performed those models not using texture features (i.e., SR, VI and
SR→VI) (“PlanetScope-4” and “PlanetScope-8” in Fig. 4). For Sentinel-2,
the ranks for seven feature combinations were:
SRϖSR→VIϖVIϖSR→VI→TFϖSR→TFϖVI→TFϖTF (“Sentinel-2” in
Fig. 4). In other words, models not using texture features (i.e., SR, VI and
SR→VI) outperformed those models using texture features (i.e., TF,
VI→TF, SR→TF and SR→VI→TF). In terms of the ranks for models using
only one type of features as inputs (i.e., SR, TF or VI), it was TFϖVIϖSR
for PlanetScope-4, TFϖSRϖVI for PlanetScope-8, and SRϖVIϖTF for
Sentinel-2. The optimal feature combination was SR for PRIMSA and
Sentinel-2, and TF for PlanetScope-4 and ↗8.

4.4. Selection of important input features

Fig. 5 and Fig. 6 present the feature importance scores for the optimal
PRIMSA and Sentinel-2 derived models, and the optimal PlanetScope-4
and 8 derived models, respectively. The three modelling approaches (i.
e., PLSR, SVR and RFR) tended to have different patterns of selecting

Fig. 4. Comparison of model performance using seven feature combinations, including SR (Spectral Reflectance), VI (Vegetation Index), TF (Texture Feature),
SR→VI, VI→TF, SR→TF and SR→VI→TF. The model performance (R2 and RRMSE) of using seven feature combinations is ranked by critical difference diagrams, in
which the lower the rank (closer to the left) the better a model performs. Values within the round brackets are R2 or RRMSE, while values within the square brackets
are the average ranking. Groups of R2 or RRMSE that are not significantly different (Nemenyi pos-hoc test, p ↑ 0.05) are connected by horizontal lines.
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Fig. 5. Feature importance scores for the optimal PRISMA and Sentinel-2 derived models. Spectral reflectance (SR) is used as model inputs. In panel A, the absolute
feature importance scores at PRISMA bands are sorted in descending order, and then the top 10 % ranked bands are chosen as important bands (represented by the
solid and short vertical lines). The long and dashed vertical lines indicate the separation of visible (i.e., 400–750 nm), near infrared (i.e., 750–1300 nm) and
shortwave infrared (i.e., 1300–2500 nm) wavelength regions. In panel B, the absolute feature importance scores at Sentinel-2 bands are sorted in descending order,
and then the top four ranked bands are chosen as important bands (represented by the color filled bars).
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important features. For example, the important bands identified by the
PRIMSA derived PLSR models for foliar N were clustered around 950,
1050 and 1300 nm in the NIR region, 2450 nm in the SWIR region; the
important bands selected by SVRwere clustered around 450 and 530 nm
in the VIS region, 750 and 820 nm in the near infrared wavelength re-
gion; the important bands selected by RFR were clustered around 750,
1200–1300 nm in the near infrared wavelength region (Fig. 5A). Simi-
larly, in the optimal Sentinel-2 derived models for foliar N, PLSR

identified bands 4 (central wavelength: 664 nm), 5 (703 nm), 7 (780
nm) and 11 (1612 nm) as important bands; SVR identified bands at 442
nm, 492 nm, 664 nm and 2201 nm as important bands; RFR identified
bands at 442 nm, 492 nm, 559 nm and 704 nm as important bands
(Fig. 5B).

Fig. 6. Feature importance scores for the optimal PlanetScope-4 and ↗8 derived models. Texture features (TF) are used as model inputs. The absolute feature
importance scores at PlanetScope-4/8 derived TFs are ranked in descending order, and the top four ranked features are selected as important features (represented by
the color filled bars).
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5. Discussion

5.1. The physical mechanism of remote sensing of foliar nutrients

The predictability of nutrients in cranberry foliage was mainly
affected by the correlations between nutrients and the input features of
prediction models. As indicated by Appendix, those foliar nutrients (e.g.,
N, Mg, Ca and S in “PlanetScope-4” in Appendix) having a stronger
correlation with model inputs generally had a higher validation model
R2 and a lower RRMSE (e.g., N, Mg, Ca and S in “PlanetScope-4” in
Fig. 2). It should be noted that the strong correlation observed between
foliar nutrients and model input features does not necessarily imply a
direct causal relationship between them.

Except for nitrogen, most foliar nutrients do not exhibit distinct ab-
sorptions associated with C, H, N or O molecular bonds in 400–2500 nm
(Liu et al., 2023; Pandey et al., 2017; Singh et al., 2022). Even for foliar
nitrogen, its absorption features within the shortwave infrared range (i.
e., N–H, stretch at 1510 nm, C–H stretch at 1690 nm, O–H stretch and
deformation at 1940 nm, N↑H bend and N–H stretch at 2060 nm, C-N
stretch at 2180 nm, N–H stretch at 2300 nm and C–H deformation at
2350 nm) can be masked by the absorptions of other leaf biochemicals
such as leaf water and dry matters (e.g., cellulose, starch, sugar and
lignin) (Bhattarai et al., 2023; Curran, 1989). Consequently, variations
in most foliar nutrients within leaves are unlikely to directly impact leaf
or canopy reflectance.

The correlation between nutrients and leaf/canopy spectra is mainly
attributed to the correlation between nutrients and those leaf compo-
nents (e.g., pigments, water and dry matter) that do have spectral fea-
tures within 400–2500 nm (Bhattarai et al., 2023; Chlus and Townsend,
2022; Liu et al., 2023; Mutanga et al., 2005; Pandey et al., 2017;

Pullanagari et al., 2016; Singh et al., 2022). One example could be found
from the prediction of foliar magnesium: Mg is an crucial element within
the chlorophyll molecule, and correlates well with leaf chlorophyll (Liu
et al., 2023). Therefore, the successful retrieval of foliar Mg from
PlanetScope-4 and Sentinel-2 imagery (average R2 ↑ 0.58 ~ 65,
RRMSE↑11 %; Fig. 2) was mainly attributed to the correlation between
Mg and the chlorophyll absorption features within 400–800 nm. Simi-
larly, in a recent study by Bhattarai et al. (2023) on spruce forests, foliar
equivalent water thickness (EWT) was found to be significantly corre-
lated with several foliar nutrients, including N (Pearson’s correlation r
↑ 0.82), P (0.82), K (0.55), Cu (0.51) and Fe (0.47). It should also be
noted that the correlation between nutrients and the above-mentioned
leaf components may vary with plant species, study sites and pheno-
logical stages (Berger et al., 2020; Chlus and Townsend, 2022; Liu et al.,
2023; Pullanagari et al., 2016).

5.2. The influence of data availability on model performance

As opposed to our expectation, the models derived from PlanetScope-
8 and PRISMA did not outperform those from PlanetScope-4 and
Sentinel-2, despite having more spectral bands. Data availability may be
the main reason for this.

In this study, foliar nutrients were collected for both the early (dates
from late June to early July, including 2018–07-03, 2019–06-26 and
2021–06-22) and late (dates from middle August to early September,
including 2019–09-04, 2020–08-15 and 2021–08-15) crop growth
stages. Since PlanetScope-8 and PRISMA (2021–06-22 and 2021–08-15)
had less clear-sky images than PlanetScope-4 and Sentinel-2 (2018–07-
03, 2019–06-26, 2021–06-22, 2019–09-04 and 2020–08-15) (Fig. 1),
the dataset size used for building nutrient models from PlanetScope-8

Fig. 7. The influence of data availability on the predictability of foliar nitrogen. Panel A shows the data distribution of field nitrogen measurements used to calibrate
nutrient models from PlanetScope-4 and Sentinel-2 images, as well as PlanetScope-8 and PRISMA images, respectively. Panel B shows the comparison of average
model accuracy (R2 and RRMSE) between two datasets. Student’s t-test indicates that the model accuracy derived from PlanetScope-4 and Sentinel-2 images was
significantly higher than that from PlanetScope-8 and PRISMA images (p ϑ 0.001).
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and PRISMA (n ↑ 52) data was much less than that from PlanetScope-4
and Sentinel-2 data (n ↑ 237). This difference in data availability yiel-
ded a narrower nutrient range (nitrogen range: 6–16 mg⋅g↗1; Fig. 7A)
and a lower prediction accuracy (R2 and RRMSE: 0.31 and 11%; Fig. 7B)
for PlanetScope-4 and Sentinel-2. Considering that PlanetScope-8 and
PRISMA provide more spectral bands than PlanetScope-4 and Sentinel-
2, the model accuracy derived from them would be better than that
derived from PlanetScope-4 and Sentinel-2 when the same field dataset
is used for building models.

It needs to be noted that the effect of data availability on the pre-
dictability of foliar nutrients can be complicated by crop growth stages.
In other words, the prediction accuracy of foliar nutrients can be greatly
reduced if data cannot be collected at critical growth stages. For
example, many studies have found that the correlation between crop
nitrogen and canopy spectra at early growth stages was much stronger
than that at reproductive stages when nitrogen was reallocated from
leaves to other plant organs (Berger et al., 2020; Masclaux-Daubresse
et al., 2010; Milla et al., 2005). Therefore, a decrease in model predic-
tion was observed when data were less available from early growth
stages (Fig. 2).

5.3. The effect of imagery characteristics on the predictability of foliar
nutrients

The advantages of leveraging multi-source satellite remote sensing to
map foliar nutrients depend on imagery characteristics, more specif-
ically, on the spectral and spatial resolutions of satellite images. In this
study, the fine resolution (~3 m) of PlanetScope-4 and PlanetScope-8
images was able to characterize the foliar nutrient variation within
each cranberry bed (~50 ↓ 300 m). Therefore, feature combinations
using texture features (i.e., TF, SR→TF, VI→TF and SR→VI→TF; TF:
texture features; SR: surface reflectance; VI: vegetation indices) gener-
ally had a better prediction accuracy than those combinations not using
texture features (“PlanetScope-4” and “PlanetScope-8” in Fig. 4). In
contrast, texture features did not output other features (SR and VI) for
Sentinel-2 and PRISMA images since their spatial resolutions (Sentinel-
2: 10, 20 and 60 m; PRISMA 30 m) exhibited limited capability in
capturing spatial variations within cranberry beds. Sentinel-2 and
PRISMA demonstrated that the full-spectral surface reflectance within
the 400–2500 nm range was adequate for modeling foliar nutrients. The
incorporation of vegetation indices and texture features into the model
inputs did not result in a discernible improvement in prediction accu-
racy (“Sentinle-2” in Fig. 4).

In this study, the capability of PlanetScope, Sentinel-2, and PRISMA
images to quantify foliar nutrients was evaluated separately. Each sat-
ellite sensor offers distinct advantages in terms of spatial and spectral
resolution. However, future efforts could focus on fusing these multi-
source images to achieve higher spatial and spectral resolutions, as
suggested by Yokoya et al. (2017). By combining the high spatial reso-
lution of PlanetScope, the moderate spatial and spectral resolution of
Sentinel-2, and the superior spectral resolution of PRISMA, we can
create a comprehensive dataset that leverages the strengths of each
sensor. This fusion approach is believed to enable detailed and accurate
mapping of foliar nutrients in heterogeneous landscapes or small-scale
agricultural fields. It will enhance our understanding and management
of foliar nutrients in diverse environments.

6. Conclusion

We investigated the capability of multi-source satellite images
(PlanetScope, Sentinel-2 and PRISMA) to map 12 foliar nutrients in
cranberries. Different groups of input features (i.e., spectral reflectance
(SR), vegetation indices (VI) and texture features (TF)) and their com-
binations were tested by three data-driven models (PLSR, SVR and RFR)
for their capability of predicting foliar nutrients. Our results indicated
that the prediction accuracy was significantly different among foliar
nutrients. The optimal features for predicting nutrients depended on the
characteristics of satellite images. For PlanetScope images, features
containing with TF demonstrated a better performance. As for the im-
ages with more spectral information (i.e., Sentinel-2 and PRISMA),
spectra related features (i.e., SR and VI) exhibited a better performance.
In terms of the comparison across different modelling approaches, no
modelling approach consistently outperformed others. The successful
retrieval of foliar nutrients from satellite imagery was influenced by
many factors, including the correlation between nutrients and model
inputs, the data availability at critical growth stages, and satellite image
characteristics.
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Appendix

Fig. A1. The absolute Pearson’s correlations (|r|) between nutrients and input features of prediction models. SR: spectral reflectance; VI: vegetation indices. Ex-
planations of texture features CON, COR, DIS, ASM, ENE, HOM, MEA, VAR, SD, SA and ENT can be found from . Strong correlations (|r|ϖ0.5) are highlighted by
forward slashes.
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