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Abstract

Anthropogenic climate change, particularly changes in temperature and

precipitation, affects plants in multiple ways. Because plants respond dynami-

cally to stress and acclimate to changes in growing conditions, diagnosing

quantitative plant-environment relationships is a major challenge. One

approach to this problem is to quantify leaf responses using spectral reflec-

tance, which provides rapid, inexpensive, and nondestructive measurements

that capture a wealth of information about genotype as well as phenotypic

responses to the environment. However, it is unclear how warming and

drought affect spectra. To address this gap, we used an open-air field experi-

ment that manipulates temperature and rainfall in 36 plots at two sites in the

boreal-temperate ecotone of northern Minnesota, USA. We collected leaf

spectral reflectance (400–2400 nm) at the peak of the growing season for three

consecutive years on juveniles (two to six years old) of five tree species planted

within the experiment. We hypothesized that these mid-season measurements

of spectral reflectance capture a snapshot of the leaf phenotype encompassing

a suite of physiological, structural, and biochemical responses to both long-

and short-time scale environmental conditions. We show that the imprint of
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environmental conditions experienced by plants hours to weeks before spectral

measurements is linked to regions in the spectrum associated with stress,

namely the water absorption regions of the near-infrared and short-wave infra-

red. In contrast, the environmental conditions plants experience during leaf

development leave lasting imprints on the spectral profiles of leaves, attribut-

able to leaf structure and chemistry (e.g., pigment content and associated

ratios). Our analyses show that after accounting for baseline species spectral

differences, spectral responses to the environment do not differ among the spe-

cies. This suggests that building a general framework for understanding forest

responses to climate change through spectral metrics may be possible, likely

having broader implications if the common responses among species detected

here represent a widespread phenomenon. Consequently, these results demon-

strate that examining the entire spectrum of leaf reflectance for environmental

imprints in contrast to single features (e.g., indices and traits) improves infer-

ences about plant-environment relationships, which is particularly important

in times of unprecedented climate change.

KEYWORD S
B4WarmED, climate change, climate imprint, drought, functional ecology, functional traits,
leaf-level spectral reflectance, phenotype, spectral signatures, warming

INTRODUCTION

Anthropogenic climate change, including increases in
temperature and changes in the timing and magnitude of
precipitation, affects plant life in a variety of ways.
However, diagnosing how plants respond to climate is
complex because they respond dynamically to resource
availability and stress and acclimate to changes in grow-
ing conditions. For example, plants may alter the struc-
ture (e.g., leaf mass per area [LMA]) and/or pigmentation
of their leaves, allowing them to cope with environmen-
tal variation in light, heat, and drought, and on different
timescales (Doughty et al., 2018; Kothari et al., 2018;
Poorter et al., 2009). Plant-environment relationships are
often described via variation in functional trait values
using environmental conditions as explanatory variables
that influence plants’ performance (e.g., growth and sur-
vival; Laughlin et al., 2011; Violle et al., 2007). However,
while functional traits are often used to describe
plant-environment relationships, there is generally a
weak relationship between individual traits and environ-
mental conditions (Anderegg, 2023; Reich et al., 2007).
This is likely a result of: (1) a wide variation in the
expression of traits (Albert et al., 2010; Reich et al., 2007),
(2) single traits lacking a direct relationship with climate
(Aubin et al., 2016; Violle et al., 2007), and (3) multiple
functions of traits and/or multi-trait coordinated responses
as constrained by genotype and species-specific adaptations

(Falster et al., 2017; Sack & Buckley, 2020) among many
others. Hence, examining the combination of multiple
traits within an organism may provide more insight into
plant-environment relationships, and spectral data may
provide one avenue for doing so.

Spectral measurements of plants have emerged as a
critical tool in plant physiology and ecology that captures
an extraordinary wealth of information about the
plant phenotype (Sapes et al., 2024). Leaf spectroscopy
offers relatively rapid, inexpensive, and nondestructive
measurements (Lamour et al., 2021) that provide indi-
vidual trait detection (Chlus & Townsend, 2022), and
improve understanding of plant-environment interac-
tions (e.g., phenotypes; Cavender-Bares et al., 2017),
plant diversity (Schweiger et al., 2018), and ecosystem
function (Williams et al., 2021). The hyperspectral signal
combines multiple physiological, structural, and chemical
traits into a single measure which may enable us to make
inferences about physiological processes and associated
ecological consequences (Schweiger et al., 2021). While
past research has often focused on single spectral fea-
tures (e.g., spectral indices defining plant stress) or
traits to describe plant-environment relationships
(Serbin et al., 2019; Wang et al., 2022; Wu et al., 2016),
the full spectrum of light reflected off the leaf surface
(e.g., 400–2400 nm) may carry an integrative measure
of a plant’s phenotypic response to the environment
and thus be more informative.
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However, while we know a considerable amount
about how stress caused by drought affects leaf spectral
reflectance (Dao et al., 2021; Penuelas et al., 1997; Römer
et al., 2012), it is currently unclear whether and how
multiple ecologically important climate change factors
(i.e., warming and rainfall reduction) and their interac-
tions cause consistent spectral changes across species.
Several key challenges remain unaddressed in unlocking
this potential. One challenge is the inherent multicol-
linearity of spectral data. A second challenge arises from
the complex interaction of simultaneous changes in
warming and moisture conditions with multiple plant traits
and physiological processes, which can influence spectral
reflectance in many ways, such as (1) stress-driven changes
in pigment activity and total pool sizes, (2) responses to
resource availability, including changes in carbon assimila-
tion and leaf water content in response to water availability,
and (3) changes in morphology/structure driven by both
stress and resource availability (e.g., LMA). A third chal-
lenge is that a spectral measurement at any given time
reflects the environmental conditions to which a leaf has
been exposed over both long and short time scales.

For example, environmental conditions early in the
season can influence or even stimulate leaf development
and alter leaf morphology (Poorter et al., 2009). These
influences can accumulate over time in the leaf as it
moves through developmental stages, causing changes in
pigment cycles and pools in response to stress or through
turgor pressure that influences cell expansion and leaf
size (Ali et al., 2023; Demmig-Adams et al., 2014). Over
seasonal time scales, temperature, water availability, and
light availability—the latter driven by the location in the
crown where a developing leaf is located—can all affect
the morphological and structural properties of a leaf and
its growth trajectory (Poorter et al., 2009; Thornton &
Zimmermann, 2007; Williams et al., 2021). At shorter
time scales, that is, hours to weeks where acute weather
conditions may impact physiological processes—leaf
attributes that are influenced by weather conditions may
also be captured by spectral measurements (Alonso
et al., 2017; Gamon et al., 1992). Thus, the spectral signals
provide a snapshot of leaf phenotypes at the moment of
measurement, that integrates both the long- and short-term
experience of the leaf as well as how the plant responds
physiologically to environmental stress.

To our knowledge, most studies to date consider leaf
spectral reflectance as either a proxy for or an intermedi-
ary tool in understanding trait-environment relationships
by using them to predict functional traits or taxa of interest
(Fassnacht et al., 2016; Serbin et al., 2019; Wang
et al., 2022; Wu et al., 2016). Moreover, because both con-
ventional (Fajardo & Siefert, 2016; McKown et al., 2013)
and spectral (Chlus & Townsend, 2022; Yang et al., 2016)

trait measurements have demonstrated that trait values
change over the course of the growing season and are
accompanied by variation in the shape and magnitude of
spectral reflectance (Richardson et al., 2021), we expect
that the influence of the environment on spectral reflec-
tance will vary over the course of leaf development. Thus,
we study spectra collected at the peak of the growing sea-
son to examine the influence of environmental conditions
across a range of time scales from budbreak until the
moment of measurement. To examine whether leaf spec-
tral reflectance carries a distinctive climatic signal and
integrates a wide range of environmental and biological
information (Figure 1), we test the following hypotheses:
(1) spectral reflectance captures a snapshot of leaf
phenotypic response to two major climate change drivers
(i.e., warming and rainfall reduction) encompassing a suite
of leaf physiological, structural, and biochemical responses
that are a result of both long-and short-term environmen-
tal exposure, (2) experiencing elevated temperatures and
water limitation during leaf development will leave a
long-lasting imprint primarily via structural changes asso-
ciated, for example, with pigment content and ratios,
whereas (3) exposure to stress later in the season from
similar variation in temperature and moisture availability
will be primarily associated with acute stress responses,
likely of a less permanent nature, for example, xanthophyll
cycles, and (4) spectral responses are generalizable and
will show similar directional shifts among a set of five
broad-leaved tree species. To address these hypotheses, we
ask the following: (1) Can we detect the influence of
climate change on spectral reflectance; and if so, do all
species respond similarly? (2) Is there an environmental var-
iable that integrates the influence of rainfall and warming
treatments on spectra, or do these represent divergent
drivers? The former is more likely if rainfall and warming
influence plants through a similar proximal pathway (such
as through environmental drying; Reich et al., 2022;
Stefanski et al., 2023); the latter is expected if distinct physio-
logical processes are involved in responses to changes in
moisture versus temperature. (3) Is there a time period dur-
ing leaf development when the environment has the stron-
gest influence on the spectrum observed at the peak of the
growing season? (4) Which regions of the spectrum are the
most sensitive to environmental influence and how do they
relate to plant chemistry, structure, and physiology?

To test our hypotheses and address these questions,
we used the Boreal Forest Warming at an Ecotone in
Danger (B4WarmED) experiment that manipulates two
climate change factors (i.e., warming and rainfall)
through free-air plant and soil warming and rainfall
exclusion. The experiment is located at two sites in the
boreal-temperate ecotone of northern Minnesota, USA
(Rich et al., 2015). In the middle of the growing season for
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three consecutive years, we measured full-range green foliar
spectral reflectance (350–2500 nm) on juveniles (2- to
6-year-old transplanted seedlings) of five tree species from
the boreal-temperate ecotone. At the time of measurements,
seedlings had been growing within the treatment for at least
one and up to four seasons (for details see Methods and
Appendix S1: Table S2). In total, we measured spectra on
~1612 green leaves and analyzed them in a stepwise process
using three distinctive analyses.

METHODS

Site description and experimental design

This research was conducted at a long-term climate change
experiment in northern Minnesota, USA, established in

2008 in the ecotone of the boreal-temperate forest. The
research sites, the experimental design, and the methodol-
ogy for the warming and rainfall treatments are outlined in
detail in Appendix S1 and in previous studies (Rich
et al., 2015; Stefanski et al., 2020). In brief, B4WarmED is a
factorial experiment consisting of two sites (i.e., Cloquet
MN, and Ely MN), three warming (i.e., ambient conditions,
+1.7!C and +3.3!C above ambient), and two rainfall
manipulation (i.e., ambient rain and ~30% reduction in
summer rainfall) treatments for a total of 36 research plots,
each 3 m in diameter.

The warming treatment was implemented simulta-
neously for the above- and belowground parts of the
plot and designed to maintain a fixed temperature differ-
ential between ambient and warmed plots. Across all
3 years, the warming system achieved +1.7!C and +3.3!C
average temperature differentials between treatments
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F I GURE 1 Conceptual figure outlining the sources of variation in leaf-level spectra related to species identity, developmental stage,
and climate, which together guide our stepwise analysis. The effects of climate (warming treatments and rainfall reduction) on leaf spectra
exist in the context of the effects of species identity (different colored lines) and canopy developmental stage (phenological phases); to better
understand the former, we need to account for or standardize the latter. This conceptual figure in its entirety is the original work of the
coauthor of this manuscript, Laura J. Williams.
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(Appendix S1: Table S1, Figures S1 and S2), we will refer
to warming treatments as such throughout the paper. The
summer rainfall reduction treatment used rainout shelters
to reduce both total summer rainfall and the number of
rain events in each year from June 1 to September 30.
Across the 3 years of summer rainfall removal, we saw
an average reduction of 28.1% in summer rainfall in
comparison to ambient plots (Appendix S1: Table S1).
Consequently, our rainfall treatments were representative
of a dry summer (~10–15th percentile wettest) and
severely dry summer (~0–5th percentile driest) for ambient
and reduced rainfall, respectively, as compared with the
broader temporal context of the 100 years of the weather
record (1922–2022 available for the Cloquet site).

Over the course of this experiment, we grew seedlings
of more than 10 tree species in the research plots, includ-
ing the five native angiosperms used in this study: Acer
rubrum L., Acer saccharum Marshall, Betula papyrifera
Marshall, Quercus rubra L., and Quercus macrocarpa
Michx. (abbreviated to Aceru, Acesa, Betpa, Queru, and
Quema, respectively). The seedlings were planted into
the existing matrix of native vegetation. Seedlings were
sourced from local ecotypes produced by Minnesota
Department of Natural Resources (DNR) nurseries. Note
that Q. macrocarpa (bur oak) includes three distinctive
ecotypes sourced from populations from across a climate
gradient, representing distinctive populations from the
southwestern (Oklahoma population), center (Illinois pop-
ulation) and northern (Minnesota population) parts of the
species range. The three distinctive bur oak populations
were grown from seed in the Vallonia, Indiana DNR tree
seedling nursery. For the purpose of this study, we did not
study differences in responses of spectral signal among
populations. All seedlings were one or two years old when
they were planted in the experiment and were measured
in their second to sixth growing seasons in the experiment
and ranged in their average maximum size across all spe-
cies from ~97 cm in the first year to 156 cm in the last year
(Appendix S1: Table S2).

Spectra-environment modeling approach

Our treatments manipulate two main climatic variables
(i.e., temperature and rainfall) on a factorial basis, creat-
ing three distinctive warming treatments and two rainfall
manipulations. However, because this is a chamberless
free-air design, all plants also experience local diurnal
and seasonal weather patterns; and thus experience both
within-treatment and among-treatment variability in
moisture and temperature (Appendix S1: Table S1,
Figures S1–S3). We took a three-step approach to test
whether and how environmental conditions that plants

experience during their growth affect the spectral reflec-
tance of the leaf. This approach allows us to test climate
change factors that define environmental variables on facto-
rial (i.e., in accordance with the experimental set up) and
continuous scales (i.e., as the leaf experiences the environ-
ment) using physiologically meaningful timeframes and
environmental variables.

Selection of climatic variables for modeling

We considered eight environmental variables that were
calculated and averaged for selected timeframes (see
below) based on data collected via an automated array of
sensors that monitor environmental conditions on the
plot, block, or site level (Rich et al., 2015). The variables
that we explored are as follows: (1) atmospheric vapor
pressure deficit in each plot based on the plot upper can-
opy surface temperature and relative humidity (VPD, the
difference between actual and saturated vapor pressure of
the air, in kilopascals), (2) soil volumetric water content
(VWC, in cubic centimeters of H2O per cubic centimeter of
soil), (3) rainfall (in millimeters), (4) aboveground tempera-
ture (in degrees Celsius), (5) total average cumulative
photosynthetic photon flux density (PPFD, a total of photo-
synthetically active radiation accumulated throughout the
day, in micromoles per square meter per day), (6) below-
ground temperature (in degrees Celsius), (7) atmospheric
water potential (AWP), and (8) soil water potential (SWP).

These variables were selected as candidates for charac-
terizing the environmental conditions in which the plants
grow and leaves develop because we hypothesized that
they would best capture the relationship between spectra
and the environment, and they offer ecological and
physiological meaning. However, examining the correla-
tions between each of the eight environmental variables
and the spectral signal revealed some notable patterns
(data not shown). There was often coordination in the
spectral response to a single variable within the broad
regions of the visible (VIS, 400–700 nm), near-infrared
(NIR, 700–1100 nm), and short-wave infrared (SWIR,
1100–2500 nm). Some environmental variables revealed
very similar responses to others, for example, soil tempera-
ture was almost identical to the long-timescale aboveground
temperature, as one would expect from soil temperature
integrating aboveground temperature.

There is considerable covariation among the environ-
mental variables (Appendix S1: Figure S4) and so several
variables (i.e., PPFD, belowground temperature, AWP,
and SWP) have a reduced emphasis in further analyses.
Instead, we focus on VPD, aboveground temperature,
VWC, and rainfall measured or estimated on a plot level.
These variables: (1) best integrate our environmental
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treatments, (2) have the most ecophysiological meaning
in the temperature and water availability continuum,
(3) have, at most, modest correlation among each other
(i.e., VPD, VWC, and rainfall), and (4) performed best
with the partial least square regression (PLSR) and multi-
ple linear regression (MLR) models. However, because
VPD and temperature were so highly correlated, their
effects cannot be separated, so all VPD (or temperature)
influences must be interpreted as the combined influence
of VPD and temperature; and because VPD was
better predicted from spectra using the PLSR analysis,
we use three environmental variables—omitting
aboveground temperature—for the final MLR analysis.
See Spectra-environment modeling approach for further
details on both the PLSR and MLR analyses.

Phenology data

To place environmental data that leaves experience over
the course of the growing season into a biologically
meaningful framework, we used foliar phenological
observations. We visited individuals of each tree species
on each plot every week and scored them for three main
phenological stages: budbreak, the first fully formed leaf,
and the majority of fully unfolded leaves (Montgomery
et al., 2020). We define five time periods that cover leaf
developmental stages and a growing season that are
bracketed by those phenological stages: (1) initial leaf
unfolding, which spans the time between the beginning
of the budbreak and the appearance of the first fully
expanded leaf (BB-1L), (2) formation of the crown, which
is bracketed by the appearance of the first leaf and the
majority of the leaves unfolded on a given tree (1L-ML),
(3) total period of leaf development, which ranges from
budbreak until the majority of leaves are unfolded
(BB-ML), (4) core of the growing season, which spans the
majority of leaves unfolded until the measurement day
(which occurred approximately at the peak of the grow-
ing season; beginning to mid-August) (ML-Meas), and
(5) the whole growing season from the time of budbreak
until the measurement day (BB-Meas). We defined those
timeframes based on the exploratory analysis that
showed that most of the variation in spectra is explained
by periods that are associated with major developmental
stages of the leaf life cycle.

Leaf reflectance measurements

Over the course of three growing seasons, we measured
leaf reflectance spectra on ~1612 leaves of five target
species (Appendix S1: Table S2). Each year, spectral

measurements were conducted in mid-summer during the
approximate peak of the growing season (i.e., beginning to
mid-August) over the course of 6–8 days in a two-week
period. During each campaign, we measured 3–24 leaves
per species in each treatment. Fully mature leaves
were selected from the upper part of the crown.
Spectral measurements were performed using a
hyperspectral (350–2500 nm), field-portable spectrora-
diometer (SVC-HR1024i, PA, USA) with measurement
spacing (and spectral resolution) of 1.5 nm (3.5 nm)
for 350–1000 nm, 3.8 nm (9.5 nm) for 1000–1890 nm,
and 2.5 nm (6.5 nm) for 1890–2500 nm. Spectral mea-
surements were taken using a leaf clip (LC-RP PRO)
that holds a fiber optic cable and a tungsten halogen
lamp that illuminates a leaf area of 3.14 cm2 against a
black background. Leaf relative reflectance was calcu-
lated relative to a white reference Spectralon panel on
the leaf clip that approximates 100% reflectance.
Spectral reflectance data were screened and examined
for any erroneous values that resulted in a total of
56 out of 1612 measurements being discarded.

Spectral data preprocessing

The leaf reflectance measurements were resampled
to a bandwidth of 2.0 nm over the spectral range
(354–2496 nm) to ensure a uniform distribution of
bands for further analysis using the “resample” func-
tion in the spectrolab package (Meireles et al., 2023) in
the R software version 4.3.2 (R Core Team, 2023). The
resampled leaf reflectance measurements were then
transformed using two separate procedures for
further analysis: vector normalization and continuous
wavelet transformation (CWT). Vector normalization was
performed to avoid differences among species in the mag-
nitude of reflected light using bands between 400 and
2400 nm (from now on referred to as full spectrum). CWT
was performed to enhance absorption features following
(Guzm!an Q. & Sanchez-Azofeifa, 2021). Our premise is
that the applied treatments (i.e., warming and rainfall
reduction) are likely to have a small effect on changes in
leaf reflectance; thus, this transformation can guide us to
explore which absorption features are more likely to be
associated with these effects. For this transformation,
the resampled reflectance spectra were decomposed into
two wavelets (i.e., 23 and 24) using a second-order
Gaussian function derivative and applying a variance of
1. The selected wavelets exclude the potential noise from
the sensor while describing small variations in absorption
features. The two wavelets of bands between 400 and
2400 nm were summed to create a summed-wavelet
spectra.
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Spectra-environment modeling approach

To examine whether and how environmental conditions
that plants experience during their growth affect the spec-
tral reflectance of the leaf, we performed a three-step analy-
sis. First, we performed an eigendecomposition on leaf
reflectance per species as a data reduction technique to
subtract uncorrelated components describing the maxi-
mum variance among samples while reducing the redun-
dancy among bands. The eigendecomposition serves as a
simplified signal to directly test treatment effects (i.e., the
effect of temperature and rainfall reduction) using linear
mixed-models analysis. Second, we used PLSR to predict
selected environmental variables from summed-wavelet
reflectance spectra based on continuously measured envi-
ronmental data that were averaged for each combination
of species, plots, sites, and year for the five time periods
defined above (BB-1L, 1L-ML, BB-ML, ML-Meas, and
BB-Meas; which are unique windows of time for each
species in accordance with their respective phenology)
for both the main (i.e., all species combined) and
species-specific models. Data were split 50% for calibration
and 50% for validation. For each environmental variable,
we selected the smallest number of components for which
the Root Mean Squared Error (RMSE) of prediction from
cross-validation dropped to one SD of the global minimum.
PLSR models were run for 500 iterations, whereby for each
iteration, calibration data were split using the jackknife
method into 70% to train the model and 30% to test the
model’s predictive ability. Third, to discern both the long-
and short-term effect of environmental variables on spec-
tral reflectance and account for multiple environmental
variables’ effects on variation in spectral reflectance, we
built a set of MLR models to predict each wavelength in
the spectrum using three environmental variables: VPD,
VWC, and rainfall. As noted above, due to the high correla-
tion between VPD and aboveground temperature, all VPD
influences in the MLR model must be interpreted as the
combined influence of surface temperature and VPD. All
three environmental variables were averaged over four
timescales (similar to the PLSR analysis) unique to each
site and treatment based on their phenology as follows: 6 h
prior to measurement, 7 days prior to measurement, from
budbreak to most leaves (BB-ML), and from most leaves to
measurement (ML-Meas). Important to note is that to com-
plete the model, each species was given an independent
intercept, which resulted in a model of the following form:

Rλ ¼ β0λ,sp + β1λ,xWx,6h + β2λ,xWx,7d + β3λ,xWx,BB−ML

+ β4λ,xWx,ML−M + ϵλ ð1Þ

Equation (1) is the formal MLR model that is used to
predict normalized reflectance, R. At each wavelength λ

(400–2400 nm, in 2-nm increments, 1001 models in total)
the reflectance is predicted by estimating a species-specific
intercept β0λ,sp and the sensitivity, βiλ,x, to three environ-
mental predictors Wx (x=VPD, VWC, and rainfall)
spread across four time periods which are indicated by
the value following the x in the subscript: 6h (6 hours),
7d (7 days), BB-ML (budbreak to the majority of leaves),
and ML-M (majority of leaves to measurement). For the
6 h time scale, only VPD is included but all three environ-
mental predictors are used for the other three time scales.
The ϵλ is the residual error.

Note that species effects were accounted for in the
principal components analysis (PCA) through a
Procrustes orientation, in the PLSR approaches by evalu-
ating models for each individual species, and in the MLR
by including each species as a fixed effect. More informa-
tion on each modeling step is provided in supplemental
materials.

Spectral indices and trait estimates—
PROSPECT radiative transfer model from leaf
spectral reflectance

We examined the relationships between environmental
imprints on spectra and ecophysiologically relevant func-
tional traits and processes that were derived from
leaf-level spectral reflectance. To estimate functional traits,
we used the radiative transfer model, PROSPECT-D (Féret
et al., 2017) using optimal spectral domains (Spafford
et al., 2021) to estimate LMA (leaf mass area), chlorophyll
(Chl), carotenoids (Car), anthocyanins (Ant), EWT (equiv-
alent of water thickness), and nitrogen. In addition, we
calculated 22 common spectral indices (Appendix S1:
Table S3) that generally are associated with the following
processes: (1) the water status of the leaf, (2) carotenoids
and chlorophyll content, including their ratios, and
(3) physiological processes (e.g., photosynthetic activity,
chlorophyll fluorescence or xanthophyll cycles). We used
linear mixed models to test the effect of warming and rain-
fall reduction on all derived indices and functional traits,
with year of measurement and site as random variables.
Finally, all functional traits and spectral indices were com-
pared with the imprints of the environmental variables
(i.e., wavelengths with statistically significant model
coefficients) on the spectra derived from the MLR
model. These comparisons are made across leaf develop-
mental stages and time preceding the measurements,
with literature-documented regions associated with esti-
mated functional traits and spectral indices.

All analyses were performed in R (R Core
Team, 2023); on the use of specific packages for each
analysis see supplemental materials.
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RESULTS

Environmental conditions leave significant
imprints in leaf spectral reflectance

Environmental conditions experienced by plants through-
out the growing season impacted the mid-summer spectral
signal; evidence for this is found in all three analyses we
performed; moreover, each shows similar imprints
(Appendix S1: Figure S5). Specifically, all three analyses
indicate similar individual wavelengths and spectral
regions are affected by environmental conditions in which
the plants were growing. Species have similar directional
spectral responses to warming and rainfall but vary in
magnitude (Figure 2g–i; Appendix S1: Figure S6).
Moreover, we show that the environmental conditions
experienced during leaf development leave long-lasting
distinctive imprints that differ from those that are
imprinted by the conditions immediately preceding a mea-
surement (Figure 3).

Eigendecomposition-Procrustes analysis

The three components derived from the
eigendecomposition-Procrustes analysis show a signifi-
cant separation of warming and rainfall removal
treatments (Figure 2a–f; Appendix S1: Table S4) along
all three principal component axes. The linear
mixed-models analysis performed on the derived scores
demonstrates the effect of experimental treatments,
showing that the main effects of both warming and
rainfall removal have significant separation of spectral
reflectance (Appendix S1: Table S4), while species do
not (p > 0.05), which is also demonstrated by their
eigendecomposition-Procrustes ordination (Figure 2g–i).
The significance level of treatment separation varies across
principal components (PCs); both environmental treat-
ment main effects are strongly significant in PC1 and
PC3 (p < 0.001) and modestly significant for PC2
(0.05 > p < 0.001; Appendix S1: Table S4). Moreover,
each PC shows from one to three significant interac-
tions, and collectively across all three PCs, at least two
of the four possible interactions are modestly significant
(p < 0.05) in one of the PCs, but not a single PC has all
four significant interactions.

Running the eigendecomposition-Procrustes analysis
allows a rotation of coefficients, which permitted us to
superimpose species coefficients by orienting them on
the same axis/dimension (Figure 2g–i; Appendix S1:
Figure S6) while conserving the variability of the spectra.
Thus, newly derived scores from this analysis that sum-
marize the variance of the spectra as associated with the

treatments when plotted by species (Appendix S1:
Figure S6) show that species organize along the same
dimension with their responses affected by experimental
treatments along PC1, PC2, and PC3 and primarily vary-
ing in the magnitude of their responses. In other words,
this approach effectively removes the species effect from
the treatment effect and allows us to use the scores to
conduct linear mixed models to test the effect of experi-
mental treatments on spectra.

Moreover, an eigendecomposition-Procrustes analysis
allowed us to study the eigenvectors’ importance associ-
ated with five specific bands (i.e., 532, 684, 740, 1418, and
1906 nm; Appendix S1: Figures S7 and S8) across the
entire spectrum of leaf reflectance that are related to all
three principal components that explain ~94% of the data
variation. In visible light (VIS), the eigenvectors indicate
three primary wavelengths 532, 684, and 740 nm associ-
ated with pigments and structural features of the leaf
(Appendix S1: Figure S8). Also important for explaining
variation in the spectral data in the PCA are two bands
associated with the SWIR region 1418 and 1906 nm that
are related to the structure and biochemistry of the leaf
(Appendix S1: Figure S8).

PLSR modeling for environmental
variables prediction

Main models

The general PLSR models, for four focal environmental
variables (VPD, rainfall, aboveground temperature, and
VWC) showed that environmental conditions during leaf
and canopy development were stronger predictors of
mid-summer spectral signatures than conditions over the
entire season up to the time of measurement, or shorter
periods just prior to the measurements (Appendix S1:
Table S5). The VPD model had RMSE = 17.16 and
R2 = 0.59 (Figure 3a) for a period from budbreak until
the appearance of the first leaves (BB-1L). The above-
ground temperature for the period from budbreak to the
appearance of the first leaf was best predicted from spec-
tra with RMSE = 19.81 and R 2 = 0.38 (Figure 3b). The
VWC had RMSE = 21.88 and R 2 = 0.43 (Figure 3d) for
a period when leaves are developing throughout the
crown (1L-ML). Rainfall showed the highest predictabil-
ity of all four environmental variables (RMSE = 16.21
and R 2 = 0.79; Figure 3c) that was achieved for the
period that spans the entire crown development
(BB-ML; Appendix S1: Table S5). However, a continu-
ous gradient in observed rainfall was predicted to fall
into just two clusters, suggesting some concern about
patterns of residuals.
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Species-specific models

Species-specific PLSR models overall had similar predic-
tive power for environmental variables as general models
and were also typically the best for one or more times
that spanned leaf development times at the beginning of
the growing season. However, the exact time windows

for which environmental variables were best predicted
(that were uniquely constructed for each species based
on their phenology) varied slightly among species.
Rainfall and VPD were overall the best predicted from
spectra (Appendix S1: Table S5).

Rainfall exhibited the most uniform and highest pre-
dictability across species. For all species, spectra best

QUEMAQUERUACERU ACESA BETPA

+1.7℃ +3.3℃ambT

reducedRambR

F I GURE 2 Ordination of the eigendecomposition-Procrustes analysis of the wavelet transformed spectral data. Panels (a–c) depict the
distribution of warming treatments, while panels (d–f) depict rainfall reduction treatments. Panels (g–i) show the ordination of species after
the superimposition of species coefficients to the same axis, while retaining the variability of the spectra as summarized by the
eigendecomposition. Note that to visually emphasize the effect of the treatments in panels (a–f), we shortened both axes; as a result, ~18% of
all points are not visible. PC, principal component.
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predicted rainfall occurring during leaf development
(BB-ML), which on average had the lowest RMSE and
highest R2 (RMSE < 19.86 and R2 > 0.65; Appendix S1:
Figure S9). VPD was well predicted for the BB-1L
timeframe for all species and ranged from RMSE = 19.96
and R2 = 0.48 for Q. rubra to RMSE = 17.14 and
R2 = 0.58 for Q. macrocarpa. Aboveground temperature
was also significantly predicted for each species
(Appendix S1: Figure S9); however, in contrast to the
other environmental variables, species differed in the
best predicted time frames, with the best models for

A. rubrum (RMSE = 30.80 and R2 = 0.13), A. saccharum
(RMSE = 29.68 and R2 = 0.39), and Q. rubra
(RMSE = 29.68 and R2 = 0.39) being for a period of
ML-Meas, while for B. papyrifera (RMSE = 26.72 and
R2 = 0.36) and Q. macrocarpa (RMSE = 23.46 and
R2 = 0.33) models were best for a period of 1L-ML.
VWC was less reliable for any of the time frames consid-
ered for the PLSR models in general across all species
except Q. macrocarpa (RMSE = 20.43 and R 2 = 0.50)
and A. saccharum (RMSE = 29.55 and R 2 = 0.38)
(Appendix S1: Figure S9).
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F I GURE 3 Relationship between environmental conditions during leaf development and mid-summer spectra. Panels show predicted
versus observed environmental variables from analysis of leaf spectra using partial least square regression. (a) Aboveground temperature for
a period of BB-1L, (b) vapor pressure deficit (VPD) for a period of BB-1L, (c) volumetric water content (VWC) for a period of 1L-ML, and
(d) rainfall for a period of BB-ML. Black diagonal lines show 1:1, orange dashed lines are model fits. For acronyms, see the main text.
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Variable importance in projections

The general PLSR models with species grouped together
across sites and years indicate ranges and individual
wavelengths important in the predictability of the envi-
ronmental variables. For each environmental variable
from the leaf development timeframe, PLSR models indi-
cated from 6 to 9 important regions with dominant wave-
lengths as defined by the 0.8 heuristic threshold for the
selection of important wavelengths as suggested by Burnett
et al. (2021) (Figure 4). While important regions and wave-
lengths differ across environmental variables, there are
some commonalities. In particular, measurements at 1902
and 1388 nm are important for each environmental

variable. These wavelengths correspond to water absorption
features in the SWIR region of the leaf spectral reflectance
(Jacquemoud & Ustin, 2019). Moreover, if wavelength
regions are considered more broadly (i.e., characterized by
the spectral breadth of a variable importance in projections
[VIP] peak) there is considerable overlap among environ-
mental variables. Across all four environmental variables,
four regions covering roughly 490–586 nm, 628–760 nm,
1368–1428 nm, and 1852–1928 nm are common as indi-
cated by PLSR general models.

Species-specific models generally agreed with the
main models and indicated similar spectral regions
with important wavelengths used by the PLSR models
to predict environmental variables (Appendix S1:

b temperature
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F I GURE 4 Variable importance in projection (VIP) for four environmental variables based on the Partial Least Squares Regression.
(a) aboveground temperature for a period of BB-1L, (b) vapor pressure deficit (VPD) for a period of BB-1L, (c) volumetric water content
(VWC) for a period of 1L-ML, and (d) rainfall for a period of BB-ML. The horizontal dashed line fixed at 0.8 identifies the heuristic
threshold for importance suggested by (Burnett et al., 2021) for wavelengths in the partial least square regression model. For acronyms,
see the main text.
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Figure S9, Table S3). As well, common wavelengths
emerge as important across species. However, for
example, VWC—as described above—shows good pre-
dictions for only two of five species, but these do match
spectral regions and wavelengths of the main models.
Generally, the key spectral regions and wavelengths in
the PLSR models overlap across species regardless of
the time frame (Appendix S1: Figure S10).

MLR—Spectra and environment

Based on the PLSR, the MLR analyses used only the
mean spectrum of each species, that is, all species were
assumed to respond identically to the environment.
Regardless, the model estimates of the mean vector nor-
malized reflectance for each species show substantial dif-
ferences across many regions of the spectrum (Figure 5b)
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F I GURE 5 Goodness of fit and coefficients indicating the strength of the environmental covariates with spectra based on multiple
linear regression (MLR). Panels (a) the coefficient of determination, R 2 (b) Species specific base spectra (the intercept of the MLR model,
Equation 1). Each species is given a unique color. Panels (c–e) show coefficient strength expressed as the change in vector normalized
reflectance per unit SD of the environmental metric. (c) Coefficient values for vapor pressure deficit (VPD), but note that due to the high
correlation of VPD with aboveground temperature, this coefficient is indicative of the combined influence of VPD and surface temperature.
The legend here applies to panels (d) and (e) as well. Statistical significance (p < 0.01) is indicated by the portions of the spectrum with a
thicker line. (d) Coefficient values for volumetric water content (VWC). (e) Coefficient values for precipitation. All environmental data were
transformed to mean zero and unit SD (z-scores) to allow for a direct comparison across environmental predictors.
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that are most distinct in the NIR (e.g., B. papyrifera and
A. saccharum) and within the SWIR (e.g., Q. rubra,
B. papyrifera, and A. rubrum). These are the species mean
spectra after accounting for the influence of the environ-
mental variables that comprise the remainder of the
model (Equation 1). It is unsurprising that species have
distinct spectral signatures (Cavender-Bares et al., 2017;
Meireles et al., 2020), but it is a useful check that this
model is able to extract those differences from the data.

The MLR model has variable goodness of fit as shown
by the estimate of the coefficient of determination, R2

(Figure 5a), with generally poor goodness of fit in the vis-
ible that rises to an average of between 0.4 and 0.5 across
much of the NIR and SWIR; there is also a notable varia-
tion between the main water absorption wavelengths in
the SWIR region. Also, the model appears to show mod-
est responsiveness to species identity and quite a bit to
the environmental variables (Figure 5b–e). However, due
to the estimated coefficients and modest correlation, the
actual environmental influence on this region is much
smaller because VPD, VWC, and rainfall have opposite
signs (or negative correlation) for the major peaks occur-
ring in the same time frame and thus cancel each other
out (Figure 5c–e). Low sensitivity in the visible is due to
the influence of light absorption by pigments. On the
other hand, the MLR predictability in the NIR and SWIR
is significantly higher and addresses a larger portion of
the spectral variability.

The sensitivity to all three environmental variables
changes with the timeframe under consideration and shows
that reflectance is generally more sensitive (larger model
estimated coefficients) to environmental conditions during
leaf development (BB-ML) and the core of the growing sea-
son (ML-Meas) than to conditions immediately preceding
measurement (days to hours prior to the measurement).
For example, the MLR reveals that across the entire spectral
signal, the highest sensitivity of leaf reflectance is to water
(i.e., rainfall and VWC) during the leaf development time
and main portion of the growing season. Rainfall, in partic-
ular, has a stronger influence in the 7 days preceding mea-
surement than its longer-term average.

A closer examination of the MLR model sensitivity
across different time frames shows three interesting fea-
tures. First, the scale of sensitivity of the leaf reflectance
across the entire spectrum changes with the time frame
being considered. For instance, in the case of the VPD,
during leaf development, the highest sensitivity is located
in relatively small regions of the blue and red VIS and
only in regions associated with water absorption in the
SWIR. As noted above, the sensitivity of the spectrum to
VPD must be interpreted as the joint sensitivity to VPD
and surface temperature due to the high correlation
between these environmental variables. However, in the

middle of the season, the significance of the coefficients
expands through the entire VIS, most of the SWIR, and
parts of the NIR. In the days preceding the measurement,
most of the areas previously significant in large swaths
across the entire spectrum become comparatively insig-
nificant but flip again in the hours immediately preced-
ing the measurements to show the importance of broader
areas in the NIR and SWIR that were not associated with
any other time frames (Figures 5c and 6). Second, there is
a notable change in sign from early leaf development
(BB-ML) to a full canopy (ML-Meas) and days preceding
the measurement across most of the spectrum in the case
of rainfall (Figure 5e). There is a similar flip in VWC
between BB-ML and ML-Meas times and days preceding
the measurement (7d; Figure 5d); however, some caution
is called for due to the temporal correlation within these
variables (Appendix S1: Figure S4). Finally, there is more
variability in model coefficients in the case of VPD dur-
ing leaf development and the main core of the season
specifically around water absorption bands (Figure 4a,c).

Environmental imprints across all environmental var-
iables and time scales reveal striking patterns indicating
the importance and role of water in spectral signals. For
example, the positive coefficients of the VWC and
Rainfall in the NIR region and negative in SWIR during
ML-Meas and 7d periods suggest that at times when con-
ditions are typically warmer and drier, the reflectance in
NIR is higher while in SWIR it is lower, suggesting that
leaves are going through not only water content changes
but also some structural and biochemical changes.
Moreover, the modest but different influence of the VWC
and rainfall on the shortest time scale (7d) signal in the
VIS and the tail of the SWIR likely reflects higher fre-
quency shifts in leaf biochemistry in response to recent
weather conditions and water availability (e.g., lack of
rain and warmer conditions causing increased depletion
of VWC). Lastly, precipitation (Figure 5e) often shows a
coordinated response between the medium term (7 days)
and longer term (ML-Meas) response across the NIR and
SWIR. The 7-day signal is statistically significant across
almost the entire spectrum and reinforces the observation
(Miller et al., 1991) that rainfall within a week of a measure-
ment campaign will have an outsized influence on the spec-
trum. Naturally, the influence of water on the spectrum in
the NIR and SWIR is apparent in the strength of the coeffi-
cients across water absorption bands. Consequently, exami-
nation of the significant portions of the MLR coefficients
and their respective locations on the leaf reflectance spec-
trum across variables and times suggests that the environ-
ment more strongly influences structural properties during
the development of the leaf while more recent time periods
are more reflective of changing chemistry and/or the physi-
cal presence of water.
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Important wavelengths in relation to traits
and spectral indices

All three analyses identified similar and statistically sig-
nificant regions representing key chemical, structural,
and physiological properties of the leaf (Figures 4–6;
Appendix S1: Figures S5, S8, and S10), yet rarely did pre-
cisely the same wavelengths match across all three tests.
In at least a few specific instances (e.g., 1906 nm for PCA,
1902 nm for PLSR, and 1900–1906 nm for MLR) the exact
peaks were within a few nanometers of each other. So
while the exact peaks were not aligned, the analyses often
had similar broader regions of significance that occur
near these peaks (compare and contrast Figures 4–6;
Appendix S1: Figures S5, S8, and S10). Some of those com-
mon regions are associated with important features of leaf
spectral reflectance related to pigments and processes in
the region of VIS, structural traits, and water absorption in
NIR, and biochemistry and water in SWIR.

Across the leaf developmental stages during the grow-
ing season, the important spectral regions shift and either
broaden or shrink in spectral breadth. Four distinctive

regions can be identified (450–580 nm, 650–750 nm,
1350–1450 nm, and 1850–1950 nm with some small dif-
ferences) that are significant across all three analyses and
all time periods, while the remaining spectral regions are
dynamic in response to variation in the environmental
variables across time periods (Figure 6; Appendix S1:
Figure S5). For example, the primary importance of the
VPD influence on spectra during leaf development
(BB-ML) manifests on the edges of the VIS region and
water absorption regions in the SWIR. However, this
changes in the period spanning the middle of the season
(ML-Meas) where the importance in the VIS region
expands primarily in its central part (i.e., 500–580 nm),
and also expands and shifts in the SWIR. The significant
regions in the days preceding the measurement (7 day)
disappear from the middle of the VIS region, with new
significant wavelengths appearing in areas representing
general stress (shorter VIS wavelengths associated with
pigments), disappearing in the NIR, and shrinking con-
siderably to narrowly reflect water absorption features in
the SWIR. Finally, at the time immediately preceding
measurements (6 h) significance shrinks in the visible to
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F I GURE 6 Climate imprints on spectra matched with known functional traits and spectral indices. Panel (a) indicates locations of
wavelengths that are associated with selected traits’ (Curran, 1989; Fourty et al., 1996; Kokaly et al., 2009; Kokaly & Skidmore, 2015; Wang
et al., 2020). Panel (b) shows all important individual wavelengths as indicated by the multiple linear regression model for all three
environmental variables at different times from leaf development (BB-ML), middle of the season (ML-Md), 7 days prior to measurement
(7d), and 6 h before measurement (6h). Panel (c) indicates locations of wavelengths that are associated with specific spectral indices taken
from the literature (Appendix S1: Table S3). LMA, leaf mass per area; NIR, near-infrared; SWIR, short-wave infrared; VIS, visible; VPD,
vapor pressure deficit; VWC, volumetric water content.
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a very narrow portion of the shortest wavelengths,
reappears at the red edge, and expands significantly in
the NIR and around four distinctive features associated
with water absorption in the NIR and SWIR. On the
other hand, in the case of VWC, the VIS region changes
only modestly through time, while the SWIR changes sig-
nificantly. Effectively, the range of importance expands
and contracts as time progresses throughout the season
across all three environmental variables (Figures 4–6;
Appendix S1: Figure S5).

Finally, a linear mixed-effects analysis of functional
traits and spectral indices showed that for all six func-
tional traits (i.e., nitrogen, Chl, Car, Ant, EWT, and
LMA) and 19 out of 22 indices (e.g., Photochemical
Reflectance Index, Water Band Index, Normalized
Difference Water Index, Normalized Phaeophytinization
Index, and CI; Appendix S1: Table S3) warming had a
significant effect (p < 0.0433; Appendix S1: Table S6). In
the case of rainfall, half of the estimated traits (i.e., EWR,
LMA, and Chl) and 14 out of 22 indices were significantly
affected (p < 0.0438; Appendix S1: Table S6). Generally,
interactions were additive, and only in some individual
instances did warming and rainfall reduction have inter-
active effects on functional traits and indices, which is
not surprising because often warming has a dual effect:
direct thermal and indirect nonthermal (i.e., warming
also has a drying effect; see Reich et al., 2018; Stefanski
et al., 2023). The most notable changes in functional trait
responses estimated from the Prospect model we observed
were: (1) a modestly significant increase in Nitrogen con-
tent (1%) warming, (2) a sizeable increase in chlorophyll
and anthocyanins content with highest warming (8.3%
and 11.3% respectively), and a significant decrease in EWT
and LMA due to both warming and rainfall reduction
(4.5% and 3.5% respectively).

Our stepwise approach to decomposing and analyzing
the full range of green leaf spectral reflectance demon-
strates that there are regions of the spectra in the VIS,
NIR, and SWIR that have lasting fingerprints from the
environment, likely setting up the overall trajectory of
leaf development as well as more nuanced responses
throughout the season across multiple functional traits
and physiological processes which point toward a
“fine-tuning” of leaf phenotype expression to environ-
mental conditions.

DISCUSSION

In an open-air warming field experiment, we show that
environmental variables leave distinct spectral imprints
corresponding with regions of the spectra that are asso-
ciated with important chemical, structural, and

physiological properties of the leaf. Numerous studies
have shown that spectra reflect how leaf functional
traits and physiological processes are shaped by the
environment (Gamon et al., 2005; Townsend
et al., 2003) and that plant responses to the environ-
ment, including drought stress (Dao et al., 2021;
Penuelas et al., 1997; Römer et al., 2012) impact leaf
spectral properties. Historically, however, research
incorporating foliar spectral information has focused
on how either the whole spectrum can be used to pre-
dict traits or how single features can be used to
describe plant characteristics and plant-environment
relationships. Here we have demonstrated how exam-
ining the full spectrum of the leaf reflectance allows us
to identify imprints of a leaf’s sensitivity to the envi-
ronment at short and long time scales across the grow-
ing season that capture a holistic phenotype response.

In general, we show that the spectral sensitivity to the
environment varies in magnitude from modest changes
across the full spectrum at short time scales to systemic
changes that are fixed during sensitive periods of leaf
development. Thus, we demonstrate that spectra capture
complex plant-environment relationships, allowing us to
make four ecologically meaningful inferences: (1) the
spectra-environment relationships appear to be consis-
tent across species (Figure 2; Appendix S1: Table S4),
(2) we can predict environmental conditions that plants
experienced from spectra and vice versa (Figures 3 and 5)
and thus infer environmental conditions that impact
spectra (which is the true goal), (3) by linking them to
responses on a biochemical, structural, and process level
(e.g., linking them to specific functional traits; Figure 6),
and (4) these changes in the spectra-environment relation-
ships through time reflect the trajectory of trait expression
over the course of the growing season (i.e., structure dur-
ing development, general stress throughout the season,
and “fine-tuned” responses to recently experienced condi-
tions; Figures 5 and 6).

The spectra-environment relationships that we have
shown here appear to be consistent across species and
are primarily driven by water content and water stress.
Moreover, we have demonstrated that multiple environ-
mental factors (e.g., temperature, rainfall, VPD) across a
range of time scales (i.e., from the time of leaf develop-
ment to hours before the measurement) alter spectral
imprint in concert with the dynamic nature of leaf physi-
ological processes affecting the direction and magnitude
of influence they exert on the differences in spectral sig-
nals we observed among species (Figure 5a). This is in
line with previous work that has shown that species with
similar adaptations typically have similar physiological
responses to warming and rainfall but vary in the magni-
tude of their responses (Reich et al., 2018; Stefanski
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et al., 2023). Some of this variation in the environmental
imprints on spectral reflectance can likely be attributed
to the combination of direct and indirect effects. For
instance, changes in VPD at time scales of hours and days
preceding the measurement influence components of the
visible spectrum and the SWIR that primarily can be linked
to stress activity of pigments, biochemical changes, and
water content as leaves adjust to high-frequency changes in
the weather (Drake et al., 2018; Xu et al., 2020). On the
other hand, VPD experienced by plants during leaf develop-
ment and over the bulk of the growing season likely relates
to structural characteristics located in the VIS and SWIR
regions of the spectral signal (Jacquemoud & Ustin, 2019;
Poorter et al., 2009). Note that because VPD depends both
on the amount of water in the atmosphere and on tempera-
ture the effects cannot be separated and generally VPD
influence must be interpreted as the combined effect of
VPD and temperature. Thus, the effects of VPD on spectra
may result from changes in the gradient of water deficit on
the soil–plant-atmosphere continuum across the season
driven by shifts in either the water vapor or the tempera-
ture, or both. Consequently, it is possible that at the begin-
ning of the season, any effects statistically associated with
VPD may functionally be related to temperature—since
water in the soil is not a limiting factor (VPD is quite low)
during this part of the growing season at these study sites.
Thus, VPD effect is likely associated with increased rather
than decreased stomatal conductance at that time period
(because conductance increases with temperature and
VPD also increases with temperature) (Reich et al., 2018).
However, in the middle of the growing season, when often
water deficit increases on the soil–plant-atmosphere con-
tinuum because the water in soil may become limited
along with a significant increase in temperatures, spectral
responses to VPD are likely to be principally related to a
drying creating a greater water deficit gradient on the
soil–plant-atmosphere continuum affecting water status
of plants.

The imprints on spectral signatures established by the
leaf-environment relationship during early developmental
stages related to structural characteristics are maintained
over the season while other traits are more dynamic and
change over time due to stress and resource availability
(Ramirez-Valiente et al., 2015; Yang et al., 2016), or
changes in biochemistry resulting from dynamic physiolog-
ical adjustments (L!opez-Hidalgo et al., 2023). The associa-
tion of the environmental factors imprints with different
traits and processes at different times suggests that, for
example, environmental conditions experienced during a
critical development period lock in trajectories for trait vari-
ation, leaving a lasting imprint in leaf optical properties at
the peak of the growing season. Thus, it is not surprising
that at shorter time scales and times immediately preceding

the measurements, the spectra-environment relationship is
generally weak. We consider that this result is likely due to
increasing variability in more plastic functional trait
responses to short-term changes (e.g., up to 7 days preced-
ing the measurement) in environmental conditions,
such as diurnal xanthophyll cycles and daily pigment pool
sizes or changes in leaf water status. This conclusion is
reinforced by the MLR multi-time scale analysis that shows
the changes in the importance of different regions of spec-
tra throughout the growing season, which supports the
PLSR model’s ability to detect environmental conditions
from the time of leaf development but not from times
immediately preceding the measurements. For example,
the environmental conditions during early leaf develop-
ment show a strong connection with the spectral indices
that define leaf pigments and water content, nutrients,
and structural compounds (e.g., cellulose, lignin, and
carbohydrates; Figure 6). This is supported by numerous
studies that show the seasonal change in pigment con-
tent, which typically increases dramatically at the begin-
ning of the season, plateaus after full canopy formation,
while at the same time, carbon content and some nutri-
ents (e.g., calcium) increase gradually throughout the
entire growing season, leading to an increase in LMA as
well as phenological variation in other traits (Chlus &
Townsend, 2022; Fajardo & Siefert, 2016; Kothari
et al., 2018; McKown et al., 2013; Yang et al., 2016).
Overall, our findings align with short- and long-term
responses of tree carbon balance to environmental
changes (Gessler & Zweifel, 2024): environmental con-
ditions that act on short timescales can alter long-term
trajectories of structural and functional traits, leading
to the detected environmental imprints in spectra we
show here.

Likely, the dynamic changes of imprints throughout
the season along the spectrum are reflective of holistic
leaf phenotype adjustments via the dynamic interplay of
trait expression to the experienced environment. For
example, the shift of the leaf sensitivity to VPD in the VIS
region across time is likely related to a shift in impor-
tance from indices that are associated with leaf content
(e.g., pigment, structure; Yang et al., 2016) to those that
indicate acute and general stress as well as photosyn-
thetic process adjustments (Figure 6; Gamon et al., 1992;
Rabinowitch & Govindjee, 1965). These shifts are likely
associated with environment-induced expression of spe-
cific traits and a reallocation of investments as, for exam-
ple, we observed that warming treatments showed an
increase in the content of chlorophyll and other pigments
that play important roles in photosynthesis and stress pro-
tection (Rabinowitch & Govindjee, 1965; Xu et al., 2020).
This emphasizes the increasing importance of regions of
spectra that are associated with traits that can be linked to
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instantaneous physiological responses (e.g., photoprotection
and photosynthetic activity; Drake et al., 2018; Xu
et al., 2020) in the VIS and water status in the infrared. In
addition, dynamic changes in the infrared region of the
spectrum in response to VPD in times immediately preced-
ing measurements are likely a response to both a decrease
in water content as well as changes in solute concentration.
This is supported by our observation of a decrease in the
EWT and LMA in response to warming, which is likely
related to a decrease in water availability in the hottest and
driest treatments and matches previous work (Poorter
et al., 2009), which showed a decrease in LMA with
decreasing water availability and an increase in growth
temperature. This apparent sensitivity in large swaths of the
entire spectrum across environmental variables and time
frames specifically in times immediately preceding mea-
surements is likely related to the “fine-tuning” of leaf
responses in real time to experienced weather conditions
by adjusting its chemistry (pigments content), physiologi-
cal processes (e.g., xanthophyll cycle), water content, and
solute changes.

Effectively, because environmental conditions leave
imprints throughout the entire reflectance spectrum, we
have shown the importance of examining the entire spec-
trum rather than focusing on single spectral features
and/or functional traits. Thus, this work demonstrates that
whole spectrum signals can supplement work that focuses
on single features of the spectra and/or functional traits,
whether measured spectrally or in a conventional way, and
provide new insight into the nuanced relationship between
plants and the environment. Note that, given plants of dif-
fering life stages may employ similar responses to a range
of environmental stressors (e.g., pigments for thermal pro-
tection and photoprotection), we anticipate these kinds of
temporal imprints to be generalizable across life stages
(i.e., from juveniles to mature trees). Naturally, there is
great benefit in examining individual spectral features and
functional traits that can be directly linked to properties
and processes that are influenced by the environment, but
individual features and traits may fail to capture the holis-
tic plant-environment relationship (Anderegg, 2023; Reich
et al., 2007). This is likely a result of a range of factors,
including single traits lacking a direct relationship with
climate (Aubin et al., 2016; Violle et al., 2007), a wide
variation in the expression of traits (Albert et al., 2010;
Reich et al., 2007), or multiple functions of traits and/or
multi-trait coordinated responses as constrained by
plants’ genotype and species-specific adaptations
(Falster et al., 2017; Sack & Buckley, 2020).

In sum, we showed that by examining the full spec-
tral signal we can detect and quantify the direction and
magnitude of the climate imprints in leaf spectral reflec-
tance that are reflective of the leaf holistic phenotype

expression resulting from the long-and short-term experi-
enced environmental conditions. This holistic measure of
the leaf phenotype can be associated with specific func-
tional traits and demonstrates that spectra capture per-
manent and dynamic responses where the former relate
to building a leaf that will be best suited to given climatic
conditions while the latter suggests “fine-tuning” to envi-
ronmental conditions experienced in real time. The gen-
eralizability of our findings to broader sets of species,
including those with longer leaf lifespans or varying more
strongly hydraulic and carbon-acquisition strategies,
remains to be demonstrated and ought to be a focus of
future research. However, our work has taken an initial
step in quantifying the relationship between leaf spectral
reflectance and global environmental change by:
(1) leveraging key features of spectral data, (2) demon-
strating the importance of capturing the temporal
dynamics of leaf trait-environment relationships, (3) illus-
trating how examining the full spectral signal of plants
grown in experimentally manipulated conditions offers a
holistic examination of leaf phenotype response to the
environment, and (4) adding to the growing body of
research that demonstrates that the spectral signal can be
considered a trait in its own right and moving the field
toward a more universal application across species, and
ultimately toward broad-scale upscaling.
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