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Abstract

Automatic speech recognition (ASR) technol-
ogy is frequently proposed as a means of preser-
vation and documentation of endangered lan-
guages, with promising results thus far. Among
the endangered languages spoken today, a large
number exhibit complex morphology. The
models employed in contemporary language
documentation pipelines that utilize ASR, how-
ever, are predominantly based on isolating or
inflectional languages, often from the Indo-
European family. This raises a critical concern:
building models exclusively on such languages
may introduce a bias, resulting in better perfor-
mance on languages with simpler morphologi-
cal structures. In this paper, we investigate the
performance of modern ASR architectures on
morphologically complex languages. Results
indicate that modern ASR architectures appear
less robust in managing high OOV rates for
morphologically complex languages in terms
of word error rate, while character error rates
are consistently higher for isolating languages.

1 Introduction

Traditional morphological typology (Von Hum-
boldt, 1822; Brown, 2011) recognizes a range of
morphological complexity in the world’s languages.
At one end are isolating languages, like Mandarin,
where grammatical information is not encoded in
affixes and words typically consist of one or more
lexical morphemes. Languages that do use af-
fixes to indicate grammatical information, such
as person and tense on a verb, or case and num-
ber on a noun, are typically described as either
fusional — where a single morpheme encodes mul-
tiple features, as in Russian, Sanskrit, French — or
as agglutinative — where each morpheme has a sin-
gle function, as in Turkish. Languages with an
extreme degree of morphological complexity, in-
cluding phenomena like noun incorporation and
“sentence words”, are often described as polysyn-
thetic. Many languages indigenous to the Americas,

northern Australia, New Guinea, and Siberia are
polysynthetic. English, while with rich derivational
morphology, is quite limited in its inflectional mor-
phology with only a handful of regular grammatical
suffixes, making it closer in many ways to an iso-
lating language.

Historically, NLP has often operated under the
assumption that techniques effective for English
will work well for other languages. However, this
is gradually changing with the emergence of highly
multilingual models that account for a significant
diversity in language morphology (Radford, 2018;
Radford et al., 2023). In areas such as machine
translation, text generation, and speech recogni-
tion, the broader adoption of methods like Byte
Pair Encoding (Sennrich et al., 2016) has facili-
tated the inclusion of languages with more com-
plex morphology. Despite these advances, however,
polysynthetic languages remain largely absent from
large language models and automatic speech recog-
nition systems.

In this paper, we select a variety of languages
with differing degrees of morphological complex-
ity to examine the effectiveness of state-of-the-art
automatic speech recognition (ASR) models for
transcription. We focus specifically on one key as-
pect: the potential for these languages to have a
high number of out-of-vocabulary (OOV) words
due to their extensive word construction possibili-
ties and the models’ ability to handle this challenge.
On one hand, these models are trained on a large
number of languages, including some agglutina-
tive ones, and they operate on subwords, which
might be sufficient to manage the production of
long words with multiple morphemes. On the other
hand, no polysynthetic languages were included in
the original pretraining sets, leaving the ability of
these models to handle such complex morphology
unknown.

Using corpora for ten languages ranging typolog-
ically from isolating to polysynthetic, we extract
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several features that capture aspects of morpholog-
ical complexity. We then fine-tune ASR models
for different splits of each corpus using two state-
of-the-art multilingual ASR models. Comparing
performance for each language in terms of word
error rate (WER) and character error rate (CER)
across models and splits, we find that both ASR
architectures are less robust for polysynthetic lan-
guages and that certain measures of morphological
complexity are associated with degradation of both
WER and CER.

2 Related Work

Much of the NLP research on polysynthetic lan-
guages has focused primarily on computational
morphology with the goal of developing meth-
ods for identifying the component parts of com-
plex word structures. Early work included ap-
proaches such as diphones (Daland and Pierrehum-
bert, 2011), Bayesian methods (Goldwater et al.,
2009), and transitional probabilities (Perruchet and
Desaulty, 2008). Hybrid methods such as adaptor
grammars were also recognized as powerful tools
for uncovering subword units, aiding in language
documentation (Sirts and Goldwater, 2013; Botha
and Blunsom, 2013; Godard et al., 2018).

Recently, the trend has shifted towards combin-
ing traditional methods like finite-state transducers
(FSTs) with neural networks to segment words and
analyze their glosses. These approaches leverage
human expertise and employ technology to scale
up to larger datasets (Lane and Bird, 2019, 2020;
Chen et al., 2020). Methods like BPE (Gutierrez-
Vasques et al., 2021) and SentencePiece (Kudo and
Richardson, 2018) are currently in wide use as a
substitute or proxy for linguistically-informed mor-
phological segmentation because of their efficiency,
simplicity, and scalability. They have also been
widely adopted into modern language processing
pipelines, including contemporary text generation
models (e.g. Touvron et al., 2023).

The idea of incorporating ASR into language
documentation pipelines started to be explored with
HMM-based architectures and has resulted in re-
ductions in both speed of transcription and tran-
scription error rates. (Prud’hommeaux et al., 2021;
Shi et al., 2021). On similar architectures, attempts
to incorporate morphological information in ASR
architectures have flourished. These methods in-
cluded not only BPE-like segmentation or syllable
tokenization (Tachbelie et al., 2010; Manohar and

Iso | Fus | Agglu | Poly | Other
WHISPER | 17% | 53% | 27% | 0% | 2%
XLSR 22% | 32% | 42% | 0% | 4%

Table 1: Distribution of the morphological type of the
languages used in ASR pretraining.

Rajan, 2023) but also more complex methods that
rely on WESTs (Sak et al., 2009).

The expansion of transformer-based architec-
tures has significantly enhanced the potential of
ASR in documentary linguistics. Pretrained mod-
els like the WHISPER suite (Radford et al., 2023),
wav2vec models (Baevski et al., 2020), and MMS
(Pratap et al., 2024) have drastically reduced the
amount of data needed to achieve reasonable re-
sults. These models have demonstrated efficiency
in real-world documentary pipelines (Le Ferrand
et al., 2023, 2024). However, their effectiveness
for morphologically complex languages remains
uncertain. An examination of the data used to
build these models reveals that the vast majority
of the included languages have relatively simple
morphology, and none are polysynthetic (see Table
1). These architectures typically handle morphol-
ogy by relying on subword units extracted from a
pretrained SentencePiece model or by using seg-
mentation based on a CTC loss function (Graves
et al., 2006).

3 Data

For our study, we will compare ASR performances
on three mostly isolating languages: Namakura,
East Uvean, and Bambara, and seven languages
with different levels of morphological complex-
ity: Kanakanavu, Rukai, Hupa, Enenlhet, Kunwok,
Plains Cree, and St Lawrence Yupik.

Namakura (ISO-nmk) and East Uvean (ISO-wls)
are Austronesian languages spoken respectively on
Wallis Island and Vanuatu in the Pacific Ocean.
They are both isolating languages with simple mor-
phology. Both corpora are spontaneous fieldwork
recordings extracted from the Pangloss database'.
The total durations of the collections are 2h9m for
East Uvean and 2h18m for Namakura.

Bambara (ISO-bam) is one of the primary spo-
ken languages in Mali and is part of the Mande
language family. The language is isolating with
simple morphology. The audio data consists of
fieldwork recording of spontaneous speech. The

"https://pangloss.cnrs.fr/?lang=en
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total duration of the collection is 7h11m. While
the corpus is not currently publicly available, it is
expected to be released this year (Tapo et al., 2024).

Kanakanavu (ISO-xnb) and Rukai (ISO-dru) are
members of Formosan language family, the indige-
nous languages of Taiwan. Although not polysyn-
thetic, these languages prominently feature com-
plex morphological features such as distinct voice
and case markings. The audio data consists of a
mixture of fieldwork recording through the NTU
corpus® (wen Su et al., 2008) and pedagogical re-
sources from ePark 3. Both collections are part
of the FormosanBank project (Hartshorne et al.,
2024). The total duration of the collections are
4h44m for Kanakanavu and 3h35m for Rukai.

Hupa (ISO-hup) is a critically endangered Native
American language spoken in the Hoopa Valley in
Northern California in the United States. It is part
of the Dene/Athabaskan language family and has
polysynthetic morphology. The audio data consists
of narratives from one female elder native speaker
of the language. The total duration of the collection
is 9h12m. This corpus was shared for research pur-
poses by a linguist who has been working with the
Hupa community for a decade, with consent from
the elder speaker. Due to ethical considerations of
data sovereignty the data is not publicly available.

Toba-Maskoy or Enenlhet (ISO-tmf) is an Indige-
nous language spoken in Paraguay. It is part of the
Maskoy language family. The language is polysyn-
thetic but has very little documentation. The audio
data consists of spontaneous stories about life and
cultural topics. The total duration of the collec-
tion is Sh17m. The corpus was extracted from
the Archive of the Indigenous Languages of Latin
America*.

Bininj Kunwok (ISO-gup) is an Aboriginal lan-
guage spoken in Northern Australia. It is part of
the Macro-Gunwinyguan language family and is
polysynthetic. The audio data consists of guided
tours by seven men and elicited sentences from
three women speakers. The total duration of the
collection is 1h3min. While the community has
granted permission to use this data for research
purposes, the corpus is not publicly available.

Plains Cree (ISO-crk) is an Indigenous language
spoken in the plains of western Canada. It is part
of the Algonquian language family and is highly
polysynthetic but relatively agglutinative. The au-

Zhttps://corpus.linguistics.ntu.edu.tw/#/language/
*https://web.klokah.tw/
*https://ailla.utexas.org/collections/844/)

dio consists of a reading-out-loud of the book of
Psalms by a fluent native speaker of Plains Cree.
While various forms of audio for the entire Bible
are available online, members of our research team
have previously received access to high-quality
recordings of Psalms for the purpose of developing
a speech-synthesizer (Harrigan et al., 2019) and
other research, and we make use of the same audio
in this work. The total duration of this selection is
2h4min.

St Lawrence Yupik (ISO-ess) is an Indigenous
language spoken on St Lawrence Island in the
Bering straight in Alaska. It is part of the Eskimo-
Aluit language family and is highly polysynthetic.
The audio data consists of readings of the en-
tire Bible. The total duration of the collection is
33h32m.

As noted above, all the languages used for this
project are either extracted from open-source data
collections constructed for research purposes or
were made available to us through explicit agree-
ments from the language community or associated
scholars. All the languages here are Indigenous
and most of them are endangered. None of these
languages is included in the original training set of
either of the state-of-the-art ASR models described
later. To our knowledge, none of these languages
display unusual phonetic or phonological features
that could bias the experiments described below.

4 Methods

4.1 Morphological complexity

As noted above, morphological typology is a spec-
trum. On one end we can find isolating languages
with simple morphology, such as Mandarin where
information related to tense, person, or number is
encoded in separate words. On the other end, we
find polysynthetic languages where very complex
word construction is possible, often resulting in
very long words that would be translated into entire
sentence with multiple words in English. Consider
this exanple from Yupik:(1)

(1) Mangteghaghllangllaghyugtukut
Mangtegha-ghlla-ngllagh-yug-tu-kut
house-big-to.make-to.want.to-IND.INTR-1PL
‘We want to make a big house.’

(Jacobson, 2001)

Among languages categorized as polysynthetic, dif-
ferent levels of morphological complexity can be
observed. The morphological complexity of a lan-
guage can be defined by the ability to add multiple
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Figure 1: Morphological complexity values for all languages according to the four criteria. The barred lines are for
isolating languages, the plain bars are for morphologically complex languages

morphemes into a single word construction and
how much information a single morpheme can hold.
The more morphemes a language allows us to add
in a single word construction, the more morpho-
logically complex we can consider the language.
Logically, a more complex language will end up
with a much larger vocabulary because of all the
possible combinations of morphemes that can be
added to a single root or stem.

Based on this, we select four criteria to assess
the morphological complexity of all our languages:
The average word length (wrd len), the token type
ratio (ttr), the average number of morphemes per
word (mrp p/w), and the average morpheme length
(mrp len). The first two criteria are easy to compute
from the raw transcription. However, for the other
two, we need to have access to some morphological
segmentation. While some of the languages have
existing morphological parsers for segmentation
(Lane and Bird, 2019; Chen et al., 2020; Harrigan
et al., 2017), this method cannot be generalized to
all the languages here.

An alternative is to use unsupervised morpho-

logical segmentation. Morfessor is a suite of prob-
abilistic methods that propose morphological seg-

mentations for words from raw text (Virpioja et al.,
2013). For each language, we train a segmenta-
tion model on all the audio transcripts and use that
model to segment the data. We then compute the av-
erage morpheme length and number of morphemes
per word on the resulting segmentation. The result-
ing values can be found in Figure 1.

For all four criteria, the segmentations proposed
by Morfessor align with the typological descrip-
tions of the languages. The five polysynthetic lan-
guages display more morphological complexity.
They are followed by the two Formosan languages
and the three isolating languages. Hupa displays
a substantially lower token-to-type ratio. This is
likely due to the fact that, in contrast to the audio
data for the other languages, the audio recordings
for Hupa consist of speech from just one elder fe-
male speaker, one of only a few living speakers of
the language, whose individual preferences may
limit the size of her vocabulary.

4.2 Testing word making ability

One key component of morphologically complex
languages with repsect to ASR is their potential to
have a very large vocabulary caused by the range
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of possible word constructions. This phenomenon
also increases risk of having a very large number of
words out of vocabulary (OOV) compared to iso-
lating languages. Because the chance of having a
higher OOV rate is increased for polysynthetic lan-
guages, we want to see how much the performance
of a system will degrade as OOV rates increase. To
do so, we create two splits for each language where
we vary the OOV rate based on types. The OOV
rate is defined as the number of types (i.e., unique
words) in the test set that do not appear in the train-
ing set, divided by the total number of types. To
do this, for each language we create first a random
split. Then from this split, we swap utterances that
have a high rate of rare words in the training data
with utterances that have a high rate of frequent
words in the test data. We refer to this split as the
max split. We swapped these utterances iteratively
700 times; we selected the split that had the highest
OOV rate®. The OOV rates for each language can
be found Figure 2.
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Figure 2: OOV rates for each language.

4.3 Frameworks

To build the ASR systems for each language, we
fine-tune two pretrained models: WHISPER (Rad-
ford et al., 2023)) and XLSR-53 (Conneau et al.,
2021).

WHISPER is an encoder-decoder architecture
based on transformers. It takes as input raw spec-
trograms, passes them through encoder blocks, and
then uses an autoregressive decoder to generate
text from the encoded representation. For our task,
we chose WHISPER medium which offered a good
compromise between performance and resource re-
quirements. We fine-tuned the model for 30 epochs
using the standard hyperparameters described in

Sthe partition-making script can be found in
https://github.com/eleferrand/ASR_poly/tree/main

the main WHISPER tutorial® and kept the last model
for evaluation.

XLSR-53 (XLSR) is a pre-trained model based
on the WAV2VEC architecture (Baevski et al., 2020).
WAV2VEC is an encoder-decoder speech feature
extractor based on transformers. Typical use for
ASR consists of fine-tuning an extra transformer
head with a CTC loss function on the top of the
feature extractor. We fine-tuned XLSR for ASR for
30 epochs using the hyperparameters described in
the main XLSR tutorial” and kept the last model for
evaluation. The decoding of the model is done with
a trigram language model trained on the transcripts
of the audio training set for each language.

In an ideal scenario, a validation set would be ex-
tracted and the best model would be chosen; how-
ever, the amount of data for some languages is
insufficient for this kind of development. For con-
sistency, we chose to apply the same setup for all
the languages. All training was conducted on a
Nvidia A100 GPU for at most 5h for each model.

4.4 Analysis

The main challenge here is to be able to compare
performance across languages. A simple compar-
ison of the WER scores would not be fair as we
are working with corpora that are very different. A
very low WER might be observed in Yupik, which
has the most data, while a very high WER might
be observed for Kunwok, which has the least data.
Instead, we compute the relative impact of the per-
formances of two models. Concretely, for each
model, we compute the WER, the CER, and the
OOV robustness. The latter measure is defined as
the number of OOV that have been correctly tran-
scribed out of all the OOVs in the test set. Then for
each score, we compute the relative improvement
or degradation as (r — m)/s where r is the score
of the model trained from the random split, and m
is the score of the model trained from the max split.
We compute this score for WER, CER, and OOV
robustness for each language.

The Pearson correlation coefficient measures the
linear relationship between two datasets. A corre-
lation coefficient of +1.0 or -1.0 implies a perfect
linear relationship. We use the Pearson coefficient
to assess the impact of morphological complexity
on ASR performances using the scores described
in Section 1. Additionally, to ensure that the parti-
tioning described in Section 4.2 does not bias our

®https://huggingface.co/blog/fine-tune-whisper
"https://huggingface.co/blog/fine-tune-xIsr-wav2vec2
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results, we compute the correlation between the
ASR scores and the change of OOV based on to-
kens, types and subwords and subtypes (i.e., unique
subwords) based on the tokenization module of
WHISPER. The degree of change is computed ex-
actly as we computed the degradation score of the
ASR models.

5 Results

All the figures are sorted from the least to the most
morphologically complex language. The language
order is the following: Namakura (nmk), East
Uvean (wls), Bambara (bam), Kanakanavu (xnb),
Rukai (dru), Hupa (hup), Enenlhet (tnf), Kunwok
(gup), Plains Cree (crk) and Yupik (ess).

5.1 General observations

1.0
®
0.8 :
A ® .
e 5
e A r'y
- 0.6 1 a A : & A
w
= . A
041 S
A
a whisper rand -
e whisper max ‘ °
029 4 xlsrrand i 3
[ ]
e xlsrmax %
rwnHk wlls ba‘m xrl1b d;u hﬁp tﬁf nglp cr"k eslws
Figure 3: WERs for all the models.
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Figure 4: CERs for all the models.

The WERs for all the models trained can be
found in Figure 3. The performance of the mod-
els across languages cannot be directly compared
due to influencing factors beyond the language’s
typology, such as the quantity of data and the qual-
ity of the recordings. For example, Yupik (ess),
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Figure 5: The amount of OOV correctly transcribed.

WHISPER | WHISPER | XLSR | XLSR

rand max rand max
Correlation | -0.9 -0.8 -0.9 -0.9
p-value 0.0002 0.001 0.000 0.0003

Table 2: The effect of language type on CERs.

which has the most data and cleaner recordings,
achieves the best scores, while Kunwok (gup), with
only one hour of spontaneous speech, has a much
higher WER. No clear trend can be observed when
comparing isolating languages with more morpho-
logically complex languages. There is also no clear
trend indicating whether WHISPER or XLSR is
better.

The CERs for all models can be found in Figure
4. XLSR seems to provide generally better CER
than WHISPER. A clear observation that can be
made from the results is that the three isolating
languages yield much higher scores than all the
other languages across both architectures. Look-
ing at the correlation between morphological type
(isolating or non-isolating), we see that the CER 1is
significantly lower for non-isolating languages for
all four configurations (see Table 2).

With regards to the robustness of OOV (Figure
5), generally WHISPER seems to be more efficient
in inferring the orthography of OOVs except for
Hupa (hup) and Bambara (bam). In this aspect, all
the models seem to be slightly more robust for lan-
guages with complex morphology. Interestingly, it
is not always the case that models with higher OOV
rates correctly transcribe a proportionally higher
number of words. While both architectures seem
to more accurately predict unseen words for mor-
phologically complex languages, the difference is
not pronounced.
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Figure 6: Degradation of WER with WHISPER. Dotted
lines are isolating languages and plains line are lan-
guages with complex morphology

5.2 Results for WHISPER

The relative degradation of WER between the ran-
dom model and the max model can be found in
Figure 6. The first observation that can be made
is that all of the isolating languages have a smaller
increase in WER than the other languages except
for Hupa. Other than this gap, the increase in WER
does not seem to follow the ranking of the mor-
phological diversity that can be observed in Figure
1.

Looking at the correlation between the increases
in WER and the morphological factors (Table 3),
we can see that none of the factors are significantly
correlated other than token-type ratio. Hupa, with
one of the longest average word lengths and the
lowest WER degradation, renders this criterion in-
significant. This reinforces the token-type ratio as
the most relevant criterion for this study.

wrd len | ttr mrp len | mrp p/w
Correlation | 0.56 0.75 | 0.59 0.48
p-value 0.08 0.01 | 0.06 0.15

Table 3: The effect of morphological factors on WERs
with WHISPER. Significant values are in bold.

The correlation between the increases in CER
and the morphological factors can be found in Table
4. Here again, the only significant factor is the
token-type ratio. Regarding OOV robustness, none
of the morphological factors show a significant
correlation.

Looking at the impact of the augmentation of
OOVs, none of the factors were significant for
WER and OOV robustness. The evolution of sub-
types and to a smaller extent subtokens seem to
have a negative impact on CER (see Table 5).

wrd len | ttr mrp len | mrp p/w
Correlation | 0.58 0.77 0.59 0.42
p-value 0.08 0.009 | 0.07 0.22

Table 4: The effect of morphological factors on CER
with WHISPER. Significant values are in bold.

These scores mean that as the OOV rate com-
puted on subtokens and subtypes increases, CER
decreases. This sounds counterintuitive as a higher
OOV rate usually correlates with higher error rates.

tokens | types | subwords | subtypes
Correlation | -0.53 | -0.36 | -0.67 -0.78
p-value 0.11 0.29 | 0.03 0.007

Table 5: The effect of OOV rate factors on CER with
WHISPER. Significant values are in bold.

5.3 Results for XLSR
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Figure 7: Evolution of the WER with XLSR. Dotted
lines are isolating languages and plains line are lan-
guages with complex morphology

Examining the degradation in WER for XLSR
(see Figure 7), the same disparity between the two
language groups is evident. The three isolating
languages still have the smallest increases but they
are closely followed by Cree and Yupik. The other
languages have much more dramatic increases. In-
terestingly, Hupa also behave radically differently
under XLSR compared to WHISPER and has now
the largest increase in WER among all languages.

Regarding the impact of the morphological fac-
tors on WER, CER, and OOV robustness, none of
the criteria were found to be significantly corre-
lated. However, we mentioned before that Yupik
and Cree do behave differently than the other lan-
guages. We can see in Figure 8 the distribution of
the data points of the correlation between WER and
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Figure 8: Correlation between WER and token type
ratio for XLSR. The squared dots correspond to Cree
and Yupik.

the token-type ratio. We can see a clear trend be-
tween all the languages other than Cree and Yupik,
which have almost the same WER degradation. The
data from both languages were extracted from the
Bible which seems to produce a substantial bias
in the analysis. We attempted to automatically
identify the outliers using a linear regression, but
the number of data points was probably too small.
Arbitrarily removing these two languages led to
a strong correlation between WER and the token-
type ratio and to a lesser extent the average mor-
pheme length (see Table 6), and between CER and
the average word length and to a lesser extent the
average morpheme length and the average number
of morpheme per words (see Table 7).

wrd len | ttr mrp len | mrp p/w
Correlation | 0.66 0.94 0.71 0.43
p-value 0.07 0.0004 | 0.05 0.28

Table 6: The effect of morphological factors on WER
with XLSR without Cree and Yupik.

wrd len | ttr mrp len | mrp p/w
Correlation | 0.89 0.55 | 0.77 0.78
p-value 0.003 0.15 | 0.02 0.02

Table 7: The effect of morphological factors on CER
with XLSR without Cree and Yupik.

In terms of increasing OOV rates, none of the fac-
tors were significant for WER and OOV robustness.
However, the increase of the tokens and subtokens
out of vocabulary is significantly correlated to CER
(see Table 8). This means that as the number of
unknown tokens increases, CER increases.

tokens | types | subwords | subtypes
Correlation | 0.86 0.03 | 0.68 0.59
p-value 0.001 | 091 | 0.03 0.07

Table 8: The effect of OOV rate evolution factors on
CER with XLSR.

5.4 Discussion

Conducting this study on two architectures allowed
us to confirm performance trends related to morpho-
logical factors, but the results did not allow us to
determine whether one architecture was uniformly
better than the other. Generally, however, the dif-
ferences in performance between random and max
are less pronounced for XLSR.

Morphological complexity does have an influ-
ence on ASR performance. The degradation of
WER is much more pronounced for morpholog-
ically complex languages than for isolating lan-
guages. Additionally, for both architectures, WER
significantly increases when the token-type ratio
increases. Both architectures, however, seem to be
more robust in terms of CER.

Regarding the word-making ability of the archi-
tecture, while we couldn’t pinpoint any one influ-
encing factor, we were able to rule out the increase
of OOV words and subwords as a significant factor,
as well as morphological factors. Further study is
necessary to understand this phenomenon.

While analyzing the potential biases intro-
duced by partitioning, an interesting phenomenon
emerged regarding the changes in CER. We antic-
ipated that CER would increase with the rise in
OOV rate, which was indeed the case with XLSR.
The opposite trend was observed with WHISPER,
where a higher number of OOVs resulted in better
detection of individual characters.

Three languages stood out: Hupa, Cree, and
Yupik. These languages probably had the lowest
language diversity among all the languages in this
study. The Hupa corpus includes a single speaker,
and the diversity of her vocabulary might now be
limited. The data extracted for Cree and Yupik
is exclusively religious content, and the Cree data
come from a single speaker. These differences
created challenges during the analysis, as the per-
formance of the ASR models varied significantly
between these languages, irrespective of their mor-
phological complexity.
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6 Conclusion

In this paper, we investigated how morphological
complexity affects the performance of state-of-the-
art ASR models. We focused on one key aspect:
the potential for polysynthetic languages to gen-
erate a vast number of morpheme combinations,
leading to a high number of unknown words during
model testing. We selected a set of 10 typologically
diverse languages, created datasets with varying
OOV rates, and attempted to correlate the degrada-
tion of WER with factors related to morphological
complexity. We found that modern ASR models are
generally less robust for polysynthetic languages.
Among the various morphological factors we ex-
amined, a higher token-type ratio is associated with
greater degradation of both WER and CER for mor-
phologically complex languages. However, these
models tend to produce higher CER for isolating
languages.

The primary aim of this study was to clarify
the relationship between complex morphology and
ASR performance. Along the way, several research
questions emerged, such as the impact of elements
like the diversity of data collections and the com-
bined effect of various influences. Additionally, the
elements influencing the word formation capability
of these models remain unclear.

Morphological complexity is a topic that trig-
gers interest from a small but committed research
community, but their interest is often limited to
textual data. Extending research contributions to
speech data could lead to improved understanding
of the current biases within modern ASR systems
and new directions in using ASR for language doc-
umentation purposes.

7 Limitations

We acknowledge two main limitations of our work:
the number of languages included and the con-
straints of the correlation analysis. Ethically, we
chose to work only with languages for which we
had explicit permission to use available data for
research purposes. Furthermore, we selected lan-
guages not included in the original training sets
of the models to avoid biases, which restricted the
number of languages we could study. Neverthe-
less, the selected languages are typologically quite
diverse for such a small set, in terms of their phylo-
genic and geographic provenance.

Various factors could influence the performance
of ASR models beyond morphological complexity.

We only explore a few of these factors. Addition-
ally, correlation analysis provides only a partial
understanding of these impacts; more robust analy-
ses could yield stronger trends.
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