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Summary

! Reflectance spectroscopy is a rapid method for estimating traits and discriminating species.
Spectral libraries from herbarium specimens represent an untapped resource for generating
broad phenomic datasets across space, time, and taxa.
! We conducted a proof-of-concept study using trait data and spectra from herbarium speci-
mens up to 179 yr old, alongside data from recently dried and pressed leaves. We validated
model accuracy and transferability for trait prediction and taxonomic discrimination.
! Trait models from herbarium spectra predicted leaf mass per area (LMA) with R2 = 0.94
and %RMSE = 4.86%. Models for LMA prediction were transferable between herbarium and
pressed spectra, achieving R2 = 0.88, %RMSE = 8.76% for herbarium to pressed spectra,
and R2 = 0.76, %RMSE = 10.5% for the reverse transfer. Discriminant models classified leaf
spectra from 25 species with 74% accuracy, and classification probabilities were significantly
associated with several herbarium specimen quality metrics.
! The results validate herbarium spectral data for trait prediction and taxonomic discrimina-
tion, and demonstrate that trait modeling can benefit from the complementary use of
pressed-leaf and herbarium-leaf spectral datasets. These promising advancements help to jus-
tify the spectral digitization of plant biodiversity collections and support their application in
broad ecological and evolutionary investigations.

Introduction

The urgency of global biodiversity assessment is driving the appli-
cation of reflectance spectroscopy as a broadly informative tech-
nology for advancing systematic knowledge of plant diversity at
scales ranging from molecules to continents (Serbin et al., 2014;
Cavender-Bares et al., 2017, 2025; Meireles et al., 2020a). This
powerful approach offers a rapid method for characterizing leaf
traits and discriminating taxa by capturing spectral signals that
integrate structural, chemical, and physiological information
from plants studied in laboratory, herbarium, and field settings
(Costa et al., 2018; Serbin & Townsend, 2020; Kothari &
Schweiger, 2022).

Despite its potential, the spectral-based taxonomic and pheno-
typic characterization of plant diversity faces significant challenges.
Limited access to material from remote geographic regions and
uncommon taxa results in spectral datasets that are both biased

and highly sparse (Meireles et al., 2020a), even more so than glo-
bal plant trait databases (Jetz et al., 2016). Addressing this limita-
tion requires extensive, costly, and time-intensive fieldwork.
Additionally, the lack of linkage between leaf spectral data and
voucher specimens complicates spatiotemporal precision and relia-
bility as inevitable taxonomic and nomenclatural changes occur.

A promising path forward for bridging this impasse across the
plant tree of life lies in leveraging the c. 400 million dried plant
specimens stored in over 3500 herbaria worldwide (Thiers, con-
tinuously updated; Heberling, 2022; Kothari et al., 2023b). This
wealth of plant specimens has long been a key resource for
researchers studying plant diversity and ecological and evolution-
ary processes across spatial and temporal scales (Davis, 2023).
Indeed, herbarium collections anchor every species definition and
are the physical foundation of our taxonomic understanding of
plant and fungal diversity. They also include specimens that are
rare, extinct, or regionally extirpated.
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Several studies have now demonstrated the utility of pressed
leaves (i.e. collected, dried, pressed, and stored in newsprint) for
spectra-based trait prediction and taxonomic discrimination,
offering a positive outlook for extending these applications to the
more variable conditions of herbarium specimens (Durgante
et al., 2013; Costa et al., 2018; Kothari et al., 2023b; Hern!andez-
Leal et al., 2025). In contrast to pressed leaves, herbarium speci-
mens typically reflect a much broader array of collection and
preservation protocols – many of which are minimally
documented – and are stored for considerably longer periods
(Box 1). As such, herbarium specimens represent a much wider
range of tissue variability with respect to their biological factors
as well as processing and degradation. Modern spectroradi-
ometers (350–2500 nm) are highly sensitive to the physical and
chemical characteristics of scanned tissues, requiring careful stan-
dardization to ensure data quality and interoperability (Meireles
et al., 2020a). As such, the differences in collection and proces-
sing protocols among herbarium specimens, as well as mounting
techniques, chemical treatments, long-term storage conditions,
and age are expected to introduce spectral noise and reduce com-
parability across datasets (K€uhn et al., 2024). Herbarium speci-
mens thus present unique challenges for reflectance spectroscopy,
as they carry multiple layers of variation beyond natural biologi-
cal differences – complicating both data interpretation and
model transferability.

Within the new and rapidly evolving field of spectral biology,
the application of reflectance spectroscopy to herbarium speci-
mens is still in its early stages. For example, K€uhn et al. (2025)
demonstrated that herbarium spectra could be used to detect his-
torical changes in leaf nitrogen, phosphorus, and carbon concen-
trations associated with shifts in agricultural management
practices. In this issue, Neto-Bradley et al. (2025) have assessed
taxonomic discrimination in Lithocarpus, a taxonomically chal-
lenging clade with largely homogeneous leaf and vegetative mor-
phology, providing insights into methodologies and classification
limits. Building on these efforts, the present study aims to evalu-
ate the extent to which herbarium specimens can be used for esti-
mating leaf traits and species classification using reflectance
spectra.

Here, we extend the experimental framework established by
Kothari et al. (2023b) for pressed leaves to investigate the utility
of herbarium specimens for leaf trait prediction and species dis-
crimination. We targeted 25 of the most well-sampled species
from the Kothari et al. dataset for spectral measurement at the
Harvard University Herbaria (HUH), enabling direct
comparison between pressed and herbarium spectra. We focused
on predicting leaf mass per area (LMA) because it was the
best-performing trait in pressed-leaf models and is minimally
invasive. LMA can be directly measured without altering speci-
mens if detached leaves are available in specimen packets (see
Fig. 1b). We also used this framework to evaluate the transfer-
ability and ‘generalizability’ of trait prediction models from
pressed leaves to herbarium spectra and vice versa, as a proxy to
understand how herbarium variation and degradation affect spec-
tral information and models. Finally, we investigated whether
herbarium specimen qualities – including age, greenness, and

the presence of glue – were correlated with the probability of
correct taxonomic classification.

Our validation approach highlights practical considerations –
such as trait range, model transferability, and specimen
quality – that influence the reliability of spectral inferences from
herbarium specimens. These findings inform future efforts to
develop and apply spectral models across diverse herbarium col-
lections.

Materials and Methods

Sampling design

We reanalyzed the pressed-leaf spectral dataset from Kothari
et al. (2022b), which includes 618 leaf samples representing 67
species of North American trees, shrubs, and herbs, along with
one Australian species included as a complementary pressed-leaf
spectral and trait dataset. This dataset includes the values for 22
leaf traits assayed for each sample. Spectral data from Kothari
et al. (2023b) were collected using a PSR+ spectroradiometer
equipped with a leaf clip optical probe (Spectral Evolution Inc.)
on pressed voucher specimens following 6 months to 3 yr of sto-
rage. While Kothari et al. (2023b) used spectra averaged across
replicates for each individual (see Kothari et al., 2022), the pre-
sent study instead analyzes the original, unaveraged spectra (see
Data Availability Statement).

To enable a comparison with the pressed-leaf dataset, we gen-
erated a corresponding herbarium dataset from specimens housed
at the HUH for 25 of the 68 species analyzed by Kothari
et al. (2023b). A comparison of individuals and numbers of spec-
tral measurements from each dataset is provided in Table 2. Spe-
cimen metadata were obtained from the Global Biodiversity
Information Facility (GBIF.org) database using the R package
RGBIF v.3.8.0 (Chamberlain & Boettinger, 2017; R Core
Team, 2023; Chamberlain et al., 2024). We targeted collections
from New England (Connecticut, Maine, Massachusetts, New
Hampshire, Rhode Island, and Vermont), contrasting with the
geographic focus on Ontario and Quebec in Kothari
et al. (2023b).

To select herbarium specimens for measurement, we first
inspected all specimens per species and selected those holding
loose leaves in packets. If we were not able to get a minimum
of 15 specimens with loose leaves, we obtained permission
from Lisa Standley (curator of the New England Botanical
Club Herbarium) and Michaela Schmull (Director of Collec-
tions for the HUH) to detach one leaf for measuring spectra
and LMA. If multiple leaves were available, we selected leaves
without any sign of glue, but otherwise sampled specimens
randomly with respect to the visual quality and degree of
degradation.

Spectral measurement protocol

Specimens were measured using a Spectra Vista Corporation HR
1024i spectroradiometer (350–2500 nm spectral range) with a
fiber-optic cable connected to the LC-RP Pro Leaf Clip/
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Box 1. Pressed vs herbarium specimens

Recent advances have shown that reflectance spectra from recently dried leaves can produce accurate predictive models for taxonomic discrimination
and leaf traits – comparable to those based on fresh tissue (Durgante et al., 2013; Costa et al., 2018; Kothari et al., 2023b). These results support
extending spectral analyses to herbarium specimens, which span a broad range of ages and preservation conditions. While pressed and herbarium speci-
mens share many features, key differences in storage, processing, and preservation justify their comparison as distinct sample types (Table 1).

Pressed specimens are typically prepared using standard herbarium protocols – collected, pressed in newsprint, and dried – and are usually asso-
ciated with ongoing research projects. These specimens are relatively young (from months to a few decades), stored loosely in paper, and easily accessi-
ble for measurement on both leaf surfaces (Fig. 1a). They often serve as taxonomic vouchers and are often intended for future herbarium accessioning.

Herbarium specimens, by contrast, represent decades to centuries of collecting history. Their preservation is more variable, influenced by differences
in field and processing techniques, storage environments (Forman & Bridson, 1989), and the use of chemicals such as glues, pest treatments, or chemi-
cal preservatives (Bieker et al., 2020), all of which can influence spectral signals. Many specimens have also been transferred between institutions, add-
ing further variability.

A major distinction is that herbarium specimens are generally mounted on archival paper (Fig. 1b) – often glued – which can complicate spectral
measurement due to interference from adhesives and backing materials (Neto-Bradley et al., 2025). Measuring such specimens often requires selecting
loose tissues from packets or inserting nonreflective black backgrounds when mounting allows. Some herbaria store specimens unmounted in news-
print, more similar to pressed collections.

Pressed leaves thus represent a more uniform and accessible subset of the broader variability found in herbarium collections. They are a valuable resource
for spectral model development and offer a critical intermediate between fresh tissues and historical collections. Their consistency and accessibility make
them ideal for establishing transferable models that bridge in vivo trait measurements with the preserved diversity in global herbarium collections.

Table 1 Summary of differences in storage, age, collection, and preservation methods, contamination risk, and spectral integrity between pressed and
herbarium specimens.

Characteristic Pressed tissues Herbarium tissues

Age Months to decades (0.5–3 yr in Kothari
et al., 2023a,b)

Years to centuries (1–179 yr in this study)

Storage Loose in newsprint Mounted on archival sheets, can have loose tissues in
packets

Variability in collection and
preservation

Low; few collectors, consistent processing High; many collectors, variable processing

Spectral contamination risk Low High (paper, glues, pesticides)
Presumed spectral integrity Good Variable; more noise due to aging, mounting, and storage

effects

Fig. 1 Spectral measurements of pressed (a) and herbarium (b) leaf specimens. Pressed leaves (a; photograph by J. Cavender-Bares) are unmounted
and easily scanned, while herbarium specimens are mounted and more variable in preservation. In (b), a detached leaf fragment from the packet is
measured on a black background to avoid spectral interference (specimen from A: Herbarium of the Arnold Arboretum of Harvard University;
photograph by D.M. White).
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Reflectance Probe with a narrow-angle lens, which reduced the
measurement area to a 6 9 4 mm diameter ellipse. Throughout
this manuscript, we refer to spectral ‘measurements’ as the
method of reflectance data acquisition obtained using a contact
probe with a fixed field of view. Before spectral measurements,
the instrument was turned on for a minimum of 15 min with the
reflectance probe lamp set to low, to allow the light source to
warm and the sensors to cool. At the beginning of each session,
the lamp was switched to high and a white reference measure-
ment on a white Spectralon® reference panel was taken, followed
by three spectral measurements of the white Spectralon® refer-
ence panel, followed by three measurements of our black back-
ground material: black cardstock sprayed with three coats of
Krylon® Camouflage Black Matte spray paint (acrylic alkyd,
water-based paint; product #K04290777). All measurements
were made with an integration time of 2 s.

For one to two leaves per specimen, one leaf at a time was
placed on top of the black background, and three measurements
were made of the leaf lamina on the adaxial surface. The reflec-
tance probe was rotated slightly and moved a few millimeters
between each measurement to capture variability within each leaf
across a small leaf area. Following Kothari et al. (2023b), we tar-
geted leaf regions that avoided the midvein, prominent secondary
veins, or regions with disease, fungus, or other damage. To
further avoid possible contamination of light reflected from the

bench, the leaves on top of the cardstock were placed on top of a
5-mm felt pad coated with the matte black spray paint (visible in
Fig. 1b). After each specimen’s measurements, a second white
reflectance measurement was taken; all white and black target
measurements were recorded for future monitoring of instrument
and optics quality control (not described here).

Trait measurements

Leaf weight, area, and thickness were recorded for each measured
leaf to validate LMA predictions from spectra. After spectral mea-
surements were made, petioles were removed at the point of con-
tact with the leaf lamina or at the midpoint of acuminate leaf
bases. Leaf blade weight was measured in milligrams using a Sar-
torius Practum64-1S Analytical Balance. Petioles were stored in
glassine envelopes and labeled with leaf numbers. Leaf area was
measured using the LeafByte® app on an iPhone 15 with 5 or
10 cm2 calibration dots. LMA was calculated in kilograms per
square meter (kg m"2).

Spectra preprocessing

We used the SPECTROLAB v.0.0.18 R package (Meireles
et al., 2017) to combine herbarium spectra files with their asso-
ciated metadata and to smooth sensor overlap regions at

Table 2 Sampling design for herbarium and pressed datasets.

Species Family

Herbarium Pressed

n individuals n spectra n individuals n spectra

Acer rubrum L. Sapindaceae 20 72 72 302
Acer saccharinum L. Sapindaceae 20 69 21 93
Acer saccharumMarshall Sapindaceae 22 81 41 195
Acer spicatum Lam. Sapindaceae 20 75 1 3
Agonis flexuosa (Willd.) Sweet Myrtaceae 15 86 67 351
Betula papyriferaMarshall Betulaceae 16 63 21 98
Betula populifoliaMarshall Betulaceae 21 96 86 403
Claytosmunda claytoniana (L.) Metzgar & Rouhan Osmundaceae 18 56 1 7
Fagus grandifolia Ehrh. Fagaceae 21 63 26 119
Helianthus divaricatus L. Asteraceae 16 54 1 3
Myrica gale L. Myricaceae 19 57 1 2
Osmunda regalis L. Osmundaceae 20 72 1 2
Ostrya virginiana (Mill.) K.Koch Betulaceae 20 60 1 4
Phalaris arundinacea L. Poaceae 18 57 6 21
Phragmites australis (Cav.) Trin. ex Steud. Poaceae 18 57 11 34
Populus grandidentataMichx. Salicaceae 19 63 21 104
Populus tremuloidesMichx. Salicaceae 17 83 102 512
Prunus pensylvanica L.f. Rosaceae 21 69 2 5
Prunus serotina Ehrh. Rosaceae 20 63 1 5
Quercus rubra L. Fagaceae 19 67 26 125
Rubus idaeus L. Rosaceae 22 72 9 46
Rubus odoratus L. Rosaceae 16 54 1 3
Solidago altissima L. Asteraceae 19 57 6 29
Solidago gigantea Aiton Asteraceae 21 63 7 35
Spiraea latifolia (Aiton) Borkh. Rosaceae 22 81 2 4

For the pressed dataset, species with 11 or fewer individuals were excluded from the taxonomic classification analysis, following the approach of Kothari
et al. (2023b).
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991.3 nm and 1902.5 nm with a 5-nm interpolation region. To
ensure compatibility with downstream analyses and comparabil-
ity of results across datasets, we reprocessed and reanalyzed the
pressed leaf spectra of Kothari et al. (2022, 2023b), which were
in 1 nm resolution instead of the c. 1.5 nm resolution of the her-
barium dataset. We resampled reflectance spectra of both datasets
to 5 nm intervals using the Full Width Half Maximum
(FWHM) method in the CWT R package (Guzm!an, 2024). The
FWHM method was chosen as it is the standard function applied
to downsampling spectra.

With the goal of optimizing the transferability of models
across spectral datasets, the resampled reflectance spectra in each
dataset were then transformed using two methods: vector nor-
malization and continuous wavelet transformation (CWT). Vec-
tor normalization of the spectra was implemented as a method to
reduce the impact of differences in illumination geometry
between spectrometers, which can impact the magnitude of
reflectance. This method was applied using the ‘normalize’ func-
tion of SpectroLab. Continuous wavelet transformation was
implemented as a method to isolate scales that capture spectral
features, potentially enhancing the prediction of leaf traits
and the transferability of models (Guzm!an & Sanchez-
Azofeifa, 2021). This method is based on the premise that the
leaf reflectance spectra can be expressed as a combination of
wave-like functions (wavelets) of varying scales (widths), enhan-
cing fine spectral features at lower scales and broader spectral pat-
terns at larger scales (Rivard et al., 2008). We applied this
transformation on the resampled leaf reflectance from both data-
sets using a second-order Gaussian derivative wavelet function
with a variance of 1. The selection of the wavelet function and its
variance was done assuming that individual spectral features fol-
low ideal Gaussian distributions (Rivard et al., 2008). The choice
of wavelet scales can impact the predictive performance of predic-
tive models (Guzm!an & Sanchez-Azofeifa, 2021). Based on
exploratory analysis, scales 22, 23, and 24 were computed and
summed to form the summed-wavelet spectra used for predicting
leaf traits. The CWT transformation was implemented using the
‘cwt’ function from the CWT package in R (Guzm!an, 2024).

The resulting reflectance spectra (e.g. reflectance, vector-
normalized, and summed-wavelet) were trimmed to a range of
450–2400 to remove noisy regions at the spectrum’s edges (Sup-
porting Information Fig. S1), as has been done in other studies
(Guzm!an & Sanchez-Azofeifa, 2021; Ji et al., 2024). We also
subdivided the data into different spectral regions: 450–1300 nm
as the visible and near-infrared (VNIR+) region (‘+’ because
1100–1300 nm is in the short-wave infrared) that could be noi-
sier due to pigment degradation (Fourty et al., 1996), and the
1350–2400 nm short-wave infrared region (SWIR).

Prediction of leaf traits

Using the processed spectra and the measured LMA (kg m"2)
from each of the pressed and herbarium datasets across the
VNIR+ (450–1300 nm), SWIR, and full-range spectral regions,
we built predictive models using partial least squares (PLS)
regression implemented with the pls and caret R packages.

Metadata and spectral data were split into training (75%) and
validation (25%) datasets using a stratified sampling approach
based on growth form, mirroring Kothari et al. (2023b). We gen-
erated 1000 model segments by randomly selecting individual
measurements for each specimen using a custom data segmenta-
tion function. This procedure ensured that measurements from
each specimen were never split between both the training and
validation datasets while capturing the variability within speci-
mens and any rare spectral features that might be removed by the
averaging of spectra.

Model optimization was performed using a custom tuning
function that used cross-validation with the ‘oscorepls’ method.
The predictive residual sum of squares (PRESS) metric was used
to evaluate the models during cross-validation, and the optimal
number of components for the PLS regression models was
selected as the smallest value whose PRESS value was within one
SD of the minimum PRESS value.

Final models were constructed using the optimal number of
components and validated on the independent test datasets. We
evaluated our predictions using the full ensemble of model seg-
ments, averaged to each individual, and predictions of LMA were
compared to observed values to calculate residuals and evaluate
performance. The model performance was evaluated by estimat-
ing the coefficient of determination (R2), the bias, the root mean
squared error (RMSE), and the percentage RMSE (%RMSE =
RMSE/range of 0.99 and 0.01 quantiles). We calculated variable
importance in projection (VIP) values to estimate the most infor-
mative spectral regions and extracted model coefficients used in
external predictions and tests of model transferability between
pressed and herbarium specimens.

To directly evaluate transferability, we applied model coeffi-
cients derived from one (herbarium/pressed) LMA dataset to the
spectra of the other. We then assessed transfer prediction accu-
racy by calculating residuals and comparing predicted vs observed
values. This approach allowed us to test the generalizability of
LMA models and the compatibility between herbarium and
pressed-leaf spectral data.

Lastly, we used the trait values beyond LMA from Kothari
et al. (2023b), including carbon, calcium, carotenoids, cellulose,
Chla, nitrogen, and solubles, to generate PLSR models in the
same manner. We generated model coefficients and predicted
trait values from the herbarium leaf spectra for these traits. To
assess the generalizability and trait value consistency of model
transfers for the traits for which we had no observed herbarium
trait values, we compared the distributions of predicted herbar-
ium trait values against the observed values from Kothari
et al. (2023b).

Taxonomic discrimination

To test the viability of models classifying herbarium leaf spectral
measurements into taxa, we applied partial least squares discri-
minant analysis (PLS-DA) and linear discriminant analysis
(LDA) to the reflectance spectra of the full-range herbarium
spectral dataset. We tested both the PLS-DA and LDA algo-
rithms because they are both commonly applied classification
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algorithms. PLS-DA uses partial least squares regression to
reduce dimensionality and optimize feature selection, making it
suitable for spectral datasets, especially in scenarios with few
samples compared to many predictors (high-dimensional low-
sample-size problems; Geladi & Kowalski, 1986; Carrascal
et al., 2009; Serbin & Townsend, 2020). This method requires
researchers to specify the number of components used by the
model to balance between improving accuracy and avoiding
overfitting to the training dataset. LDA, by contrast, assumes
normally distributed data and separates classes by maximizing
variance between groups, offering robust classification in
well-distributed datasets without the need to specify a number
of components.

Classification models were built using the CARET, PLS, and
PLSVARSEL packages in R (Kuhn, 2008; Mehmood et al., 2012;
Liland et al., 2024). First, spectral data were preprocessed by
splitting the dataset into 10 individuals per species selected for
training and the rest for validation, ensuring balanced representa-
tion across species. The same segmentation process as above was
employed to generate 1000 data segments for iterative training
and testing across spectral measurements.

For PLS-DA, model tuning was performed with the PLS
method and optimized by the classification accuracy metric. We
generated final models across our 1000 data segments by selecting
the number of components returning the highest classification
accuracy. LDA models were generated with the ‘LDA’ method
optimized by the accuracy metric.

Model performance was assessed using the independent test
datasets by generating confusion matrices to calculate accuracy,
sensitivity, and specificity metrics. We also generated VIP scores
from the models to identify the most influential spectral regions
for distinguishing taxa and extracted and saved coefficients from
the PLS-DA models for generating class predictions and predic-
tion probabilities from all specimens for an analysis of factors that
influence classification success.

Analysis of specimen predictors on taxonomic
descrimination

To evaluate the biotic and herborization factors influencing the
success of PLS-DA classification, we utilized the full ensemble of
1000 optimized PLS-DA models trained on the full-spectrum
herbarium dataset of 25 species. To evaluate classification perfor-
mance, we used two related but distinct metrics: classification
probability and classification accuracy (also referred to as prob-
ability of correct classification). Classification probability refers
to the value calculated by the PLS-DA model for each reflectance
spectrum for each predicted class. This continuous value (ranging
from 0 to 1) is calculated from the coefficients of the PLS-DA
model and reflects the model’s internal confidence in its classifi-
cation, enabling probabilistic analysis of how specimen character-
istics influence prediction strength. By contrast, classification
accuracy describes the overall probability that measurements
from a given class – or from all classes collectively – are correctly
classified. It summarizes the model’s performance at the group or
dataset level.

Using custom R scripts, we computed classification
probabilities for all classes for all 1690 herbarium leaf mea-
surements across the ensemble of models and used these values
to examine the effect of specimen predictors, specimen charac-
teristics believed to affect spectra, and model performance, on
model confidence at the measurement level. Specifically, we
conducted a series of comparisons and independent regressions
of classification probabilities against four categorical variables
(specimen quality, glue presence, observed damage, and leaf
developmental stage) and five numerical variables (age, Julian
day of collection, nearest taxon distance, LMA, and greenness
index). All specimens were scored by JMR with initial input
from DMW. Descriptions of predictor variables are provided
in Table 3.

To estimate nearest taxon distance, a phylogram was made
using TIME TREE 5 (timetree.org; Kumar et al., 2022) with modi-
fications following results from V.PHYLOMAKER v.2 (Jin &
Qian, 2022) to add Phragmites australis as sister to Phalaris arun-
dinacea at 39.8 million years (Myr) and add Betula populifolia as
sister to Betula papyrifera at 39.7 Myr. Greenness index, which
measures the relative difference in reflectance between green light
(550 nm) and red light (690 nm; see equation in Table 3), was
selected over other commonly used vegetation indices, such as
normalized difference vegetation index, green normalized differ-
ence vegetation index, and Chl/carotenoid index, due to its sig-
nificant correlation with the independent estimate of specimen
quality (Fig. S2).

Relationships and regressions were visualized using the
GGPLOT2 package in R (Wickham, 2016), and significant differ-
ences in classification probabilities between correct and incorrect
classes were assessed using t-tests as implemented in the ‘ggsignif’
function in GGPLOT2.

To evaluate predictors of classification accuracy, we per-
formed logistic regression and random forest analyses. Classifi-
cation probabilities were averaged across all models, and the
class with the highest average probability was assigned as the
predicted class. The binary measure of correct or incorrect
classification was used as the response variable in both ana-
lyses. The logistic regression model was implemented with the
‘glm’ function in the STATS R package and using a binomial
error structure. Random Forest analysis, performed using the
RANDOMFOREST R package (Liaw & Wiener, 2002), quantified
predictor importance based on mean decrease in accuracy and
Gini impurity metrics.

Results

Trait prediction and model transferability

Spectral profiles of 25 species from the HUH have a similar shape
but lower magnitudes compared to pressed leaves (Fig. 2a).
Within herbarium spectra, we also observe notable variation in
the coefficient of variation of reflectance within the visible
(450–700 nm) and SWIR regions (specifically c. 1900–2400;
Fig. S3). Models trained on herbarium spectra using all combina-
tions of spectral transformations (untransformed, vector-
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normalized, and CWT) and wavelength ranges (full, VNIR+,
and SWIR) had performance Pearson’s correlation coefficient
values (R2) between 0.91 and 0.94, as compared to the pressed
models with R2 values between 0.93 and 0.95 (validation tests in
Table 4; full statistics in Table S1).

Overall, the best herbarium validation models according to R2

and %RMSE were the full-range, vector-normalized models, but
the models using untransformed reflectance values were only
slightly less accurate. For the nontransformed reflectance dataset,
pressed LMA models performed similarly to the herbarium LMA
models (pressed R2 = 0.94, %RMSE = 6.29%; herbarium
R2 = 0.93, %RMSE = 5.18%, Fig. 3a,b). After full-range mod-
els, SWIR models generally performed slightly better than
VNIR+ in the herbarium models, but the reverse was true with
the pressed models (Table S1).

As expected, the performance of models was reduced when they
were transferred and validated with the other (herbarium or
pressed) LMA dataset, but the CWT and nontransformed reflec-
tance models could still accurately predict observed LMA (Tables 4,
S1; Fig. 3b,c). The best transfer model was for the full-range CWT
dataset (herbarium to pressed R2 = 0.88, %RMSE = 8.76%;
pressed to herbarium R2 = 0.76, %RMSE = 10.53%). The shifted
slope of an ordinary least squares regression of predicted values
highlights a systematic difference in models between datasets (0.91
in Fig. 3c; 1.25 in Fig. 3d; transfer tests in Table 4). Models based
on the VNIR+ spectra also performed well for untransformed
reflectance and CWT datasets, but SWIR-based models showed
reduced performance (Table S1). Contrasting with their improved
performance in internal validation tests, the models based on
vector-normalized spectra performed less well than the other two

datasets, yet showed best performance for models in the SWIR
range (Tables 4, S1).

The compatibility of the models is further illustrated by the
similarity of VIP values for reflectance spectra (Fig. 2c).
The VIP plots reveal considerable differences between herbar-
ium and pressed models in the visible and (less so) NIR regions,
but the relative values across wavelengths in the SWIR region
are similar. This same pattern applies to the model coefficients
(Fig. 2c). The CWT models show a similar pattern across the
visible, NIR, and SWIR regions, with higher similarity among
the peaks and overall closer magnitudes (Fig. 2d,f). The CWT
models have the most clearly defined peaks and highlight infor-
mative spectral regions throughout the spectral range (Fig. 2d;
peaks = VIS: 500, 545, 590, 640, 670, 695 nm; NIR: 730 nm;
SWIR: 1200, 1400, 1440, 1655, 1705, 1875, 1920, 2225,
2295 nm).

To extend the inference of the utility of transferring trait mod-
els, we applied seven additional pressed-leaf trait models to pre-
dict traits from the herbarium spectra for 25 species (Fig. 4;
validation results in Table S2). The predicted trait distributions
from herbarium spectra closely align with observed distributions
from the pressed dataset, highlighting the potential of these mod-
els for cross-dataset applications. Predicted values for key traits,
including LMA, carbon fractions, and carotenoids, generally
showed contiguous distributions with substantial overlap
between datasets. This overlap demonstrates the general utility of
the spectral models in maintaining rank-order consistency across
species. However, notable discrepancies were observed for some
traits and taxa. For example, carbon predictions showed differing
distributions for many species, and several traits differed

Table 3 Metadata predictors from herbarium specimens recorded for each leaf and used to evaluate model utility.

Metadata predictor Class Description

Leaf developmental stage Young Thin leaves with underdeveloped venation, prone to bruising, may appear darker; measurements
usually have lower reflectance. Collection date is informative.

Mature Typically thick leaves, with potential color differences between adaxial and abaxial surfaces.
Senescent (not
observed)

Discolored leaves, often associated with aging. Collection date may help confirm senescence.

Leaf damage None No visible damage to any leaves on the herbarium sheet. Damage includes factors like herbivory,
burning during specimen drying, or any physical damage before or after collection.

Minor Physical damage visible on some leaves on the specimen, but no damage on the measured leaf.
Medium Damage visible on measured leaves, but no damage is present in the measured target area.
Major Damage is visible in the measured target area.

Specimen quality Good A well-pressed and dried specimen with leaves that are flat as they would appear in vivo. Specimen
presents minimal discoloration.

Medium Leaves show some discoloration and/or curling that may indicate wilting caused by a delay in
specimen pressing and drying.

Poor Highly degraded specimen, with discoloration, mold, or curling/rugosity from wilting. These factors
were likely caused by delayed or inadequate specimen pressing and preservation in the field before
drying.

Glue Present Glue expected in the measured target area.
Absent No glue expected in the measured target area.

Green index (Numerical) Green index = Reflectance550nm – Reflectance690nm/Reflectance550nm + Reflectance690nm
Age (Numerical) Years since specimen was collected (median = 91)
Day of year (Numerical) Julian day of collection
Leaf mass per area (Numerical) kg m"2

Nearest taxon distance (Numerical) Estimated age (in Myr) of most recent common ancestor shared between predicted taxon and
nearest sampled species.
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substantially for Agonis flexuosa and the two grasses (Phalaris
arundinacea and Phragmites australis) species, reflecting the limits
of model generalizability in these cases (Fig. 4). Discrepancies
were especially pronounced where pressed datasets included only
a single individual per species. Nonetheless, the lack of unrealistic

trait values and the general correspondence of trait distributions
across datasets is a positive result for the generalizability of
pressed and herbarium models.

These results taken together provide robust support for the utility
of herbarium spectra for trait estimation, both for models built
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Fig. 2 Plots of reflectance and continuous wavelet transformation (CWT) values for herbarium and pressed leaf datasets, associated variable importance in
projection (VIP) metrics, and model coefficients for leaf mass per area models. Black lines represent mean herbarium data, and red lines represent mean
pressed leaf data, with 90% quantiles plotted in gray bands. Panels show the data for (a) untransformed reflectance across all samples, (b) CWT-
transformed reflectance across all samples, (c) VIP values for reflectance data across 1000 model iterations, (d) VIP values for CWT data across 1000 model
iterations, (e) reflectance model coefficients across 1000 iterations, and (f) CWT model coefficients across 1000 iterations.

Table 4 Performance metrics for LMA models (full range) averaged across 1000 model segments.

Test Model Spectra Transform n
n
components R2 %RMSE

RMSE (kg
m"2) BIAS Slope Intercept

Validation Herbarium Herbarium CWT 220 10 0.93 # 0.01 5.31 # 0.15 0.01 # 0.00 0.00 # 0.00 0.97 # 0.02 0.00 # 0.00
Validation Herbarium Herbarium Reflectance 220 14 0.93 # 0.01 5.18 # 0.15 0.01 # 0.00 0.00 # 0.00 0.98 # 0.02 0.00 # 0.00
Validation Herbarium Herbarium Normalized 220 14 0.94 # 0.01 4.86 # 0.20 0.01 # 0.00 0.00 # 0.00 1.01 # 0.01 0.00 # 0.00
Validation Pressed Pressed CWT 212 8 0.94 # 0.00 6.34 # 0.10 0.01 # 0.00 0.00 # 0.00 1.03 # 0.02 0.00 # 0.00
Validation Pressed Pressed Reflectance 212 16 0.94 # 0.00 6.29 # 0.12 0.01 # 0.00 0.00 # 0.00 1.02 # 0.02 0.00 # 0.00
Validation Pressed Pressed Normalized 212 13 0.95 # 0.00 6.01 # 0.12 0.01 # 0.00 0.00 # 0.00 1.00 # 0.02 0.00 # 0.00
Transfer Herbarium Pressed CWT 609 14 0.88 # 0.03 8.76 # 0.02 0.02 # 0.00 0.00 # 0.01 0.91 # 0.06 0.00 # 0.01
Transfer Herbarium Pressed Reflectance 609 14 0.91 # 0.01 10.99 # 0.02 0.02 # 0.00 "0.01 # 0.01 0.82 # 0.02 0.00 # 0.01
Transfer Herbarium Pressed Normalized 609 14 0.91 # 0.01 78.48 # 50.44 0.14 # 0.09 0.12 # 0.11 1.47 # 0.05 0.13 # 0.16
Transfer Pressed Herbarium CWT 479 8 0.76 # 0.05 10.53 # 0.01 0.02 # 0.00 0.00 # 0.00 1.25 # 0.06 "0.02 # 0.01
Transfer Pressed Herbarium Reflectance 479 16 0.66 # 0.07 13.13 # 0.02 0.02 # 0.00 0.01 # 0.01 1.13 # 0.1 0.01 # 0.00
Transfer Pressed Herbarium Normalized 479 13 0.51 # 0.09 781.00 # 242.86 1.18 # 0.37 "1.18 # 0.37 0.41 # 0.09 "0.41 # 0.06
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from herbarium-derived trait datasets as well as for the transfer of
pressed leaf models built from trait values measured in living plants.

Taxonomic discrimination

To evaluate the utility of reflectance spectra for taxonomic discri-
mination, we applied LDA and PLS-DA models across datasets
at two taxonomic levels: species and genus. To ensure direct com-
parability of results, we also analyzed the pressed-leaf dataset for
the 10 species for which 20 or more individuals were sampled
(Table 2). Performance metrics, including accuracy, precision,
and balanced accuracy, were compared to assess the classification
capabilities of each approach.

Pressed datasets outperformed herbarium datasets in classifica-
tion accuracy, precision, and balanced accuracy, yet herbarium
spectra still provided reliable classification models (Table 5). In

the 10-species dataset, pressed specimens achieved accuracies of
91.7 # 2% (LDA) and 81.1 # 2% (PLS-DA), while herbarium
specimens achieved 71.9 # 2% (LDA) and 58.0 # 2%
(PLS-DA).

For the 25-species dataset, herbarium spectra achieved
74.3 # 1% accuracy with PLS-DA, outperforming LDA’s
64.4 # 2%. The confusion matrix (Fig. 5) shows that most clas-
sification errors occurred between congeneric species, highlight-
ing challenges in distinguishing closely related taxa. Some
species, such as Osmunda regalis and Quercus rubra, were fre-
quently misclassified as Betula species. Notably, Solidago gigantea
had a correct classification rate of only 39%, with 51% of its
measurements misclassified as Solidago altissima. The VIP plots
are consistent across species and emphasize key spectral regions in
the visible, near-infrared, and shortwave infrared (SWIR) ranges
(Fig. S4).

Fig. 3 Validation and model transfer results for leaf mass per area (LMA) per individual across 25 species. Error bars represent the SD in predictions across
1000 model iterations. Linear regressions of observed vs predicted values averaged across iterations are shown in red lines for comparison with the gray
1 : 1 dashed lines. Individual plots show the results for full-range spectra (450–2500 nm) of (a) pressed models from untransformed reflectance values, (b)
herbarium models from untransformed reflectance values, (c) transfer of continuous wavelet transformation (CWT) herbarium models to CWT pressed leaf
spectra, and (d) transfer of CWT pressed models to CWT herbarium leaf spectra.
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Fig. 4 Comparison of observed trait distributions from pressed leaves with predicted values obtained by applying continuous wavelet transformation
(CWT) pressed models to spectra from herbarium leaves. Panels display the distributions for eight traits across 25 species. Mean values are indicated with
black dots.
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In the six-genera dataset, pressed specimens achieved with
96.9 # 1% (LDA) and 89.8 # 1% (PLS-DA) accuracy, while her-
barium specimens achieved 89.3 # 2% (LDA) and 82.1 # 1%

(PLS-DA) accuracy. In the more complex 17-genus dataset, herbar-
ium spectra performed better with PLS-DA (84.9 # 1%) com-
pared to LDA (75.3 # 2%). Similarly, PLS-DA outperformed

Table 5 Performance metrics of classification analyses.

Dataset Rank Model Classes n components Accuracy # SD (%) Precision # SD (%)
Balanced
accuracy # SD (%)

Herbarium Species LDA 10 spp N/A 71.9 # 2 72.1 # 20 84.2 # 10
Herbarium Species PLS-DA 10 spp 15 58 # 2 58.5 # 23 76.5 # 13
Pressed Species LDA 10 spp N/A 91.7 # 2 86.6 # 20 96.3 # 3
Pressed Species PLS-DA 10 spp 15 81.1 # 2 73.2 # 22 91.7 # 6
Herbarium Genus LDA 6 genera N/A 89.3 # 2 87.8 # 14 92.8 # 7
Herbarium Genus PLS-DA 6 genera 13 82.1 # 1 79.5 # 21 86.8 # 12
Pressed Genus LDA 6 genera N/A 96.9 # 1 94.6 # 10 98.3 # 2
Pressed Genus PLS-DA 6 genera 13 89.8 # 1 85.2 # 13 93.9 # 5
Herbarium Species LDA 25 spp N/A 64.4 # 2 67.2 # 19 82 # 9
Herbarium Species PLS-DA 25 spp 24 74.3 # 1 75.3 # 15 87.3 # 8
Herbarium Genus LDA 17 genera N/A 75.3 # 2 76.5 # 18 86.4 # 8
Herbarium Genus PLS-DA 17 genera 27 84.9 # 1 87 # 8 90.9 # 9

N/A indicates values are not applicable for this analysis type (LDA).
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Fig. 5 Phylogram and confusion matrix summarizing the validation of herbarium specimen classification using partial least squares discriminant analysis.
The left panel shows a phylogram representing the evolutionary relationships among species, scaled by millions of years. The right panel displays a
confusion matrix where rows represent true species identities and columns represent predicted species identities. Tile colors indicate the percentage of
observations of each pair of true and predicted identities, with darker shades representing higher percentages. Numbers within tiles show rounded
percentages. Mean accuracy for the validation is 74.3%.
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LDA in the 17-genus dataset, with herbarium models achieving
84.9 # 1% for PLS-DA compared to 75.3 # 2% for LDA.

The VIP plots comparing herbarium and pressed datasets
reveal consistent peaks across the visible, near-infrared, and short-
wave infrared (SWIR) regions, reflecting the spectral regions
most important for PLS-DA classification (Fig. S5).

Assessing herborization factors on taxonomic
discrimination

To evaluate the influence of specimen factors on PLS-DA classifi-
cation performance, we analyzed the classification probabilities
across all 1690 herbarium spectral measurements using the full-
spectrum 25-species dataset (Fig. S6). Logistic regression and

independent t-tests revealed significant relationships between
classification probabilities and several categorical and numerical
predictor variables.

The probabilities of correct classifications varied significantly
with specimen quality, glue presence, leaf damage, and leaf pheno-
logical development (Fig. 6). Leaves with good (P < 0.001) or
medium quality (P < 0.01) had higher probabilities for correct
classifications than those with poor quality, but there was not a sig-
nificant difference between good and medium quality specimens.
Following expectations, specimens without mounting glue had sig-
nificantly higher probabilities than those with glue (P < 0.001).
Mature leaves exhibited higher classification probabilities than
young leaves (P < 0.001). Probabilities of correct classifications for
specimens with no damage were significantly higher than those

Fig. 6 Comparison of distributions of probabilities of assignment of each measurement to a specific class for correctly (true-positive) or incorrectly classified
(false-positive) specimens by leaf characteristics (see Table 3). (a) Specimen quality observations primarily reflecting discoloration or tissue degradation. (b)
The presence or absence of mounting glue on the leaf. (c) Visible biotic contamination, pre- or post-collection damage to leaves. (d) Leaf phenological
stage. Significant pairwise differences among correct or incorrect classes were determined using t-tests and indicated with the codes: *, P < 0.05; **,
P < 0.01; ***, P < 0.001. Note that there were no significant differences among classification probabilities for incorrect predictions.
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with minor damage (P < 0.001) and medium damage (P < 0.05).
Classification probabilities also differed between minor (with the
lowest mean probability) and major damage (with the highest
mean probability; P < 0.05). This is because, contrary to expecta-
tions, the two specimens (six measurements) scored with major
damage were correctly predicted, and with high classification prob-
abilities. These were Populus tremuloides spectra, and this species
had a low classification accuracy of 63%. The probabilities of
incorrect classifications – which represent false-positive
classifications with higher probabilities than true-positives – did
not significantly differ across damage classes (Fig. 6).

Numerical predictors also had significant relationships with
classification probabilities (Fig. 7). Specimen age was negatively
correlated with classification probability, suggesting reduced
model performance for older specimens (Fig. 7a). The age of the

sampled specimens ranged from 1 to 179 yr with a median age
of 91 yr (Fig. S7). The green index was also negatively correlated
with classification probabilities, indicating that greener leaves
were associated with lower model performance (Fig. 7b). The
relationship between age and green index revealed that older spe-
cimens generally exhibited lower green index values, consistent
with expected tissue degradation over time (Fig. 7c).

Classification probabilities increased with greater phylogenetic
distance to the nearest taxon (Fig. 7d), an expected relationship
that corroborates the results of the confusion matrix. Conversely,
the probability of a false positive classification decays with phylo-
genetic distance to the predicted class (Fig. S8). Leaf mass per
area also shows a strong positive correlation with classification
probability (Fig. S9), with the caveat of covariation with species
composition. Agonis flexuosa was classified with an overall

Fig. 7 Relationships between numeric predictor variables and classification outcomes. (a) Relationship between (a) age (years) and classification
probability, (b) green index and classification probability, (c) specimen age (years) and green index, and (d) nearest taxon distance (M years) and
classification probability. Points represent individual observations colored by correct vs incorrect status. Solid lines represent linear regression fits for each
dataset.
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accuracy of 97%, and LMA values for this species are much
higher than other species in the dataset.

Logistic regression taking into account phylogeny (Table 6)
further supported these factors as important in classification suc-
cess. As expected, the most influential metric in classification
success is nearest taxon distance, but the next most significant
predictors were age, green index, absence of glue, and specimen
quality. Finally, there is a weak positive relationship between
calendar day of specimen collection and classification success
(Table 6) or classification probability (Fig. S10). This relation-
ship indicates that species collected early in the growing season
are somewhat more likely to be misclassified than those collected
at later dates. Random forest models generally corroborated these
results, but optimized LMA, age, and the green index as more sig-
nificant factors than nearest taxon distance (Table S3).

These results highlight the critical influence of specimen
metadata on PLS-DA classification performance. Factors such
as tissue quality, as measured by the green index, and phylo-
genetic distinctiveness strongly impact classification success.
By contrast, older specimens, poor-quality leaves, and the pre-
sence of glue reduce classification probabilities, underscoring
the importance of these metadata for optimizing model per-
formance.

Discussion

As the largest scientific repositories of plant diversity, herbaria
offer exceptional resources for investigations of plant biology, but
their suitability for reflectance spectroscopy-based inferences
remains largely unknown. The wide variety of collection and pro-
cessing methods, as well as specimen age and storage, differentiate
herbarium plant tissues from freshly collected plant tissues, lead-
ing to uncertainties in their relevance for plant trait prediction
and taxonomic classification. A positive outlook has come from
recent investigations of pressed leaves on the order of months to
years old (i.e. collected, pressed, dried, stored in newspaper),
which have demonstrated the robust application of spectra for
both applications (Durgante et al., 2013; Lang et al., 2017; Costa

et al., 2018; Kothari et al., 2023b; Hern!andez-Leal et al., 2025).
Our study has extended this discovery, clearly demonstrating that
herbarium specimens retain enough morphological and anatomi-
cal integrity to be useful for these same spectra-based inferences.
Here, we outline the insights from this study in the context of
promises and challenges for reflectance spectroscopy of herbar-
ium specimens.

Trait prediction

Leaf mass per area is consistently one of the most accurately mod-
eled traits across studies (SLA of Costa et al., 2018; Serbin
et al., 2019; Kothari et al., 2023a,b) and is a key indicator of
plant resource-use strategies within the leaf economics spectrum
(Wright et al., 2004; D!ıaz et al., 2016). Overall, the herbarium
LMA models performed nearly as well as the pressed leaf models.
Among herbarium models, those based on normalized spectra
performed slightly better than those based on untransformed
reflectance (normalized, full-range R2 = 0.94; %RMSE =
4.86% vs reflectance R2 = 0.93; %RMSE = 5.18%), suggesting
that variation in measured spectral magnitudes may not be useful.
Continuous wavelet transformation showed similar performance
(R2 = 0.93; %RMSE = 5.31%), indicating that preserving the
overall shape and relative magnitudes of reflectance spectra is
important for trait prediction. At the same time, CWT, normal-
ized, and untransformed reflectance spectra showed nearly identi-
cal predictive performance in the pressed dataset.

Improving the generalizability of models is a critical step toward
global-scale trait modeling across temporal scales (Serbin
et al., 2019; Kothari et al., 2023a; Ji et al., 2024). While our mod-
els demonstrated promising transferability between pressed and
herbarium specimens, their performance varied depending on
spectral preprocessing. The CWT-transformed models showed the
best overall performance statistics among transfer tests, and herbar-
ium models transferred to pressed spectra worked better than the
reverse transfer. This pattern may be a consequence of the broader
spectral variability in the herbarium dataset. Although our experi-
ment focused on comparing model transferability between pressed

Table 6 Logarithmic regression of all predictors.

Estimate SE z Value Pr(> |z|) Sig.

(Intercept) 1.18E+01 3.60E+02 3.29E-02 9.74E-01
Nearest Taxon Distance 8.15E-03 1.69E-03 4.83E+00 1.35E-06 ***
Age 1.05E-02 2.32E-03 4.55E+00 5.43E-06 ***
Glue: present "9.19E-01 2.14E-01 "4.30E+00 1.72E-05 ***
Green index 2.29E+00 6.06E-01 3.78E+00 1.54E-04 ***
Leaf kg m"2 1.30E+01 4.40E+00 2.97E+00 3.02E-03 ***
Quality: medium "5.38E-01 1.94E-01 "2.78E+00 5.45E-03 ***
Quality: poor "7.35E-01 2.93E-01 "2.51E+00 1.21E-02 **
Julian day 4.38E-03 2.50E-03 1.75E+00 7.93E-02 .
Leaf stage: young "2.85E-01 2.68E-01 "1.07E+00 2.87E-01
Damage: medium "1.26E+01 3.60E+02 "3.51E-02 9.72E-01
Damage: minor "1.25E+01 3.60E+02 "3.47E-02 9.72E-01
Damage: none "1.24E+01 3.60E+02 "3.44E-02 9.73E-01

Significance values are indicated with the codes: ***, P < 0.001; **, P < 0.01; *, P < 0.05; the ‘.’ denotes marginal significance (P < 0.1) and blank values
indicate non-significant correlations (P ≥ 0.1).
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and herbarium spectra, future work should explore the benefits of
training models on combined datasets. Traits like LMA appear
more amenable to general modeling (Serbin et al., 2019; Kothari
et al., 2023a), but other traits may require more tailored, taxon-
specific approaches. As our predictions for additional traits showed
(Fig. 4), taxonomic context matters, and herbarium collections
offer a valuable platform for testing model behavior across phylo-
genetic and geographic gradients.

Our herbarium-derived models are likely to perform well for
predicting LMA in both pressed and herbarium leaves from the
same genera and within the temperate broadleaf and mixed for-
ests of North America. They may also generalize to other taxa
with LMA values that fall within the modeled range (0.025–-
0.18 kg m"2). However, extending these models to new regions
and taxa will require further validation.

In this context, the inclusion of the Australian species Agonis
flexuosa, which exhibits unusually high LMA values, illustrates
the importance of balanced trait sampling for effective PLSR
model training. When Agonis was excluded from the pressed
dataset, model performance decreased (R2 = 0.69, %RMSE =
11.92%; Fig. S11A; Table S4). This can be attributed to the
smaller spread of trait values in relation to residuals in the pressed
data, but also due to less training data on LMA values (Fig. S12).
This is evidenced by the reduced performance of the transfer test
of the pressed-leaf model to the herbarium spectra, especially at
higher LMA values (R2 = 0.60, %RMSE = 20.18%; Fig. S11D;
Table S4). However, when we excluded Agonis from the herbar-
ium dataset, model performance remained similar (R2 = 0.90, %
RMSE = 8.83%; Fig. S11B; Table S4).

These findings support a general strategy for herbarium-based
trait modeling: build models using taxonomically and geographi-
cally diverse training data with balanced representation of trait
values (Burnett et al., 2021). Following the strategy of Kothari
et al. (2023b), we partitioned our data as a 70/30 split into training
and validation datasets subset by growth form (Fig. S13), but a
trait-stratified proportional or other method to ensure balanced
trait representation in data splitting and cross validation steps may
lead to even better model performance (Joseph & Vakayil, 2022).

A key challenge in advancing herbarium-based trait modeling
is that model construction and validation will require some
amount of destructive sampling. Estimating traits such as nitro-
gen, carbon, and carbon fractions can require substantial
amounts of material – up to 500 mg of dry leaf tissue (Schweiger
et al., 2018; Kothari et al., 2024). To mitigate specimen loss,
researchers should prioritize sampling from unmounted dupli-
cates or bulk collections, with the goal of maximizing trait varia-
tion while achieving broad, balanced representation across major
clades and preservation conditions.

Pressed leaves represent a critical resource in this context. They
offer access to relatively well-preserved tissue with known preser-
vation histories, making them ideal for model development and
for studying trait degradation over time. Our results show that
models trained on pressed leaves have the potential to accurately
model traits of herbarium leaf tissues, providing a link to trait
values as they may have existed in vivo. This not only improves
our confidence in trait predictions, but also reduces the need for

further destructive sampling of irreplaceable collections. Integrat-
ing pressed leaves into trait modeling pipelines will strengthen
the foundation for scaling spectral trait prediction across global
herbaria.

Together, these findings highlight both the potential and lim-
itations of herbarium specimens for trait modeling. While traits
like LMA can be predicted with high accuracy, extending this
success to other traits and taxa will require strategic sampling for
continued refinement of models. Building generalizable models
across the tree of life will depend on thoughtful integration of
specimen conditions with the phylogenetic and environmental
components of phenotypic variability.

Taxonomic discrimination

Our results show that herbarium-based taxonomic
discrimination models perform reasonably well, but with lower
accuracy than their pressed-leaf counterparts. This is likely due to
better tissue integrity and fewer preservation artifacts affecting
spectral information in pressed leaves. LDA models tended to
outperform PLS-DA models in cases with fewer classes, while
PLS-DA performed better in the 17-genus and 25-species herbar-
ium datasets. Across both PLS-DA and LDA analyses, misclassifi-
cations occurred most frequently between closely related species,
such as Acer, Betula, and Solidago, reflecting underlying phenoty-
pic and biochemical similarity. Notably, Solidago altissima was
more often classified as its congener, a finding consistent with the
positive correlation between classification probability and nearest
taxon distance (Fig. 7). This suggests that spectral discrimination
becomes more difficult among closely related taxa, where spectral
features are more similar; a pattern that has been found in fresh
leaf spectra (Schweiger et al., 2018).

A major challenge in spectral classification lies in the relation-
ship between model complexity and performance. As shown in
Table 5, models with fewer species classes achieved higher classifi-
cation accuracy, while accuracy generally declined as the number
of species included in the model increased – a well-documented
limitation of discriminant analysis approaches (Meireles
et al., 2020b). Spectral resolution is another important considera-
tion, as our method of down sampling and smoothing spectra to
5 nm intervals could have reduced classification accuracy due
to the loss of small spectral features. However, higher spectral
resolution would also introduce interpolation issues and compli-
cate cross-instrument data integration. Similarly, increasing the
number of replicate measurements per leaf may enhance model
robustness. Previous studies (e.g. Durgante et al., 2013) have
focused on averaging multiple spectral measurements, which dif-
fers from our iterative approach that retains information at the
level of individual measurements.

Beyond accuracy and performance, a fundamental limitation of
discriminant and supervised classification models is that they can-
not identify unknown taxa outside of the trained species pool.
Existing ordination approaches based on reflectance data are often
too noisy for reliable clustering or taxonomic inference, but prin-
cipal components analysis of FTIR spectra has been successfully
used to resolve taxa (Damasco et al., 2019). In addition, other
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methods could be useful for dimensionality reduction and
exploration of taxon clustering (e.g. UMAP, t-SNE). A promising
future direction is the development of probabilistic classification
frameworks capable of flagging outliers or uncertain specimens.
Another alternative is to predict traits from individual spectra and
explore phenotypic clustering in multidimensional trait space
(Schweiger et al., 2021). This strategy could reveal natural group-
ings based on shared ecological function, even when traditional
taxonomic resolution is elusive, and provides a complementary
framework for leveraging spectral data to uncover structure within
herbarium collections (Hern!andez-Leal et al., 2025).

The effects of herborization on spectral inferences

The herborization process encompasses the collection, processing
steps, and time-sensitive effects of storage, and presents a wide
range of variables that influence the spectral properties of plant
tissues. Our analyses here indicate that most of the expected
effects of herborization and aging of plant tissues negatively affect
the classification probabilities and performance of discriminant
models.

We assessed specimen preservation conditions using visual
indicators of specimen quality, such as discoloration, wilting,
pathogen presence, and signs of poor initial drying, as well as evi-
dence of physical damage (e.g. herbivory, tearing, or burning).
Specimens categorized as medium or poor quality were signifi-
cantly associated with lower classification probabilities (Fig. 6)
and reduced classification accuracy (Tables 6, S3), confirming
that visual degradation correlates with diminished model perfor-
mance. Logistic regression analyses further supported this pat-
tern, identifying specimen quality, glue presence, and low
greenness index values as significant predictors of reduced classifi-
cation success (Table 6). These findings were reinforced by ran-
dom forest analyses, which ranked LMA, specimen age,
greenness index, and nearest taxon distance as the most impor-
tant predictors of model performance. Specimen quality and glue
presence were also influential, albeit to a lesser degree. These
results collectively highlight the critical role of both biological
traits and preservation history in classification success using spec-
tral data from herbarium specimens.

While specimen age and greenness are intuitively expected to
correlate – since younger specimens often appear greener – the
relationship between these variables and spectral performance is
more complex. Past studies in DNA sequencing suggest that age
alone is a poor predictor of preservation quality (Erkens et al.,
2008; Brewer et al., 2019; Forrest et al., 2019; White
et al., 2021), and our findings echo this. Instead, specimen pro-
cessing methods during the early stages of preservation – namely,
how quickly and efficiently the specimen was dried, as well as the
stability of long-term storage conditions – may play a more
important role in long-term tissue integrity than age. These will
be important factors to discern in future studies.

Greenness, driven largely by residual Chl, strongly affects spec-
tral signatures in the visible range. Although green tissues may
indicate good preservation, high Chl content can also obscure
informative spectral features. Conversely, its absence – as seen in

older or less green leaves – may enhance the visibility of struc-
tural and chemical features that are useful for classification or
trait modeling (Kothari et al., 2023b). Thus, while greenness
remains a useful preservation indicator, its influence on spectral
quality is objective-dependent and nonlinear.

Preservation variables are not fully independent, and their
combined effects can be complex. Differences among herbaria
related to specimen treatment, mounting practices, and storage
conditions, such as relative humidity, are further expected to gen-
erate variation among spectral datasets. Standardized metadata
and mounting practices, such as using herbarium mounting tape
instead of glue, are likely to be important in minimizing these
effects.

Finally, the assessment of specimen quality and damage
involves some degree of subjectivity. Even identifying glue resi-
dues can be nuanced. As herbarium digitization scales up, train-
ing technicians to score these factors consistently will be vital for
ensuring data quality and interoperability across institutions.

Seeing herbaria in a new light

As herbaria face mounting vulnerabilities – from chronic under-
funding to institutional threats of closure – the need to unlock
new scientific value from these collections has never been greater
(Davis, 2024; Thiers, 2024). The results of this study underscore
the promise of reflectance spectroscopy as a powerful, scalable
tool for extracting functional and taxonomic information from
preserved plant specimens. As part of the growing field of spectral
biology (Cavender-Bares et al., 2025), this approach offers not
only a new lens on plant diversity but also the opportunity to bet-
ter understand how specimen processing and preservation influ-
ence data quality. Given the high sensitivity of spectral
instruments to both biological and technical variation, reflectance
spectroscopy is uniquely positioned to help illuminate the effects
of herborization and even inform best practices for specimen care
and long-term preservation.

While trait prediction and species classification remain foun-
dational applications, the integration of spectral data with geno-
mic, morphological, and spatial datasets will enable deeper
insights into species delimitation, phenotypic evolution, commu-
nity assembly, and biogeography. These opportunities are parti-
cularly compelling when viewed through the lens of the Global
Metaherbarium – a growing digital infrastructure that connects
specimen metadata, images, and extended datasets (Hedrick
et al., 2020; Davis, 2023). As this field advances, reflectance spec-
troscopy will continue to reveal new dimensions of plant diver-
sity, transforming how we study, use, and preserve the world’s
herbarium collections.
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