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Abstract: We prove a conjecture of Bonamy, Bousquet, Pilipczuk, Rzążewski, Thomassé,
and Walczak, that for every graph H, there is a polynomial p such that for every positive
integer s, every graph of average degree at least p(s) contains either Ks,s as a subgraph or
contains an induced subdivision of H. This improves upon a result of Kühn and Osthus from
2004 who proved it for graphs whose average degree is at least triply exponential in s and a
recent result of Du, Girão, Hunter, McCarty and Scott for graphs with average degree at least
singly exponential in s.

As an application, we prove that the class of graphs that do not contain an induced
subdivision of Kr,t is polynomially χ-bounded. In the case of K2,3, this is the class of induced
theta-free graphs, and answers a question of Davies. Along the way, we also answer a recent
question of McCarty, by showing that if G is a hereditary class of graphs for which there is a
polynomial p such that every bipartite Ks,s-subgraph-free graph in G has average degree at
most p(s), then more generally, there is a polynomial p′ such that every Ks,s-subgraph-free
graph in G has average degree at most p′(s). Our main new tool is an induced variant of the
Kővári-Sós-Turán theorem, which we find to be of independent interest.

Key words and phrases: extremal graph theory, graph coloring, χ-boundedness, induced Kővári-Sós-
Turán theorem, forbidden induced subgraph

1 Introduction

For graphs G,H, we say that G is H-subgraph-free if G does not contain H as a (not necessarily induced)
subgraph. A subdivision of a graph H is any graph obtained from H by replacing edges by (possibly)
longer paths. In 2004, Kühn and Osthus [23] proved that for every graph H, there is a function f such
that every Ks,s-subgraph-free graph with no induced subdivision of H has average degree at most f (s).
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Their function f was a triple exponential in s and they asked for improved bounds in [23]. Recently, this
was improved to a single exponential bound by Du, Girão, Hunter, McCarty and Scott [12]. In 2022,
Bonamy, Bousquet, Pilipczuk, Rzążewski, Thomassé, and Walczak [4] conjectured that f can be taken
to be a polynomial in s. In the same paper, Bonamy, Bousquet, Pilipczuk, Rzążewski, Thomassé, and
Walczak [4] proved their conjecture when H is a path or a cycle. Subsequently, Scott, Seymour, and
Spirkl [36] proved the conjecture in the case where H is a tree. The main result of this paper is a full
proof of the conjecture of Bonamy, Bousquet, Pilipczuk, Rzążewski, Thomassé, and Walczak [4].

Theorem 1.1. For every graph H, there is a polynomial p, such that every Ks,s-subgraph-free graph with
no induced subdivision of H has average degree at most p(s).

Theorem 1.1 has an application to polynomial χ-boundedness. A class of graphs G is (polynomially)
χ-bounded if there exists a (polynomial) function f : N→ N such that χ(G)≤ f (ω(G)) for every G ∈ G

(where χ(G) and ω(G) denote respectively the chromatic number and the clique number of G). Note that,
in a recent breakthrough Briański, the fourth author, and Walczak [5] proved that there are χ-bounded
classes of graphs that are not polynomially χ-bounded using a construction of Carbonero, Hompe, Moore
and Spirkl [8]. Scott [33] conjectured that for every graph H, the class of graphs with no induced
subdivision of H is χ-bounded. This conjecture is known to be true when H is a tree [33], a cycle [9]
or more generally a banana tree [34]. However, Scott’s [33] conjecture is false in general as shown by
Pawlik, Kozik, Krawczyk, Lasoń, Micek, Trotter, and Walczak [31], and now many counter-examples
are known [7, 32], including rather small graphs such as K5 [32]. Kühn and Osthus’s [23] theorem
implies that the class of graphs not containing an induced subdivision of Kr,t is χ-bounded. Similarly,
Theorem 1.1 implies polynomial χ-boundedness for this class.

Theorem 1.2. For every pair of positive integers r, t, the class of graphs not containing an induced
subdivision of Kr,t is polynomially χ-bounded.

Of particular interest is the case s = 2, t = 3. A graph is a theta if it is a subdivision of K2,3, and a
graph is induced theta-free if it contains no induced theta. Theorem 1.2, implies that induced theta-free
graphs are polynomially χ-bounded, which answers a question raised by Davies [11]. See [35] for a
wonderful 2020 survey on χ-boundedness by Scott and Seymour.

McCarty [26] proved that if G is a hereditary class of bipartite graphs whose C4-subgraph-free graphs
have bounded average degree, then there is a function f such that every Ks,s-subgraph-free graph in G

has average degree at most f (s). Along the way to proving Theorem 1.1, we answer a recent question of
McCarty [27] by showing the following:

Theorem 1.3. Let G be a hereditary class of graphs for which there is a polynomial p such that every
bipartite Ks,s-subgraph-free graph in G has average degree at most p(s). Then, there is a polynomial p′

such that every Ks,s-subgraph-free graph in G has average degree at most p′(s).

Our main new tool for proving Theorem 1.1 and Theorem 1.3 is an extension of an induced variant
of the classical Kővári-Sós-Turán theorem [21] which was recently proved by Loh, Tait, Timmons and
Zhou [25].

The forbidden subgraph problem is a central problem in extremal combinatorics, and it has been
widely studied. It can be described as follows: Given a graph H, find the maximum number of edges
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ex(n,H) an n-vertex graph can have without containing H as a subgraph. The classical Erdős-Stone-
Simonovits theorem [14] states that the asymptotic behavior of ex(n,H) is determined by χ(H) as follows:
ex(n,H) =

(
1− 1

χ(H)−1

)(n
2

)
+o(n2). This solves the forbidden subgraph problem except for bipartite

graphs, for which it implies ex(n,H) = o(n2). The Kővári-Sós-Turán theorem [21] gives a more precise
upper bound on ex(n,H) for bipartite H, namely ex(n,Ks,s)≤ csn2−1/s.

It is very natural to ask what happens in the forbidden subgraph problem if we instead forbid H as an
induced subgraph. Unfortunately, in this case, the problem becomes trivial as soon as H is not a complete
graph: the maximum number of edges in an n-vertex graph without H as an induced subgraph is simply(n

2

)
. The problem however becomes interesting again when we forbid simultaneously some graph F as

a subgraph and another graph H as an induced subgraph. This problem was introduced by Loh, Tait,
Timmons and Zhou [25], who defined ex(n,F,H-ind) as the maximum number of edges an n-vertex graph
can have without containing F as a subgraph or H as an induced subgraph. The main idea behind this
question is that forbidding a graph H as an induced subgraph is (in many cases) a much weaker restriction
than forbidding it as a subgraph and yet we can recover bounds similar to the Kővári-Sós-Turán bounds
on the extremal number, so long as we forbid an additional graph F as a subgraph. Note that this is
mainly of interest when ex(n,H)≪ ex(n,F). Loh, Tait, Timmons and Zhou [25] proved that if we forbid
any graph F as a subgraph and Kr,t as an induced subgraph, then we can recover asymptotically the same
upper bound as in the Kővári-Sós-Turán theorem, namely they proved that ex(n,F,Kr,t-ind) = O(n2−1/r)
where the constant depends only on F and s.

We prove the following variant where Ks,s is forbidden as a subgraph, and an arbitrary bipartite graph
H is forbidden as an induced subgraph.

Theorem 1.4. Let H be a bipartite graph. There exist constants 0 < εH ≤ 1
2 and cH > 1, depending only

on H, such that for every s ≥ 1, ex(n,Ks,s,H-ind)≤ cHs4n2−εH .

We remark that since we require H to be an induced subgraph instead of just a subgraph, this does not
follow immediately from the result for H = Kr,t . In addition, in the case where H = Kr,t , a key property is
that in a bipartite graph forbidding a Kr,t as an induced subgraph is equivalent to simply forbidding it as
a subgraph, so one may apply the classical Turán results. One does not in general have access to this
powerful observation when H is not complete bipartite and we employ significantly different ideas to
prove the above result. In particular, we use a density increment approach recently introduced by the
second author, Nguyen, Scott and Seymour [6] in proving the best-known general bound on the infamous
Erdős-Hajnal conjecture.

We also note that if H is not bipartite one may simply take the extremal construction for ex(n,Ks,s)
and pass to a bipartite subgraph with the most edges, losing at most half of the edges while ensuring
there is no copy of H (induced or otherwise), so we have no gain in the asymptotic behaviour from this
assumption. Furthermore, if we forbid a non-bipartite graph as a (not necessarily induced) subgraph, by
considering a balanced complete bipartite graph it is easy to see that the extremal number is still quadratic
unless H is a complete bipartite graph.

Remark. We note that since this paper first appeared on arXiv Theorem 1.4 found several interesting
applications. For example, given a fixed p ∈ (0,1), the binomial random graph G = G(n, p) and a
hereditary property P such that there is a bipartite graph H /∈ P, it holds with high probability that any
subgraph of G that belongs to P has at most n2−εP edges. This follows essentially immediately from
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Theorem 1.4 combined with the observation that with high probability G(n, p) does not contain a Ks,s as a
(not necessarily induced) subgraph with s = 2logn. This answers a question raised by Alon, Krivelevich,
and Samotij in [1]. We note that this has also been proved by Fox, Nenadov, and Pham [16] who prove
much stronger and more general results in this direction, and independently by Clifton, Liu, Mattos,
and Zheng [10] who use the ideas behind our proof of Theorem 1.4. In addition, a much more precise
version (for specific forbidden bipartite H) has been used by Milojević, Sudakov, and Tomon to prove
a number of very interesting results about point-hyperplane incidences [29]. We note that this paper is
using ideas from extremal graph theory similar to ours to improve upon more geometric ideas used by
Fox, Pach, Sheffer, Suk, and Zahl in [17] to improve the classical bounds in the Zarankiewicz problem
for semi-algebraic ground graphs. We point an interested reader to [29] for more details on this topic. For
several other applications, strengthenings and extensions see [19]. See also [13] for a new recent survey
on degree-boundedness by Du and McCarty.

Remark. Results similar to ours were obtained independently and around the same time by Girão and
Hunter [18]. While the general approach seems similar between the two papers, there are also significant
differences, for example, in how we prove Theorem 1.4 compared to their proof of an analogous result.

Organisation. In Section 2, we prove our induced variant of the Kővári-Sós-Turán theorem (Theo-
rem 1.4), our main tool. Then in Section 3, we use Theorem 1.4 to prove a technical strengthening of
Theorem 1.3 (see Theorem 3.6). Lastly, in Section 4, we use Theorem 3.6 to prove Theorem 1.1, which
in turn is used to quickly prove Theorem 1.2.

Notation. Given a graph G, we denote its number of edges by e(G) and its number of vertices by
|G|. For every set X ⊆V (G) we denote by G[X ] the graph induced by X . For every disjoint A,B ⊆V (G)
we define G[A,B] to be the bipartite graph obtained from G[A∪B] by deleting all edges with both ends
in A or with both ends in B. We denote by e(A,B) the number of edges with one endpoint in A and
the other endpoint in B. Hence, e(A,B) = e(G[A,B]). The degree of a vertex v ∈ V (G) is denoted by
d(v) and for any subset X ⊆V (G), we define dX(v) := |NG(v)∩X |. A regular graph is a graph in which
every vertex has the same degree. We denote the average degree of a graph G by d(G). The maximum
average degree of a graph G is the maximum of d(H) taken over all (induced) subgraphs H of G. A
proper subdivision of G is a subdivision of G in which every edge is replaced with a path on at least three
vertices. A 1-subdivision of G is a proper subdivision of G in which every edge is replaced by a path on
exactly three vertices. All logarithms will be taken in base 2. For a bipartite graph H we let εH ,cH denote
the constants 0 < εH ≤ 1

2 and cH > 1 from Theorem 1.4.

2 Induced extremal numbers

This section is dedicated to proving Theorem 1.4. The following is an immediate consequence of Theorem
1.1 from [25].

Lemma 2.1. Let r, t ≥ 2. There exists a constant 0 < ε ≤ 1
2 and a constant c > 1 such that for every

s ≥ 1, we have ex(n,Ks,s,Kr,t-ind)≤ cs4n2−ε .

For our purposes, one should think of Kr,t as small and fixed and Ks,s as being large. In this regime,
the above result is remarkable in the following sense. When we forbid Kr,t as an induced subgraph, the
maximum number of edges in an n-vertex Ks,s-subgraph-free graph is still subquadratic in n, but in this
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case, the dependency on s is polynomial. In contrast, the Kővári-Sós-Turán theorem gives a bound on
ex(n,Ks,s) with exponential dependency on s. The goal of this section is to extend the above result to
allow forbidding an arbitrary (small) bipartite graph H as an induced subgraph, as opposed to simply
complete bipartite ones. Namely, our goal is to prove Theorem 1.4.

This will follow by starting from the above result and repeatedly using the following lemma which
shows that if Theorem 1.4 holds for some bipartite graph H then it also holds (with weaker constants)
for H − e, where e = uv is an arbitrary edge of H. The basic idea behind the proof is that knowing that
Theorem 1.4 holds for H allows us to conclude a supersaturation result, namely, if we have density a bit
higher than extremal then we can find many induced copies of H (i.e. many induced subgraphs isomorphic
to H) in any Ks,s-subgraph-free graph. So, if we try to prove the result for H − e by contradiction, we
may assume our ground graph has many edges and thus we can conclude there are many induced copies
of H. To show this supersaturation result, we sample a uniformly random subset of vertices and then use
martingale concentration inequalities to show that the subsampled graph still has high enough density to
guarantee us an induced copy of H. Using this, we can guarantee at least 2sn|H|−1 induced copies of H
in our n vertex graph. Thus, there is an (induced) embedding of H −{u,v} which can be extended into
an (induced) embedding of H in at least 2sn different ways. In particular, we have sets Cu and Cv of at
least 2s “candidates” where we could embed u and v, respectively. If there is a non-edge between a vertex
of Cu and a vertex of Cv, this gives rise to an induced copy of H − e, while otherwise, we find a Ks,s, in
either case we arrive at the desired contradiction.

Lemma 2.2. Let H be a bipartite graph. If Theorem 1.4 is true for H, and e ∈ E(H), then Theorem 1.4 is
true for H − e.

Proof. Since e ∈ E(H) we have |H| ≥ 2. Let 0 < ε ≤ 1
2 and c > 1 be the constants such that for every

s ≥ 1, ex(n,Ks,s,H-ind) ≤ cs4n2−ε , as guaranteed by Theorem 1.4 applied to H.
Set ε ′ := ε

2|H| and c′ := max{|H|,c}. Let s ≥ 1 be an integer, G be a Ks,s-subgraph-free graph and
n = |G|. Suppose for a contradiction, that G does not contain H − e as an induced subgraph and that
e(G) > c′s4n2−ε ′ . Then, n2 ≥ e(G)> c′s4n2−ε ′ , and hence

n ≥ (c′s4)1/ε ′ ≥ max
{

41/ε ′ ·16s2,(4|H|)|H| ·4s
}
, (2.1)

where we used ε ′ ≤ 1/|H| and s ≥ 2, which must hold since G is Ks,s-subgraph-free and e(G)> 0.

Claim 1. Let m be an integer such that m ≥
( n

4s

)1/|H| and m ≤
√

n. If U is a subset of m vertices of G,
chosen uniformly at random, then

P
[
e(G[U ])> cs4m2−ε

]
≥ 3/4.

Proof. Let X1, . . . ,Xm be independent random variables, each with uniform distribution on V (G). Let
f (X1, . . . ,Xm) be the number of edges of G[{X1, . . . ,Xm}]. Note that it is possible that Xi = X j when i ̸= j,
hence {X1, . . . ,Xm} is a set of at most m vertices. Changing the outcome of a single Xi changes the value
of f by at most m−1. In particular, f satisfies the “bounded differences property” with bound m−1. We
have

E[ f (X1, . . . ,Xm)] = E

 ∑
{i, j}∈([m]

2 )

1XiX j∈E(G)

= ∑
{i, j}∈([m]

2 )

P [XiX j ∈ E(G)] =

(
m
2

)
2e(G)

n2 ≥ 2c′s4
(

m
2

)
n−ε ′ .
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We have mε ≥
( n

4s

)ε/|H|
=
( n

4s

)2ε ′ ≥ 4nε ′ , where the last inequality follows from (2.1). Hence, cs4m2−ε ≤
c′s4

(m
2

)
n−ε ′ ≤ 1

2E[ f (X1, . . . ,Xm)]. Thus, by McDiarmid’s inequality [28, Theorem 2.7]:

P
[

f (X1, . . . ,Xm)≤ cs4m2−ε
]
≤ P

[
f (X1, . . . ,Xm)≤

1
2
E[ f (X1, . . . ,Xm)]

]
= P

[
f (X1, . . . ,Xm)−E[ f (X1, . . . ,Xm)]≤−1

2
E[ f (X1, . . . ,Xm)]

]
≤ exp

[
−E[ f (X1, . . . ,Xm)]

2

2m(m−1)2

]
≤ exp

[
−
(
2cs4m2−ε

)2

2m3

]
≤ e−4m1−2ε ≤ 1

8
,

where the last two inequalities use c > 1,s ≥ 2 and ε ≤ 1
2 .

Observe that conditioning on the event that all Xi are pairwise distinct, we obtain that {X1, . . . ,Xm}
is a uniformly random subset of m vertices of G. Note also that P[∃i ̸= j,Xi = X j]≤ ∑{i, j}∈([m]

2 )
P[Xi =

X j] =
(m

2

) 1
n ≤ m2

2n ≤ 1
2 .

Thus, P[∀i ̸= j,Xi ̸= X j]≥ 1/2. Hence,

P
[
e(G[U ])≤ cs4m2−ε

]
= P

[
f (X1, . . . ,Xm)≤ cs4m2−ε | ∀i ̸= j,Xi ̸= X j

]
=

P
[

f (X1, . . . ,Xm)≤ cs4m2−ε ∩∀i ̸= j,Xi ̸= X j
]

P [∀i ̸= j,Xi ̸= X j]

≤ 2P
[

f (X1, . . . ,Xm)≤ cs4m2−ε
]
≤ 1

4
. ■

Let m = ⌊
( 3n

8s

)1/|H|⌋.

Note that
( 3n

8s

)1/|H|
=
(3

2

)1/|H| ·
( n

4s

)1/|H| ≥
(

1+ 1
4|H|

)
·
( n

4s

)1/|H| ≥
( n

4s

)1/|H|
+1, where we used the

inequality (3/2)x ≥ 1+ x/4 which holds for any x ≥ 0 and (2.1). So m ≥
( n

4s

)1/|H|. Moreover, since

|H| ≥ 2 we have m ≤
(3n

8s

)1/|H| ≤
√

n. By Claim 1, at least 3
4

(n
m

)
of the m-vertex subsets of G induce more

than cs4m2−ε edges. Let X be such a subset. Then, since G[X ] has no Ks,s subgraph and by assumption
Theorem 1.4 holds for H, we obtain that G[X ] contains an induced copy of H.

Hence, there are at least 3
4

(n
m

)
subsets X of size m such that G[X ] contains an induced H. Conversely,

every induced copy of H is contained in exactly
(n−|H|

m−|H|
)

m-vertex subsets of G. By double counting the

pairs (Y,X) such that |X |= m,Y ⊆ X and G[Y ]∼= H, using that m ≤
( 3n

8s

)1/|H| for the last inequality, we
get that the number ηH of distinct induced copies of H satisfies:

ηH ≥ 3
4

(n
m

)(n−|H|
m−|H|

) =
3
4

n(n−1) . . .(n−|H|+1)
m(m−1) . . .(m−|H|+1)

≥ 3
4

( n
m

)|H|
≥ 2sn|H|−1.

Recall e ∈ E(H) and let u,v denote the endpoints of e. Since there are at least 2sn|H|−1 pairwise distinct
induced copies of H in G, there is a set X ⊆V (G) of size |H|−2 such that G[X ]∼= H −{u,v} and such
that there are at least 2sn different ways to extend X to a set Y of size |H| such that G[Y ] ∼= H. Let
Cu ⊆ V (G) \X be the set of vertices that can play the role of u in one of these extensions of X , and
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define Cv similarly. The number of edges between Cu and Cv is equal to the number of extensions of
X into a set Y such that G[Y ]∼= H. Thus, there are at least 2sn edges between Cu and Cv. In particular,
since |Cu|, |Cv| ≤ n, we have |Cu|, |Cv| ≥ 2s. Take an arbitrary subset U of Cu of size s, and then an
arbitrary subset V of Cv \U of size s. If some vertex xu ∈U is not adjacent to some vertex xv ∈V , then
G[X ∪{xu,xv}]∼= H − e, which is impossible by assumption. Thus, U is complete to V and therefore G
has a Ks,s subgraph, a contradiction.

Remark. For our applications in this paper, it was enough to show that Theorem 1.4 holds with
some εH > 0, and we made no attempts to optimize the value of εH . Since this paper appeared on arXiv,
improved bounds on εH have been established, including [19], which gives essentially optimal bounds on
εH .

3 Bipartite reduction

In this section, we shall prove a technical strengthening of Theorem 1.3 (see Theorem 3.6), which shall
then also be used in the final section to prove Theorem 1.1 and Theorem 1.2, the main results of this
paper.

The following “regularisation” lemma will allow us to pass to either an almost regular subgraph with
similar average degree or to a very unbalanced bipartite subgraph accounting for a constant fraction of the
edges. The following is a slight weakening of [12, Lemma 3.4], which in turn builds on [20] and a long
history of similar regularisation lemmas. Let us highlight here a remarkable recent breakthrough of Janzer
and Sudakov [20], who resolved the Erdős-Sauer problem on minimum average degree requirement to
guarantee existence of a regular subgraph.

Lemma 3.1. There exists a function f1 such that the following holds. Let γ ∈ (0,1/5) and d ≥ f1(γ). Let
G0 be an n-vertex graph which is d-degenerate and has average degree d. Then, either

(A) G0 contains an induced subgraph G∗ of average degree at least 6d1−5γ and maximum degree
∆(G∗)≤ 6d1+3γ , or

(B) there is a partition V (G0) = A⊔B such that e(A,B)≥ nd/4 and |A| ≥ 2dγ−2|B|.

The following lemma will be an initial step in resolving the “almost regular” outcome of Lemma 3.1,
namely case (A). It is a modified version of Lemma 3.3 from [12]. It says that any almost regular graph G
with average degree at least polynomial in s, which does not have Ks,s as a subgraph or H as an induced
subgraph contains an induced subgraph with girth at least five and only polynomially smaller average
degree. The proof is a basic application of the alteration method, where we subsample every vertex with
some probability and then remove any still contained in a C3 or C4. Recall, εH and cH are the constants
we obtain by applying Theorem 1.4 to H.

Lemma 3.2. Let H be a bipartite graph. There exists a polynomial P satisfying the following. Let s ≥ 2
and ∆ ≥ P(s). Let G be a Ks,s-subgraph-free graph and no H as an induced subgraph, with maximum
degree at most ∆ and average degree at least ∆1−εH/10. Then, G has an induced subgraph G′ of girth at
least five with average degree d(G′)≥ 1

2 ∆εH/10.
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Proof. Let ε = εH and c = cH . Set P(x) = x20/ε +(116c)10/ε . For ℓ ∈ {3,4}, let Cℓ denote the set of
ℓ-cycles of G and let Sℓ denote the set of pairs (e,C) with e ∈ E(G), C ∈ Cℓ such that e contains exactly
one vertex of C.

Let xy be an edge of G. Then, |N(x)∪N(y)| ≤ 2∆ so by Theorem 1.4, G[N(x)∪N(y)] has at most
cs4(2∆)2−ε edges. There are at most two ways an edge of G[N(x)∪N(y)] can be extended to a four
cycle using the edge xy. Therefore, the number of 4-cycles containing the edge xy is at most 8cs4∆2−ε .
Since G has at most n∆ edges, it follows that |C4| ≤ 2cs4n∆3−ε . For every cycle C, there are at most 4∆

edges e such that (e,C) ∈ S4 since every vertex of C has degree at most ∆. Therefore, |S4| ≤ 8cs4n∆4−ε .
Similarly, every vertex x is in at most cs4∆2−ε triangles so |C3| ≤ cs4n∆2−ε and |S3| ≤ 3cs4n∆3−ε .

Set p := ∆ε/5−1. Let U be a random subset of V (G) containing each vertex independently with
probability p. Let C be the set of 3-cycles and 4-cycles of G[U ], in particular C⊆ C3 ∪C4. Let U ′ ⊆U be
the set of vertices that are in a 3-cycle or 4-cycle in G[U ]. Let G′ be the graph induced by U \U ′. Then,
G′ has girth at least 5.

Let X = e(G[U ]),Y = |C| and let Z denote the number of pairs (e,C) ∈ S3 ∪S4 such that both e ⊆U
and C ∈ C. Let us examine the edges we delete from G[U ] when we remove U ′. For each C ∈ C, when
we delete V (C) from G[U ] we potentially remove six edges (between vertices of C) and we remove all
edges e which intersect C at exactly one vertex (i.e. we remove all edges e for which (e,C) ∈ S3 ∪S4).
Overall, we get e(G′)≥ X −6Y −Z. We now have:

E[X ] = p2e(G) =
p2

2
nd(G).

E[Y ] = p4|C4|+ p3|C3| ≤ 2cp4s4n∆
3−ε + cp3s4n∆

2−ε = cs4np(2∆
−2ε/5 +∆

−3ε/5)≤ 3cs4np∆
−2ε/5.

E[Z] = p5|S4|+ p4|S3| ≤ 8cp5s4n∆
4−ε +3cp4s4n∆

3−ε = cs4np(8∆
−ε/5 +3∆

−2ε/5)≤ 11cs4np∆
−ε/5.

Thus,

E
[

e(G′)−|U | · pd(G)

4

]
≥ E

[
X −6Y −Z −|U | · pd(G)

4

]
≥ p2

2
nd(G)−18cs4np∆

−2ε/5 −11cs4np∆
−ε/5 −np · pd(G)

4

≥ np
(

pd(G)

4
−29cs4

∆
−ε/5

)
> 0,

where the final inequality holds since pd(G) ·∆ε/5 ≥ ∆ε/10 ·P(s)ε/5 > 116c · s4.

Choosing an outcome U such that the above holds, we have e(G′)≥ pd(G)
4 |U |> 0 so G′ has average

degree at least 1
2 pd(G)≥ 1

2 ∆ε/10.

We can further extend Lemma 3.2 to obtain a bipartite induced subgraph with large average degree.
For this, we require the following nice result of Kwan, Letzter, Sudakov, and Tran [24].

Theorem 3.3 (Theorem 1.2 of [24]). There exists a constant C > 0 such that every triangle-free graph
with average degree at least d contains an induced bipartite subgraph of average degree at least C logd

log logd .
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By Lemma 3.2 (with H chosen to be an arbitrary bipartite graph with average degree at least k)
and Theorem 3.3, we obtain the following, which essentially handles the “almost regular” outcome of
Lemma 3.1, namely case (A).

Lemma 3.4. For every positive integer k, there exists ε = ε(k)> 0 and a polynomial pk such that the
following holds. Let s ≥ 2 be an integer and ∆ ≥ pk(s). Let G be a Ks,s-subgraph-free graph with
maximum degree at most ∆ and average degree at least ∆1−ε . Then, G has a C4-subgraph-free bipartite
induced subgraph with average degree at least k.

Proof. Let H be some fixed bipartite C4-subgraph-free graph with average degree at least k (for instance
the incidence graph of a projective plane of order at least k). Let ε = εH/10. Let C be the constant
provided by Theorem 3.3 and let p′ be the polynomial provided by Lemma 3.2 for our choice of H. Let

us set pk(x) = p′(x)+C′, where C′ is a large enough constant to guarantee that
C log(∆ε/2)

log log(∆ε/2)
≥ k for

any ∆ ≥C′.
Suppose towards a contradiction that for some integer s ≥ 2 there exists a graph G which is Ks,s-

subgraph-free, has maximum degree at most ∆ ≥ pk(s), average degree at least ∆1−ε and contains no
C4-subgraph-free bipartite induced subgraph with average degree at least k.

The last of these assumptions implies that G does not contain H as an induced subgraph, so we may
apply Lemma 3.2 with this H and our s to obtain an induced subgraph G′ of G with girth at least five and
average degree at least 1

2 ∆ε . In particular, G′ is triangle-free. Applying Theorem 3.3 to G′, we obtain an

induced bipartite subgraph G′′ of G′, and hence also of G, with average degree at least
C log(∆ε/2)

log log(∆ε/2)
≥ k.

Since G′′ is an induced subgraph of G′, which has girth at least five, G′′ is also C4-subgraph-free, giving
the desired contradiction.

We will use the following lemma to deal with the very unbalanced outcome of Lemma 3.1, namely
case (B). It is a strengthening of Lemma 3.5 from [12], under the additional assumption of not having
some bipartite graph H as an induced subgraph. It says that if we have a very unbalanced partition of
the vertices of a Ks,s-subgraph-free, d-degenerate graph G with no H as an induced subgraph and with
high density between the parts (in terms of d), then we can find an induced bipartite subgraph with still
very unbalanced parts and in which every vertex on the larger side has degree equal to p(d) where p is
a fixed polynomial. The proof involves some simple cleaning of the graph, using degeneracy to ensure
independence in the larger part and then subsampling the smaller part with low enough probability to
ensure that it is unlikely that a subsampled vertex has any of its neighbours subsampled as well, and we
simply delete any such vertices. This still allows us to show that, in expectation, a substantial proportion
of the vertices in the larger part have the desired fixed degree to the smaller one.

Lemma 3.5. Let H be a bipartite graph. There exists a function f3 such that the following holds. Let
s ≥ 1,δ ∈ (0,1/2) and d ≥ f3(δ ). Let G0 be a d-degenerate graph with V (G0) = A⊔B, that has no
Ks,s-subgraph and no H as an induced subgraph. Suppose that |A| ≥ 2dδ |B| and e(A,B)≥ 3

√
d|A|. Then,

for any r ≤ min
{

dδ/4,
dεH/2

4cHs4

}
, we can find subsets A′ ⊆ A,B′ ⊆ B that are both independent sets in G0,

with |A′| ≥ 2dδ/2 |B′| and |N(a)∩B′|= r for every a ∈ A′.
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Proof. We define f3 to be a sufficiently fast-growing function to guarantee the following: for each
δ ∈ (0,1/2) and d ≥ f3(δ ) all of the following conditions are true:

(i) dδ ≥ 2dδ/2 + 3
2 log(d)+ log(20),

(ii) d/2 ≥ 10+dδ/4, and

(iii) dδ/2 ≥ 2dδ/4 log(d)+1.

Let s ≥ 1, δ ∈ (0,1/2) and d ≥ f3(δ ) be fixed and let G0,A,B be defined with respect to s,δ and d

as in the statement of Lemma 3.5 and fix r ≤ min
{

dδ/4,
dε/2

4cs4

}
. Let ε = εH and c = cH . We start

by “cleaning” G0 so that no vertex in A has too large degree or too low degree with respect to B.
Let A+ = {a ∈ A | dB(a)≥ 10d}. Then, e(A+,B)≥ 10d|A+|. Since G0 is d-degenerate, we also have
e(A+,B)≤ d(|A+|+ |B|), therefore |A+| ≤ |B|, hence e(A+,B)≤ 2d|B|. Let A− = {a ∈ A | dB(a) ≤√

d}. Then, e(A−,B) ≤
√

d|A−| ≤
√

d|A|. Let A1 = A \ (A+ ∪A−). We have e(A1,B) = e(A,B)−
e(A+,B)−e(A−,B)≥ 3

√
d|A|−2d|B|−

√
d|A|= 2

√
d|A|−2d|B|. Property (i) implies 2dδ ≥ 2

√
d, thus√

d · |A| ≥
√

d ·2dδ |B| ≥ 2d|B|. Hence, we obtain that e(A1,B)≥ 2
√

d|A|−2d|B| ≥
√

d|A|. Furthermore,
for every a ∈ A1, we have dB(a) ∈ [

√
d,10d]. Thus, |A1| ≥ e(A1,B)/(10d)≥ |A|/(10

√
d).

Since G0 is d-degenerate, χ(G0) ≤ d + 1 so there exists an independent set A0 ⊆ A1 of size
|A0| ≥ |A1|/(d+1)≥ |A1|/(2d)≥ |A|/(20d

√
d)≥ 2dδ |B|/(20d

√
d)≥ 22dδ/2 |B| where the last inequality

follows from (i).
Let G = G0[A0 ∪B]. Since G0 is d-degenerate, there exists an orientation D of G0[B] = G[B] such

that |N+
D (b)| ≤ d for every b ∈ B (N+

D (b) represents the set of out-neighbours of b with respect to
D). Let B0 be a random subset of B containing each vertex independently with probability 1/d2. Let
B′ = {b ∈ B0,N+

D (b)∩B0 = /0}. Then, B′ is an independent set of G0.
Let a ∈ A0. Let da denote |NG(a)| (= |NB(a)|). Then,

√
d ≤ da ≤ 10d since a ∈ A0 ⊆ A1 and A0 is

an independent set. Since G[NG(a)] contains no Ks,s subgraph and no induced copy of H, it has average
degree at most 2cs4(da)

1−ε by Theorem 1.4. It is a classical result that every graph on n vertices with
average degree q contains an independent set of size at least n/(2q) (see eg. [2, Theorem 3.2.1]). Thus,

G[NG(a)] contains an independent set of size at least
da

4cs4(da)1−ε
=

(da)
ε

4cs4 ≥ dε/2

4cs4 ≥ r by definition of r.

For every a ∈ A0, we fix an independent set Ia of size r in G[NG(a)] for the rest of the proof.
For a ∈ A0, let Ea be the event that [NG(a)∩B′ = NG(a)∩B0 = Ia]. Let Xa = NG(a) \ Ia and let

Ya =
⋃

b∈Ia
N+

D (b). Note that Ea happens if and only if all elements of Ia are put in B0 and no element from
Xa ∪Ya is put in B0. Recall that da ≤ 10d. Hence, |Xa ∪Ya| ≤ 10d+ rd ≤ (10+dδ/4)d ≤ d2/2 where the
last inequality follows from property (ii). Hence, using the fact that for every x ≥−1 and m ≥ 1, we have
(1+ x)m ≥ 1+mx, we get:

P[Ea] = p|Ia|(1− p)|Xa∪Ya| ≥ 1
d2r

(
1− 1

d2

)d2/2

≥ 1
2d2r ≥ 2−1−2r logd ≥ 2−1−2dδ/4 logd ≥ 2−dδ/2

.

Here, the last inequality follows from property (iii). Set A′ = {a ∈ A0,Ea holds}. Then,

E[|A′|]≥ |A0|2−dδ/2 ≥ 22dδ/2 ·2−dδ/2 |B|= 2dδ/2 |B| ≥ 2dδ/2 |B′|.
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Hence, there exists a choice of A′,B′ satisfying the desired properties. This concludes the proof.

We are now ready to prove the following. It summarizes our current progress in both outcomes of
Lemma 3.1 and as we will see immediately after it strengthens and implies Theorem 1.3.

Theorem 3.6. Let k be a positive integer. There exists ε = ε(k)> 0 and a polynomial Pk with the following
property. For any two positive integers s and d ≥ Pk(s), every Ks,s-subgraph-free graph with maximum
average degree d contains either a C4-subgraph-free bipartite induced subgraph with average degree at
least k, or an induced bipartite subgraph G′ = (A′,B′) with |A′| ≥ 2d2ε |B′|, and |N(a)∩B′|= ⌊dε/s4⌋ for
every a ∈ A′.

Proof. Let εk, pk(s) be provided by Lemma 3.4. Let H be a fixed C4-subgraph-free bipartite graph with
average degree at least k (for instance the incidence graph of a projective plane of order at least k). We set
ε = ε(k) = min{εk/40,εH/3}. Let c = cH , γ = εk/8, δ = εk/10 and let C be a sufficiently large constant
(depending only on k) so that C ≥ f1(γ), f3(δ ),144,(4c)6/εH and so that xγ ≥ xδ +2 for any x≥C. (Recall,
f1, f3 are defined in Lemma 3.1 and in Lemma 3.5, respectively.) We set Pk(s) := |pk(s)|1/(1−5γ)+C.

The result is trivial for s < 2. Let s ≥ 2,d ≥ Pk(s) and G be a graph with maximum average degree d
that does not contain Ks,s as a subgraph. If G contains H as an induced subgraph we are done, so we may
assume it does not.

Let G0 be an induced subgraph of G achieving maximum average degree, i.e. d(G0) = d ≥ Pk(s). G0
is d-degenerate by maximality of d. Note that γ < 1/5 and d ≥ f1(γ). By applying Lemma 3.1 we obtain
that either (A) or (B) holds for γ,d.

If case (A) occurs, G0 contains an induced subgraph G∗ of average degree at least 6d1−5γ and
maximum degree ∆(G∗)≤ 6d1+3γ . So, d(G∗)≥ 6d1−5γ ≥ (6d1+3γ)1−εk ≥ (∆(G∗))1−εk where the second
inequality follows from the fact that γ < 1

5 . Moreover, ∆(G∗) ≥ 6d1−5γ ≥ pk(s). So we may apply
Lemma 3.4 with ∆ = ∆(G∗) to find a C4-subgraph-free bipartite induced subgraph with average degree at
least k, as desired.

If case (B) occurs, there is a partition V (G0) = A⊔B such that e(A,B) ≥ |V (G0)|d/4 ≥ |A|d/4 ≥
3
√

d|A| and |A| ≥ 2dγ−2|B| ≥ 2dδ |B|. Since G0 is d-degenerate and has no H as an induced subgraph or

Ks,s as a subgraph, and r := ⌊dε/s4⌋ ≤ min
{

dδ/4,
dεH/2

4cHs4

}
(using that ε ≤ εk/40 = δ/4, and d ≥ Pk(s)≥

C ≥ (4cH)
6/εH so dε ≤ dεH/3 = dεH/2/dεH/6 ≤ dεH/2/(4cH)) we may apply Lemma 3.5 to find subsets

A′ ⊆ A,B′ ⊆ B that are both independent sets in G0, with |A′| ≥ 2dδ/2 |B′| ≥ 2d2ε |B′| and |N(a)∩B′| =
⌊dε/s4⌋ for every a ∈ A′, as desired.

Now, we quickly show that Theorem 3.6 implies Theorem 1.3, thus answering McCarty’s [27]
question on polynomial degree bounding functions.

Proof of Theorem 1.3. Let G be a hereditary class of graphs for which there is a polynomial p such that
every bipartite Ks,s-subgraph-free graph in G has average degree at most p(s). Let k = p(2)+1, and let
εk > 0,Pk be given by Theorem 3.6. Set p′(s) = (2s4 p(s))1/εk +Pk(s). Towards a contradiction, suppose
there exists a Ks,s-subgraph-free graph G ∈ G with average degree more than p′(s). Then, G has maximum
average degree d > p′(s). Since k > p(2) and G is hereditary, G cannot contain a C4-subgraph-free
bipartite induced subgraph with average degree at least k. Then, by Theorem 3.6, G contains an induced
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bipartite subgraph G′ = (A′,B′) with |A′| ≥ 2d2εk |B′| ≥ |B′| and |N(a)∩B′|= ⌊dεk/s4⌋ for every a ∈ A′.
Note that G′ ∈ G and G′ is Ks,s-subgraph-free. Furthermore, e(G′) = ⌊dεk/s4⌋ · |A′| ≥ 1

2⌊dεk/s4⌋ · |A′∪B′|
so G′ has average degree at least ⌊dεk/s4⌋> p(s), a contradiction.

4 Induced subdivisions

In this section, we prove Theorem 1.1 and Theorem 1.2. We begin with Theorem 1.1. First, we need to
gather a few more well-known results.

The outcome of Theorem 3.6 in which we find an induced bipartite C4-subgraph-free subgraph with
large average degree can be handled by the special case (s = 2) of Theorem 1 of Kühn and Osthus [23]
stating that C4-subgraph-free graphs containing no induced subdivision of a graph H have bounded
average degree.

Lemma 4.1 (Theorem 1 of [23]). Let H be a graph. There exists k = k(H) such that any C4-subgraph-free
graph containing no induced subdivision of H has average degree less than k.

To handle the very unbalanced case of Theorem 3.6, we shall also take inspiration from [23]. We will
need the following classical result of Kühn and Osthus. Roughly speaking, it states that if we have an
unbalanced bipartite graph G′ where each vertex on the “big” side of G′ has large degree, then G′ contains
a large complete bipartite subgraph or an induced 1-subdivision of some graph of large average degree.

Lemma 4.2 (Corollary 19 of [23]). Let α ∈ N and β ≥ 8α . Let G′ = (A′,B′) be a bipartite graph such
that |A′| ≥ β 12α |B′| and β/4 ≤ d(a)≤ 4β for every a ∈ A′. Then, G′ contains either a Kα,α -subgraph or
an induced 1-subdivision of some graph F with d(F)≥ β 9/214.

Finally, we will use the fact that every graph of large average degree contains a subdivision of
a large complete graph. The following result was proved independently by Bollobás-Thomason [3]
and Komlós-Szemerédi [22]1. The latter of these was one of the earliest papers introducing the highly
influential concept of sublinear expander graphs, used, for example, by Montgomery to essentially resolve
the famous Ryser-Brualdi-Stein conjecture [30].

Lemma 4.3. For all h ∈ N, if G is a graph with average degree at least 256h2, then G contains a
subdivision of Kh.

We are now ready to prove Theorem 1.1, stating that Ks,s-subgraph-free graphs with no induced
subdivision of a fixed graph H have at most polynomial average degree (in terms of s).

Proof of Theorem 1.1. By Lemma 4.1, there exists a positive integer k such that every C4-subgraph-free
graph not containing an induced subdivision of H has average degree less than k. Let ε = ε(k) and Pk(s)
be provided by Theorem 3.6. Let p(s) := |Pk(s)|+(2|H|s)5/ε +C, where C is a constant depending only
on k, chosen large enough to guarantee that dε ≥ 3

2 ε logd whenever d ≥C. We claim that p(s) satisfies
the conditions of Theorem 1.1.

1Technically speaking, the bound obtained in this paper has a worse constant factor in front of h2.
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Let s ≥ 1 be a fixed integer. If s = 1 the result is immediate so we may assume s ≥ 2. Let G be a
Ks,s-subgraph-free graph containing no induced subdivision of H that has average degree more than p(s).
Then, G has maximum average degree d > p(s). Since G does not contain an induced C4-subgraph-free
subgraph with average degree at least k by Lemma 4.1, it follows from Theorem 3.6 that G contains an
induced bipartite subgraph G′ = (A′,B′) with |A′| ≥ 2d2ε |B′| and |N(a)∩B′|= ⌊dε/s4⌋ for every a ∈ A′.

Let α = ⌊⌊dε/(s4)⌋/8⌋ ≥ s and let β = ⌊dε/(s4)⌋ ≥ 8α . Note that by our choice of C we have
β 12α ≤ (dε)12dε/8 ≤ 2d2ε

. Since G′ is Ks,s-subgraph-free, by Lemma 4.2, G′ contains an induced 1-
subdivision F ′ of some graph F with average degree d(F) ≥ β 9/214 ≥ 256|H|2, where in the last
inequality we used β ≥ (2|H|s)5/(2s4)≥ 24|H|. By Lemma 4.3, F contains as a subgraph a subdivision
of K|H|. In F ′ (hence in G′ and thus in G), this corresponds to an induced proper subdivision of K|H|. Since
every proper subdivision of Kn contains an induced subdivision of any n-vertex graph, this completes the
proof.

Now, we prove Theorem 1.2, i.e. that the class of graphs containing no induced subdivision of Kr,t is
polynomially χ-bounded. In fact, we shall prove that the average degree of graphs containing no induced
subdivision of Kr,t is at most polynomial in their clique number, which clearly implies Theorem 1.2 since
d-degenerate graphs are (d +1)-colorable. This is a simple application of Theorem 1.1 and the classical
bound on the Ramsey numbers by Erdős and Szekeres [15].

Theorem 4.4. Let r, t be positive integers. Then there exists a polynomial g, such that the average degree
of every graph G containing no induced subdivision of Kr,t is at most g(ω(G)).

Proof. Assume s ≤ t. By Theorem 1.1, there exists a polynomial p such that for every integer x any
graph G that does not contain Kx,x as a subgraph nor an induced subdivision of Kr,t has average degree at
most p(r).

Let k ≥ 1 and set x := (k+ t −1)t−1 ≥
(k+t−1

t−1

)
. Let g(k) := p(x). Then, g is a polynomial in k. Let G

be a graph with ω(G) = k that does not contain an induced subdivision of Kr,t .
Suppose G contains a Kx,x as a subgraph and let X ,Y ⊆V (G) be the corresponding vertex sets. By

the bound on Ramsey numbers by Erdős and Szekeres [15], every graph on r vertices contains a clique of
size k+1 or a stable set of size t. Since ω(G) = k it follows that X and Y both contain a stable set of size
t. But then G contains an induced Kr,t , a contradiction. Hence, G contains no Kx,x, so by Theorem 1.1, G
has average degree at most p(x) = g(k).

Acknowledgments

The bulk of this work was done at the 2023 Structural Graph Theory workshop held at the IMPAN
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